University of Utah |
Department of MathematicsStochastics | Applied Math | Math Bio | Colloquium | Positions | People | Contact | Map | Calendar |

- with M. Damron and
T. Seppäläinen (Editors): Random Growth Models.
*Proceedings of Symposia in Applied Mathematics,*To appear (2018) (Front matter) (Index)

- with
M. Damron and
T. Seppäläinen:
Random growth models.
*Notices of the AMS*,**63**, 1004-1008. (2016) - with
M. Damron and
T. Seppäläinen:
AMS short course in Atlanta, GA.
*Notices of the AMS*,**63**, 1087-1090. (2016) - with D. Khoshnevisan: Introduction to probability. These are the lecture notes I use for undergraduate probability. Some homework exercises refer to Robert Ash's book.
- with
T. Seppäläinen:
A course on large deviations with an introduction to Gibbs measures.
*Graduate Studies in Mathematics*,**162**, American Mathematical Society, Providence. (2015) (on Amazon) (on Google) (Errata) - with D. Khoshnevisan (Editors):
A Minicourse on Stochastic Partial Differential Equations.
*Lect. Notes in Math*,**1962**, Springer-Verlag, Berlin (2009); Authors: R. Dalang, D. Khoshnevisan, C. Mueller, D. Nualart, and Y. Xiao. (on Amazon)

- with M. Balázs and T. Seppäläinen: Large deviations and wandering exponent for random walk in a dynamic beta environment. (2018)
- with M. Joseph and T. Seppäläinen: Independent particles in a dynamical random environment. (2017)
- with K. Smith and C. Strong: Multisite generalization of the SHArP weather generator. (2017)

- with
N. Georgiou and
T. Seppäläinen:
Geodesics and the competition interface for the corner growth model.
*Probab. Th. Rel. Fields.*,**169**, 223-255. (2017) - with
N. Georgiou and
T. Seppäläinen:
Stationary cocycles and Busemann functions for the corner growth model.
*Probab. Th. Rel. Fields.*,**169**, 177-222. (2017) - with
T. Seppäläinen and
A. Yilmaz:
Averaged vs. quenched large deviations and entropy for
random walk in a dynamic random environment.
*Electron. J. Probab.*,**22**, 1-47. (2017) - with
K. Smith and
C. Strong:
A new method for generating stochastic simulations of air temperature.
*J. Appl. Meteor. Climatol.*,**56**, 953-963. (2017) - with
T. Seppäläinen and
A. Yilmaz:
Variational formulas and disorder regimes of random walks in random potentials.
*Bernoulli*,**23**, 405-431. (2017) - with
N. Georgiou and
T. Seppäläinen:
Variational formulas and cocycle solutions for directed polymer and percolation models.
*Commun. Math. Phys.*,**346**, 741-779. (2016) - with
N. Georgiou,
T. Seppäläinen and
A. Yilmaz:
Ratios of partition functions for the log-gamma polymer.
*Ann. Probab.*,**43**, 2282-2331. (2015) - with
A. Borisyuk:
Quasiperiodicity and phase locking in stochastic circle maps:
a spectral approach.
*Phys. D: Nonlinear Phenomena*,**288**, 30-44. (2014)

[Preprint with videos embedded (larger file)] [Videos] - with
T. Seppäläinen:
Quenched point-to-point free energy for random walks in random potentials.
*Probab. Th. Rel. Fields*,**158**, 711-750. (2014) - with
D. Campos,
A. Drewitz,
A.F. Ramírez, and
T. Seppäläinen:
Level 1 quenched large deviation principle for random walk in dynamic
random environment.
*Bull. Inst. Math. Acad. Sin.*,**8**, 1-29. Special Issue in honor of the 70th birthday of Raghu Varadhan. (2013) - with
T. Seppäläinen and
A. Yilmaz:
Quenched free energy and large deviations for random walks in random potentials.
*Comm. Pure Appl. Math.*,**66**, 202-244. (2013) - with
M. Joseph:
Almost sure invariance principle for continuous space random walk in dynamic random environment.
*ALEA Lat. Am. J. Probab. Math. Stat.*,**8**, 43-57. (2011) - with
T. Seppäläinen:
Process-level quenched large deviations for random walk in random environment.
*Ann. Inst. H. Poincaré Probab. Statist.*,**47**, 214-242. (2011) - with
T. Seppäläinen:
Almost sure functional central limit theorem for ballistic
random walk in random environment.
*Ann. Inst. H. Poincaré Probab. Statist.*,**45**, 373-420. (2009) - with
T. Seppäläinen:
An almost sure invariance principle for additive functionals of Markov
chains.
*Statist. Probab. Lett.*,**78**, 854-860. (2008) - with
M. Balázs,
T. Seppäläinen, and
S. Sethuraman:
Existence of the zero range process and a deposition model with
superlinear growth rates.
*Ann. Probab.*,**35**, 1209-1249. (2007) - with
T. Seppäläinen:
Quenched invariance principle for multidimensional ballistic random walk in
a random environment with a forbidden direction.
*Ann. Probab.*,**35**, 1-31. (2007) - with
M. Balázs and
T. Seppäläinen:
The random average process and random walk in
a space-time random environment in one dimension.
*Commun. Math. Phys.*,**266**, 499-545. (2006) - with
T. Seppäläinen:
Ballistic random walk in a random environment with a forbidden direction.
*ALEA Lat. Am. J. Probab. Math. Stat.*,**1**, 111-147. (2006) - with
T. Seppäläinen:
An almost sure invariance principle for random walks in a space-time
random environment.
*Probab. Th. Rel. Fields*,**133**, 299-314. (2005) -
On the zero-one law and the law of large numbers for a random walk in a mixing
random environment.
*Electron. Comm. in Probab.***10**, 36-44. (2005) -
Large deviations for random walks in a mixing random environment
and other (non-Markov) random walks.
*Comm. Pure Appl. Math.***57**, 1178-1196. (2004) -
The point of view of the particle on the law of large numbers for
random walks in a mixing random environment.
*Ann. Probab.***31**, 1441-1463. (2003)

- with
M. Balázs and
T. Seppäläinen:
Wandering exponent and large deviations for random walk in a dynamic beta environment.
*Extended version.*(2018) - with
N. Georgiou and
T. Seppäläinen:
Geodesics and the competition interface for the corner growth model.
*Extended version (includes a coalescence appendix).*(2015) - with
N. Georgiou and
T. Seppäläinen:
Stationary cocycles for the corner growth model.
*Extended Version.*(2015) - with
T. Seppäläinen:
Quenched point-to-point free energy for random walks in random potentials.
*Extended Version.*(2012) - with
T. Seppäläinen:
Almost sure functional central limit theorem for non-nestling
random walk in random environment.
*Preprint.*(2007) -
Le comportement non-récurrent dans la dynamique quantique:
Le rotateur quantique.
*Preprints of the University of Paris 7*(1996) (English abstract)