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GEODESIC LENGTH AND SHIFTED WEIGHTS IN FIRST-PASSAGE
PERCOLATION

ARJUN KRISHNAN, FIRAS RASSOUL-AGHA, AND TIMO SEPPÄLÄINEN

Abstract. We study first-passage percolation through related optimization problems
over paths of restricted length. The path length variable is in duality with a shift of
the weights. This puts into a convex duality framework old observations about the
convergence of the normalized Euclidean length of geodesics due to Hammersley and
Welsh, Smythe and Wierman, and Kesten, and leads to new results about geodesic
length and the regularity of the shape function as a function of the weight shift. For
points far enough away from the origin, the ratio of the geodesic length and the ℓ1
distance to the endpoint is uniformly bounded away from one. The shape function is a
strictly concave function of the weight shift. Atoms of the weight distribution generate
singularities, that is, points of nondifferentiability, in this function. We generalize to all
distributions, directions and dimensions an old singularity result of Steele and Zhang
for the planar Bernoulli case. When the weight distribution has two or more atoms, a
dense set of shifts produces singularities. The results come from a combination of the
convex duality, the shape theorems of the different first-passage optimization problems,
and modification arguments.
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1. Introduction

1.1. Stochastic growth models. Irregular and stochastic growth surrounds us, for
example in tumors, bacterial colonies, infections, spread of fluid in a porous medium,
and propagating flame fronts. These phenomena attract the attention of mathemati-
cians, scientists and engineers in various disciplines. Simplified mathematical models
of stochastic growth have been studied in probability theory for over half a century.
This work has inspired some of the central innovations of modern probability, such
as the subadditive ergodic theorem, and created new connections between probability
and other parts of mathematics, such as representation theory, integrable systems, and
partial differential equations.
A class of much-studied stochastic growth models possesses a metric-like structure

where growth progresses along paths that optimize an energy functional defined in
terms of a random environment. Depending on whether the optimal path is chosen
through minimization or maximization, these models are called first-passage percola-
tion and last-passage percolation.
A variety of settings for first- and last-passage percolation are studied. The admis-

sible paths can be general or they can be restricted to be directed along some spatial
directions. The underlying space can be a graph, the continuum, or a mixture of the
two. In the graph case, the environment is given by random weights attached to the
vertices or the edges. Themost typical choice of graph is the 𝑑-dimensional integer lat-
tice ℤ𝑑. The one-dimensional case usually reduces to classical probability so the real
work begins from the planar case 𝑑 = 2.
Much progress in the planar case has taken place over the past 25 years under the

rubric Kardar-Parisi-Zhang universality. A universal planar continuum limit, the di-
rected landscape, has recently been constructed [8]. It is expected to be the scaling
limit of a wide class of planar first- and last-passage percolation models, but this re-
mains conjectural at present. Evidence for the universality comes from proofs that
certain special exactly solvable directed models converge to the directed landscape [9].
We refer the reader to articles [4, 6] and the monograph [2] for general introductions
to the field.
Our paper studies first-passage percolation with undirected paths on the integer lat-

tice in arbitrary dimension. This has proved to be, in a sense, the most challenging
model, as no exactly solvable version has been discovered. A proof that this model lies
in the KPZ class, while universally expected, appears well beyond reach in the current
state of the field. Our results concern properties of the geodesics and the regularity of
the limiting norm as we perturb the random weights by a common additive constant.
We turn to discuss the background.

1.2. First-passage percolation and its limit shape. In first-passage percolation
(FPP) a random pseudometric is defined on ℤ𝑑 by 𝑇𝑥,𝑦 = inf𝜋∑𝑒∈𝜋 𝑡(𝑒) where the
{𝑡(𝑒)} are nonnegative, independent and identically distributed (i.i.d.) randomweights
on the nearest-neighbor edges between vertices of ℤ𝑑 and the infimum is over self-
avoiding paths 𝜋 between the two points 𝑥 and 𝑦. A minimizing path is called a ge-
odesic between 𝑥 and 𝑦. FPP was introduced by Hammersley and Welsh [12] in 1965
as a simplified model of fluid flow in an inhomogeneous medium. A precise technical
definition of the model comes in Section 2.
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The fundamental questions of FPP concern the behavior of the passage times 𝑇𝑥,𝑦
and the geodesics as the distance between 𝑥 and 𝑦 grows. At the level of the law of
large numbers, under suitable hypotheses, normalized passage times converge with
probability one: 𝑛−1𝑇𝟎,𝑥𝑛 → 𝜇(𝜉) as 𝑛 → ∞, whenever 𝑛−1𝑥𝑛 → 𝜉 ∈ ℝ𝑑. The special
case 𝜇(𝐞1) = lim𝑛→∞ 𝑛−1𝑇𝟎,𝑛𝐞1 of the limit is also called the time constant.
The limiting shape function 𝜇 is a norm that characterizes the asymptotic shape of

a large ball. Define the randomly growing ball in ℝ𝑑 for 𝑡 ≥ 0 by 𝐵(𝑡) = {𝑥 ∈ ℝ𝑑 ∶
𝑇𝟎,⌊𝑥⌋ ≤ 𝑡} where ⌊𝑥⌋ ∈ ℤ𝑑 is obtained from 𝑥 ∈ ℝ𝑑 by taking integer parts coordinate-
wise. Under the right assumptions, as 𝑡 → ∞ the normalized ball 𝑡−1𝐵(𝑡) converges to
the unit ball ℬ = {𝜉 ∈ ℝ𝑑 ∶ 𝜇(𝜉) ≤ 1} defined by the norm 𝜇.
The shape function 𝜇 is not explicitly known in any nontrivial example. Soft proper-

ties such as convexity, continuity, positive homogeneity, and 𝜇(𝜉) > 0 for 𝜉 ≠ 𝟎 when
zero-weight edges are subcritical are readily established. But anything beyond that,
such as strict convexity or differentiability, remains conjectural. The only counterex-
ample to this state of affairs is the classic Durrett-Liggett [10] planar flat edge result,
sharpened by Marchand [15], and then extended by Auffinger and Damron [1] to in-
clude differentiability at the boundary of the flat edge.
The FPP shape theorem occupies a venerable position as one of the fundamental

results of the subject of randomgrowthmodels and as an earlymotivator of subadditive
ergodic theory. The reader is referred to themonograph [2] for a recent overview of the
known results and open problems.

1.3. Differentiability and length of geodesics. The success of the shape theorem
contrasts sharply with the situation of another natural limit question, namely the be-
havior of the normalized Euclidean length (number of edges) of a geodesic as one end-
point is taken to infinity. No useful subadditivity or other related property has been
found. This issue has been addressed only a few times over the 55 years of FPP study
and the results remain incomplete.
The fundamental observation due to Hammersley and Welsh is the connection be-

tween (i) the limit of the normalized length of the geodesic and (ii) the derivative of the
shape function as a function of a weight shift. For ℎ ∈ ℝ let 𝜇(ℎ)(𝜉) denote the shape
function for the shifted weights {𝑡(𝑒) + ℎ}. Let 𝐿(ℎ)𝟎,𝑥 be the minimal Euclidean length
of a geodesic from the origin to the point 𝑥 for the shifted weights {𝑡(𝑒) + ℎ}. Then the
important fact is that when 𝑛−1𝑥𝑛 → 𝜉,

(1.1) lim
𝑛→∞

𝑛−1𝐿(ℎ)𝟎,𝑥𝑛
= 𝜕𝜇(𝑠)(𝜉)

𝜕𝑠
|||𝑠=ℎ

,

provided the derivative at ℎ on the right-hand side exists.
The shape function 𝜇(ℎ)(𝜉) is a concave function of ℎ and hence the derivative in

(1.1) exists and the limit holds for all but countably many shifts ℎ. But since the time
constant itself remains a mystery, not a single specific nontrivial case where this iden-
tity holds has been identified. The first results on the size of the set of exceptional ℎ at
which the derivative on the right fails are proved in the present paper and summarized
in Sections 1.5 and 1.6.
Here is a brief accounting of the history of (1.1).
Hammersley and Welsh (Theorem 8.2.3 in [12]) gave the first version of (1.1). It

was proved for the time constant of planar FPP, so for 𝑑 = 2 and 𝜉 = 𝐞1, and for the
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particular sequence 𝑥𝑛 = (𝑛, 0). Their result applied to the geodesic of the so-called
cylinder passage time from (0, 0) to (𝑛, 0), and the mode of convergence in (1.1) was
convergence in probability.
The limit (1.1) was improved in 1978 by Smythe andWierman (Theorem 8.2 in [18])

and in 1980 byKesten [13], in particular from convergence in probability to almost sure
convergence. The ultimate version has recently been established by Bates (Theorem
1.25 in [3]): almost sure convergence in (1.1) without any moment assumptions on the
weights, in all directions 𝜉, provided the derivative on the right exists.
A handful of precise results related to (1.1) exist in specific situations defined by

criticality in percolation. Let 𝑝𝑐 denote the critical probability of Bernoulli bond perco-
lation on ℤ𝑑. When ℙ(𝑡(𝑒) = 0) ≥ 𝑝𝑐 the FPP problem becomes in a sense degenerate.
Geodesics to far-away points can take advantage of long paths of zero-weight edges and
the shape function 𝜇 becomes identically zero.
Zhang [21] proved in 1995 that in the supercritical case defined by ℙ(𝑡(𝑒) = 0) > 𝑝𝑐,

for 𝜉 = 𝐞1 and ℎ = 0, the limit on the left in (1.1) exists and equals a nonrandom
constant. In the planar critical case, that is, 𝑑 = 2, ℙ(𝑡(𝑒) = 0) = 1/2 = 𝑝𝑐 and ℎ = 0,
Damron and Tang [7] proved that the left-hand side in (1.1) blows up in all directions
𝜉.
In 2003 Steele and Zhang [19] proved the first, and before the present paper the

only, precise result about the derivative in (1.1), valid for subcritical planar FPP with
Bernoulli weights. When the distribution is ℙ(𝑡(𝑒) = 0) = 𝑝 = 1 − ℙ(𝑡(𝑒) = 1), there
exists 𝛿 > 0 such that if 1

2 − 𝛿 ≤ 𝑝 < 1
2 , 𝑑 = 2 and 𝜉 = 𝐞1, then the derivative in (1.1)

fails to exist at ℎ = 0. Thus the Hammersley-Welsh differentiability criterion for the
convergence of normalized geodesic length faces a limitation.

1.4. Duality of path length andweight shift. Wemove on to describe the contents
of our paper. To investigate (1.1) and more broadly properties of geodesic length, we
develop a convex duality between the weight shift ℎ and a parameter that captures
the asymptotic length of a path. This puts the limit (1.1) into a convex-analytic frame-
work. To account for the possibility of nondifferentiability in (1.1), we enlarge the class
of paths considered from genuine geodesics to 𝑜(𝑛)-approximate geodesics. These are
paths whose endpoints are order 𝑛 apart and whose passage times are within 𝑜(𝑛) of
the optimal passage time. Through these we can capture the entire superdifferential
of the shape function as a function of the shift ℎ.
To be able to work explicitly with the path-length parameter, we introduce a version

of FPP that minimizes over paths with a given number of steps but drops the require-
ment that paths be self-avoiding (Section 2.3). A further useful variant of the restricted
path length FPP process allows zero-length steps that do not increase the passage time.
The shape functions 𝑔 and 𝑔𝑜 of these altered models are no longer positively homo-
geneous, but they turn out to be continuously differentiable along rays from the origin
(Theorem 2.16).
The restricted path length shape functions 𝑔 and 𝑔𝑜 are connected with the FPP

shape function 𝜇 in several ways. A key fact is that 𝑔 and 𝑔𝑜 agree with 𝜇 on certain
subsets of ℝ𝑑 described by positively homogeneous functions that are connected with
geodesic length (Theorems 2.11 and 2.16). Second, 𝑔 and 𝑔𝑜 generate 𝜇 as the maximal
positively homogeneous convex function dominated by 𝑔 and 𝑔𝑜 (Remark 2.15). Third,
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𝑔 and 𝑔𝑜 contain the information for generating all the shifts 𝜇(ℎ) through convex du-
ality (Theorem 2.17 and Remark 2.18).
From this setting we derive two types of main results for FPP: results on the Eu-

clidean length of geodesics and on the regularity of the shape function as a function
of the weight shift, briefly summarized in the next two paragraphs. The proofs come
through a combination of

(i) versions of the van den Berg-Kesten modification arguments [20],
(ii) the convex duality (Theorem 2.17), and
(iii) a shape theorem for the altered FPP models (Theorem 2.9 and Theorem B.1 in

Appendix B).
Our results are valid onℤ𝑑 in all dimensions 𝑑 ≥ 2, under the standardmoment bound
needed for the shape theoremand the assumption that theminimumof the edgeweight
𝑡(𝑒) has probability strictly below 𝑝𝑐.
1.5. Euclidean length of geodesics. One of our fundamental results is that with
probability one, all geodesics from the origin to far enough lattice points 𝑥 have length
at least (1 + 𝛿)|𝑥|1 for a fixed constant 𝛿 > 0 (Theorem 2.5). The equality in (1.1) be-
tween the limiting normalized length of the geodesic and the derivative of the shape
function, which is conditional on the existence of these quantities, is generalized to
an unconditional identity between the entire interval of the asymptotic normalized
lengths of the 𝑜(𝑛)-approximate geodesics and the superdifferential of the shape func-
tion as a function of the weight shift (Theorem 2.17). When the random weight 𝑡(𝑒)
has an atom at zero or at least two atoms that satisfy suitable linear relations with inte-
ger coefficients, there are multiple geodesics whose lengths vary on the same scale as
the distance between the endpoints (Theorem 2.6). For any weight distribution with
at least two atoms, this happens on a countable dense set of shifts (Theorem 2.7).

1.6. Regularity of the shape function as a function of theweight shift. A second
suite of main results concerns the regularity of the shape function 𝜇(ℎ)(𝜉) as a function
of theweight shiftℎ, in a fixed spatial direction 𝜉 ∈ ℝ𝑑⧵{𝟎}. This function is strictly con-
cave in ℎ (Theorem 2.2). In the situations where the atoms of 𝑡(𝑒) bring about geodesics
whose asymptotic normalized lengths vary, the concave function ℎ ↦ 𝜇(ℎ)(𝜉) acquires
points of nondifferentiability. In particular, there is a countable dense set of these sin-
gularities whenever the edge weight has two atoms (Theorems 2.6 and 2.7). We extend
the Steele-Zhang nondifferentiability result [19] mentioned above to all dimensions,
all directions 𝜉, and all distributions with an atom at the origin. Furthermore, we dis-
prove their conjecture that ℎ = 0 is the only nondifferentiability point in the Bernoulli
case (Remark 2.8).

1.7. Organization of the paper. Section 2 describes themodels and themain results.
Section 3 describes open problems that arise from this work.
The proofs are divided into four sections. Section 4 develops soft results about the

relationships between the different shape functions and the Euclidean lengths of opti-
mal paths. The main technical Sections 5 and 6 contain the modification arguments.
The final Section 7 combines the results from Sections 4, 5 and 6 to prove the main
theorems.
Four appendixes contain auxiliary results that rely on standard material. Appendix

A extends the FPP shape function to weights that are allowed small negative values.
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Appendix B proves a shape theorem for the restricted path length versions of FPP. Ap-
pendix C contains the Peierls argument that sets the stage for the modification proofs.
Appendix D presents a lemma about the subdifferentials of convex functions.

1.8. Further literature: Convergence of empirical measures. We close this in-
troduction with a mention of a significant recent extension to the differentiability ap-
proach to limits along geodesics, due to Bates [3]. By representing the weights as
functions 𝑡(𝑒) = 𝜏(𝑈𝑒) of uniform random variables, one can consider perturbations
̃𝑡(𝑒) = 𝜏(𝑈𝑒) + 𝜓(𝑈𝑒) of the weights and differentiate the shape function in directions
𝜓 in infinite dimensions. This way the limit in (1.1) can be upgraded to convergence
of the empirical distribution of weights along a geodesic, again whenever the required
derivative exists. This holds for various uncountable dense collections of weight distri-
butions, exactly as (1.1) holds for an uncountable dense set of shifts ℎ.
These more general limit results continue to share the fundamental shortcoming

of the limit in (1.1), namely, that no particular nontrivial case can be identified where
the limit holds. If ℙ(𝑡(𝑒) = 0) ≥ 𝑝𝑐 the empirical measure along a geodesic converges
trivially to a pointmass at zero.
Finding extensions of our results to the general perturbations of [3] presents an in-

teresting open problem.

1.9. Notation and conventions. Here is notation that the reader may wish quick
access to. ℤ+ = {0, 1, 2, 3, . . . }, ℕ = {1, 2, 3, . . . }, and ℝ+ = [0,∞). For 𝑛 ∈ ℕ, [𝑛] =
{1, 2, . . . , 𝑛}. Standard basis vectors in ℝ𝑑 are 𝐞1 = (1, 0, . . . , 0), 𝐞2 = (0, 1, 0, . . . , 0), . . . ,
𝐞𝑑 = (0, . . . , 0, 1) and 𝟎 is the origin of ℝ𝑑. The ℓ1 norm of 𝑥 = (𝑥1, . . . , 𝑥𝑑) ∈ ℝ𝑑

is |𝑥|1 = ∑𝑑
𝑖=1 |𝑥𝑖|. Particular subsets of ℝ𝑑 that recur are ℛ = {±𝐞1, . . . , ±𝐞𝑑}, ℛ𝑜 =

ℛ ∪ {𝟎}, 𝒰 = coℛ = {𝜉 ∈ ℝ𝑑 ∶ |𝜉|1 ≤ 1}, and the topological interior int𝒰.
A finite or infinite path or sequence is denoted by 𝑥𝑚∶𝑛 = (𝑥𝑚, . . . , 𝑥𝑛) for −∞ ≤

𝑚 ≤ 𝑛 ≤ ∞. Other notations for lattice paths are 𝑥• and 𝜋. The steps of a path are the
nearest-neighbor edges 𝑒𝑖 = {𝑥𝑖−1, 𝑥𝑖}. A finite path 𝑥𝑚∶𝑛 that satisfies |𝑥𝑛 − 𝑥𝑚|1 =
𝑛 −𝑚 is called an ℓ1-path.
A positively homogeneous function 𝑓 satisfies 𝑓(𝑐𝑥) = 𝑐𝑓(𝑥) for 𝑐 > 0 whenever

both 𝑐𝑥 and 𝑥 are in the domain of 𝑓 [17, p. 30]. One-sided derivatives of a function
defined around 𝑠 ∈ ℝ are defined by 𝑓′(𝑠+) = limℎ↘0 ℎ−1[𝑓(𝑠+ℎ)−𝑓(𝑠)] and 𝑓′(𝑠−) =
limℎ↘0 ℎ−1[𝑓(𝑠) − 𝑓(𝑠 − ℎ)].
The diamond ⋄ is a wild card for three superscripts ⟨𝚎𝚖𝚙𝚝𝚢⟩ (no superscript at all),

𝑜 (zero steps allowed), and sa (self-avoiding) that distinguish different FPP processes
with restricted path length.
A real number 𝑟 is an atom of the random edge weight 𝑡(𝑒) if ℙ{𝑡(𝑒) = 𝑟} > 0.

𝑀0 = ess sup 𝑡(𝑒) and 𝑟0 = ess inf 𝑡(𝑒). Superscript (𝑏) on any quantity means that it is
computed with weights shifted by 𝑏: 𝑡(𝑏)(𝑒) = 𝑡(𝑒) + 𝑏.

2. The models and the main results

2.1. Setting. Fix an arbitrary dimension 𝑑 ≥ 2. Let ℰ𝑑 = {{𝑥, 𝑦} ∶ 𝑥, 𝑦 ∈ ℤ𝑑, |𝑥−𝑦|1 =
1} denote the set of undirected nearest-neighbor edges between vertices of ℤ𝑑. (Ω,𝔖, ℙ)
is the probability space of an environment 𝜔 = (𝑡(𝑒) ∶ 𝑒 ∈ ℰ𝑑) such that the edge
weights {𝑡(𝑒) ∶ 𝑒 ∈ ℰ𝑑} are independent and identically distributed (i.i.d.) real-valued
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random variables. Translations {𝜃𝑥}𝑥∈ℤ𝑑 act on Ω by (𝜃𝑥𝜔){𝑢, 𝑣} = 𝑡({𝑥 + 𝑢, 𝑥 + 𝑣}) for
a nearest-neighbor edge {𝑢, 𝑣}.
A nearest-neighbor path 𝜋 = 𝑥0∶𝑛 = (𝑥𝑖)𝑛𝑖=0 is any finite sequence of vertices

𝑥0, 𝑥1, . . . , 𝑥𝑛 ∈ ℤ𝑑 that satisfy |𝑥𝑖+1 − 𝑥𝑖|1 = 1 for each 𝑖. The steps of 𝜋 are the
nearest-neighbor edges 𝑒𝑖 = {𝑥𝑖−1, 𝑥𝑖}. The Euclidean length |𝜋| of 𝜋 is the number of
edges, so in this case |𝜋| = 𝑛. Then we call 𝜋 an 𝑛-path. The passage time of 𝜋 is the
sum of the weights of its edges:

(2.1) 𝑇(𝜋) =
𝑛
∑
𝑖=1

𝑡(𝑒𝑖).

These definitions apply even if the path repeats vertices or edges, as will be allowed at
times in the sequel. For notational consistency we also admit the zero-length path 𝜋 =
𝑥0∶0 = (𝑥0) that has no edges and has zero passage time and length: 𝑇(𝜋) = |𝜋| = 0.
The main results are described next in three parts: results for standard FPP in Sec-

tion 2.2, results for restricted path-length FPP in Section 2.3, including the connections
between the two types of FPP, and finally in Section 2.4 the duality betweenweight shift
and geodesic length.

2.2. Standardfirst-passage percolation. In standard first-passage percolation (FPP)
the passage time between two points is defined as the minimal passage time over all
self-avoiding paths. A path 𝜋 = 𝑥0∶𝑛 = (𝑥𝑖)𝑛𝑖=0 is self-avoiding if 𝑥𝑖 ≠ 𝑥𝑗 for all pairs
𝑖 ≠ 𝑗. Let Π sa

𝑥,𝑦 denote the collection of all self-avoiding paths from 𝑥 to 𝑦, of arbitrary
but finite length. Define the passage time between 𝑥 and 𝑦 as
(2.2) 𝑇𝑥,𝑦 = inf

𝜋∈Π sa𝑥,𝑦
𝑇(𝜋).

This definition gives 𝑇𝑥,𝑥 = 0 because the only self-avoiding path from 𝑥 to 𝑥 is the
zero-length path. A geodesic is a self-avoiding path 𝜋 that minimizes in (2.2).
When 𝑡(𝑒) ≥ 0 the restriction to self-avoiding paths is superfluous in the definition

of 𝑇𝑥,𝑦. Let 𝑝𝑐 denote the critical probability of Bernoulli bond percolation on ℤ𝑑. A
frequently used assumption in FPP is that zero-weight edges are subcritical:

(2.3) ℙ{𝑡(𝑒) = 0} < 𝑝𝑐.
For nonnegative weights, the assumption (2.3) guarantees the existence of a geodesic
(Prop. 4.4 in [2]).
For 𝑏 ∈ ℝ, define 𝑏-shifted weights by

(2.4) 𝜔(𝑏) = (𝑡(𝑏)(𝑒) ∶ 𝑒 ∈ ℰ𝑑) with 𝑡(𝑏)(𝑒) = 𝑡(𝑒) + 𝑏 for 𝑒 ∈ ℰ𝑑.
All the quantities associated with weights 𝜔(𝑏) acquire the superscript. For example,
𝑇(𝑏)𝑥,𝑦 is the passage time in (2.2) under weights 𝜔(𝑏). Let
(2.5) 𝑟0 = ℙ- ess inf

𝜔
𝑡(𝑒)

denote the (essential) lower bound of the weights. So in particular, 𝜔(−𝑟0) is the weight
configuration shifted so that the lower bound is at zero. Since we shift weights, most
of the time we have to replace (2.3) with this assumption:

(2.6) ℙ{𝑡(𝑒) = 𝑟0} < 𝑝𝑐.
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Let {𝑡𝑖} denote i.i.d. copies of the edge weight 𝑡(𝑒). The following moment assump-
tion will be employed for various values of 𝑝.
(2.7) 𝔼[ (min{𝑡1, . . . , 𝑡2𝑑})𝑝 ] < ∞.
We record the Cox-Durrett shape theorem ([5], Thm. 2.17 in [2]), with a small ex-

tension to weights that can take negative values. This theorem is proved as Theorem
A.1 in Appendix A.

Theorem 2.1. Assume 𝑟0 ≥ 0, (2.6), and the moment bound (2.7) with 𝑝 = 𝑑. Then
there exists a constant 𝜀0 > 0, determined by the dimension 𝑑 and the distribution of the
shifted weights 𝜔(−𝑟0), and a full-probability eventΩ0 such that the following statements
hold. For each real 𝑏 > −𝑟0−𝜀0 there exists a continuous, convex, positively homogeneous
shape function 𝜇(𝑏) ∶ ℝ𝑑 → ℝ+ such that the limit

(2.8) 𝜇(𝑏)(𝜉) = lim
𝑛→∞

𝑛−1𝑇(𝑏)𝟎,𝑥𝑛

holds for each 𝜔 ∈ Ω0, whenever {𝑥𝑛} ⊂ ℤ𝑑 satisfies 𝑥𝑛/𝑛 → 𝜉. We have 𝜇(𝑏)(𝟎) = 0 and
𝜇(𝑏)(𝜉) > 0 for 𝜉 ≠ 𝟎.

If we require the shape function only for a single nonnegative weight distribution
without the shifts, then (2.6) can be replaced with the weaker assumption (2.3), andwe
will occasionally do so. The shape function of unshiftedweights is denoted by𝜇 = 𝜇(0).
To emphasize dependence on 𝑏 with 𝜉 ≠ 𝟎 fixed, we write

(2.9) 𝜇𝜉(𝑏) = 𝜇(𝑏)(𝜉) for 𝑏 > −𝑟0 − 𝜀0.
Several of our main results concern the regularity of 𝜇𝜉 and its connections with geo-
desic length. The reason for allowing negative weights by extending the shift 𝑏 below
−𝑟0 is to enable us to talk about the regularity of 𝜇𝜉(𝑏) at 𝑏 = −𝑟0. Throughout this
paper, 𝜀0 is the constant specified in Theorem 2.1.

Theorem 2.2. Assume 𝑟0 ≥ 0, (2.6), and the moment bound (2.7) with 𝑝 = 𝑑. Fix
𝜉 ∈ ℝ𝑑 ⧵ {𝟎}.

(i) The function 𝜇𝜉 of (2.9) is a continuous, strictly increasing, concave function on
the open interval (−𝑟0 − 𝜀0,∞).

(ii) Strict concavity holds on [−𝑟0,∞): 𝜇′𝜉(𝑎+) > 𝜇′𝜉(𝑏−) for −𝑟0 ≤ 𝑎 < 𝑏 < ∞.
Furthermore, 𝜇′𝜉(𝑏+) > 𝜇′𝜉((−𝑟0)+) for 𝑏 ∈ (−𝑟0 − 𝜀0, −𝑟0).

Concavity implies that one-sided derivatives 𝜇′𝜉(𝑏±) for 𝑏 > −𝑟0−𝜀0 exist, 𝜇′𝜉(𝑏−) ≥
𝜇′𝜉(𝑏+), and as functions of 𝑏, they are nonincreasing, 𝜇′𝜉(𝑏−) is left-continuous, and
𝜇′𝜉(𝑏+) is right-continuous. Strict concavity is the novel part of the theorem. This prop-
erty is proved in Section 7, based on the modification argument of Section 5.2.
Introduce the notation

(2.10)
𝐿𝟎,𝑥 = minimal Euclidean length of a geodesic for 𝑇𝟎,𝑥

and 𝐿𝟎,𝑥 = maximal Euclidean length of a geodesic for 𝑇𝟎,𝑥,

with the superscripted variants 𝐿(𝑏)𝟎,𝑥 = 𝐿𝟎,𝑥(𝜔
(𝑏)) and 𝐿

(𝑏)
𝟎,𝑥 = 𝐿𝟎,𝑥(𝜔(𝑏)) for shifted

weights 𝜔(𝑏). For a continuous weight distribution 𝐿𝟎,𝑥 = 𝐿𝟎,𝑥 almost surely because
in that case geodesics are unique almost surely. This is not the case for all shifts because
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as 𝑏 increases the geodesic jumps occasionally and at the jump locations there are two
geodesics.
Recall that a geodesic for standard FPP is by definition self-avoiding. Under the

assumptions of Theorem 2.1, Theorem A.1 in Appendix A proves that the following
holds on an eventΩ0 of full probability: 𝐿

(𝑏)
𝟎,𝑥 < ∞ for all 𝑥 ∈ ℤ𝑑 and 𝑏 > −𝑟0 − 𝜀0, and

there exist a finite deterministic constant 𝑐 and a finite random constant 𝐾 such that

(2.11) 𝐿
(𝑏)
𝟎,𝑥 ≤

𝑐|𝑥|1
(𝑏 + 𝑟0) ∧ 0 + 𝜀0

∀𝑏 > −𝑟0 − 𝜀0 whenever |𝑥|1 ≥ 𝐾.

We justify part (i) of Theorem 2.2. This sets the stage for further discussion. Let
𝑏 > −𝑟0 − 𝜀0. Take 0 < 𝛿 < 𝑏 + 𝑟0 + 𝜀0 and 𝜂 > 0. Considering the shifted weights on
the minimal and maximal length geodesics of 𝑇(𝑏)𝟎,𝑥 leads to

(2.12) 𝑇(𝑏−𝛿)𝟎,𝑥 ≤ 𝑇(𝑏)𝟎,𝑥 − 𝛿𝐿
(𝑏)
𝟎,𝑥 and 𝑇(𝑏+𝜂)𝟎,𝑥 ≤ 𝑇(𝑏)𝟎,𝑥 + 𝜂𝐿(𝑏)𝟎,𝑥.

Rearrange to

(2.13)
𝑇(𝑏+𝜂)𝟎,𝑥 − 𝑇(𝑏)𝟎,𝑥

𝜂 ≤ 𝐿(𝑏)𝟎,𝑥 ≤ 𝐿
(𝑏)
𝟎,𝑥 ≤

𝑇(𝑏)𝟎,𝑥 − 𝑇(𝑏−𝛿)𝟎,𝑥
𝛿 .

Here are the arguments for the properties of 𝜇𝜉 claimed in part (i) of Theorem 2.2.

(i.a) Strict increasingness. In (2.12) take 𝑥 = 𝑥𝑛 such that 𝑥𝑛/𝑛 → 𝜉. Since 𝐿
(𝑏)
𝟎,𝑥 ≥

|𝑥|1, the inequality 𝜇𝜉(𝑏 − 𝛿) ≤ 𝜇𝜉(𝑏) − 𝛿|𝜉|1 follows by taking the limit (2.8)
in (2.12).

(i.b) Concavity follows by taking the same limit in (2.13).
(i.c) Continuity of 𝜇𝜉 on the open interval (−𝑟0 − 𝜀0,∞) follows from concavity.
Since 𝐿(𝑏)𝟎,𝑥 ≥ |𝑥|1, (2.13) and the monotonicity of the derivatives give the easy bound

(2.14) 𝜇′𝜉(𝑏±) ≥ |𝜉|1.
Acorollary of the strict concavity given in Theorem2.2(ii) is the strict inequality𝜇′𝜉(𝑏±)
> |𝜉|1. Theorem 2.3 records a slight strengthening of this and consequences of (2.11)
and (2.13). A precise proof is given in Section 7.

Theorem 2.3. Assume 𝑟0 ≥ 0, (2.6), and the moment bound (2.7) with 𝑝 = 𝑑. Let 𝜀0
be the constant specified in Theorem 2.1 and let 𝑐 be the constant in (2.11). Then there
exists a full-probability eventΩ0 such that the following holds: for all shifts 𝑏 > −𝑟0 − 𝜀0,
directions 𝜉 ∈ ℝ𝑑 ⧵{𝟎}, weight configurations𝜔 ∈ Ω0, and sequences 𝑥𝑛/𝑛 → 𝜉, we have
the bounds

(2.15)
(1 + 𝐷(𝑏))|𝜉|1 ≤ 𝜇′𝜉(𝑏+) ≤ lim

𝑛→∞

𝐿(𝑏)𝟎,𝑥𝑛
(𝜔)

𝑛

≤ lim
𝑛→∞

𝐿
(𝑏)
𝟎,𝑥𝑛(𝜔)
𝑛 ≤ 𝜇′𝜉(𝑏−) ≤

2𝑐
(𝑏 + 𝑟0) ∧ 0 + 𝜀0

|𝜉|1.

𝐷(𝑏) is a nonincreasing function of 𝑏 such that 𝐷(𝑏) > 0 for all 𝑏 > −𝑟0 − 𝜀0.
The first inequality in (2.15) says that the strict concavity gap 𝜇′𝜉(𝑏+) > |𝜉|1 is uni-

form across all directions |𝜉|1 = 1. This point is further strengthened to a uniformity
for fixed weight configurations 𝜔 in Theorem 2.5.
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Remark 2.4. Here are points that follow Theorems 2.2 and 2.3. Let 𝜉 ≠ 𝟎.
(i) The inequalities in (2.15) imply the limit of Hammersley-Welsh, Smythe-

Wierman andKesten simultaneously for all sequences. Under the assumptions of The-
orem 2.3, suppose 𝜇𝜉 is differentiable at 𝑏 ∈ (−𝑟0−𝜀0,∞). Then (2.15) implies that for
all 𝜔 ∈ Ω0 and sequences 𝑥𝑛/𝑛 → 𝜉,

(2.16) lim
𝑛→∞

𝐿(𝑏)𝟎,𝑥𝑛
(𝜔)

𝑛 = lim
𝑛→∞

𝐿
(𝑏)
𝟎,𝑥𝑛(𝜔)
𝑛 = 𝜇′𝜉(𝑏).

By concavity, this happens at all but countably many 𝑏. In particular, if 𝜇𝜉 is a differ-
entiable function then geodesic lengths converge with probability one, simultaneously
in all directions and at all weight shifts. Presently there is no proof of differentiabil-
ity under any hypotheses. Further below we show failures of differentiability under
assumptions on the atoms of the weight distribution.
Suppose 𝜇′𝜉(𝑏+) < 𝜇′𝜉(𝑏−). Then (2.15) tells us that all the possible asymptotic

normalized lengths of geodesics that go in direction 𝜉 form a subset of the interval
[𝜇′𝜉(𝑏+), 𝜇′𝜉(𝑏−)]. Presently there is no description of this subset.
For a characterization of [𝜇′𝜉(𝑏+), 𝜇′𝜉(𝑏−)] in terms of path length, given in Theorem

2.17, we expand the class of paths considered to allow 𝑜(𝑛)-approximate
geodesics. These are paths from the origin to 𝑛𝜉 + 𝑜(𝑛) whose passage times are in
the range 𝑛𝜇𝜉(𝑏) + 𝑜(𝑛), without necessarily being geodesics between their endpoints.
(ii) The strict concavity of 𝜇𝜉 given in Theorem 2.2 and the inequalities in (2.15)

imply that, for all 𝜔, 𝜔 ∈ Ω0 and sequences 𝑥𝑛/𝑛 → 𝜉 and ̃𝑥𝑛/𝑛 → 𝜉,

(2.17) lim
𝑛→∞

𝐿
(𝑏)
𝟎,𝑥𝑛(𝜔)
𝑛 ≤ 𝜇′𝜉(𝑏−) < 𝜇′𝜉(𝑎+) ≤ lim

𝑛→∞

𝐿(𝑎)𝟎,𝑥𝑛
(𝜔)

𝑛 for all 𝑏 > 𝑎 > −𝑟0 − 𝜀0.

In other words, distinct shifts of a given weight distribution cannot share any possible
asymptotic geodesic lengths, even under distinct but typical environments 𝜔 and 𝜔.
(iii) There is a corresponding monotonicity for geodesics at fixed 𝜔. Namely, when

all the weights increase by a common constant, geodesics can only shrink in length.
Let 𝜋(𝑎) and 𝜋(𝑏) be arbitrary geodesics for 𝑇(𝑎)𝟎,𝑥 and 𝑇(𝑏)𝟎,𝑥 , respectively. Then

(2.18) |𝜋(𝑏)| ≤ |𝜋(𝑎)| for fixed 𝑎 < 𝑏 and 𝜔.

This follows from
(2.19)

𝑇 (𝑏)(𝜋(𝑎)) − (𝑏 − 𝑎)|𝜋(𝑎)| = 𝑇 (𝑎)(𝜋(𝑎)) ≤ 𝑇 (𝑎)(𝜋(𝑏)) = 𝑇 (𝑏)(𝜋(𝑏)) − (𝑏 − 𝑎)|𝜋(𝑏)|
≤ 𝑇 (𝑏)(𝜋(𝑎)) − (𝑏 − 𝑎)|𝜋(𝑏)|.

Furthermore, suppose a unique geodesic is chosen, for example by taking the minimal
one according to some ordering of geodesics. Then as 𝑎 increases to 𝑏, the geodesic
cannot change without its length strictly shrinking:

(2.20) for fixed 𝑎 < 𝑏 and 𝜔, |𝜋(𝑏)| = |𝜋(𝑎)| implies 𝜋(𝑏) = 𝜋(𝑎).

This follows because the string of inequalities (2.19) together with |𝜋(𝑏)| = |𝜋(𝑎)| im-
plies that 𝑇 (𝑏)(𝜋(𝑎)) ≤ 𝑇 (𝑏)(𝜋(𝑏)), so 𝜋(𝑎) is still at least as good as 𝜋(𝑏) for weights
{𝑡(𝑏)(𝑒)}.
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(iv) We establish in Theorem 2.17 that 𝜇′𝜉(𝑏±) → |𝜉|1 as 𝑏 → ∞. Naturally, as the
weight shift grows very large, it pays less to search for smaller weights at the expense
of a longer geodesic.
The first inequality in (2.15) implies that asymptotically the lengths of geodesics

in a particular direction 𝜉 exceed the ℓ1-distance. Theorem 2.5 strengthens this to a
uniformity across all sufficiently faraway lattice endpoints. Its proof in Section 7 relies
on the convex duality described in Section 2.4, the restricted path length shape theorem
of Appendix B, and the modification arguments of Section 5.
Theorem 2.5. Assume 𝑟0 ≥ 0, (2.6), and the moment bound (2.7) with 𝑝 = 𝑑. There
exist a deterministic constant 𝛿 > 0 and an almost surely finite random constant 𝐾 such
that 𝐿𝟎,𝑥 ≥ (1 + 𝛿)|𝑥|1 whenever 𝑥 ∈ ℤ𝑑 satisfies |𝑥|1 ≥ 𝐾.
We turn to nondifferentiability results for 𝜇𝜉. An atom of the weight distribution is

a value 𝑟 ∈ ℝ such that ℙ{𝑡(𝑒) = 𝑟} > 0.
Theorem 2.6. Assume 𝑟0 ≥ 0, (2.6), and the moment bound (2.7)with 𝑝 = 𝑑. Addition-
ally, assume that the weight distribution satisfies at least one of the assumptions (a) and
(b) below:

(a) zero is an atom;
(b) there are two strictly positive atoms 𝑟 < 𝑠 such that 𝑠/𝑟 is rational.

Then there exist constants 0 < 𝐷, 𝛿,𝑀 < ∞ such that
(2.21) ℙ( 𝐿𝟎,𝑥 − 𝐿𝟎,𝑥 ≥ 𝐷|𝑥|1) ≥ 𝛿 for |𝑥|1 ≥ 𝑀.

Furthermore, for all 𝜉 ∈ ℝ𝑑 ⧵ {𝟎}, 𝜇′𝜉(0−)−𝜇′𝜉(0+) ≥ 𝐷|𝜉|1 and so the function 𝜇𝜉(𝑎) =
𝜇(𝑎)(𝜉) is not differentiable at 𝑎 = 0.
For unboundedweights the result above can be proved undermore general assump-

tions on the atoms (see Theorem 6.2 in Section 6).
Theorem 2.7. Assume 𝑟0 ≥ 0, (2.6), and the moment bound (2.7) with 𝑝 = 𝑑. Addi-
tionally, assume that the weight distribution has at least two atoms. Then there exists a
countably infinite set 𝐵 ⊂ [−𝑟0,∞) with these properties.

(i) 𝐵 is dense in [−𝑟0,∞).
(ii) For each 𝑏 ∈ 𝐵, conclusion (2.21) of Theorem 2.6 holds for the shifted weights

𝜔(𝑏) with constants 𝐷(𝑏), 𝛿(𝑏),𝑀(𝑏) that depend on 𝑏.
(iii) For each 𝜉 ∈ ℝ𝑑 ⧵ {𝟎} and 𝑏 ∈ 𝐵, 𝜇𝜉(𝑎) = 𝜇(𝑎)(𝜉) is not differentiable at 𝑎 = 𝑏.
The proof of Theorem 2.7 in Section 7.2 constructs the singularity set 𝐵 explicitly

from two atoms of 𝑡(𝑒) as a countably infinite union of arithmetic sequences.
Remark 2.8. Standard Bernoulli weights satisfy ℙ{𝑡(𝑒) = 0} + ℙ{𝑡(𝑒) = 1} = 1. In the
subcritical planar Bernoulli case (that is, 𝑑 = 2, 𝑡(𝑒) ∈ {0, 1} andℙ{𝑡(𝑒) = 0} < 1

2 ), Steele
and Zhang [19] proved that 𝜇𝐞1(𝑎) is not differentiable at 𝑎 = 0, as long as ℙ{𝑡(𝑒) = 0}
is close enough to 1

2 . Furthermore, they conjectured that 𝜇𝐞1(𝑎) is differentiable at all
𝑎 such that 𝜇𝐞1(𝑎) > −∞ except at 𝑎 = 0 (page 1050 in [19]).
Theorem 2.6 extends the nondifferentiability at 𝑎 = 0 to all directions 𝜉, all dimen-

sions, and all weight distributions that have an atom at zero. Theorem 2.7 disproves the
Steele-Zhang conjecture by showing that, in all dimensions, in the subcritical Bernoulli
case the nondifferentiability points form a countably infinite dense subset of (0,∞).
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2.3. Restricted path-length first-passage percolation. Next we discuss FPP mod-
els that restrict the length of the paths over which the optimization takes place but give
up the self-avoidance requirement. Remark 2.15 characterizes the FPP shape func-
tion 𝜇 as the positively homogeneous convex function generated by the restricted path
shape functions. In Section 2.4 this leads to the convex duality of 𝜇𝜉 and a sharpening
of Theorem 2.3, and further conceptual understanding of the previous results.
It turns out convenient to consider also a versionwhose paths are allowed zero steps.

In this case the setℛ = {±𝐞1, . . . , ±𝐞𝑑} of admissible steps is augmented toℛ𝑜 = ℛ∪{𝟎}.
For 𝑥, 𝑦 ∈ ℤ𝑑 and 𝑛 ∈ ℕ define three classes of paths 𝑥0∶𝑛 = (𝑥𝑖)𝑛𝑖=0 from 𝑥 to 𝑦 of
length 𝑛, presented here from largest to smallest:

(2.22)

Π𝑜
𝑥,(𝑛),𝑦 = {𝑥0∶𝑛 ∈ (ℤ𝑑)𝑛+1 ∶ 𝑥0 = 𝑥, 𝑥𝑛 = 𝑦, each 𝑥𝑖 − 𝑥𝑖−1 ∈ ℛ𝑜},

Π𝑥,(𝑛),𝑦 = {𝑥0∶𝑛 ∈ (ℤ𝑑)𝑛+1 ∶ 𝑥0 = 𝑥, 𝑥𝑛 = 𝑦, each 𝑥𝑖 − 𝑥𝑖−1 ∈ ℛ},
and Π sa

𝑥,(𝑛),𝑦 = {𝑥0∶𝑛 ∈ Π𝑥,(𝑛),𝑦 ∶ points 𝑥0, 𝑥1, . . . , 𝑥𝑛 are distinct}.
The superscript inΠ sa is for self-avoiding. Paths inΠ𝑥,(𝑛),𝑦 andΠ𝑜

𝑥,(𝑛),𝑦 are allowed
to repeat both vertices and edges. Paths in Π𝑥,(𝑛),𝑦 are called ℛ-admissible, and those
in Π𝑜

𝑥,(𝑛),𝑦 ℛ𝑜-admissible. An 𝑛-path 𝑥0∶𝑛 from 𝑥0 = 𝑥 to 𝑥𝑛 = 𝑦 is an ℓ1-path if
𝑛 = |𝑦 − 𝑥|1. For 𝑛 = 0 and ⋄ ∈ {⟨𝚎𝚖𝚙𝚝𝚢⟩, 𝑜, sa} we define each collection Π ⋄

𝑥,(0),𝑥
as consisting only of the zero-length path (𝑥). For 𝑥 ≠ 𝑦, Π𝑥,(𝑛),𝑦 and Π sa

𝑥,(𝑛),𝑦 are
nonempty if and only if 𝑛 − |𝑦 − 𝑥|1 is a nonnegative even integer, while Π𝑜

𝑥,(𝑛),𝑦 is
nonempty if and only if 𝑛 ≥ |𝑦 − 𝑥|1.
With the three classes of paths go three collections of points reachable by an admis-

sible path of length 𝑛 from the origin: for the three superscripts ⋄ ∈ {⟨𝚎𝚖𝚙𝚝𝚢⟩, 𝑜, sa},
define

(2.23) 𝒟 ⋄
𝑛 = {𝑥 ∈ ℤ𝑑 ∶ Π ⋄

𝟎,(𝑛),𝑥 ≠ ∅}.
If 0 ≤ 𝑘 < 𝑛, any 𝑘-path can be augmented to an 𝑛-path by adding 𝑛−𝑘 zero steps, and
hence we have𝒟𝑜

𝑛 = ∪0≤𝑘≤𝑛𝒟𝑘.
The environment 𝜔 = (𝑡(𝑒) ∶ 𝑒 ∈ ℰ𝑑) is extended to zero steps by stipulating that

zero steps always have zero weight, even when weights are shifted: 𝑡(𝑏)({𝑥, 𝑥}) = 0
∀𝑥 ∈ ℤ𝑑 and 𝑏 ∈ ℝ.
Define three point-to-point first-passage times between two points 𝑥, 𝑦 ∈ ℤ𝑑 with

restricted path lengths: for ⋄ ∈ {⟨𝚎𝚖𝚙𝚝𝚢⟩, 𝑜, sa},

𝐺 ⋄
𝑥,(𝑛),𝑦 = min

𝑥0∶𝑛 ∈Π ⋄
𝑥,(𝑛),𝑦

𝑛−1
∑
𝑘=0

𝑡({𝑥𝑘, 𝑥𝑘+1}) for 𝑦 − 𝑥 ∈ 𝒟 ⋄
𝑛 .(2.24)

If Π ⋄
𝑥,(𝑛),𝑦 = ∅, set 𝐺 ⋄

𝑥,(𝑛),𝑦 = ∞. Obvious relations hold between these passage times
and the standard FPP from (2.2):

𝐺𝑜
𝑥,(𝑛),𝑦 = min

𝑘∶ |𝑦−𝑥|1≤𝑘≤𝑛
𝐺𝑥,(𝑘),𝑦,(2.25)

Π sa
𝑥,𝑦 = ⋃

𝑛≥|𝑦−𝑥|1
Π sa
𝑥,(𝑛),𝑦

and

(2.26) 𝑇𝑥,𝑦 = inf
𝜋∈Π sa𝑥,𝑦

𝑇(𝜋) = inf
𝑛∶𝑛≥|𝑦−𝑥|1

𝐺 sa
𝑥,(𝑛),𝑦.
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For nonnegative weights the restriction to self-avoiding paths is superfluous for 𝑇𝑥,𝑦
and hence

(2.27) if 𝑟0 ≥ 0 then 𝑇𝑥,𝑦 = inf
𝑛∶𝑛≥|𝑦−𝑥|1

𝐺𝑜
𝑥,(𝑛),𝑦 = inf

𝑛∶𝑛≥|𝑦−𝑥|1
𝐺𝑥,(𝑛),𝑦.

These identities point to the usefulness of 𝐺 and 𝐺𝑜. Namely, they capture the FPP
passage timewhen the path length parameter 𝑛 coincides with a geodesic length. After
taking this connection to the limit, the discrepancies between the shape function of 𝐺
and the FPP shape function 𝜇 reveal which asymptotic path lengths are too short and
which are too long to be asymptotic geodesic lengths.
The reader may wonder about the purpose of 𝐺𝑜 and the zero-weight zero step. We

shall see that 𝐺𝑜 is a convenient link between standard FPP and restricted path length
FPP because it is monotone:

(2.28) if 𝑟0 ≥ 0 and𝑚 ≤ 𝑛 then 𝐺𝑜
𝑥,(𝑚),𝑦 ≥ 𝐺𝑜

𝑥,(𝑛),𝑦 ≥ 𝑇𝑥,𝑦.

The monotonicity is simply a consequence of the fact that any 𝑚-path can be aug-
mented to an 𝑛-path by adding zero steps.
The self-avoiding version 𝐺 sa

𝑥,(𝑛),𝑦 is mentioned here to complete the overall picture
but will not be used in the sequel. Open problem 3.3 points the way to an extension of
this work that requires a study of 𝐺 sa

𝑥,(𝑛),𝑦.
We state a shape theorem for restricted path length FPP, but only on the open set

int𝒰 = {𝜉 ∈ ℝ𝑑 ∶ |𝜉|1 < 1}. Its closure, the compact ℓ1 ball 𝒰, is the convex hull
of both ℛ and ℛ𝑜 and the set of possible asymptotic velocities of admissible paths in
Π ⋄
𝟎,(𝑛),• as 𝑛 → ∞. In Theorem 2.9 we introduce the parameter 𝛼 as a variable that

controls asymptotic path length.

Theorem 2.9. Assume 𝑟0 > −∞ and that the moment bound (2.7) holds with 𝑝 = 𝑑 for
the nonnegative weights 𝑡+𝑖 = 𝑡𝑖 ∨ 0. Then there exist

(a) nonrandom continuous convex functions 𝑔 ∶ int𝒰 → [𝑟0,∞) and 𝑔𝑜 ∶ int𝒰 →
[𝑟0 ∧ 0,∞) and

(b) an eventΩ0 of ℙ-probability one
such that the following statement holds for any fixed 𝜔 ∈ Ω0: for any 𝜉 ∈ ℝ𝑑, any real
𝛼 > |𝜉|1, and any sequences 𝑘𝑛 →∞ inℕ, 𝑥𝑛 ∈ 𝒟𝑘𝑛 and 𝑦𝑛 ∈ 𝒟𝑜

𝑘𝑛 such that 𝑘𝑛/𝑛 → 𝛼,
𝑥𝑛/𝑛 → 𝜉 and 𝑦𝑛/𝑛 → 𝜉, we have the laws of large numbers

(2.29) 𝛼𝑔( 𝜉𝛼) = lim
𝑛→∞

𝐺𝟎,(𝑘𝑛),𝑥𝑛
𝑛 and 𝛼𝑔𝑜( 𝜉𝛼) = lim

𝑛→∞

𝐺𝑜
𝟎,(𝑘𝑛),𝑦𝑛
𝑛 .

Furthermore, 𝑔(𝟎) = 𝑟0 and 𝑔𝑜(𝟎) = 𝑟0 ∧ 0. In general 𝑔𝑜 ≤ 𝑔 on int𝒰. If 𝑟0 ≤ 0 then
𝑔 = 𝑔𝑜 on all of int𝒰. If 𝑟0 > 0 then 𝑔 > 𝑔𝑜 in a neighborhood of the origin.

The laws of large numbers (2.29) come from Theorem B.1 in Appendix B. The soft
properties of 𝑔 and 𝑔𝑜 stated in the last paragraph of Theorem 2.9 are proved in Lemma
4.1 in Section 4. Figure 2.2 illustrates the limit functions in (2.29).
It is convenient to have 𝑔⋄ defined on the whole of𝒰. An attempt to do this through

the laws of large numbers (2.29) would divert attention from the main points of this
paper. Furthermore, without stronger moment assumptions there cannot be a finite
limit, as can be observed by considering 𝜉 = 𝐞1. Since there is a unique 𝑛-path from 𝟎



222 A. KRISHNAN, F. RASSOUL-AGHA, AND T. SEPPÄLÄINEN

to 𝑛𝐞1, we see that a finite limit is possible only if 𝑡(𝑒) ∈ 𝐿1(ℙ):

(2.30) lim
𝑛→∞

𝑛−1𝐺 ⋄
𝟎,(𝑛),𝑛𝐞1 = lim

𝑛→∞
𝑛−1

𝑛
∑
𝑘=1

𝑡({(𝑘 − 1)𝐞1, 𝑘𝐞1}) = 𝔼[𝑡(𝑒)].

Instead of limiting passage times, we take radial limits of the shape functions from
the interior as stated in Theorem 2.10. The proof of Theorem 2.10 comes in Lemma
4.1(iv).
Theorem 2.10. Under the assumptions of Theorem 2.9 we can extend both shape func-
tions to all of 𝒰 via limits along rays: for ⋄ ∈ {⟨𝚎𝚖𝚙𝚝𝚢⟩, 𝑜} and |𝜉|1 = 1 define 𝑔⋄(𝜉) =
lim𝑡↗1 𝑔⋄(𝑡𝜉). The resulting functions 𝑔 ∶ 𝒰 → [𝑟0,∞] and 𝑔𝑜 ∶ 𝒰 → [𝑟0 ∧ 0,∞] are
both convex and lower semicontinuous.
With Theorem 2.10 we can extend the functions 𝑔⋄ to lower semicontinuous proper

convex functions on all of ℝ𝑑 by setting
(2.31) 𝑔⋄(𝜉) = +∞ for 𝜉 ∉ 𝒰.
If 𝑔⋄ is finite on 𝒰, then 𝑔⋄ is automatically upper semicontinuous on 𝒰 [17, Theorem
10.2], and hence continuous on 𝒰.
Theorem 2.11 clarifies the relationship of 𝑔 and 𝑔𝑜 with 𝜇, beyond the obvious 𝜇 ≤

𝑔𝑜 ≤ 𝑔, and links their connection with the asymptotic geodesic lengths from Theorem
2.3. In particular, we introduce here two functions 𝜆 ≤ 𝜆 that play several roles in our
asymptotic results. In Theorem 2.11 they are first introduced as the boundaries of the
regions where 𝜇 coincides with 𝑔 and 𝑔𝑜. Part (ii) indicates that 𝜆 and 𝜆 are also related
to the derivatives of 𝜇𝜉 and geodesic length.
These properties are then elaborated on as we proceed. The interval [𝜆(𝜉), 𝜆(𝜉)]

captures all the asymptotic lengths of geodesics in direction 𝜉, while the full interval
is exactly the set of all asymptotic lengths of approximate geodesics (Remark 2.13).
In Theorem 2.16 we see that 𝜆 and 𝜆 describe ranges where 𝑔 and 𝑔𝑜 are affine and
where these two functions disagree. Themacroscopic description is completed in The-
orem 2.17: as the weight shift 𝑏 increases, the interval [ 𝜆(𝑏)(𝜉), 𝜆

(𝑏)
(𝜉) ] shifts to the

left and always equals the superdifferential 𝜕𝜇𝜉(𝑏) of the concave function 𝜇𝜉. Then
wehave reached the desired generalization of theHammersley-Welsh connection (1.1):
the assumptions of differentiability and existence of limiting geodesic length have been
dropped, and the correct identity equates the superdifferential with the set of asymp-
totic lengths of approximate geodesics.
Set

(2.32) 𝜇∗ = sup
|𝜉|1=1

𝜇(𝜉).

In part (ii) of Theorem 2.11, on both lines of (2.35) the first inequality depends on the
modification arguments and hence the subcriticality assumption is strengthened to
(2.6). To capture the complete picture we include in (2.35) the inequalities from (2.15).
Theorem 2.11. Assume 𝑟0 ≥ 0, (2.3), and the moment bound (2.7) with 𝑝 = 𝑑.

(i) There exist two positively homogeneous functions 𝜆 ∶ ℝ𝑑 → ℝ+ and 𝜆 ∶ ℝ𝑑 →
[0,∞] such that 𝜆 ≤ 𝜆, and for all 𝜉 ∈ 𝒰,

(2.33) 𝑔𝑜(𝜉) = 𝜇(𝜉) ⟺ 𝜆(𝜉) ≤ 1
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and

(2.34) 𝑔(𝜉) = 𝜇(𝜉) ⟺ 𝜆(𝜉) ≤ 1 ≤ 𝜆(𝜉).

Furthermore, 𝜆 is lower semicontinuous and 𝜆 is upper semicontinuous. If 𝑟0 = 0
then 𝜆(𝜉) ≡ ∞, while 𝜆 is finite in the case 𝑟0 > 0.

(ii) Strengthen the subcriticality assumption to (2.6). There exists a nonrandom con-
stant 𝐷 > 0 and a full-probability event Ω0 such that, for all 𝜉 ∈ ℝ𝑑 ⧵ {𝟎},
sequences 𝑥𝑛/𝑛 → 𝜉, and 𝜔 ∈ Ω0,

(2.35)
(1 + 𝐷)|𝜉|1 ≤ 𝜆(𝜉) = 𝜇′𝜉(0+) ≤ lim

𝑛→∞
𝑛−1𝐿𝟎,𝑥𝑛(𝜔)

≤ lim
𝑛→∞

𝑛−1𝐿𝟎,𝑥𝑛(𝜔) ≤ 𝜇′𝜉(0−) < 𝜆(𝜉) = ∞ if 𝑟0 = 0

and (1 + 𝐷)|𝜉|1 ≤ 𝜆(𝜉) = 𝜇′𝜉(0+) ≤ lim
𝑛→∞

𝑛−1𝐿𝟎,𝑥𝑛(𝜔)

≤ lim
𝑛→∞

𝑛−1𝐿𝟎,𝑥𝑛(𝜔) ≤ 𝜇′𝜉(0−) = 𝜆(𝜉) ≤ (𝜇∗/𝑟0)|𝜉|1 if 𝑟0 > 0.

We spell out some of the consequences of Theorems 2.9 through 2.11.

Remark 2.12 (Coincidence of shape functions). There exists a finite constant 𝜅 such
that 𝜆(𝜉) ≤ 𝜅|𝜉|1 ∀𝜉 ∈ ℝ𝑑. This follows from lower semicontinuity and homogeneity,
but is also proved directly from Kesten’s fundamental bound in Lemma 4.2. Hence the
set {𝜇 = 𝑔𝑜} = {𝜆 ≤ 1} contains the nondegenerate neighborhood {𝜉 ∈ ℝ𝑑 ∶ |𝜉|1 ≤ 𝜅−1}
of the origin.
If 𝑟0 = 0 then {𝜇 = 𝑔} = {𝜇 = 𝑔𝑜} because 𝑔 = 𝑔𝑜. If 𝑟0 > 0 the equality 𝜇(𝜉) = 𝑔(𝜉)

holds for at least one nonzero point 𝜉 along each ray from the origin. With all of the
above, the first inequality of (2.35) implies that {𝜇 = 𝑔} and {𝜇 = 𝑔𝑜} are both nonempty
closed subsets of int𝒰.

Remark 2.13 (𝑜(𝑛)-Approximate geodesics). For 𝛼 > |𝜉|1 > 0, (2.34) gives the equiva-
lence 𝜇(𝜉) = 𝛼𝑔(𝜉/𝛼) if and only if 𝛼 ∈ [𝜆(𝜉), 𝜆(𝜉)]. (This is illustrated in Figure 2.2.)
By the law of large numbers (2.29), this happens if and only if, with probability one,
there are lattice points 𝑥𝑛 and paths 𝜋𝑛 from 𝟎 to 𝑥𝑛 such that 𝑥𝑛/𝑛 → 𝜉, |𝜋𝑛|/𝑛 → 𝛼
and 𝑇(𝜋𝑛)/𝑛 → 𝜇(𝜉). These paths 𝜋𝑛 do not have to be self-avoiding or geodesics be-
tween their endpoints. But 𝑇(𝜋𝑛)/𝑛 → 𝜇(𝜉) does imply that 𝑇(𝜋𝑛) is within 𝑜(𝑛) of the
passage time of the geodesic between 𝟎 and 𝑥𝑛. The asymptotic normalized lengths of
true self-avoiding geodesics for 𝜇(𝜉) are a subset of the interval [𝜆(𝜉), 𝜆(𝜉)] of asymp-
totic normalized lengths of 𝑜(𝑛)-approximate geodesics, as indicated in (2.35).

Remark 2.14 (Convergence of geodesic length). We now see the connection between
the convergence of the normalized geodesic length and the coincidence of shape func-
tions. In the case 𝑟0 > 0, (2.35) shows that convergence in direction 𝜉 ≠ 𝟎 follows from
𝜆(𝜉) = 𝜆(𝜉), which is equivalent to the condition that the set {𝜇 = 𝑔} has empty relative
interior on the 𝜉-directed ray.

Remark 2.15 (Convexity). Fix 𝜉 ∈ ℝ𝑑⧵{𝟎}. For ⋄ ∈ {⟨𝚎𝚖𝚙𝚝𝚢⟩, 𝑜}, the convexity and con-
tinuity of 𝑔⋄ on int𝒰 imply the convexity and continuity of the function 𝛼 ↦ 𝛼𝑔⋄(𝜉/𝛼)
defined for 𝛼 ∈ (|𝜉|1,∞). By Theorem 2.10, 𝛼𝑔⋄(𝜉/𝛼) extends to 𝛼 = |𝜉|1 by letting
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0 𝑡

𝜇(−𝑟0
) (𝑡𝜉) =

𝑡𝜇(−
𝑟0) (𝜉)

𝜇(𝑡𝜉
) =

𝑡𝜇(𝜉
)

1
𝜆(−𝑟0)(𝜉)

1
𝜆(𝜉)

1
𝜆(𝜉)

1
|𝜉|1

𝑟0

thin: 𝑡 ↦ 𝑔𝑜(𝑡𝜉) thick: 𝑡 ↦ 𝑔(𝑡𝜉)

thick affine
slope 𝜇(−𝑟0)(𝜉)

thick = thin = 𝜇(𝑡𝜉)
affine thick = thin

slope = ∞

thin affine
slope 𝜇(𝜉)

Figure 2.1. Illustration of Theorem 2.16 in the case 𝑟0 > 0. On the 𝑡-axis it
is possible that the two middle points 1

𝜆(𝜉)
and 1

𝜆(𝜉) coincide. The separation

illustrated here is the case where 𝜆(𝜉) = 𝜇′𝜉(0+) < 𝜇′𝜉(0−) = 𝜆(𝜉), which can
happen when 𝑟0 > 0 for example in the situation described in Theorem 2.6.
Strict concavity of 𝜇𝜉 implies that themiddle points are necessarily separated
from 1

𝜆(−𝑟0)(𝜉)
and 1

|𝜉|1
(see (2.50)).

𝛼 ↘ |𝜉|1. By (2.31), we extend 𝛼𝑔⋄(𝜉/𝛼) to 𝛼 ∈ [0, |𝜉|1) by setting its value equal to
+∞. Thereby 𝛼 ↦ 𝛼𝑔⋄(𝜉/𝛼) is a lower semicontinuous proper convex function onℝ+.
For 𝑔𝑜, monotonicity (2.28) implies further that

(2.36) 𝛼 ↦ 𝛼𝑔𝑜(𝜉/𝛼) is nonincreasing for 𝛼 ∈ (|𝜉|1,∞).
A consequence of Theorem 2.11 is that for 𝜉 ∈ ℝ𝑑 ⧵ {𝟎},

(2.37)

𝜇(𝜉) = inf
𝛼≥|𝜉|1

𝛼𝑔⋄( 𝜉𝛼) = inf
𝛼≥0

𝛼𝑔⋄( 𝜉𝛼) = {
𝛼𝑔𝑜(𝜉/𝛼) ∀𝛼 ∈ [𝜆(𝜉),∞),
𝛼𝑔(𝜉/𝛼) ∀𝛼 ∈ [𝜆(𝜉), 𝜆(𝜉)] ∩ [𝜆(𝜉),∞).

In the language of convex analysis [17, p. 35], the identity above characterizes the stan-
dard FPP shape function 𝜇 as the positively homogeneous convex function generated by
𝑔⋄. Thismeans that 𝜇 is the greatest positively homogeneous convex function such that
𝜇(𝟎) ≤ 0 and 𝜇 ≤ 𝑔⋄. Figure 2.2 illustrates (2.37).
Theorem 2.16 records further properties of 𝑔⋄, illustrated in Figure 2.1. Part (iii)

can be proved only in Section 7 after the modification results and hence requires the
stronger subcriticality assumption (2.6).

Theorem 2.16. Assume 𝑟0 ≥ 0, (2.3), and the moment bound (2.7) with 𝑝 = 𝑑. Fix
𝜉 ∈ ℝ𝑑 ⧵ {𝟎}. For ⋄ ∈ {⟨𝚎𝚖𝚙𝚝𝚢⟩, 𝑜}, the shape functions 𝑔⋄ of Theorem 2.9 have the
following properties along the 𝜉-directed ray from the origin.
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(i) The function 𝑡 ↦ 𝑔⋄(𝑡𝜉) is continuous, convex and strictly increasing for 𝑡 ∈
[0, |𝜉|−11 ). Both functions are affine at least in one nondegenerate interval with
one endpoint at the origin: for 𝑡 ∈ [0, |𝜉|−11 ],

(2.38)
𝑡 ∈ [0, (𝜆(−𝑟0)(𝜉))−1] ⟺ 𝑔(𝑡𝜉) = 𝑟0 + 𝑡𝜇(−𝑟0)(𝜉),

𝑡 ∈ [0, (𝜆(𝜉))−1] ⟺ 𝑔𝑜(𝑡𝜉) = 𝑡𝜇(𝜉).
(ii) For 𝑡 ∈ [0, |𝜉|−11 ],

(2.39)
𝑡 ∈ [0, (𝜆(𝜉))−1) ⟺ 𝑔(𝑡𝜉) > 𝑔𝑜(𝑡𝜉),

𝑡 ∈ [(𝜆(𝜉))−1, |𝜉|−11 ] ⟺ 𝑔(𝑡𝜉) = 𝑔𝑜(𝑡𝜉).
(iii) Strengthen the subcriticality assumption to (2.6). The function 𝑡 ↦ 𝑔⋄(𝑡𝜉) is con-

tinuously differentiable on the open interval (0, |𝜉|−11 ) and lim𝑡↗|𝜉|−11 (𝑔
⋄)′(𝑡𝜉) =

+∞. If 𝑔⋄(𝜉/|𝜉|1) < ∞ then the left derivative of 𝑡 ↦ 𝑔⋄(𝑡𝜉) at 𝑡 = |𝜉|−11 exists
and equals +∞.

Notice that the right-hand sides in (2.38) agree if and only if 𝑟0 = 0, as is consistent
with the agreement 𝑔 = 𝑔𝑜 when 𝑟0 = 0. From (2.39) and (2.35) we read that if 𝑟0 > 0,
the set {𝑔 > 𝑔𝑜} is an open neighborhood of 𝟎 that consists of finite rays from the origin,
while its complement {𝑔 = 𝑔𝑜} contains the nonempty annulus {𝜁 ∈ 𝒰 ∶ (1 + 𝐷)−1 ≤
|𝜁|1 ≤ 1}, where 𝐷 is the constant in (2.35). Another consequence of (2.38) and (2.39)
is that 𝑔𝑜 is never strictly between 𝜇 and 𝑔 but always agrees with at least one of them.
By LemmaD.1 inAppendixD, the differentiability property in part (iii) can be equiv-

alently stated in geometric terms as follows: for 𝜉 ∈ (int𝒰) ⧵ {𝟎}, the subdifferential
𝜕𝑔⋄(𝜉) lies on a hyperplane perpendicular to 𝜉.

2.4. Duality of the weight shift and geodesic length. This section develops the
duality between the weight shift variable 𝑏 in 𝜔 ↦ 𝜔(𝑏) and the path-length variable 𝛼
in the limit shapes (2.29). Nonnegative weights (𝑟0 ≥ 0) are assumed throughout.
Fix 𝜉 ∈ ℝ𝑑 ⧵{𝟎} for the duration of this section. We restrict the shape function 𝜇𝜉(𝑏)

of (2.9) to shifts 𝑏 ≥ −𝑟0 that preserve the nonnegativity of the weights and then extend
it to an upper semicontinuous concave function on all of ℝ by setting

(2.40) 𝜇𝜉(𝑏) = {𝜇𝜉(𝑏) = 𝜇(𝑏)(𝜉), 𝑏 ≥ −𝑟0,
−∞, 𝑏 < −𝑟0.

To emphasize, the function 𝜇𝜉(𝑏) drops the extension to 𝑏 ∈ (−𝑟0 − 𝜀0, −𝑟0) done in
Theorem 2.1. The reason for this choice is that developing the duality for shifts 𝑏 < −𝑟0
requires a study of the shape function of the self-avoiding version 𝐺 sa

𝟎,(𝑛),𝑥 of restricted
path length FPP. This is not undertaken in the present paper and is left as open problem
3.3.
By definition, the concave dual 𝜇∗𝜉 ∶ ℝ → [−∞,∞) is another upper semicontinu-

ous concave function, and together 𝜇𝜉 and 𝜇
∗
𝜉 satisfy

(2.41) 𝜇∗𝜉(𝛼) = inf
𝑏∈ℝ

{𝛼𝑏 − 𝜇𝜉(𝑏)} and 𝜇𝜉(𝑏) = inf
𝛼∈ℝ

{𝛼𝑏 − 𝜇∗𝜉(𝛼)}.

The superdifferential of the concave function 𝜇𝜉 at 𝑏 is by definition the set

𝜕𝜇𝜉(𝑏) = {𝛼 ∈ ℝ ∶ 𝜇𝜉(𝑏′) ≤ 𝜇𝜉(𝑏) + 𝛼(𝑏′ − 𝑏) ∀𝑏′ ∈ ℝ}.
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Original weights with r0 ✏ 0
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Figure 2.2. Fix 𝜉 ∈ ℝ𝑑 ⧵ {𝟎}. Left: Graphs of the functions 𝛼 ↦ 𝛼𝜇(𝜉/𝛼) =
𝜇(𝜉) and𝛼 ↦ 𝛼𝑔𝑜(𝜉/𝛼) = 𝛼𝑔(𝜉/𝛼) in the case 𝑟0 = 0. All three agree from 𝜆(𝜉)
onwards to 𝜆(𝜉) = ∞. Right: Graphs of 𝛼𝜇(𝑏)(𝜉/𝛼) = 𝜇(𝑏)(𝜉), 𝛼(𝑔𝑜)(𝑏)(𝜉/𝛼)
and 𝛼𝑔(𝑏)(𝜉/𝛼) for the weights shifted by 𝑏 > −𝑟0 = 0. The labeling of the
𝛼-axis is the same in both figures. As the weights shift to higher values, the
shape functions move up. In particular, the thick graph 𝛼 ↦ 𝛼𝑔(𝑏)(𝜉/𝛼) on
the right is obtained by adding the function 𝛼 ↦ 𝑏𝛼 to the graph on the
left. On the possibly degenerate interval [𝜆(𝑏)(𝜉), 𝜆

(𝑏)
(𝜉)] we have the triple

coincidence 𝛼(𝑔𝑜)(𝑏)(𝜉/𝛼) = 𝛼𝑔(𝑏)(𝜉/𝛼) = 𝜇(𝑏)(𝜉) and after that 𝛼𝑔(𝑏)(𝜉/𝛼)
separates from the other two. As 𝑏 increases, the interval [𝜆(𝑏)(𝜉), 𝜆

(𝑏)
(𝜉)]

moves to the left, without overlaps, approaching |𝜉|1 as 𝑏 ↗ ∞. In both
pictures, at the left endpoint |𝜉|1+ the graphs coming from 𝑔𝑜 and 𝑔 have
slope −∞. The three regions [|𝜉|1, 𝜆(𝑏)(𝜉)), [𝜆(𝑏)(𝜉), 𝜆

(𝑏)
(𝜉)] and ( 𝜆

(𝑏)
(𝜉),∞)

of qualitatively distinct behavior in the diagram on the right are described in
Proposition 4.4.

By the definition 𝜕𝜇𝜉(𝑏) = ∅ for 𝑏 < −𝑟0. For 𝑏 > −𝑟0, 𝜕𝜇𝜉(𝑏) is the bounded closed
interval [𝜇′𝜉(𝑏+), 𝜇

′
𝜉(𝑏−)] and so 𝜕𝜇𝜉(𝑏) = {𝛼} if and only if 𝜇′𝜉(𝑏) = 𝛼. These general

equivalences hold:

∀𝛼, 𝑏 ∈ ℝ ∶ 𝛼 ∈ 𝜕𝜇𝜉(𝑏) ⟺ 𝜇∗𝜉(𝛼) + 𝜇𝜉(𝑏) = 𝛼𝑏 ⟺ 𝑏 ∈ 𝜕𝜇∗𝜉(𝛼).
Theorem 2.17 establishes the convex duality. The qualitative nature of the (negative

of the) dual function in (2.43) is illustrated in Figure 2.2, on the left in the case 𝑟0 = 0
and on the right in the case 𝑟0 > 0. In particular, on the left the affine portion of
𝛼 ↦ 𝛼𝑔(𝜉/𝛼) on the interval [𝜆(𝑏)(𝜉), 𝜆

(𝑏)
(𝜉)] is the dual of the superdifferential 𝜕𝜇𝜉(𝑏)

in (2.46). The infinite slope at the left edge |𝜉|1+ is the dual of the limit (2.48).
A convenient feature of the restricted path length shape function without zero steps

is that it transforms trivially under the weight shift:

(2.42) 𝑔(𝑏)(𝜉) = 𝑔(𝜉) + 𝑏.
This and (2.37) applied to 𝜇(𝑏)(𝜉) give (2.44) for 𝑏 > −𝑟0, which is the basis for the
duality.

Theorem 2.17. Assume 𝑟0 ≥ 0, (2.6), and the moment bound (2.7) with 𝑝 = 𝑑. Fix
𝜉 ∈ ℝ𝑑 ⧵ {𝟎}.
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(i) The concave dual of 𝜇𝜉 is

(2.43) 𝜇∗𝜉(𝛼) = {−𝛼𝑔(𝜉/𝛼), 𝛼 ≥ |𝜉|1,
−∞, 𝛼 < |𝜉|1.

In particular, we have the identities
(2.44) 𝜇𝜉(𝑏) = inf

𝛼≥|𝜉|1
𝛼𝑔(𝑏)(𝜉/𝛼) = inf

𝛼≥|𝜉|1
{𝛼𝑔(𝜉/𝛼) + 𝛼𝑏} for 𝑏 ∈ ℝ,

and
(2.45) 𝛼𝑔(𝜉/𝛼) = sup

𝑏≥−𝑟0
{𝜇𝜉(𝑏) − 𝛼𝑏} for 𝛼 ≥ |𝜉|1.

(ii) For 𝑏 > −𝑟0, the superdifferential 𝜕𝜇𝜉(𝑏) is the compact interval

(2.46) 𝜕𝜇𝜉(𝑏) = [𝜇′𝜉(𝑏+), 𝜇
′
𝜉(𝑏−)] = [ 𝜆(𝑏)(𝜉), 𝜆

(𝑏)
(𝜉) ]

while

(2.47) 𝜕𝜇𝜉(−𝑟0) = [ 𝜇′𝜉((−𝑟0)+),∞) = [ 𝜆(−𝑟0)(𝜉), 𝜆
(−𝑟0)(𝜉)).

Furthermore,
(2.48) lim

𝑏→∞
𝜇′𝜉(𝑏±) = |𝜉|1.

Remark 2.18.
(a) Let us make explicit the conversion back to the original FPP shape function

𝜇𝜉(𝑏) = 𝜇(𝑏)(𝜉) in Theorem 2.17. In (2.44) 𝜇𝜉(𝑏) can be replaced by 𝜇𝜉(𝑏) for 𝑏 ≥ −𝑟0.
In each of (2.45), (2.46) and (2.48), 𝜇𝜉 can be replaced by 𝜇𝜉. (2.47) cannot be valid for
𝜕𝜇𝜉(−𝑟0) because 𝜇𝜉(𝑏) > −∞ for some 𝑏 < −𝑟0. We do have

(2.49) 𝜇′𝜉((−𝑟0)+) = 𝜇′𝜉((−𝑟0)+) = 𝜆(−𝑟0)(𝜉) but 𝜇′𝜉((−𝑟0)−) < ∞ = 𝜆
(−𝑟0)(𝜉).

(b) The strict concavity of 𝜇𝜉 that was stated in Theorem 2.2 was purposely left out
of Theorem 2.17 so that this latter theorem can be proved easily at the end of Section
4, before we turn to the modification arguments. Combining Theorem 2.17 with The-
orems 2.2 and 2.3 and (2.35) gives the following. There exists a constant 𝜅 < ∞ that
depends on the dimension and the weight distribution such that, for all 𝑏 > 𝑎 > −𝑟0,
(2.50)

|𝜉|1 < 𝜆(𝑏)(𝜉) ≤ 𝜆
(𝑏)
(𝜉) < 𝜆(𝑎)(𝜉) ≤ 𝜆

(𝑎)
(𝜉) < 𝜆(−𝑟0)(𝜉) ≤ 𝜅|𝜉|1 < ∞ = 𝜆

(−𝑟0)(𝜉).
The strict inequalities above are due to the strict concavity of 𝜇𝜉.
(c) When the infimum 𝑟0 of the support of the weights is zero, 𝑔 and 𝑔𝑜 coincide

(Theorem 2.9 and Lemma 4.1(ii)). Through (2.42) we get an alternative representation
of the concave dual in (2.43) in terms of the restricted path FPP shape that admits zero
steps:
(2.51) 𝛼𝑔(𝜉/𝛼) = 𝛼𝑔(−𝑟0)(𝜉/𝛼) + 𝛼𝑟0 = 𝛼(𝑔𝑜)(−𝑟0)(𝜉/𝛼) + 𝛼𝑟0.
We can combine (2.44) and (2.51) into a statement that shows that both 𝑔 and (𝑔𝑜)(−𝑟0)
contain full information for retrieving all the shifts of 𝜇 among nonnegative weights:
(2.52) 𝜇𝜉(𝑏) = inf

𝛼≥|𝜉|1
{𝛼𝑔(𝜉/𝛼)+𝛼𝑏} = inf

𝛼≥|𝜉|1
{𝛼(𝑔𝑜)(−𝑟0)(𝜉/𝛼)+𝛼(𝑟0+𝑏)} for 𝑏 ≥ −𝑟0.
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(d) Equations (2.33), (2.51), and positive homogeneity of 𝜆 and 𝜇 show that 𝛼 ↦
𝛼𝑔(𝜉/𝛼) is affine for large 𝛼:

(2.53) 𝛼𝑔(𝜉/𝛼) = 𝜇(−𝑟0)(𝜉) + 𝛼𝑟0 for 𝛼 ≥ 𝜆(−𝑟0)(𝜉).

The reader can recognize this statement as the dual version of 𝜕𝜇𝜉(−𝑟0)=[𝜆
(−𝑟0)(𝜉),∞)

from Theorem 2.17, and an immediate consequence of (2.38). This affine portion of
𝛼𝑔(𝜉/𝛼) is visible in both diagrams of Figure 2.2.
Identities (2.51) and (2.53) suggest that, for 𝛼 ≥ 𝜆(−𝑟0)(𝜉), the recipe for an optimal

path of length approximately 𝑛𝛼 from 𝟎 to a point close to 𝑛𝜉 is this: shift the weights
so that their infimum is zero and take the optimal path for the shifted weights 𝜔(−𝑟0).
In particular, once 𝛼 is above the FPP geodesic length, we can follow the FPP geodesic
of the shifted weights 𝜔(−𝑟0) and extend the path to length 𝑛𝛼 by finding and repeating
an edge whose weight is close to the minimum 𝑟0.

3. Open problems

We list here open problems raised by the results.

3.1. Asymptotic length of geodesics. Does the Hammersley-Welsh limit generalize
in some natural way when 𝜇′𝜉(𝑏+) < 𝜇′𝜉(𝑏−)? For example, are there weight configu-
rations 𝜔 and 𝜔 and sequences 𝑥𝑛/𝑛 → 𝜉 and ̃𝑥𝑛/𝑛 → 𝜉 such that

(3.1) lim
𝑛→∞

𝐿(𝑏)𝟎,𝑥𝑛
(𝜔)

𝑛 = 𝜇′𝜉(𝑏+) and lim
𝑛→∞

𝐿
(𝑏)
𝟎,𝑥𝑛(𝜔)
𝑛 = 𝜇′𝜉(𝑏−) ?

If so, can these statements be strengthened to limits, and are they valid for all sequences
and almost surely? Even if one cannot know the limits, are the random variables
lim𝑛→∞ 𝑛−1𝐿𝟎,𝑥𝑛 and lim𝑛→∞ 𝑛−1𝐿𝟎,𝑥𝑛 almost surely constant?

3.2. Properties of the shape functions. Is 𝜇𝜉 differentiable when the weight dis-
tribution is continuous? What about the case of a single positive atom which is not
covered by Theorems 2.6–2.7? Is any comparison between 𝜇𝜉 and 𝜇𝜉 possible for two
distinct directions 𝜉 and ̃𝜉? Is the function 𝜆 defined in (2.33) a norm onℝ𝑑? Do 𝜆 and
𝜆 possess more regularity than given in Theorem 2.11(ii)?

3.3. Duality of the weight shift and geodesic length for real-valued weights.
The duality described in Section 2.4 restricted the shape function 𝜇𝜉(𝑏) to nonnegative
weights through definition (2.40). This leaves open the duality of 𝜇𝜉(𝑏) for 𝑏 < −𝑟0. To
capture the full convex duality over all shifts 𝑏 requires a study of the process 𝐺 sa

𝟎,(𝑛),𝑥,
restricted path length FPP that optimizes over self-avoiding paths, in a manner analo-
gous to our study of 𝐺𝟎,(𝑛),𝑥 and its shape function.
The present shortcoming can be seen for example in the case 𝑟0 = 0 of (2.35) where

𝜆(𝜉) blows up and cannot capture the left derivative 𝜇′𝜉(0−). Graphically this same
phenomenon appears in the left diagramof Figure 2.2where the graph of𝛼𝑔(𝜉/𝛼)never
separates from 𝜇(𝜉) after 𝜆(𝜉). The graph of the function 𝛼𝑔 sa(𝜉/𝛼) of the self-avoiding
version will separate from 𝜇(𝜉) for large enough 𝛼 and capture 𝜇′𝜉(0−).
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3.4. Modification arguments for real weights. Do the van den Berg-Kesten mod-
ification arguments [20] extend to weights that can take negative values? Such an ex-
tension would permit the extension of the strict concavity of 𝜇𝜉(𝑏) to 𝑏 < −𝑟0.

3.5. General perturbations of weights. Develop versions of our results for other
perturbations of the weights, besides the simple shift 𝑡(ℎ)(𝑒) = 𝑡(𝑒) + ℎ, such as the
perturbations considered in [3].

4. The shape functions and lengths of optimal paths

This section develops soft auxiliary results required for the main results of Section
2. Along the way we prove Theorem 2.10, part (i) of Theorem 2.11, parts (i)–(ii) of
Theorem 2.16, and Theorem 2.17. To begin, assume 𝑟0 > −∞ and the moment bound
(2.7) with 𝑝 = 𝑑 for the nonnegative weights 𝑡+(𝑒) = 𝑡(𝑒) ∨ 0. Take the existence of the
continuous, convex functions 𝑔, 𝑔𝑜 ∶ int𝒰 → [𝑟0 ∧ 0,∞) that satisfy the laws of large
numbers (2.29) fromTheoremB.1 in Appendix B. The limit implies 𝑔 ≥ 𝑔𝑜. Extend the
shape functions 𝑔 and 𝑔𝑜 to all of 𝒰 through radial limits: for ⋄ ∈ {⟨𝚎𝚖𝚙𝚝𝚢⟩, 𝑜}, define
(4.1) 𝑔⋄(𝜉) = lim

𝑡↗1
𝑔⋄(𝑡𝜉) ∈ [𝑟0 ∧ 0,∞] for |𝜉|1 = 1.

The limit exists because 𝑡 ↦ 𝑔⋄(𝑡𝜉) is a convex function on the interval [0, 1). Mono-
tonicity (2.36), 𝑔 ≥ 𝑔𝑜, and the limit combine to give, for |𝜉|1 ≤ 𝜏 ≤ 𝛼,
(4.2) 𝛼𝑔𝑜(𝜉/𝛼) ≤ 𝜏𝑔𝑜(𝜉/𝜏) ≤ 𝜏𝑔(𝜉/𝜏).
Part (iv) of Lemma 4.1 proves Theorem 2.10.

Lemma 4.1. Assume 𝑟0 > −∞ and the moment bound (2.7) with 𝑝 = 𝑑 for the non-
negative weights 𝑡+(𝑒) = 𝑡(𝑒) ∨ 0. The restricted path shape functions have the following
properties.

(i) 𝑔(𝟎) = 𝑟0 and 𝑔𝑜(𝟎) = 𝑟0 ∧ 0.
(ii) If 𝑟0 ≤ 0 then 𝑔 = 𝑔𝑜 on all of 𝒰. If 𝑟0 > 0 then 𝑔 > 𝑔𝑜 in an open neighborhood

of the origin.
(iii) For all 𝜉 ∈ ℝ𝑑 ⧵ {𝟎} and 𝛼 ≥ |𝜉|1,

(4.3) 𝛼𝑔𝑜( 𝜉𝛼) = inf
𝜏∶ |𝜉|1≤𝜏≤𝛼

𝜏𝑔(𝜉𝜏 )

and the infimum on the right is attained at some 𝜏 ∈ [ |𝜉|1, 𝛼]. In particular,
|𝜉|1 = 1 implies 𝑔𝑜(𝜉) = 𝑔(𝜉).

(iv) For ⋄ ∈ {⟨𝚎𝚖𝚙𝚝𝚢⟩, 𝑜}, the extended function 𝑔⋄ is convex and lower semicontinu-
ous on𝒰.

Proof. ((i)) The lower bounds 𝑔 ≥ 𝑟0 and 𝑔𝑜 ≥ 𝑟0∧0 on all of int𝒰 follow from 𝑡(𝑒) ≥ 𝑟0
and 𝑡({𝑥, 𝑥}) = 0. Also immediate is 𝑔𝑜(𝟎) ≤ 0. Given 𝜀 > 0, we can fix as measurable
functions of almost every 𝜔,
(4.4) an edge 𝑒 = {𝑥, 𝑦} such that 𝑡(𝑒) < 𝑟0 + 𝜀, and a path 𝜋 from 𝟎 to 𝑥.
For large enough 𝑛 consider paths 𝑥0∶𝑛 that follow 𝜋 and then repeat edge 𝑒 𝑛 − |𝜋|
times. Then 𝑥𝑛/𝑛 → 0 and in the limit 𝑔𝑜(𝟎) ≤ 𝑔(𝟎) ≤ 𝑟0 + 𝜀.
((ii)) The claim for 𝑟0 ≤ 0 is true because the zero steps of a path 𝜋𝑛 ∈ Π𝑜

𝟎,(𝑛),𝑥 can
be replaced by repetitions of an edge with weight close to 𝑟0. Here is a detailed proof.
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Fix 𝜉 ∈ int𝒰 and a sequence 𝑥𝑛 ∈ 𝒟𝑛 such that 𝑥𝑛/𝑛 → 𝜉. Let 𝜋𝑛 be an optimal
path for𝐺𝑜

𝟎,(𝑛),𝑥𝑛 and let 𝑘𝑛 be the number of zero steps in 𝜋𝑛. Let 𝑒 and 𝜋 be as in (4.4).
We construct an ℛ-admissible path 𝜋′𝑛 of length 𝑛 from 𝟎 to 𝑥𝑛 or 𝑥𝑛 + 𝐞1 that repeats
edge 𝑒 as many times as possible, as follows.

• First, if 𝑘𝑛 is even, let 𝑦𝑛 = 𝑥𝑛, and if 𝑘𝑛 is odd, let 𝑦𝑛 = 𝑥𝑛+𝐞1. Then 𝜋𝑛 (plus
the 𝑦𝑛 − 𝑥𝑛 step if necessary) goes from 𝟎 to 𝑦𝑛 in 𝑛 − 2⌊𝑘𝑛/2⌋ nonzero steps.

• The remaining 2⌊𝑘𝑛/2⌋ steps are spent in an initial segment from 𝟎 back to 𝟎 by
first following 𝜋 to 𝑥, then back and forth across 𝑒 altogether 2(⌊𝑘𝑛/2⌋ − |𝜋|)+
times, and then from 𝑥 back to 𝟎 along 𝜋 (in reverse direction). If ⌊𝑘𝑛/2⌋ ≤ |𝜋|
then the initial segment does not go all the way to 𝑥 but turns back towards 𝟎
after ⌊𝑘𝑛/2⌋ steps along 𝜋.

Let 𝑒1, . . . , 𝑒𝑚 denote the edges of 𝜋. We get the following bound:
(4.5)

𝐺𝟎,(𝑛),𝑦𝑛 ≤ 𝑇(𝜋′𝑛) = 2
𝑚∧⌊𝑘𝑛/2⌋
∑
𝑖=1

𝑡(𝑒𝑖) + 2(⌊𝑘𝑛/2⌋ − |𝜋|)+𝑡(𝑒) + 𝑇(𝜋𝑛) + 𝑡({𝑥𝑛, 𝑦𝑛})

≤ 2
𝑚
∑
𝑖=1

𝑡+(𝑒𝑖) + 2(⌊𝑘𝑛/2⌋ − |𝜋|)+(𝑟0 + 𝜀) + 𝐺𝑜
𝟎,(𝑛),𝑥𝑛 + 𝑡+({𝑥𝑛, 𝑥𝑛 + 𝐞1}).

Divide through by 𝑛 and let 𝑛 → ∞ along a suitable subsequence, utilizing 𝑟0 ≤ 0 and
𝑦𝑛/𝑛 → 𝜉. We obtain

𝑔(𝜉) ≤ 𝜀 + 𝑔𝑜(𝜉) + lim
𝑛→∞

𝑛−1𝑡+({𝑥𝑛, 𝑥𝑛 + 𝐞1}).

The last term vanishes almost surely because 𝑛−1𝑡+({𝑥𝑛, 𝑥𝑛 + 𝐞1}) → 0 in probability.
Since 𝑔 ≥ 𝑔𝑜 always, letting 𝜀 ↘ 0 establishes the equality 𝑔 = 𝑔𝑜 under 𝑟0 ≤ 0.
The statement for 𝑟0 > 0 in Part (ii) follows from Part (i) and continuity.
(iii) For 𝑟0 ≤ 0 (4.3) follows from 𝑔𝑜 = 𝑔 and (4.2).
Assume 𝑟0 > 0. The inequalities in (4.2) imply that ≤ holds in (4.3). To prove the

opposite inequality ≥ in (4.3), consider first 𝛼 > |𝜉|1 so that we can take advantage of
the laws of large numbers. Choose 𝑘𝑛 →∞ and𝑥𝑛 ∈ 𝒟𝑜

𝑘𝑛 so that 𝑘𝑛/𝑛 → 𝛼, |𝑥𝑛|1 →∞
and 𝑥𝑛/𝑛 → 𝜉. Begin with

𝐺𝑜
𝟎,(𝑘𝑛),𝑥𝑛 = min

𝑗∶ |𝑥𝑛|1≤𝑗≤𝑘𝑛
𝐺𝟎,(𝑗),𝑥𝑛 .

Let 𝜀 > 0 and choose a partition |𝜉|1 = 𝜏0 < 𝜏1 < ⋯ < 𝜏𝑚 = 𝛼 such that 𝜏𝑖−𝜏𝑖−1 < 𝜀.
Choose integers ℓ𝑛,𝑖 such that |𝑥𝑛|1 = ℓ𝑛,0 < ℓ𝑛,1 < ⋯ < ℓ𝑛,𝑚, ℓ𝑛,𝑚 ≥ 𝑘𝑛, ℓ𝑛,𝑖/𝑛 → 𝜏𝑖
and 𝑥𝑛 ∈ 𝒟ℓ𝑛,𝑖 . (When ℓ𝑛,𝑖 > |𝑥𝑛|1, 𝑥𝑛 ∈ 𝒟ℓ𝑛,𝑖 only requires ℓ𝑛,𝑖 to have the right
parity.) Then

𝐺𝑜
𝟎,(𝑘𝑛),𝑥𝑛 ≥ min

1≤𝑖≤𝑚
min

ℓ𝑛,𝑖−1≤𝑗≤ℓ𝑛,𝑖
𝐺𝟎,(𝑗),𝑥𝑛 ≥ min

1≤𝑖≤𝑚
𝐺𝟎,(ℓ𝑛,𝑖),𝑥𝑛 − 2𝑇(𝜋) − 2𝑛𝜀(𝑟0 + 𝜀),

where we again utilize (4.4): for ℓ𝑛,𝑖−1 ≤ 𝑗 ≤ ℓ𝑛,𝑖 whenever 𝑥𝑛 ∈ 𝒟𝑗 , construct an
ℓ𝑛,𝑖-path from 𝟎 to 𝑥𝑛 by first going from 𝟎 to one endpoint of 𝑒, repeating 𝑒 as many
times as needed, returning to 𝟎, and then following an optimal 𝑗-path from 𝟎 to 𝑥𝑛. (If
ℓ𝑛,𝑖 − 𝑗 is too small to allow travel all the way to 𝑒, then proceed part of the way and
return to 𝟎. ℓ𝑛,𝑖 − 𝑗 is even because 𝑥𝑛 ∈ 𝒟ℓ𝑛,𝑖 ∩ 𝒟𝑗 .) The number of repetitions of 𝑒
is at most 2𝑛𝜀 when 𝑛 is large enough.
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In the limit

𝛼𝑔𝑜(𝜉/𝛼) ≥ min
1≤𝑖≤𝑚

𝜏𝑖𝑔(𝜉/𝜏𝑖) − 2𝜀(𝑟0 + 𝜀) ≥ inf
𝜏∶ |𝜉|1≤𝜏≤𝛼

𝜏𝑔(𝜉/𝜏) − 2𝜀(𝑟0 + 𝜀).

Let 𝜀 ↘ 0 to complete the proof of (4.3) in the case 𝛼 > |𝜉|1. The infimum in (4.3)
is attained because on the right either the extended function is continuous down to
𝜏 = |𝜉|1 or then it blows up to∞.
To complete the proof of (4.3) we show that 𝑔𝑜(𝜉) = 𝑔(𝜉) when |𝜉|1 = 1. Only

𝑔𝑜(𝜉) ≥ 𝑔(𝜉) needs proof. Let 𝑐 < 𝑔(𝜉). Since 𝑔 ≥ 𝑟0 > 0 we can assume 𝑐 > 0. Pick
𝑢 < 1 so that 𝑔(𝑠𝜉) > 𝑐 for 𝑠 ∈ [𝑢, 1]. Then by (4.3) applied to the case 𝛼 > 1, for
𝑡 ∈ [𝑢, 1) we have

𝑔𝑜(𝑡𝜉) = 𝑡 ⋅ inf
𝑠∈[𝑡,1]

𝑔(𝑠𝜉)
𝑠 ≥ 𝑡𝑐.

Letting 𝑡 ↗ 1 gives 𝑔𝑜(𝜉) ≥ 𝑐.
(iv) Convexity extends readily to all of 𝒰. If 𝜉 = 𝛼𝜉′ + (1 − 𝛼)𝜉″ in 𝒰, then for

0 < 𝑡 < 1 convexity on int𝒰 gives 𝑔⋄(𝑡𝜉) ≤ 𝛼𝑔⋄(𝑡𝜉′) + (1 − 𝛼)𝑔⋄(𝑡𝜉″) and we can let
𝑡 ↗ 1.
We check the lower semicontinuity of the extension 𝑔𝑜 on𝒰. Since 𝑔𝑜 is continuous

in the interior, we need to consider only limits to the boundary. Let |𝜉|1 = 1, 𝑔𝑜(𝜉) > 𝑐
and 𝜉𝑗 → 𝜉 in 𝒰. By the limit in (4.1) we can pick 𝑡 < 1 so that 𝑡−1𝑔𝑜(𝑡𝜉) > 𝑐. By the
continuity of 𝑔𝑜 on int𝒰, 𝑔𝑜(𝑡𝜉𝑗) → 𝑔𝑜(𝑡𝜉). Pick 𝑗0 so that 𝑡−1𝑔𝑜(𝑡𝜉𝑗) > 𝑐 for 𝑗 ≥ 𝑗0.
Apply (4.2) to 𝜉𝑗 with 𝛼 = 𝑡−1 and 𝜏 = 1 to get 𝑔𝑜(𝜉𝑗) ≥ 𝑡−1𝑔𝑜(𝑡𝜉𝑗) > 𝑐, again for all
𝑗 ≥ 𝑗0. Lower semicontinuity of 𝑔𝑜 has been established.
Lower semicontinuity of 𝑔 follows from 𝑔 ≥ 𝑔𝑜 and the equality 𝑔 = 𝑔𝑜 on the

boundary: when |𝜉|1 = 1 and 𝜉𝑗 → 𝜉 in 𝒰, lim𝑗→∞ 𝑔(𝜉𝑗) ≥ lim𝑗→∞ 𝑔𝑜(𝜉𝑗) ≥ 𝑔𝑜(𝜉) =
𝑔(𝜉). □

In the remainder of this section we investigate the connections of 𝑔𝑜 and 𝑔 with
standard FPP and assume 𝑟0 ≥ 0 and either (2.3) or (2.6). We begin with the fact
that 𝜇 and 𝑔𝑜 coincide in a neighborhood of the origin. Since Lemma 4.2 considers
nonnegative weights without any shifts, the weaker subcriticality assumption (2.3) is
sufficient.

Lemma 4.2. Assume 𝑟0 ≥ 0, (2.3), and the moment bound (2.7) with 𝑝 = 𝑑. Then there
exists a constant 𝜅 ∈ (1,∞) and a positively homogeneous function 𝜆 ∶ ℝ𝑑 → ℝ+ such
that |𝜉|1 ≤ 𝜆(𝜉) ≤ 𝜅|𝜉|1 ∀𝜉 ∈ ℝ𝑑 and

for 𝜉 ∈ 𝒰, 𝜇(𝜉) = 𝑔𝑜(𝜉) ⟺ 𝜆(𝜉) ≤ 1.(4.6)

In particular, 𝜇(𝜉) = 𝑔𝑜(𝜉) in the neighborhood {𝜉 ∈ ℝ𝑑 ∶ |𝜉|1 ≤ 𝜅−1} of the origin.

Proof. We claim that there exists a constant 𝜅 ∈ (1,∞) such that

(4.7) ∀𝜉 ∈ ℝ𝑑 ⧵ {𝟎} ∶ 𝜇(𝜉/𝛼) = 𝑔𝑜(𝜉/𝛼) for 𝛼 ≥ 𝜅|𝜉|1.

It suffices to prove that a constant 𝜅 works for all |𝜉|1 = 1. Towards this end we show
the existence of a deterministic constant 𝜅 and a random constant𝑀1 such that

(4.8) 𝐿𝟎,𝑥 ≤ 1
2𝜅|𝑥|1 for all |𝑥|1 ≥ 𝑀1.
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By Kesten’s foundational estimate (Proposition 5.8 in [14], also Lemma 4.5 in [2]),
valid under the subcriticality assumption (2.3), there are positive constants 𝛿, 𝑐1 such
that, for all 𝑘 ∈ ℕ,

(4.9) ℙ(∃ self-avoiding path 𝛾 such that 𝟎 ∈ 𝛾, |𝛾| ≥ 𝑘, and 𝑇(𝛾) ≤ 𝑘𝛿) ≤ 𝑒−𝑐1𝑘.

By adding these probabilities over the cases |𝛾| = 𝑘 ≥ 𝑛 we get
(4.10)

ℙ{∃ self-avoiding path 𝛾 from the origin with |𝛾| ≥ 𝑛 and 𝑇(𝛾) ≤ 𝛿|𝛾|} ≤ 𝐶𝑒−𝑐1𝑛.

Thus there exists a random constant 𝑀1 such that any self-avoiding path 𝛾 from the
origin of length |𝛾| ≥ 𝑀1 satisfies 𝑇(𝛾) ≥ 𝛿|𝛾|.
Since the FPP shape function 𝜇 is positively homogeneous, by the FPP shape theo-

rem ([2, p. 11] or (A.8) in Appendix A) we can increase 𝑀1 if necessary so that, for a
deterministic constant 𝑐2,

(4.11) 𝑇𝟎,𝑥 ≤ 𝑐2|𝑥|1 for all |𝑥|1 ≥ 𝑀1.

Let |𝑥|1 ≥ 𝑀1 and let 𝜋 be a geodesic for 𝑇𝟎,𝑥. Then

𝛿|𝜋| ≤ 𝑇(𝜋) = 𝑇𝟎,𝑥 ≤ 𝑐2|𝑥|1
from which |𝜋| ≤ (𝑐2/𝛿)|𝑥|1. (4.8) has been verified.
Given 𝜉 such that |𝜉|1 = 1, let 𝑥𝑛/𝑛 → 𝜉. Then for all large enough 𝑛, 𝐿𝟎,𝑥𝑛 ≤ 𝑛𝜅.

Hence, recalling (2.25),

𝑇𝟎,𝑥𝑛 = min
|𝑥𝑛|1≤𝑘≤𝑛𝜅

𝐺𝟎,(𝑘),𝑥𝑛 = 𝐺𝑜
𝟎,(⌊𝑛𝜅⌋),𝑥𝑛 .

In the limit 𝜇(𝜉) = 𝜅𝑔𝑜(𝜉/𝜅). (The requirement 𝜅 > 1 was imposed precisely to justify
the limit 𝑛−1𝐺𝑜

𝟎,(⌊𝑛𝜅⌋),𝑥𝑛 → 𝜅𝑔𝑜(𝜉/𝜅).) By the lower bound 𝑔𝑜 ≥ 𝜇 and themonotonicity
in (4.2), 𝜇(𝜉) = 𝛼𝑔𝑜(𝜉/𝛼) for 𝛼 ≥ 𝜅. (4.7) has been verified.
Define

(4.12) 𝜆(𝜉) = inf{𝛼 ≥ |𝜉|1 ∶ 𝜇(𝜉/𝛼) = 𝑔𝑜(𝜉/𝛼)}.

The claimed properties of the function 𝜆 follow. □

Later in the paper (Corollary 7.2) after much more work we can show that 𝜆(𝜉) ≥
(1 + 𝐷)|𝜉|1.
In Lemma 4.3 we strengthen the subcriticality assumption to (2.6) so that we can

apply Lemma 4.2 to the shifted weights 𝜔(−𝑟0) and 𝜇(−𝑟0)(𝜉) > 0.

Lemma 4.3. Assume 𝑟0 ≥ 0, (2.6), and the moment bound (2.7) with 𝑝 = 𝑑. For ⋄ ∈
{⟨𝚎𝚖𝚙𝚝𝚢⟩, 𝑜}, the shape functions 𝑔⋄ have the following properties for a fixed 𝜉 ∈ ℝ𝑑 ⧵ {𝟎}.

(i) On the 𝜉-directed ray these functions are affine in a nondegenerate interval
started from zero: for 0 ≤ 𝑡 ≤ |𝜉|−11 ,

(4.13)
𝑡 ∈ [0, (𝜆(𝜉))−1] ⟺ 𝑔𝑜(𝑡𝜉) = 𝑡𝜇(𝜉)

and 𝑡 ∈ [0, (𝜆(−𝑟0)(𝜉))−1] ⟺ 𝑔(𝑡𝜉) = 𝑟0 + 𝑡𝜇(−𝑟0)(𝜉).

(ii) The function 𝑡 ↦ 𝑔⋄(𝑡𝜉) is continuous, convex, and strictly increasing for 𝑡 ∈
[0, |𝜉|−11 ).



FIRST-PASSAGE PERCOLATION 233

Proof. (i) The first line of (4.13) is exactly (4.6). Shifting weights gives 𝑔(𝜁) = 𝑟0 +
𝑔(−𝑟0)(𝜁) and Lemma 4.1(ii) gives 𝑔(−𝑟0)(𝜁) = (𝑔𝑜)(−𝑟0)(𝜁). Then the first line of (4.13)
applied to 𝜔(−𝑟0) gives the second line.
(ii) Continuity and convexity on int𝒰 are already in the construction of the func-

tions 𝑔⋄. Since 𝜇(𝜉) ≥ 𝜇(−𝑟0)(𝜉) > 0 (Theorem 2.1), 𝑡 ↦ 𝑔⋄(𝑡𝜉) is strictly increasing on
a nondegenerate interval from 0. By convexity, it has to be strictly increasing on the
entire interval [0, |𝜉|−11 ). □

Since the functions 𝛼 ↦ 𝛼𝑔⋄(𝜉/𝛼) are central to our treatment, we rewrite (4.6) in
this form:

for 𝜉 ∈ ℝ𝑑 ⧵ {𝟎} and 𝛼 ≥ |𝜉|1, 𝛼𝑔𝑜( 𝜉𝛼) = 𝜇(𝜉) ⟺ 𝛼 ≥ 𝜆(𝜉).(4.14)

Together with (4.3) the above implies that some 𝜏 ≥ |𝜉|1 satisfies 𝜏𝑔(𝜉/𝜏) = 𝜇(𝜉). By
the 𝜇 ≤ 𝑔𝑜 ≤ 𝑔 inequalities, any such 𝜏must satisfy 𝜏 ≥ 𝜆(𝜉). Now we have

(4.15) for 𝜉 ∈ ℝ𝑑 ⧵ {𝟎}, 𝜇(𝜉) = inf
𝛼∶𝛼≥|𝜉|1

𝛼𝑔( 𝜉𝛼).

Furthermore, for 𝜉 ∈ ℝ𝑑 ⧵ {𝟎},

(4.16) 𝜆(𝜉) = sup{𝛼 ≥ |𝜉|1 ∶ 𝛼𝑔(
𝜉
𝛼) = 𝜇(𝜉)} ∈ [𝜆(𝜉),∞]

is a meaningful definition as the supremum of a nonempty set. Positive homogeneity
of 𝜆 on ℝ𝑑 ⧵ {𝟎} follows from the positive homogeneity of 𝜇. By Lemma 4.1(ii) and
(4.14),

(4.17) 𝑟0 = 0 implies 𝜆(𝜉) = ∞.
Recall 𝜇∗ = sup|𝜉|1=1 𝜇(𝜉). Let 𝛼 be such that 𝛼𝑔(𝜉/𝛼) = 𝜇(𝜉). Then

𝛼𝑟0 ≤ 𝛼𝑔(𝜉/𝛼) = 𝜇(𝜉) ≤ 𝜇∗|𝜉|1.
Thus
(4.18) 𝑟0 > 0 implies 𝜆(𝜉) ≤ (𝜇∗/𝑟0)|𝜉|1.
Since 𝑟0 > 0 implies that 𝑔(𝟎) = 𝑟0 > 0 = 𝜇(𝟎), (4.16) is not a meaningful definition

of 𝜆(𝟎). Cued by (4.17) and (4.18), we can retain positive homogeneity by defining

(4.19) 𝜆(𝟎) = {0, 𝑟0 > 0,
∞, 𝑟0 = 0.

Proposition 4.4 collects properties of the functions𝛼 ↦ 𝛼𝑔⋄(𝜉/𝛼) for⋄ ∈ {⟨𝚎𝚖𝚙𝚝𝚢⟩, 𝑜}.
These properties are implicit in the definitions and previously established facts. Note
that part (i) below is still conditional for we have not yet proved that |𝜉|1 < 𝜆(𝜉). The
trichotomy in Proposition 4.4 is illustrated in Figure 2.2.

Proposition 4.4. Assume 𝑟0 ≥ 0, (2.3), and the moment bound (2.7) with 𝑝 = 𝑑. Fix
𝜉 ∈ ℝ𝑑 ⧵{𝟎}. Then for 𝛼 ∈ [ |𝜉|1,∞), the functions 𝛼 ↦ 𝛼𝑔(𝜉/𝛼) and 𝛼 ↦ 𝛼𝑔𝑜(𝜉/𝛼) have
the following properties.

(i) For |𝜉|1 ≤ 𝛼 < 𝜆(𝜉), 𝛼𝑔𝑜(𝜉/𝛼) = 𝛼𝑔(𝜉/𝛼) are strictly decreasing, convex, and
strictly above 𝜇(𝜉).

(ii) For 𝜆(𝜉) ≤ 𝛼 ≤ 𝜆(𝜉), 𝛼𝑔𝑜(𝜉/𝛼) = 𝛼𝑔(𝜉/𝛼) = 𝜇(𝜉).
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(iii) For 𝛼 > 𝜆(𝜉), 𝛼𝑔𝑜(𝜉/𝛼) = 𝜇(𝜉), while 𝛼𝑔(𝜉/𝛼) > 𝜇(𝜉) and 𝛼𝑔(𝜉/𝛼) is convex and
strictly increasing. This case is nonempty if and only if 𝑟0 > 0.

Proof. The inequalities

(4.20) 𝜆(𝜉) < ∞ and |𝜉|1 ≤ 𝜆(𝜉) ≤ 𝜆(𝜉) ≤ ∞
are built into the definitions and Lemma 4.2.
(i) Assume |𝜉|1 < 𝜆(𝜉) so there is something to check. Since 𝛼 ↦ 𝛼𝑔𝑜(𝜉/𝛼) is non-

increasing, convex, and reaches its minimum 𝜇(𝜉) at 𝛼 = 𝜆(𝜉) but not before, it must
be strictly decreasing for |𝜉|1 ≤ 𝛼 < 𝜆(𝜉).
Suppose 𝛼0𝑔𝑜(𝜉/𝛼0) < 𝛼0𝑔(𝜉/𝛼0) for some 𝛼0 > |𝜉|1. (Equality holds at 𝛼0 = |𝜉|1

by Lemma 4.1(iii).) We show that 𝜆(𝜉) < 𝛼0. By (4.3), for some 𝜏0 ∈ [|𝜉|1, 𝛼0) and all
𝛼 ∈ [𝜏0, 𝛼0]

𝛼0𝑔𝑜(𝜉/𝛼0) = 𝜏0𝑔(𝜉/𝜏0) = inf
|𝜉|1≤𝜏≤𝛼0

𝜏𝑔(𝜉/𝜏) = inf
|𝜉|1≤𝜏≤𝛼

𝜏𝑔(𝜉/𝜏) = 𝛼𝑔𝑜(𝜉/𝛼).

Thus 𝛼 ↦ 𝛼𝑔𝑜(𝜉/𝛼) is constant on [𝜏0, 𝛼0]with 𝜏0 < 𝛼0. It must be that 𝜆(𝜉) ≤ 𝜏0 < 𝛼0.
(ii) From Part (i) and (4.14), the behavior of 𝛼𝑔𝑜(𝜉/𝛼) is completely determined.

Furthermore, 𝛼𝑔(𝜉/𝛼) achieves its minimum 𝜇(𝜉) at 𝛼 = 𝜆(𝜉) by a combination of
(4.3) with Part (i) and (4.14). Then 𝛼𝑔(𝜉/𝛼) must be nondecreasing for 𝛼 ≥ 𝜆(𝜉), and
definition (4.16) forces 𝛼𝑔(𝜉/𝛼) = 𝜇(𝜉) for 𝜆(𝜉) ≤ 𝛼 ≤ 𝜆(𝜉).
Part (iii) follows from convexity and the definitions. □

Lemma 4.5 shows that 𝜆 is lower semicontinuous and 𝜆 upper semicontinuous.

Lemma 4.5. Let 𝜉𝑖 → 𝜉 in ℝ𝑑 ⧵ {𝟎}. Then
(4.21) 𝜆(𝜉) ≤ lim

𝑖→∞
𝜆(𝜉𝑖) ≤ lim

𝑖→∞
𝜆(𝜉𝑖) ≤ 𝜆(𝜉).

Proof. If 𝜆(𝜉) = |𝜉|1, the first inequality of (4.21) is trivial. Suppose |𝜉|1 < 𝛼 < 𝜆(𝜉).
Then 𝛼𝑔𝑜(𝜉/𝛼) > 𝜇(𝜉). By continuity on int𝒰, 𝛼𝑔𝑜(𝜉𝑖/𝛼) > 𝜇(𝜉𝑖) for large 𝑖, which
implies 𝜆(𝜉𝑖) > 𝛼.
If 𝜆(𝜉) = ∞, the last inequality of (4.21) is trivial. By (4.17) and (4.18), the comple-

mentary case has 𝑟0 > 0 and therefore 𝜆(𝜉𝑖) ≤ (𝜇∗/𝑟0)|𝜉𝑖|1. Then

𝜆(𝜉𝑖)𝑔(
𝜉𝑖

𝜆(𝜉𝑖)
) = 𝜇(𝜉𝑖).

Suppose a subsequence satisfies 𝜆(𝜉𝑖) → 𝜏 > 𝜆(𝜉) ≥ |𝜉|1. Then for all large enough 𝑖,
𝜆(𝜉𝑖) ≥ (1 + 𝛿)|𝜉𝑖|1 for some 𝛿 > 0. Continuity of 𝑔 on int𝒰 and of 𝜇 on ℝ𝑑 then leads
to 𝜏𝑔(𝜉/𝜏) = 𝜇(𝜉), a contradiction. □

At this point we have covered everything needed to prove part (i) of Theorem 2.11
and parts (i)–(ii) of Theorem 2.16. The proofs of these theorems will be completed in
Section 7.1 after the modification arguments. As the last item of this section we prove
the claims about the convex duality.

Lemma 4.6. Assume (2.7) with 𝑝 = 1. For all 𝜉 ∈ ℝ𝑑, we have

lim
𝑏→∞

𝜇(𝑏)(𝜉)
𝑏 = |𝜉|1.
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Proof. We may assume that 𝜉 ∈ ℤ𝑑 ⧵ {𝟎} for the following. The extension to 𝜉 ∈ ℝ𝑑

follows from the homogeneity and convexity of 𝜇(𝑏)(𝜉) in 𝜉.

Claim 4.7. For each 𝜉 ∈ ℤ𝑑, there exist 2𝑑 edge-disjoint paths {𝜋𝑖}2𝑑𝑖=1 from 𝟎 to 𝜉 such
that their Euclidean lengths satisfy |𝜋1| = |𝜉|1 and |𝜋𝑖| ≤ |𝜉|1 + 8 for 𝑖 ≠ 2.

The proof of Claim 4.7 comes after the proof of the lemma, but it is intuitively clear
that there exist 2𝑑 edge-disjoint paths from 𝟎 to 𝜉 such that at least one path has length
|𝜉|1 and the length of each path is at most |𝜉|1 +𝐶𝜉 for some constant 𝐶𝜉 (see [14, Fig.
2.1] for the case 𝜉 = 𝑘𝐞𝑖). Then,

(4.22) (1 + 𝑟0
𝑏 ) |𝜉|1 ≤

𝜇(𝑏)(𝜉)
𝑏 ≤

𝔼[𝑇(𝑏)𝟎,𝜉 ]
𝑏 ≤ 𝔼[𝑏−1 min

𝑖=1,. . .,2𝑑
𝑇 (𝑏)(𝜋𝑖)],

where thefirst inequality follows from𝑇(𝑏)𝟎,𝜉 ≥ |𝜉|1(𝑏+𝑟0), the second fromsubadditivity,
and the third from the fact that 𝑇(𝑏)𝟎,𝜉 is an infimum over all paths from 𝟎 to 𝜉. Denote
the integrand on the right-hand side of (4.22) by 𝑍𝑏.
Since 𝑇 (𝑏)(𝜋𝑖) ≤ (𝐶𝜉 + |𝜉|1)𝑏 + 𝑇(𝜋𝑖) for 𝑖 = 1, . . . , 2𝑑, we have

𝑍𝑏 ≤ (𝐶𝜉 + |𝜉|1) + min
𝑖=1,. . .,2𝑑

𝑇(𝜋𝑖) for all 𝑏 ≥ 1.

Next, we show thatmin𝑖=1,. . .,2𝑑 𝑇(𝜋𝑖) is integrable (see [2, Theorem2.2]) in preparation
for the dominated convergence theorem. A union bound over the edges of each path
𝜋𝑖 and independence of the edge weights in the paths implies

ℙ{ min
𝑖=1,. . .,2𝑑

𝑇(𝜋𝑖) ≥ 𝑠} ≤ (max
𝑖
|𝜋𝑖| ℙ{𝑡𝑒 ≥

𝑠
|𝜋𝑖|

})
2𝑑
.

Integrating over 𝑠 ≥ 0 shows that for some constant 𝐶𝜉,

𝔼[ min
𝑖=1,. . .,2𝑑

𝑇(𝜋𝑖)] ≤ 𝐶𝜉 𝔼[min{𝑡1, . . . , 𝑡2𝑑} ] < ∞.

Since 𝑍𝑏 can be written as

𝑍𝑏 = min
𝑖=1,. . .,2𝑑

(|𝜋𝑖| +
𝑇(𝜋𝑖)
𝑏 ),

we see that lim𝑏→∞ 𝑍𝑏 = |𝜋1| = |𝜉|1. Therefore, by the dominated convergence theo-
rem, we have

|𝜉|1 ≤ lim
𝑏→∞

𝜇(𝑏)(𝜉)
𝑏 ≤ lim

𝑏→∞
𝔼[𝑍𝑏] = |𝜉|1. □

Proof of Claim 4.7. For general 𝜉 ∈ ℤ𝑑, let 𝑘 be the number of nonzero coordinates
of 𝜉 and suppose 𝑘 > 1. This is the effective dimension of the rectangle formed with
the origin and 𝜉 as extreme opposing corners. We may assume without loss of gen-
erality that the first 𝑘 coordinates of 𝜉 are nonzero and the rest are 0. So let 𝜉 =
(𝑎1, 𝑎2, . . . , 𝑎𝑘, 0, . . . , 0).
The first 𝑘 disjoint paths run along the edges of the rectangle. Such a path is en-

coded by a permutation 𝜎 ∈ 𝕊𝑘. For example, 𝜎 = (1, 2, . . . , 𝑘) corresponds to the path
𝟎 → 𝑎1𝐞1 → 𝑎1𝐞1 + 𝑎2𝐞2 → ⋯. Two paths encoded by permutations 𝜎 = (𝜎1, . . . , 𝜎𝑘)
and 𝜇 = (𝜇1, . . . , 𝜇𝑘) meet (share a vertex) before 𝜉 if and only if for some 𝑗 < 𝑘,
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{𝜎1, . . . , 𝜎𝑗} = {𝜇1, . . . , 𝜇𝑗}. Consider the 𝑘 paths corresponding to the cyclic permuta-
tions:

𝜋1 = (1, 2, . . . , 𝑘), 𝜋2 = (2, 3, . . . , 1), . . . , 𝜋𝑘 = (𝑘, 1, . . . , 𝑘 − 1).
These 𝑘 paths are vertex disjoint, except for their first and last vertices, and have length
|𝜉|1.
The next 𝑑 − 𝑘 paths are formed as follows. For each 𝑗 ∈ {𝑘 + 1, . . . , 𝑑}, start with

an 𝐞𝑗 step, follow the path 𝜋1 to 𝜉 + 𝐞𝑗 , and conclude with a −𝐞𝑗 step to 𝜉. Get another
𝑑−𝑘 path by starting with−𝐞𝑗 and finishing with 𝐞𝑗 . These paths have length |𝜉|1+2.
Now we have altogether 𝑘 + 2(𝑑 − 𝑘) paths. The final 𝑘 paths are a little trickier.
For each 𝑖 = {1, . . . , 𝑘}, pair direction 𝐞𝑖 with path 𝑝𝑖+1mod𝑘. We construct the path

for 𝑖 = 1, and the rest are similar. The first step is−𝐞1. Then follow 𝜋2 until 𝜋2 is about
to step in the 𝐞𝑘 direction (the last step before it steps in the 𝐞1 direction). On the 𝐞𝑘
segment take 𝑎𝑘+1 steps and then take 𝑎1+1 steps in the 𝐞1 direction (this avoids the
𝜋2 path), ending up at 𝜉 + 𝐞𝑘. Finish at 𝜉 by taking a final −𝐞𝑘 step. Replacing 𝐞1 and
𝜋2 by 𝐞𝑗 and 𝑝𝑗+1mod𝑘 for 𝑗 = 2, . . . , 𝑘 gives us 𝑘 such paths that are disjoint from each
other and all the previous paths (except for their first and last vertices). All these have
length |𝜉|1 + 4. Notice the crucial assumption of 𝑘 > 1 for this construction.
The 𝑘 = 1 case is covered in [14, Fig 2.1], as mentioned earlier. One can verify that

this gives the worst case of |𝜉|1 + 8. □

Proof of Theorem 2.17.
Step 1 (Identity (2.44)). For 𝑏 ≥ −𝑟0, (2.44) is a combination of (4.15) and (2.42). For
large 𝛼
(4.23) 𝛼𝑔(𝜉/𝛼) ≤ 𝜇(𝜉) + 𝛼𝑟0
because an ⌊𝑛𝛼⌋-path from 𝟎 to a point close to 𝑛𝜉 can be created by following the
strategy in the proof of Lemma 4.1(ii): repeat an edge close to the origin with weight
close to 𝑟0 as many times as needed, and then follow a geodesic to a point close to 𝑛𝜉.
Bound (4.23) implies that the right-hand side of (2.44) equals−∞ for 𝑏 < −𝑟0. Identity
(2.44) has been verified for all 𝑏 ∈ ℝ.
Step 2 (The duality). The convexity and lower semicontinuity of 𝛼 ↦ 𝛼𝑔(𝜉/𝛼) for 𝛼 ≥
|𝜉|1 imply that the function defined by the right-hand side of (2.43) is concave and
upper semicontinuous. Thus (2.44) implies that 𝜇𝜉 is the concave dual of this function.
Then we can identify the dual 𝜇∗𝜉 of 𝜇𝜉 as (2.43), which gives (2.45).

Step 3 (The superdifferentials). Let 𝑏 > −𝑟0. Then 𝜆
(𝑏)
(𝜉) < ∞ by (4.18). By Proposi-

tion 4.4 and the duality,

(4.24)
[ 𝜆(𝑏)(𝜉), 𝜆

(𝑏)
(𝜉) ] = {𝛼 ≥ |𝜉|1 ∶ 𝜇𝜉(𝑏) = 𝛼𝑔(𝑏)(𝜉/𝛼)}

= {𝛼 ≥ |𝜉|1 ∶ 𝜇𝜉(𝑏) = 𝛼𝑔(𝜉/𝛼) + 𝛼𝑏}
= {𝛼 ∈ ℝ ∶ 𝜇𝜉(𝑏) = 𝛼𝑏 − 𝜇∗𝜉(𝛼)} = 𝜕𝜇𝜉(𝑏).

Similarly

(4.25)
[ 𝜆(−𝑟0)(𝜉),∞) = {𝛼 ≥ |𝜉|1 ∶ 𝜇𝜉(−𝑟0) = 𝛼𝑔(−𝑟0)(𝜉/𝛼)}

= {𝛼 ∈ ℝ ∶ 𝜇𝜉(−𝑟0) = −𝛼𝑟0 − 𝜇∗𝜉(𝛼)} = 𝜕𝜇𝜉(−𝑟0).
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Fix 𝑎 > −𝑟0 and let 𝑏 > 𝑎. From |𝜉|1 ≤ 𝜇′𝜉(𝑏±) given in (2.14), concavity, and Lemma
4.6,

|𝜉|1 ≤ 𝜇′𝜉(𝑏±) ≤
𝜇𝜉(𝑏) − 𝜇𝜉(𝑎)

𝑏 − 𝑎 → |𝜉|1 as 𝑏 → ∞.
□

5. Modification proofs for strict concavity

The modification arguments provide the power to go beyond soft results. In partic-
ular, these give us the strict concavity of the shape function in the shift variable (The-
orem 2.2(ii)), the strict separation of 𝜆(𝜉) from |𝜉|1 (Theorem 2.11(ii)), and the strict
exceedance of ℓ1 distance by the geodesic length (Theorem 2.5).

5.1. Preparation for themodification arguments. We adapt to our goals themod-
ification argument of van den Berg and Kesten [20]. Throughout this section 𝑟0 =
ess inf 𝑡(𝑒) ≥ 0.
An 𝑁-box 𝐵 is by definition a rectangular subset of ℤ𝑑 of the form

(5.1) 𝐵 = {𝑥 = (𝑥1, . . . , 𝑥𝑑) ∈ ℤ𝑑 ∶ 𝑎𝑖 ≤ 𝑥𝑖 ≤ 𝑎𝑖+3𝑁 for 𝑖 ∈ [𝑑]⧵𝑘, 𝑎𝑘 ≤ 𝑥𝑘 ≤ 𝑎𝑘+𝑁}
for some 𝑎 = (𝑎1, . . . , 𝑎𝑑) ∈ ℤ𝑑 and 𝑘 ∈ [𝑑]. In other words, one of the dimensions of
𝐵 has size𝑁 and the other 𝑑−1 dimensions are of size 3𝑁. The two large 3𝑁 ×⋯×3𝑁
faces of 𝐵 in (5.1) are the subsets

{𝑥 ∈ 𝐵 ∶ 𝑥𝑘 = 𝑎𝑘} and {𝑥 ∈ 𝐵 ∶ 𝑥𝑘 = 𝑎𝑘 + 𝑁}.
The interior of𝐵 is defined by requiring 𝑎𝑖 < 𝑥𝑖 < 𝑎𝑖+3𝑁 and 𝑎𝑘 < 𝑥𝑘 < 𝑎𝑘+𝑁 in (5.1).
The boundary 𝜕𝐵 of 𝐵 is the set of points of 𝐵 that have a nearest-neighbor vertex in the
complement of 𝐵. Our convention will be that an edge 𝑒 lies in 𝐵 if both its endpoints
lie in 𝐵, otherwise 𝑒 ∈ 𝐵𝑐. A suitable ℓ1-neighborhood around 𝐵 is defined by
(5.2) 𝐵 = {𝑥 ∈ ℤ𝑑 ∶ ∃𝑦 ∈ 𝐵 ∶ |𝑥 − 𝑦|1 ≤ 3𝑁(𝑑 − 1) + 𝑁}.
The significance of the choice 3𝑁(𝑑 − 1) + 𝑁 is that the ℓ1-distance from any point in
𝐵 to the boundary of 𝐵 is at least as large as the distance between any two points in 𝐵.
Introduce two parameters 0 < 𝑠0, 𝛿0 < ∞ whose choices are made precise later.

Consider these conditions on the edge weights in 𝐵 and 𝐵:
max
𝑒∈𝐵

𝑡(𝑒) ≤ 𝑠0 ,(5.3)

∑
𝑒∈𝐵

𝑡(𝑒) ≤ 𝑠0 ,(5.4)

and

(5.5)
𝑇(𝜋) > (𝑟0 + 𝛿0)|𝑦 − 𝑥|1 for every self-avoiding path 𝜋 that stays entirely in 𝐵
and whose endpoints 𝑥 and 𝑦 satisfy |𝑦 − 𝑥|1 ≥ 𝑁.

The properties of a black box stated in Definition 5.1 depend on whether the weights
are bounded or unbounded. We let𝑀0 = ℙ- ess sup 𝑡(𝑒).

Definition 5.1 (Black box).
(i) In the case of bounded weights (𝑀0 < ∞), color a box 𝐵 black if conditions

(5.3) and (5.5) are satisfied.
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(ii) In the case of unbounded weights (𝑀0 = ∞), color a box 𝐵 black if conditions
(5.4) and (5.5) are satisfied.

By choosing 𝑠0 and 𝑁 large enough and 𝛿0 small enough, the probability of a given
𝐵 being black can be made as close to 1 as desired. This is evident for conditions (5.3)
and (5.4). For condition (5.5) it follows from Lemma 5.5 in [20] that we quote here:

Lemma 5.2 ([20, Lemma 5.5]). Assume (2.6), that is, the infimum of the passage time
is subcritical. Then there exist constants 𝛿0 > 0 and 𝐷0 > 0 such that for all 𝑥, 𝑦 ∈ ℤ𝑑,
(5.6) ℙ{𝑇𝑥,𝑦 ≤ (𝑟0 + 𝛿0)|𝑦 − 𝑥|1} ≤ 𝑒−𝐷0|𝑦−𝑥|1 .

When 𝑟0 > 0, Lemma 5.5 of [20] requires the weaker assumption 𝑃{𝑡(𝑒) = 𝑟0} < ⃗𝑝𝑐
where ⃗𝑝𝑐 is the critical probability of oriented bond percolation on ℤ𝑑. However, since
we consider shifts of weights that can turn 𝑟0 into zero, it is simpler to assume (2.6) for
all 𝑟0 ≥ 0 instead of keeping track when we might get by with the weaker assumption.
The probability of the complement of (5.5) is then bounded by

ℙ{(5.5) fails} ≤ ∑
𝑥, 𝑦∈𝐵∶ |𝑦−𝑥|1≥𝑁

ℙ{𝑇𝑥,𝑦 ≤ (𝑟0 + 𝛿0)|𝑦 − 𝑥|1} ≤ 𝐶𝑑𝑁2𝑑𝑒−𝐷0𝑁 .

The bound above decreases for large enough 𝑁 and hence gives us this conclusion:
There exists a fixed 𝛿0 > 0 such that for any 𝜀 > 0 there exist 𝑁(5.7)
and 𝑠0 such that ℙ{box 𝐵 is black} ≥ 1 − 𝜀 while ℙ{𝑡(𝑒) ≥ 𝑠0} > 0.
Increasing 𝑁 and 𝑠0 while keeping 𝛿0 fixed cannot violate this
condition as long as ℙ{𝑡(𝑒) ≥ 𝑠0} > 0.

Condition ℙ{𝑡(𝑒) ≥ 𝑠0} > 0 is included above simply to point out that 𝑠0 is not chosen
so large that property (5.3) becomes trivial for bounded weights.
A nearest-neighbor path 𝜋 = (𝑥𝑖)𝑛𝑖=0 that lies in 𝐵 is a short crossing of 𝐵 if 𝑥0 and

𝑥𝑛 lie on opposite large faces of 𝐵. More generally, we say that
a path 𝜋 crosses 𝐵 if some segment 𝜋𝑥𝑘,𝑥𝑚 = (𝑥𝑖)𝑚𝑖=𝑘 of 𝜋(5.8)
is a short crossing of 𝐵 and neither endpoint of 𝜋 lies in 𝐵.

The second part of the definition ensures that 𝜋 genuinely “goes through” 𝐵.
Let ℬ be the countable set of all triples (𝐵, 𝑣, 𝑤) where 𝐵 is an 𝑁-box and 𝑣 and 𝑤

are two distinct points on the boundary of 𝐵. A path 𝜋 has a (𝐵, 𝑣, 𝑤)-crossing if (5.8)
holds and 𝑣 is the point where 𝜋 first enters 𝐵 and 𝑤 is the point through which 𝜋 last
exits 𝐵. (Then the short crossing of 𝐵 is some segment 𝜋𝑣′,𝑤′ ⊂ 𝜋𝑣,𝑤.) If 𝜋 crosses 𝐵,
then 𝜋 has a (𝐵, 𝑣, 𝑤)-crossing for some (𝐵, 𝑣, 𝑤) ∈ ℬ with (𝑣, 𝑤) uniquely determined
by 𝜋 and 𝐵.
Partition the setℬ of all elements (𝐵, 𝑣, 𝑤) into𝐾 subcollectionsℬ1, . . . , ℬ𝐾 such that

within each ℬ𝑗 all boxes 𝐵 are separated by distance 𝑁. Any particular box 𝐵 appears
at most once in any particular ℬ𝑗 . The number 𝐾 of subcollections depends only on
the dimension 𝑑 and the size parameter 𝑁. The particular size 𝑁 of the separation of
boxes inℬ𝑗 is taken for convenience only. In the end what matters is that the boxes are
separated and that once 𝑁 is fixed, 𝐾 is a constant.
Let 𝔹(0, 𝑟) = {𝑥 ∈ ℤ𝑑 ∶ |𝑥|1 ≤ 𝑟} denote the ℓ1-ball (diamond) of radius ⌊𝑟⌋ in

ℤ𝑑, with (inner) boundary 𝜕𝔹(0, 𝑟) = {𝑥 ∈ ℤ𝑑 ∶ |𝑥|1 = ⌊𝑟⌋}. Lemma 5.3 is proved in
Appendix C.



FIRST-PASSAGE PERCOLATION 239

Lemma 5.3. By fixing 𝑠0 and 𝑁 large enough and 𝛿0 small enough as in (5.7), we can
ensure the existence of constants 0 < 𝛿1, 𝐷1, 𝑛1 < ∞ such that, for all 𝑛 ≥ 𝑛1,

(5.9)
ℙ{every lattice path 𝜋 from the origin to 𝜕𝔹(0, 𝑛) has an index

𝑗(𝜋) ∈ [𝐾] such that 𝜋 has at least ⌊𝑛𝛿1⌋ (𝐵, 𝑣, 𝑤)-crossings
of black boxes 𝐵 such that (𝐵, 𝑣, 𝑤) ∈ ℬ𝑗(𝜋)} ≥ 1 − 𝑒−𝐷1𝑛.

We turn to the modification argument for the strict concavity of 𝜇𝜉 claimed in The-
orem 2.2.

5.2. Strict concavity. Let 𝛿0 > 0 be the quantity in (5.5) in the definition of a black
box. In addition to 𝑡(𝑒) ≥ 0we consider two complementary assumptions on theweight
distribution. Either the weights are unbounded:

(5.10) 𝑀0 = ∞

and satisfy a moment bound, or the weights are bounded and have a strictly positive
support point close enough to the lower bound:

(5.11)
the support of 𝑡(𝑒) contains a point 𝑟1 that satisfies

0 < 𝑟1 < 𝑟0 + 𝛿0 < 𝑀0 < ∞.

If 𝑟0 > 0 we can choose 𝑟1 = 𝑟0. Let 𝜀0 > 0 be the constant that appears in Theorem
2.1 and in Theorem A.1, also equal to the constant 𝛿 in (4.10) for the shifted weights
𝜔(−𝑟0).

Theorem 5.4. Assume 𝑟0 ≥ 0 and (2.6), in other words, that weights are nonnegative
and the infimum is subcritical. Furthermore, assume that one of these two cases holds:

(a) Unbounded case: the weights satisfy (5.10) and the moment bound (2.7) with
𝑝 = 1.

(b) Bounded case: the weights satisfy (5.11).
Then there exist a finite positive constant𝑀 and a function 𝐷(𝑏) > 0 of 𝑏 > 0 such that
the following bounds hold for all 𝑏 ∈ (0, 𝑟0 + 𝜀0) and all |𝑥|1 ≥ 𝑀:

(i) In the unbounded case (a),

(5.12) 𝔼[𝑇(−𝑏)𝟎,𝑥 ] ≤ 𝔼[𝑇𝟎,𝑥] − 𝑏𝔼[ 𝐿𝟎,𝑥] − 𝐷(𝑏)𝑏|𝑥|1.

(ii) In the bounded case (b),

(5.13) 𝔼[𝑇(−𝑏)𝟎,𝑥 ] ≤ 𝔼[𝑇𝟎,𝑥] − 𝑏𝔼[ 𝐿𝟎,𝑥] − 𝐷(𝑏)𝑏|𝑥|1.

Condition (2.7) with 𝑝 = 1 guarantees that the expectation 𝔼[𝑇𝟎,𝑥] above is finite
(Lemma 2.3 in [2]). This together with Lemma A.3 then implies that 𝔼[𝑇(−𝑏)𝟎,𝑥 ] is finite
for 𝑏 ∈ (0, 𝑟0 + 𝜀0). Since 𝔼[ 𝐿𝟎,𝑥] ≥ 𝔼[ 𝐿𝟎,𝑥], (5.12) provides a better bound than
(5.13). This is due to the fact that the modification argument gives sharper control of
the geodesic under unbounded weights.
Our modification proofs force the geodesic to follow explicitly constructed paths.

These paths are parametrized by two integers 𝑘 and ℓ whose choice is governed by the
support of 𝑡(𝑒) through Lemma 5.5.
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Lemma 5.5. Fix reals 0 < 𝑟 < 𝑠 and 𝑏 > 0. Then there exist arbitrarily large positive
integers 𝑘, ℓ such that
(5.14) 𝑘(𝑠 + 𝛿) < (𝑘 + 2ℓ)(𝑟 − 𝛿) < (𝑘 + 2ℓ)(𝑟 + 𝛿) < 𝑘(𝑠 − 𝛿) + (2ℓ − 1)𝑏
holds for sufficiently small real 𝛿 > 0.
Proof. It suffices to show the existence of arbitrarily large positive integers 𝑘, ℓ that
satisfy the strict inequalities
(5.15) 𝑘𝑠 < (𝑘 + 2ℓ)𝑟 < 𝑘𝑠 + (2ℓ − 1)𝑏
and then choose 𝛿 > 0 small enough. Let 0 < 𝜀 < 𝑏/𝑟 and choose an integer𝑚 > 2/𝜀.
Then for each 𝑘 ∈ ℕ there exists ℓ ∈ ℕ such that
(5.16) 𝑘( 𝑠𝑟 − 1) < 2ℓ < 𝑘( 𝑠𝑟 − 1) + 𝑚𝜀,

and 𝑘 and ℓ can be taken arbitrarily large. Rearranging (5.16) and remembering the
choice of 𝜀 gives

𝑘𝑠 < (𝑘 + 2ℓ)𝑟 < 𝑘𝑠 + 𝑚𝜀𝑟 < 𝑘𝑠 + 𝑚𝑏.
To get (5.15), take 𝑘 and ℓ large enough to have𝑚 < 2ℓ − 1. □

Proof of Theorem 5.4. The proof has three stages. The first and the last are common to
bounded and unbounded weights. The most technical middle stage has to be tailored
separately to the two cases. We present the stages in their logical order, with separate
cases for the middle stage.

Stage 1 for both bounded and unboundedweights. Let𝜋(𝑥) be a geodesic for 𝑇𝟎,𝑥.
When geodesics are not unique, 𝜋(𝑥)will be chosen in particularmeasurable ways that
are made precise later in the proofs. Assume that |𝑥|1 ≥ 𝑛1 so that Lemma 5.3 applies
with 𝑛 = |𝑥|1. The event in (5.9) lies in the union

𝐾

⋃
𝑗=1

{𝜋(𝑥) crosses at least ⌊|𝑥|1𝛿1⌋ black boxes from ℬ𝑗}.

By (5.9), there is a nonrandom index 𝑗(𝑥) ∈ [𝐾] such that

(5.17) ℙ{𝜋(𝑥) crosses at least ⌊|𝑥|1𝛿1⌋ black boxes from ℬ𝑗(𝑥)} ≥
1 − 𝑒−𝐷1|𝑥|1

𝐾 .
Define the event
(5.18) Λ𝐵,𝑣,𝑤,𝑥 = {𝐵 is black and 𝜋(𝑥) has a (𝐵, 𝑣, 𝑤)-crossing}.
Consequently

(5.19) ℙ{Λ𝐵,𝑣,𝑤,𝑥 occurs for at least ⌊|𝑥|1𝛿1⌋ elements (𝐵, 𝑣, 𝑤)∈ℬ𝑗(𝑥)}≥
1−𝑒−𝐷1|𝑥|1

𝐾 .
Turn this into a lower bound on the expected number of events, with a new constant
𝐷1 > 0:
(5.20)

∑
(𝐵,𝑣,𝑤)∈ℬ𝑗(𝑥)

ℙ(Λ𝐵,𝑣,𝑤,𝑥) = 𝔼[#{(𝐵, 𝑣, 𝑤) ∈ ℬ𝑗(𝑥) ∶ Λ𝐵,𝑣,𝑤,𝑥 occurs}] ≥ 𝐷1|𝑥|1.

Stage 2 of the proof shows that, after a modification of the environment on a black
box, the geodesic encounters a 𝑘 + 2ℓ detour whose weights are determined by the
modification. By this we mean that the geodesic runs through a straight-line 𝑘-step
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𝜋+

𝜋+0

𝜋++ℓ 𝜋++𝑘+ℓ

𝜋+𝑘 = 𝜋++𝑘+2ℓ

𝑘

ℓ 𝐺𝐮′

𝐮

Figure 5.1. Illustration of (5.21): 𝐮 and 𝐮′ are two perpendicular unit vec-
tors in ℤ𝑑 , 𝜋+ is a path that takes 𝑘 𝐮-steps, while the detour 𝜋++ first takes ℓ
𝐮′-steps, followed by 𝑘 𝐮-steps, and last ℓ (−𝐮′)-steps. The detour rectangle
𝐺 is bounded by these paths.

path segment of the form 𝜋+ = (𝜋+0 + 𝑖𝐮)0≤𝑖≤𝑘 parallel to an integer unit vector 𝐮 ∈
{±𝐞𝑖}𝑑𝑖=1, with some initial vertex 𝜋+0 . A 𝑘+2ℓ detour associated to 𝜋+ is a path 𝜋++ =
(𝜋++𝑖 )0≤𝑖≤𝑘+2ℓ that shares both endpoints with 𝜋+ and translates the 𝑘-segment by ℓ
steps in a direction perpendicular to 𝐮: so for some integer unit vector 𝐮′ ⟂ 𝐮,

(5.21) 𝜋++𝑖 =
⎧
⎨
⎩

𝜋+0 + 𝑖𝐮′, 0 ≤ 𝑖 ≤ ℓ,
𝜋+0 + ℓ𝐮′ + (𝑖 − ℓ)𝐮, ℓ + 1 ≤ 𝑖 ≤ 𝑘 + ℓ,
𝜋+0 + ℓ𝐮′ + 𝑘𝐮 − (𝑖 − 𝑘 − ℓ)𝐮′, 𝑘 + ℓ + 1 ≤ 𝑖 ≤ 𝑘 + 2ℓ.

In particular, 𝜋+ and 𝜋++ are edge-disjoint while they share their endpoints.
The 𝑘 × ℓ rectangle 𝐺 = [𝜋+0 , 𝜋+0 + 𝑘𝐮] × [𝜋+0 , 𝜋+0 + ℓ𝐮′] enclosed by 𝜋+ and 𝜋++

will be called a detour rectangle. Its relative boundary on the plane spanned by {𝐮, 𝐮′}
is 𝜕𝐺 = 𝜋+ ∪ 𝜋++. Throughout we use superscripts + and ++ to indicate objects
associated with the two portions of the boundaries of detour rectangles 𝐺. Figure 5.1
illustrates.
Stage 2 is undertaken separately for bounded and unbounded weights.

Stage 2 for bounded weights.

Lemma 5.6. Assume (5.11). For 𝑖 ∈ {0, 1, 2} there exist nondecreasing sequences
{𝑠𝑖(𝑞)}𝑞∈ℕ with the following properties:

𝑟0 + 𝛿0 < 𝑠0(𝑞) ≤ 𝑠1(𝑞) ≤ 𝑠2(𝑞) = 𝑀0,(5.22)
lim
𝑞→∞

𝑠0(𝑞) = 𝑀0 and lim
𝑞→∞

ℙ{𝑡(𝑒) ≤ 𝑠0(𝑞)} = 1,(5.23)

for 𝜀 > 0 and 𝑞 ∈ ℕ, ℙ{𝑠0(𝑞) − 𝜀 ≤ 𝑡(𝑒) ≤ 𝑠0(𝑞)} > 0,(5.24)
and for 𝑖 ∈ {0, 1} and 𝑞 ∈ ℕ, ℙ{𝑠𝑖(𝑞) ≤ 𝑡(𝑒) ≤ 𝑠𝑖+1(𝑞)} > 0.(5.25)

Proof. If ℙ{𝑡(𝑒) = 𝑀0} > 0 then let 𝑠𝑖(𝑞) = 𝑀0 for all 𝑖 and 𝑞. So suppose ℙ{𝑡(𝑒) =
𝑀0} = 0.
Let 𝑠0(0) = 𝑟0 + 𝛿0. For 𝑞 ≥ 1 define inductively 𝑠0(𝑞) in the interval (𝑠0(𝑞 − 1) ∨

(𝑀0 − 𝑞−1),𝑀0) so that ℙ{𝑠0(𝑞) − 𝜀 ≤ 𝑡(𝑒) ≤ 𝑠0(𝑞)} > 0 for all 𝜀 > 0. This can be done
as follows. Let 𝑠0(𝑞) be an atom of 𝑡(𝑒) in (𝑠0(𝑞 − 1) ∨ (𝑀0 − 𝑞−1),𝑀0) if one exists.
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If not, the c.d.f. of 𝑡(𝑒) is continuous in this interval and we take 𝑠0(𝑞) to be a point of
strict increase which must exist.
Then 𝑠0(𝑞) → 𝑀0 and thus ℙ{𝑡(𝑒) ≤ 𝑠0(𝑞)} → 1. Furthermore, ℙ{𝑡(𝑒) > 𝑠0(𝑞)} > 0

for all 𝑞 because 𝑠0(𝑞) < 𝑀0. Pick 𝑠′(𝑞) ∈ [𝑠0(𝑞),𝑀0) so thatℙ{𝑠0(𝑞) ≤ 𝑡(𝑒) ≤ 𝑠′(𝑞)} > 0.
Define a nondecreasing sequence by 𝑠1(𝑞) = max𝑗≤𝑞 𝑠′(𝑗). Since 𝑠1(𝑞) < 𝑀0 we have
ℙ{𝑡(𝑒) > 𝑠1(𝑞)} > 0. □

We fix various parameters for this stage of the proof. Fix 𝑏 ∈ (0, 𝑟1) and determine
𝑘, ℓ, 𝛿′ by applying Lemma 5.5 to 0 < 𝑏 < 𝑟1 < 𝑀0 to have

(5.26) 𝑘(𝑀0 + 𝛿′) < (𝑘 + 2ℓ)(𝑟1 − 𝛿′) < (𝑘 + 2ℓ)(𝑟1 + 𝛿′) < 𝑘(𝑀0 − 𝛿′) + (2ℓ − 1)𝑏.
Since 𝑠0(𝑞) → 𝑀0 from below, we can fix 𝑞 large enough and 𝛿 ∈ (0, 𝛿′) small enough
so that

(5.27) 𝑘(𝑠0 + 𝛿) < (𝑘 + 2ℓ)(𝑟1 − 𝛿) < (𝑘 + 2ℓ)(𝑟1 + 𝛿) < 𝑘(𝑠0 − 𝛿) + (2ℓ − 1)𝑏
holds for 𝑠0 = 𝑠0(𝑞). Note that this continues to hold if we increase 𝑞 to take 𝑠0 closer
to𝑀0 or decrease 𝛿.
Take 𝑁 large enough, 𝛿0 > 0 small enough, and 𝑞 large enough so that the crossing

bound (5.9) of Lemma5.3 is satisfied for the choice 𝑠0 = 𝑠0(𝑞). Drop 𝑞 from the notation
and henceforth write 𝑠𝑖 = 𝑠𝑖(𝑞).
Shrink 𝛿 > 0 further so that

𝑟1 + 𝛿 < 𝑟0 + 𝛿0(5.28)

and

(ℓ + 1)𝑠0 > (ℓ + 1)(𝑟1 + 𝛿) + 𝑘𝛿.(5.29)

The construction to come will attach 𝑘 + 2ℓ detours to edges of cubes. The number
of such attachments per edge is given by the parameter

𝑘0 = ⌈ 30𝑑𝑀0
𝑟0 + 𝛿0 − 𝑟1 − 𝛿⌉ + 2.

Let𝑚1 be an even positive integer and define two constants

(5.30) 𝑐1 = 2𝑘𝑠0 + 2𝑚1(𝑟1 + 𝛿)
and

(5.31) 𝑐2 = 𝑟0 + 𝛿0 − ((𝑟1 + 𝛿) 𝑚1
𝑚1 + 𝑘 + 𝑠0

𝑘
𝑚1 + 𝑘).

We have the lower bound

𝑐2 ≥ 𝑐′2 = 𝑟0 + 𝛿0 − ((𝑟1 + 𝛿) 𝑚1
𝑚1 + 𝑘 +𝑀0

𝑘
𝑚1 + 𝑘).

Fix𝑚1 large enough so that

𝑚1 ≥
16ℓ𝑀0

𝑟0 + 𝛿0 − 𝑟1 − 𝛿 ,(5.32)

𝑚1(𝑟1 − 𝛿) > (𝑘 + 2ℓ)(𝑟1 + 𝛿),(5.33)

𝑐′2 > 0 and
𝑐′2(𝑘0(𝑚1 + 𝑘) − 2ℓ)

6𝑑𝑀0
≥ 4𝑚1 + 3(𝑘 + 1)(ℓ + 1).(5.34)
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𝑚1/2

𝑘

𝑚1

𝑚1/2

𝑘

ℓ

ℓ1

Figure 5.2. 𝑘 + 2ℓ-detours attached to the south and west boundaries of
ℓ1 × ℓ1 2-faces. In this illustration each edge has 𝑘0 = 2 detours attached to
it, spaced𝑚1 apart.

Note that after fixing 𝑚1, (5.32) and (5.33) remain true as we shrink 𝛿 and (5.34) re-
mains true with 𝑐2 in place of 𝑐′2 as we increase 𝑠0 towards𝑀0.
Set three size-determining integer parameters as

(5.35) ℓ1 = 𝑘0(𝑚1 + 𝑘), ℓ′2 = ℓ1 − 2ℓ, and ℓ″2 = 3ℓ′2.
Set

(5.36) 𝑚2 = ⌊ 𝑐2ℓ
′
2

6𝑑𝑀0
⌋ = ⌊

𝑐2(𝑘0(𝑚1 + 𝑘) − 2ℓ)
6𝑑𝑀0

⌋ ≥ 4𝑚1 + 3(𝑘 + 1)(ℓ + 1),

where we appealed to (5.34).
As the last step fix 𝑁 so that 𝑁 − 2ℓ′2 is a multiple of ℓ1 and large enough so that

(5.37) 𝑄 = 𝑐2𝑁 − 4𝑑(ℓ″2 + ℓ1)𝑀0 − 𝑐1 ≥ 𝑐2𝑁/2.
Increasing 𝑁 may force us to take 𝑠0 closer to𝑀0 to maintain the crossing bound (5.9).
As observed above, this can be done while maintaining all the inequalities above.
We perform a construction within each 𝑁-box 𝐵. Let 𝑉 be a box inside 𝐵 that is

tiled with cubes 𝑉𝑖 of the form∏𝑑
𝑗=1[𝑢𝑗 , 𝑢𝑗 + ℓ1] where (𝑢1, . . . , 𝑢𝑑) ∈ ℤ𝑑 is the lower

left corner of the cube and the side-length ℓ1 comes from (5.35). The cubes 𝑉𝑖 are
nonoverlapping but neighboring cubes share a (𝑑 − 1)-dimensional face. Then, 𝑉 =
⋃𝛼

𝑖=1 𝑉𝑖 where𝛼 = 3𝑑−1ℓ−𝑑1 (𝑁 − 2ℓ′2)𝑑 is the number of cubes required to tile𝑉 . Inside
box 𝐵, 𝑉 is surrounded by an annular region 𝐵 ⧵ 𝑉 whose thickness (perpendicular
distance from a face of 𝑉 to 𝐵𝑐) is ℓ′2 in the direction where 𝐵 has width 𝑁 and ℓ″2 in
the other directions.
A boundary edge of a cube 𝑉𝑗 is one of the 2𝑑−1𝑑 line segments (one-dimensional

faces) of length ℓ1 that lie on the boundary 𝜕𝑉𝑗 .
Attach (𝑘 + 2ℓ)-detours along each of the boundary edges of the tiling so that the

𝑘-path 𝜋+ is on the boundary edge and the detour 𝜋++ is in the interior of one of
the two-dimensional faces adjacent to this boundary edge. Adopt the convention that
if the boundary edge is [𝑣, 𝑣 + ℓ1𝐞𝑖] then the detour lies on the 2-dimensional face
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Figure 5.3. From left to right: A two-dimensional face𝐻 (shaded),𝐻′ that
consists of the boundary 𝜕𝐻 of𝐻 and the boundaries of the detour rectangles
in 𝐻, 𝐻 that consists of 𝜕𝐻 and the full (shaded) detour rectangles in 𝐻, and
finally 𝐻+ that consists of the 𝜋+-parts of the boundaries of the detour rect-
angles in 𝐻

[𝑣, 𝑣 + ℓ1𝐞𝑖] × [𝑣, 𝑣 + ℓ1𝐞𝑗] for some 𝑗 ≠ 𝑖 (in other words, the detour points into a
positive coordinate direction). See Figure 5.2.
Place 𝑘0 detours on each boundary edge of the tiling so that the detours are exactly

distance𝑚1 apart fromeach other and a detour that is right next to a corner vertex of the
tiling is exactly distance 𝑚1/2 from that vertex. This is consistent with the definition
of ℓ1 in (5.35).
Since𝑚1/2 > ℓ by (5.11) and (5.32), distinct detour rectangles that happen to lie on

the same two-dimensional face do not intersect and the points on a detour are closer
to the boundary edge of the detour than to any other boundary edge.
Inside a particular 𝑁-box 𝐵, for 𝑗 ∈ {0, 1, 2} let 𝑊𝑗 denote the union of the 𝑗-

dimensional faces of the cubes {𝑉𝑖} tiling 𝑉 . Let 𝑊 ′
1 be the union of 𝑊1 (the bound-

ary edges) and the detours 𝜋++ attached to the boundary edges.
We describe inmore detail the structure of the detours on the two-dimensional faces

inside a particular 𝐵. Let 𝐻 ⊂ 𝑊2 be a two-dimensional ℓ1 × ℓ1 face. For simplicity
of notation suppose 𝐻 = [0, ℓ1𝐞1] × [0, ℓ1𝐞2]. Assume without loss of generality that
the boundary edge [0, ℓ1𝐞1] has its detours contained in 𝐻. For 𝑖 ∈ [𝑘0] define the 𝑖th
detour rectangle:

𝐺𝑖,𝑆 = [(𝑚1/2 + (𝑖 − 1)(𝑘 + 𝑚1))𝐞1, (𝑚1/2 + (𝑖 − 1)(𝑘 + 𝑚1) + 𝑘)𝐞1] × [0, ℓ𝐞2].

The subscript 𝑆 identifies these detour rectangles as attached to the southern boundary
of𝐻. Similarly, if the detour rectangles attached to the western boundary of𝐻 lie in𝐻,
we denote these by {𝐺𝑖,𝑊 ∶ 1 ≤ 𝑖 ≤ 𝑘0}.
For a label𝑈 ∈ {𝑆,𝑊}, let 𝜋++𝑖,𝑈 = 𝜕𝐺𝑖,𝑈 ⧵𝜕𝐻 be the portion of the boundary of 𝐺𝑖,𝑈

in the interior of 𝐻. 𝜋++𝑖,𝑈 is the detour path of 𝑘 + 2ℓ edges. Let 𝜋+𝑖,𝑈 = 𝜕𝐺𝑖,𝑈 ∩ 𝜕𝐻 be
the portion of the boundary of 𝐺𝑖,𝑈 that lies on the boundary of 𝐻. 𝜋+𝑖,𝑈 is a straight
path of 𝑘 edges, the path bypassed by the detour. Let

(5.38) 𝐻′ = 𝜕𝐻 ∪⋃
1≤𝑖≤𝑘0

𝑈∈{𝑆,𝑊}

𝜕𝐺𝑖,𝑈 , 𝐻 = 𝜕𝐻 ∪⋃
1≤𝑖≤𝑘0

𝑈∈{𝑆,𝑊}

𝐺𝑖,𝑈 , and 𝐻+ = ⋃
1≤𝑖≤𝑘0

𝑈∈{𝑆,𝑊}

𝜋+𝑖,𝑈 .

See Figure 5.3. Let 𝑊1 (resp. 𝑊+
1 ) be the union of all 𝐻 (resp. 𝐻+) as 𝐻 ranges over

all the two-dimensional faces that lie in𝑊2. The union of all 𝐻′ equals𝑊 ′
1 as already

defined above.
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Since multiple geodesics are possible, we have to make a particular measurable
choice of a geodesic to work on and one that relates suitably to the structure defined
above. For this purpose order the admissible steps for example as in

(5.39) ∅ ≺ 𝐞1 ≺ −𝐞1 ≺ 𝐞2 ≺ −𝐞2 ≺ ⋯ ≺ 𝐞𝑑 ≺ −𝐞𝑑

and then order the paths lexicographically. Here ∅ stands for a missing step. So if 𝜋′
extends 𝜋 with one or more steps, then 𝜋 ≺ 𝜋′ in lexicographic ordering. Recall the
choice of index 𝑗(𝑥) in (5.17).

Lemma 5.7. Fix 𝑥 ∈ ℤ𝑑 ⧵ {𝟎}. There exists a unique geodesic 𝜋 for 𝑇𝟎,𝑥 that satisfies the
following two conditions.

(i) For every 𝑁-box 𝐵 ∈ ℬ𝑗(𝑥) and points 𝑢, 𝑣 ∈ 𝜋𝐵 = 𝜋 ∩ 𝐵 the following holds: if
both 𝑢, 𝑣 ∈ 𝑊1 or 𝑢 ∈ 𝑊1 and 𝑣 ∈ 𝜕𝐵 (or vice versa), and if every edge of 𝜋ᵆ,𝑣
lies in 𝐵 but not in𝑊1, then there is no geodesic between 𝑢 and 𝑣 that remains in
𝐵, uses only edges with strictly positive weights, and uses at least one edge in𝑊1.

(ii) 𝜋 is lexicographically first among all geodesics of 𝑇𝟎,𝑥 that satisfy point (i).

Proof. It suffices to show the existence of a geodesic that satisfies point (i). Point (ii)
then picks a unique one.
Start with any 𝑇𝟎,𝑥-geodesic 𝜋 of maximal Euclidean length. For the purpose of this

proof consider 𝜋 as an ordered sequence of vertices and the edges connecting them.
Consider in order each segment 𝜋ᵆ,𝑣 that violates point (i). When this violation

happens, there is a particular 𝑁-box 𝐵 ∈ ℬ𝑗(𝑥) such that 𝜋ᵆ,𝑣 ⊂ 𝐵 ⧵ 𝑊1 and there is
an alternative geodesic 𝜋′ᵆ,𝑣 ⊂ 𝐵 that uses only edges with strictly positive weights and
uses at least one edge in𝑊1. Replace the original segment 𝜋ᵆ,𝑣 with 𝜋′ᵆ,𝑣.
Since we replaced one geodesic segment with another, 𝑇(𝜋′ᵆ,𝑣) = 𝑇(𝜋ᵆ,𝑣). Suppose

that after the replacement, the full path is no longer self-avoiding. Then a portion of
it can be removed and this portion contains part of 𝜋′ᵆ,𝑣. Since 𝜋′ᵆ,𝑣 uses only edges
with strictly positive weights, this removal reduces the passage time by a strictly posi-
tive amount, contradicting the assumption that the original passage time was optimal.
Consequently the new path is still a self-avoiding geodesic.
Since the original path was a geodesic of maximal Euclidean length, it follows that

|𝜋′ᵆ,𝑣| ≤ |𝜋ᵆ,𝑣|. Since the replacement inserted into the geodesic at least one new edge
from𝑊1, 𝜋′ᵆ,𝑣 has strictly fewer edges in 𝐵 ⧵ 𝑊1 than 𝜋ᵆ,𝑣.
The new segment 𝜋′ᵆ,𝑣may in turn contain smaller segments 𝜋′ᵆ1,𝑣1 , . . . , 𝜋′ᵆ𝑚,𝑣𝑚 that

violate point (i). Replace each of these with alternative segments 𝜋″ᵆ1,𝑣1 , . . . , 𝜋″ᵆ𝑚,𝑣𝑚 .
Continue like this until the entire path segment between 𝑢 and 𝑣 has been cleaned up,
in the sense that no smaller segment of it violates (i). This process must end because
each replacement leaves strictly shorter segments that can potentially violate point (i).
Observe that the clean-up of the segment 𝜋ᵆ,𝑣 happens entirely inside the particular

𝑁-box𝐵, does not alter the endpoints 𝑢, 𝑣 of the original segment, and does not alter the
other portions 𝜋𝟎,ᵆ and 𝜋𝑣,𝑥 of the geodesic because each replacement step produced
a self-avoiding geodesic.
Proceed in this manner through all the path segments that are in violation of point

(i). There are only finitely many. At the conclusion of this process we have a geodesic
that satisfies point (i). □
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Define the event

(5.40)

Γ𝐵 = {𝜔 ∶ 𝑟1 − 𝛿 < 𝑡(𝑒) < 𝑟1 + 𝛿 ∀𝑒 ∈ 𝑊 ′
1 ⧵ 𝑊+

1 ,
𝑠0 − 𝛿 < 𝑡(𝑒) ≤ 𝑠0 ∀𝑒 ∈ 𝑊+

1 ,

𝑠0 ≤ 𝑡(𝑒) ≤ 𝑠1 ∀𝑒 ∈ 𝑊1 ⧵ 𝑊 ′
1 ,

𝑠1 ≤ 𝑡(𝑒) ≤ 𝑀0 ∀𝑒 ∈ 𝐵 ⧵ 𝑊1 }.
A key consequence of the definition of the event Γ𝐵 is that, by (5.27), the boundary
paths 𝜋+ and 𝜋++ of all detour rectangles 𝐺 in𝑊 ′

1 satisfy
(5.41) 𝑇(𝜋+) < 𝑇(𝜋++) < 𝑇(𝜋+) + (2ℓ − 1)𝑏.
Once the parameters have been fixed, then up to translations and rotations there are

only finitely many ways to choose the constructions above. Thus
(5.42) ∃𝐷2 > 0 such that ℙ(Γ𝐵) ≥ 𝐷2 for all 𝐵.
𝐷2 depends on 𝑁 and the probabilities of the events on 𝑡(𝑒) that appear in Γ𝐵. In par-
ticular, 𝐷2 does not depend on 𝑥.
Our point of view shifts now to the implications of the event Γ𝐵 for a particular

𝐵 ∈ ℬ𝑗(𝑥).
Let 𝛾 be a self-avoiding path in𝑊1. Then if 𝜔 ∈ Γ𝐵,

(5.43) 𝑇(𝛾) ≤ |𝛾|1 (𝑠0
𝑘

𝑚1 + 𝑘 + (𝑟1 + 𝛿) 𝑚1
𝑚1 + 𝑘) + 𝑐1,

where 𝑐1 came from (5.30). The main term on the right of (5.43) contains the weights
of the 𝑘-paths of detours and𝑚1-gaps completely covered by 𝛾, and 𝑐1 accounts for the
partially covered pieces at either end of 𝛾.
We say that a point 𝑦 ∈ 𝑊1 is associated with a boundary edge 𝐼 of a cube 𝑉𝑖0 if

either 𝑦 ∈ 𝐼 or 𝑦 lies in one of the detour rectangles 𝐺𝑖,𝑈 attached to the edge 𝐼. We
say that points 𝑦, 𝑧 ∈ 𝑊1 are (ℓ1,𝑊1)-related if they are each associated to boundary
edges 𝐼 ⊂ 𝑉𝑖0 and 𝐽 ⊂ 𝑉𝑗0 such that every point on 𝐼 can be connected to every point on
𝐽 by an ℓ1-path that remains entirely within𝑊1. Recall that an ℓ1-path 𝑥𝑚∶𝑛 satisfies
|𝑥𝑛 − 𝑥𝑚|1 = 𝑛 −𝑚.

Lemma 5.8. Let 𝜔 ∈ Γ𝐵. Let 𝑦, 𝑧 ∈ 𝑊1 be two (ℓ1,𝑊1)-related points. Suppose a
geodesic between 𝑦 and 𝑧 lies within 𝐵. Then there exists a geodesic between 𝑦 and 𝑧 that
stays within 𝐵 and uses at least one edge in𝑊1.

Proof. There are two cases:
(A) 𝑦, 𝑧 are connected by an ℓ1-path inside𝑊1.
(B) 𝑦, 𝑧 cannot be connected by an ℓ1-path that remains entirely inside𝑊1.
In case (A), any ℓ1-path inside 𝑊1 takes weights that are at most 𝑠1 and any path

inside 𝐵 ⧵ 𝑊1 takes weights that are at least 𝑠1. Since we assume the existence of a
geodesic between 𝑦 and 𝑧 that lies entirely inside 𝐵, we see that there must exist a
geodesic that remains entirely within𝑊1.
In case (B), suppose 𝜋̂ ⊂ 𝐵 is a self-avoiding path between 𝑦 and 𝑧 that lies outside

𝑊1. Construct a path 𝜋′ ⊂ 𝑊1 from 𝑦 to 𝑧 by concatenating the following path seg-
ments: using at most ℓ steps, connect 𝑦 to the closest point 𝑦′ on the boundary edge 𝐼
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that 𝑦 is associated with; using at most ℓ steps, connect 𝑧 to the closest point 𝑧′ on the
boundary edge 𝐽 that 𝑧 is associated with; connect 𝑦′ to 𝑧′ with an ℓ1-path 𝜋″ in 𝑊1.
We show that 𝑇(𝜋′) ≤ 𝑇(𝜋̂), thus proving the lemma.
We argue that

(5.44) 𝜋″ uses at least𝑚1/2 edges in𝑊 ′
1 ⧵ 𝑊+

1 .

Indeed, observe that 𝑦 and 𝑧 cannot both be on𝑊1 nor both in the same detour rectan-
gle 𝐺𝑖,𝑈 , for otherwise we would be in case (A). On the other hand, if 𝑦 is in a detour
rectangle and 𝑧 is on 𝑊1, then 𝜋″ is an ℓ1-path that connects 𝑦′ to 𝑧′ = 𝑧. If in this
case ||𝜋″ ∩ (𝑊 ′

1 ⧵ 𝑊+
1 )||1 < 𝑚1/2, then it must be the case that 𝜋″ ⊂ 𝐼 = 𝐽. But then in

this case 𝜋′ is an ℓ1-path from 𝑦 to 𝑧 and we are again in case (A). The symmetric case
of 𝑦 ∈ 𝑊1 and 𝑧 in a detour rectangle is similar. Lastly, if 𝑦 and 𝑧 belong to different
detour rectangles, then the segment of 𝜋″ that connects the two rectangles must be of
length at least𝑚1, the distance between two neighboring detours.
We have verified (5.44). From (5.44) and𝑚1 ≥ 8ℓ comes the lower bound

|𝑧 − 𝑦|1 ≥ 𝑚1/2 − 2ℓ ≥ 𝑚1/4.

The𝑚1/2 edges in 𝜋″∩(𝑊 ′
1 ⧵𝑊+

1 ) all have weight at most 𝑟1+𝛿. Furthermore, |𝜋″|1 ≤
|𝑧 − 𝑦|1 + 2ℓ and all the edges along 𝜋″ have weight no larger than 𝑠0. This gives the
bound

𝑇(𝜋″) ≤ 𝑚1(𝑟1 + 𝛿)/4 + (|𝑧 − 𝑦|1 −𝑚1/4 + 2ℓ)𝑠0.
Since 𝜋̂ connects 𝑦 to 𝑧 and the weights along 𝜋̂ are at least 𝑠1,

𝑇(𝜋̂) ≥ 𝑚1𝑠1/4 + (|𝑧 − 𝑦|1 −𝑚1/4)𝑠1.

Together these observations give the lower bound

𝑇(𝜋̂) − 𝑇(𝜋″) ≥ 𝑚1(𝑠1 − (𝑟1 + 𝛿))/4 − 2ℓ𝑠0.

From this,

𝑇(𝜋′) ≤ 𝑇(𝜋″) + 2ℓ𝑠1 ≤ 𝑇(𝜋̂) − 𝑚1(𝑠1 − (𝑟1 + 𝛿))/4 + 4ℓ𝑠1 < 𝑇(𝜋̂).

The last inequality used (5.32) and 𝑟1 + 𝛿 < 𝑟0 + 𝛿0 < 𝑠1 ≤ 𝑀0. □

Lemma 5.9. Let 𝜔 ∈ Γ𝐵. Suppose 𝑦, 𝑧 ∈ 𝑊1 are not (ℓ1,𝑊1)-related and that they are
connected by a path 𝜋̂ that remains entirely in 𝐵 ⧵ 𝑊1. Then

𝑇(𝜋̂) ≥ 𝑠1(ℓ1 − 2ℓ).

Proof. Inspection of Figure 5.4 convinces that any two points 𝑦, 𝑧 ∈ 𝑊1 such that |𝑧 −
𝑦|1 < ℓ1 − 2ℓ must be (ℓ1,𝑊1)-related. Thus |𝜋̂|1 ≥ ℓ1 − 2ℓ and by assumption it uses
only weights ≥ 𝑠1. □

Lemma 5.10. Let 𝜔 ∈ Γ𝐵 and 𝑦, 𝑧 ∈ 𝐵. Assume that either both 𝑦, 𝑧 ∈ 𝑊1 or that
𝑦 ∈ 𝑊1 and 𝑧 ∈ 𝜕𝐵. Let 𝜋 be a geodesic between 𝑦 and 𝑧. Assume that the edges of 𝜋 lie
entirely outside𝑊1. Then either there is a geodesic between 𝑦 and 𝑧 inside 𝐵 that uses at
least one edge in𝑊1 or

(5.45) 𝑇(𝜋) ≥ min{𝑠1(ℓ1 − 2ℓ), 𝑠1ℓ′2} = 𝑠1ℓ′2.
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𝐼

𝐺𝑆

Figure 5.4. The proof of Lemma 5.9. The light grid is 𝑊1. The thicker
square and its two detours are part of𝑊1. The thickest edge of the square is
denoted by 𝐼. The hashed box, denoted by 𝐺𝑆 , is a detour rectangle attached
to 𝐼. The points that are within distance ℓ1 − 2ℓ from a point on 𝐼 ∪ 𝐺𝑆 are
all inside the dashed rectangle. All these points that are also on 𝑊1 can be
reached from any point on 𝐼 via an ℓ1 path that stays on𝑊1.

Proof. If 𝜋 reaches the boundary 𝜕𝐵 (in either case of 𝑦, 𝑧) then 𝜋must travel through
𝐵 ⧵𝑉 and consequently 𝑇(𝜋) ≥ 𝑠1ℓ′2. The other possibility is that 𝜋 stays inside 𝐵 ⧵𝑊1.
If 𝑦 and 𝑧 are (ℓ1,𝑊1)-related then Lemma 5.8 gives a geodesic in 𝐵 that uses an edge
in𝑊1. If 𝑦 and 𝑧 are not (ℓ1,𝑊1)-related, Lemma 5.9 gives 𝑇(𝜋) ≥ 𝑠1(ℓ1−2ℓ). The last
equality of (5.45) is from (5.35). □

Henceforthwe oftenworkwith two coupled environments𝜔 and𝜔∗. Quantities cal-
culated in the 𝜔∗ environment will be marked with a star if 𝜔∗ is not explicitly present.
For example, 𝑇∗𝟎,𝑥 = 𝑇𝟎,𝑥(𝜔∗) denotes the passage time between 𝟎 and 𝑥 in the envi-
ronment 𝜔∗.
Recall the event Λ𝐵,𝑣,𝑤,𝑥 defined in (5.18).

Lemma 5.11. Let 𝜔 and 𝜔∗ be two environments that agree outside 𝐵 and satisfy 𝜔 ∈
Λ𝐵,𝑣,𝑤,𝑥 and 𝜔∗ ∈ Γ𝐵. Then there exists a self-avoiding path 𝜋 from 𝟎 to 𝑥 such that

𝑇∗(𝜋) ≤ 𝑇(𝜋(𝑥)) − 𝑄.

Proof. Since box 𝐵 is black on the event Λ𝐵,𝑣,𝑤,𝑥,

𝑇(𝜋𝑣,𝑤(𝑥)) > (𝑟0 + 𝛿0)(|𝑤 − 𝑣|1 ∨ 𝑁).
The bound above comes from (5.5), on account of these observations: regardless of
whether 𝜋𝑣,𝑤(𝑥) exits 𝐵, there is a segment inside 𝐵 of length |𝑤−𝑣|1, and furthermore
𝜋𝑣,𝑤(𝑥) contains a short crossing of 𝐵 that has length at least 𝑁.
Define a path 𝜋′ from 𝑣 to 𝑤 in 𝐵 as follows. Let 𝜆1 be an ℓ1-path from 𝑣 to some

point 𝑎 ∈ 𝑊1. Similarly, let 𝜆3 be an ℓ1-path from 𝑤 to some 𝑏 ∈ 𝑊1. These paths
satisfy |𝜆1|1∨ |𝜆3|1 ≤ 𝑑ℓ″2 +(𝑑−2)ℓ1. Let 𝜆2 be a shortest path from 𝑎 to 𝑏 that remains
in𝑊1. Since |𝑎 − 𝑏|1 ≤ |𝑣 − 𝑤|1 + 2𝑑ℓ″2 + 2(𝑑 − 2)ℓ1, |𝜆2|1 ≤ |𝑣 − 𝑤|1 + 2𝑑ℓ″2 + 2𝑑ℓ1.
(To go from 𝑎 to 𝑏 along𝑊1 use 2ℓ1 steps to go from 𝑎 and 𝑏 to the nearest vertices 𝑎′
and 𝑏′ in𝑊0, respectively, and an ℓ1-path along𝑊1 will take |𝑎′ − 𝑏′|1 ≤ |𝑎 − 𝑏|1+2ℓ1
steps.)
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𝐵
𝑉

𝑊1

𝑎0

𝑎1 = 𝑥1

𝑦1 𝑧1 = 𝑥2

𝑦2
𝑧2 = 𝑥3

𝑦3
𝑧3 = 𝑥4

𝑦4

𝑧4 = 𝑏1

Figure 5.5. The path segment 𝜋∗𝑎0,𝑏1 (𝑥) with four excursions 𝜋1, . . . , 𝜋4.
The segment 𝜋𝑖,1 inside 𝑊1 goes from 𝑥𝑖 to 𝑦𝑖 and the segment 𝜋𝑖,2 outside
𝑊1 goes from 𝑦𝑖 to 𝑧𝑖. Note that𝑊1 is not actually a box but is represented
as one above for the purpose of illustration.

Let𝜋′ be the concatenation of 𝜆1, 𝜆2 and 𝜆3. Define𝜋 as the concatenation of𝜋𝟎,𝑣(𝑥),
𝜋′, and 𝜋𝑤,𝑥(𝑥). The next calculation uses (5.43), (5.37) and (5.31), and the facts that
𝜔 = 𝜔∗ outside 𝐵, 𝜔 ∈ Λ𝐵,𝑣,𝑤,𝑥 and 𝜔∗ ∈ Γ𝐵.
𝑇(𝜋(𝑥)) − 𝑇∗(𝜋) = 𝑇(𝜋𝑣,𝑤(𝑥)) − 𝑇∗(𝜋′)

≥ (𝑟0 + 𝛿0)max(|𝑣 − 𝑤|1 , 𝑁) − 2(𝑑ℓ″2 + (𝑑 − 2)ℓ1)𝑀0

− (|𝑣 − 𝑤|1 + 2𝑑ℓ″2 + 2𝑑ℓ1) (𝑠0
𝑘

𝑚1 + 𝑘 + (𝑟1 + 𝛿) 𝑚1
𝑚1 + 𝑘) − 𝑐1

≥ (𝑟0 + 𝛿0)max(|𝑣 − 𝑤|1 , 𝑁) − 2(𝑑ℓ″2 + (𝑑 − 2)ℓ1)𝑀0

− (max(|𝑣 − 𝑤|1 , 𝑁) + 2𝑑ℓ″2 + 2𝑑ℓ1) (𝑠0
𝑘

𝑚1 + 𝑘 + (𝑟1 + 𝛿) 𝑚1
𝑚1 + 𝑘) − 𝑐1

= (𝑟0 + 𝛿0)max(|𝑣 − 𝑤|1 , 𝑁) − 2(𝑑ℓ″2 + (𝑑 − 2)ℓ1)𝑀0

− (max(|𝑣 − 𝑤|1 , 𝑁) + 2𝑑ℓ″2 + 2𝑑ℓ1)(𝑟0 + 𝛿0 − 𝑐2) − 𝑐1
= 𝑐2max(|𝑣 − 𝑤|1 , 𝑁) − 2(𝑑ℓ″2 + (𝑑 − 2)ℓ1)𝑀0 − (2𝑑ℓ″2 + 2𝑑ℓ1)(𝑟0 + 𝛿0) − 𝑐1
≥ 𝑐2𝑁 − 4𝑑(ℓ″2 + ℓ1)𝑀0 − 𝑐1 = 𝑄.

In the first inequality, 2(𝑑ℓ″2 + (𝑑 − 2)ℓ1)𝑀0 bounds the time spent on 𝜆1 and 𝜆3 and
the remaining negative terms bound the passage time of 𝜆2. The lemma is proved. □

Henceforth we assume that 𝜔 ∈ Λ𝐵,𝑣,𝑤,𝑥 and 𝜔∗ ∈ Γ𝐵. Let 𝜋∗(𝑥) be the geodesic
from 𝟎 to 𝑥 in the 𝜔∗-environment specified in Lemma 5.7. By Lemma 5.11,
(5.46) 𝑇∗(𝜋∗(𝑥)) ≤ 𝑇∗(𝜋) ≤ 𝑇(𝜋(𝑥)) − 𝑄 ≤ 𝑇(𝜋∗(𝑥)) − 𝑄.
This implies that 𝜋∗(𝑥)must use edges in𝑊1 because 𝜔 and 𝜔∗ agree outside 𝐵, while
𝑡(𝑒) ≤ 𝑠0 ≤ 𝑠1 ≤ 𝑡∗(𝑒) on edges in 𝐵 ⧵ 𝑊1.
Let 𝑎0 be the first vertex of 𝜋∗(𝑥) in 𝐵, 𝑎1 the first vertex of 𝜋∗(𝑥) in𝑊1, and 𝑏1 the

last vertex of𝜋∗(𝑥) in 𝐵. Decompose the path segment𝜋∗𝑎1,𝑏1(𝑥) between 𝑎1 and 𝑏1 into
excursions 𝜋1, . . . , 𝜋𝜍 (𝜎 ∈ ℕ) as follows: each excursion 𝜋𝑖 begins with a nonempty
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segment 𝜋𝑖,1 of edges inside 𝑊1, followed by a nonempty segment 𝜋𝑖,2 of edges out-
side 𝑊1. The excursions 𝜋1, . . . , 𝜋𝜍−1 begin and end at a vertex in 𝑊1, while the last
excursion 𝜋𝜍 begins in 𝑊1 and ends at the vertex 𝑏1 where 𝜋∗(𝑥) exits 𝐵. Figure 5.5
illustrates.
By𝜔∗ ∈ Γ𝐵, (5.27) and (5.28), 𝑟1−𝛿 > 0 and hence 𝑡∗(𝑒) > 0 for all edges 𝑒 ∈ 𝐵. Then

condition (i) of Lemma 5.7 ensures that those portions of the segments 𝜋1,2, 𝜋2,2, . . . ,
𝜋𝜍,2 that connect𝑊1 to itself or to 𝜕𝐵 inside 𝐵 cannot be replaced by segments that use
edges in𝑊1. Therefore these segments obey bound (5.45). This gives the last inequality
below:

𝑇∗(𝜋∗𝑎0,𝑏1(𝑥)) ≥ 𝑇∗(𝜋∗𝑎1,𝑏1(𝑥)) ≥
𝜍
∑
𝑖=1

𝑇∗(𝜋𝑖,2) ≥ 𝜎𝑠1ℓ′2.

Since the maximal side length of 𝐵 is 3𝑁, 𝑎0 and 𝑏1 can be connected with a path
𝜋𝑜 such that 𝑇∗(𝜋𝑜) ≤ 3𝑑𝑁𝑀0. Since 𝜋∗(𝑥) is optimal, 𝜎𝑠1ℓ′2 ≤ 3𝑑𝑁𝑀0, and therefore

(5.47) 𝜎 ≤ 3𝑑𝑁𝑀0
𝑠1ℓ′2

.

Using (5.46), and that 𝜔 = 𝜔∗ outside 𝐵 while 𝜔 ≤ 𝜔∗ on 𝐵 ⧵ 𝑊1,

𝑄 ≤ 𝑇(𝜋∗(𝑥)) − 𝑇∗(𝜋∗(𝑥))
= 𝑇(𝜋∗𝑎0,𝑎1(𝑥)) − 𝑇∗(𝜋∗𝑎0,𝑎1(𝑥)) + 𝑇(𝜋∗𝑎1,𝑏1(𝑥)) − 𝑇∗(𝜋∗𝑎1,𝑏1(𝑥))

≤
𝜍
∑
𝑖=1
[𝑇(𝜋𝑖) − 𝑇∗(𝜋𝑖)].

Then some excursion 𝜋̄ ∈ {𝜋1, . . . , 𝜋𝜍}must satisfy

𝑇(𝜋̄) − 𝑇∗(𝜋̄) ≥ 𝑄
𝜎 ≥ 𝑐2𝑁𝑠1ℓ′2

6𝑑𝑁𝑀0
= 𝑐2𝑠1ℓ′2

6𝑑𝑀0
.(5.48)

The second inequality comes from (5.37) and (5.47). The only positive contributions
to 𝑇(𝜋̄) − 𝑇∗(𝜋̄) can come from 𝜋̄1, the segment of 𝜋̄ in 𝑊1. Since 𝐵 is black, 𝑡(𝑒) −
𝑡∗(𝑒) ≤ 𝑡(𝑒) ≤ 𝑠0 ≤ 𝑠1 for all edges 𝑒 ∈ 𝐵. Therefore the number of edges |𝜋̄1|1 satisfies
𝑠1|𝜋̄1|1 ≥ 𝑇(𝜋̄) − 𝑇∗(𝜋̄). From this and (5.36)

(5.49) |𝜋̄1|1 ≥
𝑇(𝜋̄) − 𝑇∗(𝜋̄)

𝑠1
≥ 𝑐2ℓ′2
6𝑑𝑀0

≥ 𝑚2 ≥ 4𝑚1 + 3(𝑘 + 1)(ℓ + 1).

Lemma 5.12 ensures that the path segment 𝜋̄1 goes through the 𝑘-path of at least
one 𝑘 + 2ℓ-detour.

Lemma 5.12. Let 𝜔 and 𝜔∗ be two environments that agree outside 𝐵 and satisfy 𝜔 ∈
Λ𝐵,𝑣,𝑤,𝑥 and 𝜔∗ ∈ Γ𝐵. Let 𝜋∗(𝑥) be the geodesic for 𝑇𝟎,𝑥(𝜔∗) chosen in Lemma 5.7. Then
there exists a detour rectangle 𝐺 in 𝐵 with boundary paths (𝜋+, 𝜋++) such that 𝜋∗(𝑥)
follows 𝜋+ and does not touch 𝜋++, except at the endpoints shared by 𝜋+ and 𝜋++.

Proof. By construction, the portion 𝜋̄1 of𝜋∗(𝑥)has a continuous path segment of length
𝑚2 ≥ 4𝑚1+3(𝑘+1)(ℓ+1) in𝑊1. This forces 𝜋̄1 to enter at least three 𝑘×ℓ detour rect-
angles, because these rectangles are 𝑚1 apart along 𝑊1 and the path can use at most
(𝑘 + 1)(ℓ + 1) edges in a given detour rectangle. Let 𝐺 be a middle rectangle along
this path segment, in other words, one that is both entered and exited, and such that
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𝜋̄1 covers two𝑚1-segments on𝑊1 that connect 𝐺 to some neighboring detour rectan-
gles. (Recall Figure 5.2.) We can assume without loss of generality that 𝐺 lies in the
(𝐞1, 𝐞2)-plane and that it is attached to a boundary edge of some 𝑉 𝑗 that lies along 𝐞1.
Let 𝜋+ and 𝜋++ be the boundary paths of 𝐺 and 𝑎 and 𝑏 their common endpoints.

Let 𝜋̂ = 𝜋̄1𝑎,𝑏 denote the segment of 𝜋̄1 between 𝑎 and 𝑏. For ease of language assume
that 𝜋̂ visits 𝑎 first and then 𝑏. We show that 𝜋̂ = 𝜋+ by showing that all other cases
are strictly worse.
Definition (5.40) of Γ𝐵 and inequality (5.27) imply 𝑇∗(𝜋++) ≥ (𝑘 + 2ℓ)(𝑟1 − 𝛿) >

𝑠0𝑘 ≥ 𝑇∗(𝜋+) and rule out the case 𝜋̂ = 𝜋++. If 𝜋̂ coincides with neither 𝜋+ nor 𝜋++,
there are points 𝑎′ and 𝑏′ on 𝜕𝐺 such that 𝜋̂ visits 𝑎, 𝑎′, 𝑏′, 𝑏 in this order and𝜋′ = 𝜋̂𝑎′,𝑏′
lies in the interior 𝐺 ⧵ 𝜕𝐺.
If 𝑎′ and 𝑏′ lie on the same or on adjacent sides of 𝜕𝐺, the ℓ1-path from 𝑎′ to 𝑏′ along

𝜕𝐺 has smaller weight than 𝜋′.
Suppose 𝑎′ and 𝑏′ lie on opposite ℓ-sides of 𝜋++. Then

𝑇∗(𝜋̂) ≥ 𝑇∗(𝜋̂𝑎,𝑎′) + 𝑠0𝑘 + 𝑇∗(𝜋̂𝑏′,𝑏) > 𝑠0𝑘 ≥ 𝑇∗(𝜋+).
The term 𝑠0𝑘 is a lower bound on 𝑇∗(𝜋′). The strict inequality comes from 𝑟1 − 𝛿 > 0
(from (5.27)) and because the segments 𝜋̂𝑎,𝑎′ and 𝜋̂𝑏′,𝑏 are not degenerate paths. This
is the case because no edge connects the interior 𝐺 ⧵ 𝜕𝐺 to either 𝑎 or 𝑏.
The remaining option is that 𝑎′ and 𝑏′ lie on opposite 𝑘-sides of 𝜕𝐺. Let 𝑎′ be the

first point at which 𝜋̂ leaves 𝜕𝐺, and let 𝑏′ be the point of first return to 𝜕𝐺.

Case 1. Suppose 𝑎′ lies on the 𝑘-side of 𝜋++ and 𝑏′ ∈ 𝜋+ (Figure 5.6). Fix coordinates
as follows: 𝑎 is at the origin, 𝑎′ = 𝑎′1𝐞1 + ℓ𝐞2, and 𝑏′ = 𝑏′1𝐞1. Then,

𝑎 𝑏

𝑘

ℓ 𝜋𝑎′,𝑏′

𝑏′

𝑎′

Figure 5.6. Case 1: 𝑎′ lies on the 𝑘-side of 𝜋++ and 𝑏′ ∈ 𝜋+

𝑇∗(𝜋̂𝑎,𝑏′) = 𝑇∗(𝜋̂𝑎,𝑎′) + 𝑇∗(𝜋̂𝑎′,𝑏′)
≥ (𝑟1 − 𝛿)|𝑎 − 𝑎′|1 + |𝑎′ − 𝑏′|1𝑠0
= (ℓ + 𝑎′1)(𝑟1 − 𝛿) + (ℓ + |𝑏′1 − 𝑎′1|)𝑠0
≥ 2ℓ𝑟1 − ℓ𝛿 + (𝑎′1(𝑟1 − 𝛿) + |𝑏′1 − 𝑎′1|𝑠0).

Combine the above with 𝑇∗(𝜋+𝑎,𝑏′) ≤ 𝑠0𝑏′1 and develop further:
𝑇∗(𝜋̂𝑎,𝑏′) − 𝑇∗(𝜋+𝑎,𝑏′) ≥ 2ℓ𝑟1 − ℓ𝛿 + 𝑎′1(𝑟1 − 𝛿) + |𝑏′1 − 𝑎′1|𝑠0 − 𝑠0𝑏′1

≥ 2ℓ𝑟1 − ℓ𝛿 − 𝑎′1(𝑠0 − 𝑟1 + 𝛿)
> 2ℓ(𝑟1 − 𝛿) − 𝑘(𝑠0 − 𝑟1 + 𝛿) > 0.
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The last inequality is from (5.27). Thus 𝜋̂ cannot cross the interior of 𝐺 from 𝜋++ to
𝜋+.

Case 2. Suppose 𝑎′ ∈ 𝜋+ and 𝑏′ lies on the 𝑘-side of 𝜋++, so that 𝑎′ = 𝑎′1𝐞1, and
𝑏′ = 𝑏′1𝐞1 + ℓ𝐞2. Then

𝑇∗(𝜋̂𝑎,𝑏′) = 𝑇∗(𝜋̂𝑎,𝑎′) + 𝑇∗(𝜋̂𝑎′,𝑏′)
≥ 𝑎′1(𝑠0 − 𝛿) + (ℓ + |𝑏′1 − 𝑎′1|)𝑠0
≥ (ℓ + 𝑏′1)𝑠0 − 𝑎′1𝛿
> (ℓ + 𝑏′1)(𝑟1 + 𝛿) + (ℓ + 1)(𝑠0 − 𝑟1 − 𝛿) − 𝑘𝛿
> (ℓ + 𝑏′1)(𝑟1 + 𝛿) ≥ 𝑇∗(𝜋++𝑎,𝑏′).

The last strict inequality is from (5.29). Thus it is strictly better to take 𝜋++ from 𝑎 to
𝑏′.

In conclusion, 𝜋̂ does not coincide with 𝜋++, nor does 𝜋̂ visit the interior of the
detour rectangle. The only possibility is that 𝜋̂ = 𝜋+.
It remains to argue that 𝜋∗(𝑥) does not touch 𝜋++ except at the endpoints 𝑎 and 𝑏

when it goes through 𝜋+. Suppose on the contrary that 𝜋∗(𝑥) visits a vertex ̂𝑧 on 𝜋++.
This has to happen either before vertex 𝑎 or after vertex 𝑏. The two cases are similar
so suppose ̂𝑧 is visited before 𝑎. Then, by the choice of the detour rectangle 𝐺, the
segment 𝜋∗𝑧,𝑎(𝑥) contains an𝑚1-segment on𝑊1 that ends at 𝑎. Hence by the definition
of Γ𝐵 and (5.33),

𝑇∗(𝜋∗𝑧,𝑎(𝑥)) ≥ 𝑚1(𝑟1 − 𝛿) > (𝑘 + 2ℓ)(𝑟1 + 𝛿).
However, (𝑘+2ℓ)(𝑟1+𝛿) is an upper bound on the passage time of the path from 𝑎 to ̂𝑧
along 𝜋++, which is then strictly faster than 𝜋∗𝑧,𝑎(𝑥). Since 𝜋∗𝑧,𝑎(𝑥)must be a geodesic,
the supposed visit to ̂𝑧 cannot happen. □

Stage 2 for unbounded weights. In the unbounded weights case we construct first
the 𝑘 + 2ℓ detour for a given triple (𝐵, 𝑣, 𝑤) and then the good event Γ𝐵,𝑣,𝑤. Given any
𝑘, ℓ ∈ ℕ, the construction below can be carried out for all large enough 𝑁. We label
the construction below so that we can refer to it again. Figure 5.7 gives an illustration.

Construction 5.13 (The 𝑘 + 2ℓ detour for the unbounded weights case). Fix two unit
vectors 𝐮 and 𝐮′ among {±𝐞𝑖}𝑑𝑖=1 perpendicular to each other so that the point 𝑣 + (𝑘+
ℓ + 2)𝐮 + ℓ𝐮′ lies in 𝐵. Hence also the rectangle of size (𝑘 + ℓ + 2) × ℓ with corners 𝑣
and 𝑣+(𝑘+ℓ+2)𝐮+ℓ𝐮′ lies in 𝐵. Switch the labels 𝐮 and 𝐮′ if necessary to guarantee
that 𝑤 does not lie in the set
(5.50) 𝐴 = {𝑣 + ℎ𝐮 ∶ 0 ≤ ℎ ≤ ℓ} ∪ {𝑣 + 𝑖𝐮 + 𝑗𝐮′ ∶ ℓ + 1 ≤ 𝑖 ≤ 𝑘 + ℓ + 1, 0 ≤ 𝑗 ≤ ℓ}.
The two versions of 𝐴 obtained by interchanging 𝐮 and 𝐮′ have only 𝑣 in common, so
at least one of them does not contain 𝑤.
From 𝑣+(𝑘+ℓ+2)𝐮 there is a self-avoiding path to𝑤 that stays inside𝐵 and does not

intersect 𝐴. The existence of such a path and an upper bound on the minimal length
of such a path can be seen as follows.

(i) If 𝑤 does not lie on the plane through 𝑣 spanned by {𝐮, 𝐮′}, take a minimal
length path from 𝑣 + (𝑘 + ℓ + 2)𝐮 to 𝑤 that begins with a step 𝐳 perpendicular
to this plane. Unit vector 𝐳 is chosen so that (𝑤 − 𝑣) ⋅ 𝐳 > 0. This path will
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𝜎′

𝜎

𝑣 + (𝑘 + ℓ + 2)𝐮

𝑥0

𝑘

𝜋+

𝜋++

ℓ

𝑤

𝑣 + 𝐮′

𝑣

𝑣 − 𝐮′

𝑣 + ℓ𝐮 𝑣 + (𝑘 + ℓ + 1)𝐮𝑣 + (ℓ + 1)𝐮
𝐮′

𝐮

Figure 5.7. Illustration of Construction 5.13. The set𝐴 of (5.50) consists of
the straight line from 𝑣 to 𝑣+(ℓ+1)𝐮 and the 𝑘×ℓ detour rectangle bounded
by the union of the 𝑘-path 𝜋+ and the 𝑘 + 2ℓ-detour 𝜋++. The figure shows
case (ii) of the 𝐴-avoiding self-avoiding path from 𝑣 + (𝑘 + ℓ + 2)𝐮 to 𝑤 via
the point 𝑥0 on 𝜎 ∪ 𝜎′.

not return to the {𝐮, 𝐮′} plane and hence avoids 𝐴. The length of this path is at
most 𝑘+ℓ+2+|𝑤−𝑣|1. This is because a possible𝐴-avoiding route to𝑤 takes
first the 𝐳-step from 𝑣 + (𝑘 + ℓ + 2)𝐮, then 𝑘 + ℓ + 2 (−𝐮)-steps to 𝑣 + 𝐳, and
from 𝑣 + 𝐳 a minimal length path to 𝑤. A path from 𝑣 to 𝑤 includes a 𝐳-step,
hence the distance from 𝑣 + 𝐳 to 𝑤 is |𝑤 − 𝑣|1 − 1.

(ii) Suppose 𝑤 lies on the plane through 𝑣 spanned by {𝐮, 𝐮′}. Then we move on
this plane from 𝑣 + (𝑘 + ℓ + 2)𝐮 to 𝑤 and take care to avoid 𝐴. First define the
minimal 𝐴-avoiding path 𝜎 from 𝑣 + (𝑘 + ℓ + 2)𝐮 to 𝑣 − 𝐮′ in 𝑘 + ℓ + 3 steps,
and a minimal 𝐴-avoiding path 𝜎′ from 𝑣 + (𝑘+ ℓ + 2)𝐮 to 𝑣 +𝐮′ in 𝑘+ 3ℓ + 3
steps. (We may be forced to pick between 𝑣 ± 𝐮′ depending on which side of
𝐴 the point 𝑤 lies.) Let 𝑥0 be a closest point to 𝑤 on 𝜎 ∪ 𝜎′ (possibly 𝑥0 = 𝑤).
The 𝐴-avoiding self-avoiding path from 𝑣 + (𝑘 + ℓ + 2)𝐮 to 𝑤 then goes first to
𝑥0 along 𝜎 or 𝜎′ and from there takes a minimal length path to 𝑤. The length
of this path is at most 𝑘 + 3ℓ + 4 + |𝑤 − 𝑣|1.

Using the construction above, fix a self-avoiding path 𝜋′ in 𝐵 from 𝑣 to𝑤 that begins
with 𝑘 + ℓ + 2 𝐮-steps from 𝑣 to 𝑣 + (𝑘 + ℓ + 2)𝐮, avoids 𝐴 after that, and has

(5.51) |𝜋′| ≤ |𝑤 − 𝑣|1 + 2𝑘 + 4ℓ + 6.

Let 𝜋+ ⊂ 𝜋′ be the 𝐮-directed straight line segment of length 𝑘 from 𝜋+0 = 𝜋′ℓ+1 =
𝑣 + (ℓ + 1)𝐮 to 𝜋+𝑘 = 𝜋′𝑘+ℓ+1 = 𝑣 + (𝑘 + ℓ + 1)𝐮. Let 𝜋++ ⊂ 𝐴 be the detour of length
𝑘 + 2ℓ between the endpoints 𝜋++0 = 𝜋+0 and 𝜋++𝑘+2ℓ = 𝜋+𝑘 defined as in (5.21). The
two endpoints of 𝜋++ lie on 𝜋′ but 𝜋++ is edge-disjoint from 𝜋′. This completes the
construction of the 𝑘 + 2ℓ detour.
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Let 𝑏 > 0 be given. By assumption (5.10) we can choose 𝑟 < 𝑠 in the support of 𝑡(𝑒)
so that 𝑏 < 𝑟 < 𝑠. Choose 𝑘, ℓ, 𝛿 to satisfy (5.14).
Fix an element (𝐵, 𝑣, 𝑤) for a while. Define the following event Γ𝐵,𝑣,𝑤 that depends

only on the weights 𝑡(𝑒) in 𝐵. Constants 𝑠0 and 𝛿0 are from definition (5.4)–(5.5) of a
black 𝑁-box 𝐵.

(5.52)

Γ𝐵,𝑣,𝑤 = { 𝑡(𝑒) ∈ [𝑟0, 𝑟0 + 𝛿0/2) for 𝑒 ∈ 𝜋′ ⧵ 𝜋+,
𝑡(𝑒) ∈ (𝑠 − 𝛿, 𝑠 + 𝛿) for 𝑒 ∈ 𝜋+,
𝑡(𝑒) ∈ (𝑟 − 𝛿, 𝑟 + 𝛿) for 𝑒 ∈ 𝜋++, and
𝑡(𝑒) > 𝑠0 for 𝑒 ∈ 𝐵 ⧵ (𝜋′ ∪ 𝜋++) }.

By (5.14), on the event 𝜔 ∈ Γ𝐵,𝑣,𝑤,

(5.53) 𝑇(𝜋+) < 𝑇(𝜋++) < 𝑇(𝜋+) + (2ℓ − 1)𝑏.

Once 𝑁 has been fixed, then up to translations and rotations there are only finitely
manyways to choose the points 𝑣 and𝑤 on the boundary of𝐵 and the paths𝜋′, 𝜋+, 𝜋++
constructed above. Thus

(5.54) ∃𝐷2 > 0 such that ℙ(Γ𝐵,𝑣,𝑤) ≥ 𝐷2 for all triples (𝐵, 𝑣, 𝑤).

𝐷2 depends on 𝑁 and the probabilities of the events on 𝑡(𝑒) that appear in Γ𝐵,𝑣,𝑤. In
particular, 𝐷2 does not depend on 𝑥.
On the eventΛ𝐵,𝑣,𝑤,𝑥 of (5.18), 𝜋(𝑥) crosses 𝐵, 𝑣 is the point of first entry into 𝐵 and

𝑤 the point of last exit from 𝐵. Hence on this event we can define 𝜋 as the self-avoiding
path from 𝟎 to 𝑥 obtained by concatenating the segments 𝜋𝟎,𝑣(𝑥), 𝜋′, and 𝜋𝑤,𝑥(𝑥). For
future reference at (5.57), note that 𝜋 is edge-disjoint from 𝜋++.

Lemma 5.14. Let 𝜔 and 𝜔∗ be two environments that agree outside 𝐵 and satisfy 𝜔 ∈
Λ𝐵,𝑣,𝑤,𝑥 and 𝜔∗ ∈ Γ𝐵,𝑣,𝑤. Then 𝜋 is a geodesic for 𝑇𝟎,𝑥(𝜔∗). Furthermore, if 𝜋(𝑥) was
chosen to be a geodesic of maximal Euclidean length for 𝑇𝟎,𝑥(𝜔), then 𝜋 is a geodesic of
maximal length for 𝑇𝟎,𝑥(𝜔∗). The same works for minimal length.

Proof. Since box 𝐵 is black on the event Λ𝐵,𝑣,𝑤,𝑥,

(5.55) 𝑇(𝜋𝑣,𝑤(𝑥)) > (𝑟0 + 𝛿0)(|𝑤 − 𝑣|1 ∨ 𝑁).

The bound above comes from (5.5), on account of these observations: regardless of
whether 𝜋𝑣,𝑤(𝑥) exits 𝐵, there is a segment inside 𝐵 of length |𝑤−𝑣|1, and furthermore
𝜋𝑣,𝑤(𝑥) contains a short crossing of 𝐵 that has length at least 𝑁.
From 𝜔∗ ∈ Γ𝐵,𝑣,𝑤,

𝑇∗(𝜋𝑣,𝑤) = 𝑇∗(𝜋′) < 𝑘(𝑠 + 𝛿) + (|𝑤 − 𝑣|1 + 𝑘 + 4ℓ + 6)(𝑟0 + 1
2𝛿0)

≤ |𝑤 − 𝑣|1(𝑟0 + 1
2𝛿0) + 𝑘(𝑠 + 𝑟0 + 𝛿 + 1

2𝛿0) + (4ℓ + 6)(𝑟0 + 1
2𝛿0)

≤ 𝑇(𝜋𝑣,𝑤(𝑥)) − 1
2 (|𝑤 − 𝑣|1 ∨ 𝑁)𝛿0 + 𝐶1𝛿0 + 𝐶2

< 𝑇(𝜋𝑣,𝑤(𝑥)).

Before the last inequality above, 𝐶𝑖 = 𝐶𝑖(𝑘, ℓ, 𝛿, 𝑠, 𝑟0) are constants determined by the
quantities in parentheses. The last inequality is then guaranteed by fixing 𝑁 large
enough relative to 𝛿0 and these other constants. Observation (5.7) is used here.
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Outside 𝐵 the weights 𝜔∗ and 𝜔 agree, and the segments 𝜋𝟎,𝑣 = 𝜋𝟎,𝑣(𝑥) and 𝜋𝑤,𝑥 =
𝜋𝑤,𝑥(𝑥) agree and lie outside 𝐵. Hence the inequality above gives 𝑇∗(𝜋) < 𝑇(𝜋(𝑥)) and
thereby, for any geodesic 𝜋∗(𝑥) from 𝟎 to 𝑥 in environment 𝜔∗,
(5.56) 𝑇∗(𝜋∗(𝑥)) ≤ 𝑇∗(𝜋) < 𝑇(𝜋(𝑥)).
This implies that every geodesic 𝜋∗(𝑥)must enter 𝐵 since otherwise

𝑇∗(𝜋∗(𝑥)) = 𝑇(𝜋∗(𝑥)) ≥ 𝑇(𝜋(𝑥)) > 𝑇∗(𝜋),
contradicting the optimality of 𝜋∗(𝑥) under 𝜔∗.
If 𝜋∗𝐵(𝑥) ⊄ 𝜋′ ∪ 𝜋++, then 𝜋∗(𝑥)must use an edge 𝑒 in 𝐵 with weight > 𝑠0. Then by

property (5.4) of a black box 𝐵, 𝑇(𝜋∗𝐵(𝑥)) ≤ 𝑠0 < 𝑇∗(𝜋∗𝐵(𝑥)). Since 𝜔 and 𝜔∗ agree on
𝐵𝑐, we get

𝑇(𝜋(𝑥)) ≤ 𝑇(𝜋∗(𝑥)) = 𝑇(𝜋∗𝐵𝑐(𝑥)) + 𝑇(𝜋∗𝐵(𝑥))
< 𝑇∗(𝜋∗𝐵𝑐(𝑥)) + 𝑇∗(𝜋∗𝐵(𝑥))
= 𝑇∗(𝜋∗(𝑥)),

contradicting (5.56). Consequently 𝜋∗𝐵(𝑥) ⊂ 𝜋′ ∪ 𝜋++. Part of event Λ𝐵,𝑣,𝑤,𝑥 is that
{𝟎, 𝑥} ∩ 𝐵 = ∅. Thus 𝜋∗(𝑥) must both enter and exit 𝐵. As a geodesic 𝜋∗(𝑥) does not
backtrack on itself. Hence it must traverse the route between 𝑣 and 𝑤. By (5.53) 𝜋+ is
better under 𝜔∗ than 𝜋++, and hence 𝜋∗𝐵(𝑥) = 𝜋′ = 𝜋𝐵.
Outside 𝐵, under both 𝜔 and 𝜔∗ since they agree on 𝐵𝑐, 𝜋𝐵𝑐 is an optimal union of

two paths that connect the origin to one of 𝑣 and 𝑤, and the other one of 𝑣 and 𝑤 to 𝑥.
This concludes the proof that 𝜋 is a geodesic for 𝑇𝟎,𝑥(𝜔∗).
Suppose 𝜋(𝑥) is a geodesic of maximal Euclidean length under𝜔 but under𝜔∗ there

is a geodesic 𝜋∗ strictly longer than 𝜋. The argument above showed 𝜋∗𝐵 = 𝜋𝐵. Hence
outside 𝐵, 𝜋∗𝐵𝑐 must provide an 𝜔∗-geodesic from 𝟎 or 𝑥 to one of 𝑣 or 𝑤 that is longer
than that given by 𝜋𝐵𝑐 = 𝜋𝐵𝑐(𝑥). This contradicts the choice of 𝜋(𝑥) as a maximal
length geodesic, again because 𝜔 and 𝜔∗ agree on 𝐵𝑐. Same works for minimal. This
completes the proof of Lemma 5.14. □

Stage 3 for both bounded and unbounded weights. We choose a particular geo-
desic 𝜋(𝑥) for 𝑇𝟎,𝑥. In the bounded weights case, let 𝜋(𝑥) be the geodesic specified
in Lemma 5.7. In the unbounded weights case, let 𝜋(𝑥) be the unique lexicographi-
cally first geodesic among the geodesics of maximal Euclidean length. Let 𝑏 > 0. For
𝑁-boxes 𝐵 ∈ ℬ𝑗(𝑥) define the event

Ψ𝐵,𝑥 = { inside 𝐵 ∃ edge-disjoint path segments 𝜋+ and 𝜋++ that share(5.57)
both endpoints and satisfy 𝜋+ ⊂ 𝜋(𝑥), (𝜋(𝑥) ⧵ 𝜋+) ∪ 𝜋++

is a self-avoiding path, |𝜋++| = |𝜋+| + 2ℓ, and
𝑇(𝜋+) < 𝑇(𝜋++) < 𝑇(𝜋+) + (2ℓ − 1)𝑏}.

Couple two i.i.d. edge weight configurations 𝜔 = {𝑡(𝑒)}𝑒∈ℰ𝑑 and 𝜔∗ = {𝑡∗(𝑒)}𝑒∈ℰ𝑑 so
that 𝑡∗(𝑒) = 𝑡(𝑒) for 𝑒 ∉ 𝐵 (that is, at least one endpoint of 𝑒 lies outside 𝐵) and so that
the weights {𝑡(𝑒)}𝑒∈ℰ𝑑 and {𝑡∗(𝑒)}𝑒∈𝐵 are independent.
Lemma5.12 for boundedweights (withΓ𝐵,𝑣,𝑤 = Γ𝐵) andLemma5.14 for unbounded

weights imply that

{𝜔 ∈ Λ𝐵,𝑣,𝑤,𝑥} ∩ {𝜔∗ ∈ Γ𝐵,𝑣,𝑤} ⊂ {𝜔∗ ∈ Ψ𝐵,𝑥}.
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In particular, by inequalities (5.41) and (5.53), 𝜔∗ ∈ Γ𝐵,𝑣,𝑤 implies 𝑇∗(𝜋+) < 𝑇∗(𝜋++)
< 𝑇∗(𝜋+) + (2ℓ − 1)𝑏 required for 𝜔∗ ∈ Ψ𝐵,𝑥, where 𝑇∗ denotes passage time in the
environment 𝜔∗.
By the independence of {𝜔 ∈ Λ𝐵,𝑣,𝑤,𝑥} and {𝜔∗ ∈ Γ𝐵,𝑣,𝑤}, and then by (5.42) for

bounded weights and by (5.54) for unbounded weights,

(5.58) ℙ(Ψ𝐵,𝑥)=ℙ{𝜔∗ ∈ Ψ𝐵,𝑥}≥ℙ{𝜔∈Λ𝐵,𝑣,𝑤,𝑥}ℙ{𝜔∗∈Γ𝐵,𝑣,𝑤} ≥ 𝐷2ℙ(Λ𝐵,𝑣,𝑤,𝑥).

Let 𝑌 be the number of (𝐵, 𝑣, 𝑤) ∈ ℬ𝑗(𝑥) for which Ψ𝐵,𝑥 occurs. By the above and
(5.20),

(5.59)

𝔼[𝑌] ≥ ∑
(𝐵,𝑣,𝑤)∈ℬ𝑗(𝑥)

ℙ(Ψ𝐵,𝑥)

≥ ∑
(𝐵,𝑣,𝑤)∈ℬ𝑗(𝑥)

𝐷2ℙ(Λ𝐵,𝑣,𝑤,𝑥) ≥ 𝐷2𝐷1|𝑥|1 ≡ 𝐷3|𝑥|1

for a new constant 𝐷3.
Since we have arranged the boxes in the elements (𝐵, 𝑣, 𝑤) ∈ ℬ𝑗(𝑥) separated, we

can define a self-avoiding path 𝜋 from 𝟎 to 𝑥 by replacing each 𝜋+ segment with the
𝜋++ segment in each box 𝐵 ∈ ℬ𝑗(𝑥) for which event Ψ𝐵,𝑥 happens.
Reduce the weights on each edge 𝑒 from 𝑡(𝑒) to 𝑡(−𝑏)(𝑒) = 𝑡(𝑒) − 𝑏. By the definition

of Ψ𝐵,𝑥, the 𝑡(−𝑏)-passage times of the segments 𝜋+ and 𝜋++ obey this inequality:

𝑇 (−𝑏)(𝜋++) = 𝑇(𝜋++) − 𝑏|𝜋++| < 𝑇(𝜋+) + (2ℓ − 1)𝑏 − 𝑏|𝜋++| = 𝑇 (−𝑏)(𝜋+) − 𝑏.

Consequently, along the entire path 𝜋(𝑥), the replacements of 𝜋+ with 𝜋++ reduce the
𝑡(−𝑏)-passage time by at least 𝑏𝑌 . We get the following bound:

(5.60)
𝑇(−𝑏)𝟎,𝑥 ≤ 𝑇 (−𝑏)(𝜋) < 𝑇 (−𝑏)(𝜋(𝑥)) − 𝑏𝑌 = 𝑇(𝜋(𝑥)) − 𝑏 |𝜋(𝑥)| − 𝑏𝑌

{
≤ 𝑇𝟎,𝑥 − 𝑏𝐿𝟎,𝑥 − 𝑏𝑌 in the bounded weights case,
= 𝑇𝟎,𝑥 − 𝑏𝐿𝟎,𝑥 − 𝑏𝑌 in the unbounded weights case.

The case distinction above comes because in the unbounded case |𝜋(𝑥)| = 𝐿𝟎,𝑥 by
our choice of 𝜋(𝑥), while in the bounded case our choice is different, but any geodesic
satisfies |𝜋(𝑥)| ≥ 𝐿𝟎,𝑥. Note that the inequality above does not require that 𝜋 be a
geodesic for 𝑇(−𝑏)𝟎,𝑥 , as long as 𝜋 is self-avoiding.
In order to take expectations in (5.60) we restrict to 𝑏 ∈ (0, 𝑟0+𝜀0)which guarantees

that 𝔼[𝑇(−𝑏)𝟎,𝑥 ] is finite, even if−𝑏 < −𝑟0 so that weights𝜔(−𝑏) can be negative (Theorem
A.1 inAppendix A). By Lemma 2.3 in [2], moment bound (2.7) with𝑝 = 1 is equivalent
to the finite expectation 𝔼[𝑇𝟎,𝑥] < ∞ for all 𝑥. The inequalities above then force 𝐿𝟎,𝑥
and 𝐿𝟎,𝑥 to have finite expectations. Apply (5.59): in the bounded weights case

𝔼[𝑇(−𝑏)𝟎,𝑥 ] ≤ 𝔼[𝑇𝟎,𝑥] − 𝑏𝔼(𝐿𝟎,𝑥) − 𝑏𝔼(𝑌) ≤ 𝔼[𝑇𝟎,𝑥] − 𝑏𝔼(𝐿𝟎,𝑥) − 𝐷3𝑏|𝑥|1,

while in the unbounded weights case 𝔼(𝐿𝟎,𝑥) is replaced by 𝔼(𝐿𝟎,𝑥). This completes
the proof of Theorem 5.4. □
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6. Modification proofs for nondifferentiability

In this section we consider three scenarios under which we prove that, with proba-
bility bounded away from zero, there are geodesics between two points whose lengths
differ on the scale of the distance between the endpoints. The setting andmodification
proofs in this section borrow heavily from Section 5.

Assumption 6.1. We assume one of these three situations for nonnegative weights.
(i) Zero is an atom: 𝑟0 = 0 and 0 < ℙ{𝑡(𝑒) = 0} < 𝑝𝑐.
(ii) The weights are unbounded (𝑀0 = ∞) and there exist strictly positive integers

𝑘 and ℓ and atoms 𝑟′1, . . . , 𝑟′𝑘+2ℓ, 𝑠′1, . . . , 𝑠′𝑘 (not necessarily all distinct) such that

(6.1)
𝑘+2ℓ
∑
𝑖=1

𝑟′𝑖 =
𝑘
∑
𝑗=1

𝑠′𝑗 .

(iii) The weights are bounded (𝑀0 < ∞) and there exist strictly positive integers 𝑘
and ℓ and atoms 𝑟 < 𝑠 such that (𝑘 + 2ℓ)𝑟 = 𝑘𝑠.

Theorem 6.2. Assume 𝑟0 ≥ 0, (2.6), and the moment bound (2.7) with 𝑝 > 1. Fur-
thermore, assume one of the three scenarios (i)–(iii) of Assumption 6.1. Then there exist
constants 0 < 𝐷, 𝛿,𝑀 < ∞ such that
(6.2) ℙ( 𝐿𝟎,𝑥 − 𝐿𝟎,𝑥 ≥ 𝐷|𝑥|1) ≥ 𝛿 for |𝑥|1 ≥ 𝑀.

Before the proof some observations about the assumptions are in order.

Remark 6.3. Condition (6.1) of case (ii) is trivially true if zero is an atom for 𝑡(𝑒). Since
this situation is taken care of by case (i) of Assumption 6.1, let us suppose zero is not an
atom. Then a necessary condition for (6.1) is that 𝑡(𝑒) has at least two strictly positive
atoms.
A sufficient condition for (6.1) is the existence of two atoms 𝑟 < 𝑠 in (0,∞) such that

𝑠/𝑟 is rational. This is exactly the assumption on the atoms in case (iii) of Assumption
6.1. If 𝑡(𝑒) has exactly two atoms 𝑟 < 𝑠 in (0,∞) and no others, then (6.1) holds if and
only if 𝑠/𝑟 is rational.
With more than two atoms, rational ratios are not necessary for (6.1). For example,

if 𝜃 > 0 is irrational and {1, 𝜃, 1 + 2𝜃} are atoms, then (6.1) is satisfied and the ratios
𝜃, 1 + 2𝜃, 𝜃−1 + 2 are irrational.
We can prove amore general result for unbounded weights because arbitrarily large

weights can be used to force the geodesic to follow a specific path. With bounded
weights the control of the geodesic is less precise. Hence the assumption in case (iii) is
more restrictive on the atoms.

Proof of Theorem 6.2. We prove the theorem by considering each case of Assumption
6.1 in turn.
Proof of Theorem 6.2 in Case (i) of Assumption 6.1.
We assume that zero is an atom. In this case conditions (5.3) or (5.4) are not needed

for a black box, so color a box 𝐵 black if (5.5) holds. Fix 𝑁 large enough and 𝛿0 small
enough. Consider points 𝑥 with |𝑥|1 large enough so that the Peierls estimate (5.9) is
valid for 𝑛 = |𝑥|1.
Let 𝜋(𝑥) be the unique geodesic for 𝑇𝟎,𝑥 that is lexicographically first among the

geodesics of minimal Euclidean length. For this purpose order ℛ = {±𝐞1, . . . , ±𝐞𝑑} in
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some way, for example as in (5.39). The index 𝑗(𝑥) and the event Λ𝐵,𝑣,𝑤,𝑥 are defined
as before in (5.17) and (5.18), and estimate (5.20) holds. Let Γ𝐵 = {𝜔 ∶ 𝑡(𝑒) = 0 ∀𝑒 ∈ 𝐵}
be the event that all edge weights in 𝐵 are zero and 𝐷2 = ℙ(Γ𝐵) > 0.
Given an 𝑁-box 𝐵, define edge weight configuration 𝜔∗ = {𝑡∗(𝑒)}𝑒∈ℰ𝑑 by setting

𝑡∗(𝑒) = 𝑡(𝑒) for 𝑒 ∉ 𝐵 (that is, at least one endpoint of 𝑒 lies outside 𝐵) and by resam-
pling {𝑡∗(𝑒)}𝑒∈𝐵 independently. Then 𝜔∗ has the same i.i.d. distribution as the original
weights 𝜔 = {𝑡(𝑒)}𝑒∈ℰ𝑑 .
Lemma 6.4. On the event {𝜔 ∈ Λ𝐵,𝑣,𝑤,𝑥} ∩ {𝜔∗ ∈ Γ𝐵}, every geodesic from 𝟎 to 𝑥 in the
𝜔∗ environment uses at least one edge in 𝐵.
Proof. On the event {𝜔 ∈ Λ𝐵,𝑣,𝑤,𝑥}, 𝜋(𝑥) goes through 𝑣 and 𝑤. Let 𝜋′ be an arbi-
trary path from 𝑣 to 𝑤 that remains inside 𝐵 and define 𝜋 as the path from 𝟎 to 𝑥
obtained by concatenating the segments 𝜋𝟎,𝑣(𝑥), 𝜋′, and 𝜋𝑤,𝑥(𝑥). Then on the event
{𝜔 ∈ Λ𝐵,𝑣,𝑤,𝑥} ∩ {𝜔∗ ∈ Γ𝐵},

𝑇∗(𝜋𝑣,𝑤) = 𝑇∗(𝜋′) = 0 < 𝛿0(|𝑤 − 𝑣|1 ∨ 𝑁) < 𝑇(𝜋𝑣,𝑤(𝑥)).
The justification for the last inequality was given below (5.55).
Outside 𝐵 weights 𝜔∗ and 𝜔 agree, and the segments 𝜋𝟎,𝑣 = 𝜋𝟎,𝑣(𝑥) and 𝜋𝑤,𝑥 =

𝜋𝑤,𝑥(𝑥) agree and lie outside 𝐵. Hence the inequality above gives 𝑇∗(𝜋) < 𝑇(𝜋(𝑥))
and thereby, for any geodesic 𝜋∗(𝑥) from 𝟎 to 𝑥 in environment 𝜔∗,
(6.3) 𝑇∗(𝜋∗(𝑥)) ≤ 𝑇∗(𝜋) < 𝑇(𝜋(𝑥)).
This implies that every geodesic 𝜋∗(𝑥)must use at least one edge in 𝐵. For otherwise

𝑇∗(𝜋∗(𝑥)) = 𝑇(𝜋∗(𝑥)) ≥ 𝑇(𝜋(𝑥)) > 𝑇∗(𝜋),
contradicting the optimality of 𝜋∗(𝑥) for 𝜔∗. □

For 𝑁-boxes 𝐵 such that 𝟎, 𝑥 ∉ 𝐵 define the event

(6.4)
Ψ𝐵,𝑥 = { inside 𝐵 ∃ path segments 𝜋+ and 𝜋++ that share both endpoints

and satisfy 𝜋+ ⊂ 𝜋(𝑥), (𝜋(𝑥) ⧵ 𝜋+) ∪ 𝜋++ is a self-avoiding path,
|𝜋++| ≥ |𝜋+| + 2, and 𝑇(𝜋+) = 𝑇(𝜋++) }.

In particular, on the eventΨ𝐵,𝑥, replacing𝜋+ with 𝜋++ creates an alternative geodesic.
By Lemma 6.4, 𝜔∗ ∈ Ψ𝐵,𝑥 holds on the event {𝜔 ∈ Λ𝐵,𝑣,𝑤,𝑥} ∩ {𝜔∗ ∈ Γ𝐵}. This is

seen as follows. Let 𝜋∗(𝑥) be the lexicographically first geodesic of minimal Euclidean
length in environment 𝜔∗. By Lemma 6.4, 𝜋∗(𝑥) uses at least one edge in 𝐵. Let 𝑢1 be
the first and 𝑢2 the last point of 𝜋∗(𝑥) in 𝐵. Since {𝜔∗ ∈ Γ𝐵} ensures that all edges in 𝐵
have zero weight and 𝜋∗(𝑥) is a minimal length geodesic, the segment 𝜋∗ᵆ1,ᵆ2(𝑥)must
be a path of length |𝑢2 − 𝑢1|1 from 𝑢1 to 𝑢2 inside 𝐵. Now take 𝜋+ = 𝜋∗ᵆ1,ᵆ2(𝑥) and let
𝜋++ be any other path inside 𝐵 from 𝑢1 to 𝑢2 that takesmore than theminimal number
|𝑢2 − 𝑢1|1 of steps. By the choice of 𝑢1 and 𝑢2, the other portions 𝜋∗𝟎,ᵆ1(𝑥) and 𝜋∗ᵆ2,𝑥(𝑥)
of the geodesic lie outside 𝐵, and consequently 𝜋++ does not touch these paths except
at the points 𝑢1 and 𝑢2.
By the independence of {𝜔 ∈ Λ𝐵,𝑣,𝑤,𝑥} and {𝜔∗ ∈ Γ𝐵},

ℙ(Ψ𝐵,𝑥) = ℙ{Ψ𝐵,𝑥 occurs for 𝜔∗}(6.5)
≥ ℙ({𝜔 ∈ Λ𝐵,𝑣,𝑤,𝑥} ∩ {𝜔∗ ∈ Γ𝐵})
= ℙ{𝜔 ∈ Λ𝐵,𝑣,𝑤,𝑥}ℙ{𝜔∗ ∈ Γ𝐵} ≥ 𝐷2ℙ(Λ𝐵,𝑣,𝑤,𝑥).
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Let 𝑌 be the number of (𝐵, 𝑣, 𝑤) ∈ ℬ𝑗(𝑥) for which Ψ𝐵,𝑥 occurs. By (5.20), for another
constant 𝐷3 > 0,

(6.6) 𝔼[𝑌] ≥ ∑
(𝐵,𝑣,𝑤)∈ℬ𝑗(𝑥)

𝐷2ℙ(Λ𝐵,𝑣,𝑤,𝑥) ≥ 𝐷3|𝑥|1.

By Proposition 4.7(1) of [2], under the assumption ℙ{𝑡(𝑒) = 0} < 𝑝𝑐, for any 𝑝 > 0
there exists a finite constant 𝐶𝑝 such that for all 𝑥 ∈ ℤ𝑑,

(6.7) 𝔼[ (𝐿𝟎,𝑥)𝑝 ] ≤ 𝐶𝑝𝔼[ (𝑇𝟎,𝑥)𝑝 ].
By Lemma 2.3 in [2], under assumption (2.7) there exists a finite constant 𝐶′ such that
for all 𝑥 ∈ ℤ𝑑

(6.8) 𝔼[ (𝑇𝟎,𝑥)𝑝 ] ≤ 𝐶′|𝑥|𝑝1 .
Anobvious upper bound on𝑌 is the number of edges on the geodesic𝜋(𝑥). Let𝑝 > 1

be the power for which (2.7) is assumed to hold and 𝑞 = 𝑝
𝑝−1 its conjugate exponent.

Then, by a combination of (6.6), (6.7) and (6.8),

𝐷3|𝑥|1 ≤ 𝔼(𝑌) = 𝔼(𝑌, 𝑌 < 𝐷3|𝑥|1/2) + 𝔼(𝑌, 𝑌 ≥ 𝐷3|𝑥|1/2)
≤ 𝐷3|𝑥|1/2 + 𝔼(|𝜋(𝑥)|, 𝑌 ≥ 𝐷3|𝑥|1/2)

≤ 𝐷3|𝑥|1/2 + (𝔼[ |𝜋(𝑥)|𝑝 ])
1
𝑝 ℙ(𝑌 ≥ 𝐷3|𝑥|1/2)

1
𝑞

≤ 𝐷3|𝑥|1/2 + 𝐶|𝑥|1ℙ(𝑌 ≥ 𝐷3|𝑥|1/2)
1
𝑞 .

From this we get the bound

ℙ(𝑌 ≥ 1
2𝐷3|𝑥|1) ≥ 𝛿3 > 0 for large enough |𝑥|1.

Since we have arranged the boxes 𝐵 in the elements (𝐵, 𝑣, 𝑤) ∈ ℬ𝑗(𝑥) separated, we
can define a self-avoiding path 𝜋(𝑥) from 𝟎 to 𝑥 by replacing each 𝜋+ segment of 𝜋(𝑥)
with the 𝜋++ segment in each box 𝐵 for which eventΨ𝐵,𝑥 happens. This path 𝜋(𝑥) has
the same passage time 𝑇(𝜋(𝑥)) = 𝑇(𝜋(𝑥)) and hence both 𝜋(𝑥) and 𝜋(𝑥) are geodesics.
By the construction, the numbers of edges on these paths satisfy |𝜋(𝑥)| ≥ |𝜋(𝑥)| + 2𝑌 .
Thus we get these inequalities between the maximal and minimal geodesic length:

𝐿𝟎,𝑥 ≥ |𝜋(𝑥)| ≥ |𝜋(𝑥)| + 2𝑌 ≥ 𝐿𝟎,𝑥 + 2𝑌

and then
ℙ( 𝐿𝟎,𝑥 − 𝐿𝟎,𝑥 ≥ 𝐷3|𝑥|1) ≥ ℙ(𝑌 ≥ 1

2𝐷3|𝑥|1) ≥ 𝛿3.
(6.2) has been proved.
Proof of Theorem 6.2 in Case (ii) of Assumption 6.1.
By assumption (6.1) we can fix 𝑠1 < ∞ large enough so that, for i.i.d. copies 𝑡𝑖, 𝑡′𝑗 of

the edge weight 𝑡(𝑒),

(6.9) ℙ{ 𝑡𝑖 ≤ 𝑠1 ∀𝑖 ∈ [𝑘 + 2ℓ], 𝑡′𝑗 ≤ 𝑠1 ∀𝑗 ∈ [𝑘], and
𝑘+2ℓ
∑
𝑖=1

𝑡𝑖 =
𝑘
∑
𝑗=1

𝑡′𝑗} > 0.

Apply Construction 5.13 of the 𝑘 + 2ℓ detour in an 𝑁-box 𝐵 with given boundary
points 𝑣 and𝑤, to define paths 𝜋′, 𝜋+ and 𝜋++ in 𝐵 with |𝜋+| = 𝑘 and |𝜋++| = 𝑘+2ℓ.
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Define the event Γ𝐵,𝑣,𝑤 that depends only on the weights 𝑡(𝑒) in 𝐵:

(6.10)

Γ𝐵,𝑣,𝑤 = { 𝑡(𝑒) ∈ [𝑟0, 𝑟0 + 𝛿0/2) for 𝑒 ∈ 𝜋′ ⧵ 𝜋+,

𝑡(𝑒) ≤ 𝑠1 for 𝑒 ∈ 𝜋+ ∪ 𝜋++,

∑
𝑒∈𝜋++

𝑡(𝑒) = ∑
𝑒′∈𝜋+

𝑡(𝑒′) and

𝑡(𝑒) > 𝑠0 for 𝑒 ∈ 𝐵 ⧵ (𝜋′ ∪ 𝜋++) }.

By (6.9), unbounded weights, and the detour construction, there exists a constant 𝐷2
such that ℙ(Γ𝐵,𝑣,𝑤) ≥ 𝐷2 > 0 for all triples (𝐵, 𝑣, 𝑤).
The steps follow those of the proof of Theorem 5.4 and the proof of Case (i) of The-

orem 6.2. First sample 𝜔, and then define 𝜔∗ = {𝑡∗(𝑒)}𝑒∈ℰ𝑑 by setting 𝑡∗(𝑒) = 𝑡(𝑒) for
𝑒 ∉ 𝐵 and by resampling {𝑡∗(𝑒)}𝑒∈𝐵 independently. Let𝜋(𝑥) be a self-avoiding geodesic
of minimal Euclidean length for 𝑇𝟎,𝑥(𝜔). On the event {𝜔 ∈ Λ𝐵,𝑣,𝑤,𝑥} ∩ {𝜔∗ ∈ Γ𝐵,𝑣,𝑤}
define the path 𝜋 from 𝟎 to 𝑥 by concatenating the segments 𝜋𝟎,𝑣(𝑥), 𝜋′, and 𝜋𝑤,𝑥(𝑥).

Lemma 6.5. When 𝑁 is fixed large enough, on the event {𝜔 ∈ Λ𝐵,𝑣,𝑤,𝑥} ∩ {𝜔∗ ∈ Γ𝐵,𝑣,𝑤}
the path 𝜋 is a self-avoiding geodesic of minimal Euclidean length for 𝑇𝟎,𝑥(𝜔∗).

Proof. As before, since box 𝐵 is black on the event Λ𝐵,𝑣,𝑤,𝑥,

𝑇(𝜋𝑣,𝑤(𝑥)) > (𝑟0 + 𝛿0)(|𝑤 − 𝑣|1 ∨ 𝑁).
Then by 𝜔∗ ∈ Γ𝐵,𝑣,𝑤,

𝑇∗(𝜋𝑣,𝑤) = 𝑇∗(𝜋′) < 𝑘𝑠1 + (|𝑤 − 𝑣|1 + 𝑘 + 4ℓ + 6)(𝑟0 + 1
2𝛿0)

≤ (|𝑤 − 𝑣|1 ∨ 𝑁)(𝑟0 + 1
2𝛿0) + 𝑘(𝑠1 + 𝑟0 + 1

2𝛿0) + (4ℓ + 6)(𝑟0 + 1
2𝛿0)

≤ 𝑇(𝜋𝑣,𝑤(𝑥)) − 1
2 (|𝑤 − 𝑣|1 ∨ 𝑁)𝛿0 + 𝐶

< 𝑇(𝜋𝑣,𝑤(𝑥)).
Before the last inequality above, 𝐶 = 𝐶(𝑘, ℓ, 𝑠1, 𝑟0, 𝛿0) is a constant determined by the
quantities fixed thus far in the proof. The last inequality is then guaranteed by fixing
𝑁 large enough relative to these other constants. Outside 𝐵 weights 𝜔∗ and 𝜔 agree,
and the segments 𝜋𝟎,𝑣 = 𝜋𝟎,𝑣(𝑥) and 𝜋𝑤,𝑥 = 𝜋𝑤,𝑥(𝑥) agree and lie outside 𝐵. Hence
the inequality above gives 𝑇∗(𝜋) < 𝑇(𝜋(𝑥)) and thereby, for any geodesic 𝜋∗(𝑥) from
𝟎 to 𝑥 in environment 𝜔∗,
(6.11) 𝑇∗(𝜋∗(𝑥)) ≤ 𝑇∗(𝜋) < 𝑇(𝜋(𝑥)).
As explained below (6.3), this implies that every 𝜔∗ geodesic 𝜋∗(𝑥)must enter 𝐵.
If 𝜋∗𝐵(𝑥) ⊄ 𝜋′ ∪ 𝜋++, then 𝜋∗(𝑥)must use an edge 𝑒 in 𝐵 with weight > 𝑠0. Then by

property (5.4) of a black box 𝐵, 𝑇(𝜋∗𝐵(𝑥)) ≤ 𝑠0 < 𝑇∗(𝜋∗𝐵(𝑥)). Since 𝑡 and 𝑡∗ agree on 𝐵𝑐,
we get

𝑇(𝜋(𝑥)) ≤ 𝑇(𝜋∗(𝑥)) = 𝑇(𝜋∗𝐵𝑐(𝑥)) + 𝑇(𝜋∗𝐵(𝑥))
= 𝑇∗(𝜋∗𝐵𝑐(𝑥))+𝑇(𝜋∗𝐵(𝑥))<𝑇∗(𝜋∗𝐵𝑐(𝑥))+𝑇∗(𝜋∗𝐵(𝑥))=𝑇∗(𝜋∗(𝑥)),

contradicting (6.11). Consequently 𝜋∗𝐵(𝑥) ⊂ 𝜋′ ∪ 𝜋++. As a geodesic 𝜋∗(𝑥) does not
backtrack on itself. Hence it must traverse the route between 𝑣 to 𝑤, either via 𝜋′ or
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via 𝜋′ with 𝜋+ replaced by 𝜋++. By (6.10) 𝑇∗(𝜋+) = 𝑇∗(𝜋++) so there is no travel time
distinction between the two routes between 𝑣 and 𝑤.
Since 𝜔 and 𝜔∗ agree on 𝐵𝑐, 𝜋𝐵𝑐 is an optimal union of two paths that connect 𝟎 to

one of 𝑣 and 𝑤, and 𝑥 to the other one of 𝑣 and 𝑤. Thus 𝜋 is a geodesic for 𝑇𝟎,𝑥(𝜔∗).
The argument above showed that every geodesic of 𝑇𝟎,𝑥(𝜔∗) goes from 𝑣 to 𝑤 uti-

lizing edges in 𝜋′ ∪ 𝜋++ and otherwise remains outside 𝐵. If there were a geodesic 𝜋𝑜
strictly shorter than 𝜋, 𝜋𝑜 would have to use an alternative shorter geodesic path be-
tween 𝟎 and 𝑣 or between 𝑤 and 𝑥. This contradicts the choice of 𝜋(𝑥) as the shortest
geodesic. □

DefineΨ𝐵,𝑥 as in (6.4). By Lemma 6.5,𝜔∗ ∈ Ψ𝐵,𝑥 holds on the event {𝜔 ∈ Λ𝐵,𝑣,𝑤,𝑥}∩
{𝜔∗ ∈ Γ𝐵,𝑣,𝑤}. The proof of this case is completed exactly as was done in the previous
case from equation (6.5) onwards.
Proof of Theorem 6.2 in Case (iii) of Assumption 6.1.
The weights are now assumed bounded. We work under assumption (6.1) until the

last stage of the proof where we have to invoke the more stringent assumption of Case
(iii) under which (6.1) is restricted to the case where all 𝑟′𝑖 = 𝑟 and all 𝑠′𝑗 = 𝑠. Since
the case of a zero atom has been taken care of, we can assume that these atoms {𝑟′𝑖 , 𝑠′𝑗}
are strictly positive and that zero is not an atom. Since zero is not an atom, condition
(5.11) holds.
As in the cases above, all that is needed for the conclusion is that the geodesic en-

counters (𝜋+, 𝜋++)-pairs whose passage times coincide. This proof follows closely the
bounded weight case of Stage 2 of the proof of Theorem 5.4, which required condition
(5.11). Lemma 5.6 can be enhanced to include the additional conclusion
(6.12) max

𝑖,𝑗
{𝑟′𝑖 , 𝑠′𝑗} ≤ 𝑠0(𝑞).

The only change required in the proof of Lemma 5.6 is that induction begins with
𝑠0(0) = (𝑟0 + 𝛿0) ∨ max𝑖,𝑗{𝑟′𝑖 , 𝑠′𝑗}, after the case ℙ{𝑡(𝑒) = 𝑀0} > 0 has been taken
care of.
The construction of 𝑊1, 𝑊+

1 , 𝑊 ′
1 , 𝑊1 and 𝑊2 in each black box 𝐵 goes exactly as

before around (5.38). Let {𝜋+𝐵,𝑗 , 𝜋++𝐵,𝑗 }1≤𝑗≤𝑗1(𝐵) be the 𝜋+ and 𝜋++ boundary path seg-
ments of the detour rectangles {𝐺𝐵,𝑗}1≤𝑗≤𝑗1(𝐵) constructed in the box 𝐵. In particular,

𝑊+
1 =⋃

𝑗
𝜋+𝐵,𝑗 ⊂ 𝑊1 and 𝑊 ′

1 = (𝑊1 ∪⋃
𝑗
𝜋++𝐵,𝑗 ) ⊂ (𝑊1 ∪⋃

𝑗
𝐺𝐵,𝑗) = 𝑊1.

Define the event

(6.13)

Γ𝐵 = {𝜔 ∶ 𝑟1 − 𝛿 < 𝑡(𝑒) < 𝑟1 + 𝛿 ∀𝑒 ∈ 𝑊1 ⧵ 𝑊+
1 ,

∑
𝑒∈𝜋++𝐵,𝑗

𝑡(𝑒) = ∑
𝑒′ ∈𝜋+𝐵,𝑗

𝑡(𝑒′) ∀𝑗,

0 < 𝑡(𝑒) ≤ 𝑠0 ∀𝑒 ∈ 𝑊 ′
1 ,

𝑠0 ≤ 𝑡(𝑒) ≤ 𝑠1 ∀𝑒 ∈ 𝑊1 ⧵ 𝑊 ′
1 ,

and 𝑠1 ≤ 𝑡(𝑒) ≤ 𝑀0 ∀𝑒 ∈ 𝐵 ⧵ 𝑊1 }.
The condition 𝑡(𝑒) ≤ 𝑠0 ∀𝑒 ∈ 𝑊 ′

1 is implied by the conditions before it. It is stated
explicitly merely for clarity. The condition 𝑡(𝑒) > 0 ∀𝑒 ∈ 𝑊 ′

1 can be imposed because



262 A. KRISHNAN, F. RASSOUL-AGHA, AND T. SEPPÄLÄINEN

(i) for 𝑒 ∈ 𝑊1 ⧵𝑊+
1 it follows from 𝑡(𝑒) > 𝑟1−𝛿 (recall from (5.27) that 𝑟1−𝛿 > 0), and

(ii) for edges 𝑒 ∈ ⋃1≤𝑗≤𝑗1(𝐵)(𝜋
+
𝐵,𝑗 ∪ 𝜋++𝐵,𝑗 ) we can use the strictly positive atoms {𝑟′𝑖 , 𝑠′𝑗}.

Again ℙ(Γ𝐵) ≥ 𝐷2 for a constant 𝐷2.
As before, given an 𝑁-box 𝐵 we work with two environments 𝜔 and 𝜔∗ that agree

outside 𝐵. Let 𝜋∗(𝑥) be the 𝑇𝟎,𝑥(𝜔∗) geodesic specified in Lemma 5.7. Starting from
inequality (5.43), Stage 2 for bounded weights in the proof of Theorem 5.4 can be fol-
lowed down to inequality (5.49), to get the existence of an excursion 𝜋̄ in 𝜋∗(𝑥) whose
segment 𝜋̄1 in𝑊1 satisfies (5.49). Lemma 5.12 is then replaced by Lemma 6.6.

Lemma 6.6. Assume 𝜔 ∈ Λ𝐵,𝑣,𝑤,𝑥 and 𝜔∗ ∈ Γ𝐵. Then there exist three path segments
𝜋̂, 𝜋+, 𝜋++ in 𝐵 with the same endpoints and such that the following holds:

(i) the pair (𝜋+, 𝜋++) forms the boundaries of a detour rectangle,
(ii) 𝜋̂ ⊂ 𝜋∗(𝑥), and
(iii) replacing 𝜋̂ in 𝜋∗(𝑥) with either 𝜋+ or 𝜋++ produces two self-avoiding geodesics

for 𝑇𝟎,𝑥(𝜔∗).
Proof. As in the proof of Lemma 5.12, 𝜋̄1 has a segment 𝜋̂ = 𝜋̄1𝑎,𝑏 between the common
endpoints 𝑎 and 𝑏 of the boundary paths 𝜋+ and 𝜋++ of some detour rectangle 𝐺 in 𝐵.
We show that 𝜋∗(𝑥) can be redirected to take either 𝜋+ or 𝜋++, by showing that (i) 𝜋̂
cannot be strictly better than 𝜋+ or 𝜋++ and (ii) replacing 𝜋̂ with 𝜋+ or 𝜋++ does not
violate the requirement that a geodesic be self-avoiding.
Suppose 𝑇∗(𝜋̂) < 𝑇∗(𝜋+) = 𝑇∗(𝜋++). Then there are points 𝑎′ and 𝑏′ on 𝜕𝐺 such

that 𝜋̂ visits 𝑎, 𝑎′, 𝑏′, 𝑏 in this order and the edges of𝜋′ = 𝜋̂𝑎′,𝑏′ lie in the interior𝐺⧵𝜕𝐺.
Recall that on the event Γ𝐵, the weights on 𝜕𝐺 are at most 𝑠0 while the weights in the
interior 𝐺 ⧵ 𝜕𝐺 are at least 𝑠0.
The points 𝑎′ and 𝑏′ cannot lie on the same or on adjacent sides of 𝜕𝐺 since the

ℓ1-path from 𝑎′ to 𝑏′ along 𝜕𝐺 has no larger weight than 𝜋′.
Suppose 𝑎′ and 𝑏′ lie on opposite ℓ-sides of 𝐺. Then

𝑇∗(𝜋̂) ≥ 𝑇∗(𝜋′) ≥ 𝑠0𝑘 ≥ 𝑇∗(𝜋+) = 𝑇∗(𝜋++).
So we can do at least as well by picking 𝜋+ or 𝜋++.
The remaining option is that 𝑎′ and 𝑏′ lie on opposite 𝑘-sides of 𝐺. Let us suppose

that 𝑎′ is the first point at which 𝜋̂ leaves 𝜕𝐺 and 𝑏′ the first return to 𝜕𝐺.
For this argument we use the most restrictive assumption that there are two atoms

𝑟 < 𝑠 such that (𝑘 + 2ℓ)𝑟 = 𝑘𝑠, with weights 𝑡(𝑒) = 𝑠 on edges 𝑒 ∈ 𝜋+ and 𝑡(𝑒) = 𝑟 on
edges 𝑒 ∈ 𝜋++.
Case 1. Suppose 𝑎′ lies on the 𝑘-segment of 𝜋++ and 𝑏′ ∈ 𝜋+. (See again Figure 5.6.)
We can assume that 𝑎 is at the origin, 𝑎′ = 𝑎′1𝐞1 + ℓ𝐞2, and 𝑏′ = 𝑏′1𝐞1. Then,

𝑇∗(𝜋̂𝑎,𝑏′) = 𝑇∗(𝜋̂𝑎,𝑎′) + 𝑇∗(𝜋̂𝑎′,𝑏′)
≥ |𝑎 − 𝑎′|1𝑟 + |𝑎′ − 𝑏′|1𝑠0
= (ℓ + 𝑎′1)𝑟 + (ℓ + |𝑏′1 − 𝑎′1|)𝑠0.

From 𝑎′1 ≤ 𝑘 − 1 and the assumptions 𝑠0 ≥ 𝑠 > 𝑟 and 𝑘𝑠 = (𝑘 + 2ℓ)𝑟 we deduce:
ℓ(𝑟 + 𝑠) ≥ 2ℓ𝑟 = 𝑘(𝑠 − 𝑟) > 𝑎′1(𝑠 − 𝑟) ≥ (𝑏′1 − |𝑏′1 − 𝑎′1|)𝑠 − 𝑎′1𝑟

⟹ (ℓ + 𝑎′1)𝑟 + (ℓ + |𝑏′1 − 𝑎′1|)𝑠0 > 𝑏′1𝑠
⟹ 𝑇∗(𝜋̂𝑎,𝑏′) > 𝑇∗(𝜋+𝑎,𝑏′).
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In other words, we can do better by taking 𝜋+ from 𝑎 to 𝑏′.
Case 2. Suppose 𝑎′ ∈ 𝜋+ and 𝑏′ lies on the 𝑘-segment of 𝜋++ so that 𝑎′ = 𝑎′1𝐞1 and
𝑏′ = 𝑏′1𝐞1 + ℓ𝐞2. Then,

𝑇∗(𝜋̂𝑎,𝑏′) ≥ 𝑎′1𝑠 + (ℓ + |𝑏′1 − 𝑎′1|)𝑠0 > (ℓ + 𝑏′1)𝑟 = 𝑇∗(𝜋++𝑎,𝑏′).
This time it is better to take 𝜋++ from 𝑎 to 𝑏′.
We have shown that the passage time is not made worse by forcing 𝜋̂ to take 𝜋+ or

𝜋++. Suppose doing so violates self-avoidance of the overall path from 𝟎 to 𝑥. Then
we can cut out part of the path, and the removed piece includes at least one edge of
either 𝜋+ or 𝜋++. The assumption 𝜔∗ ∈ Γ𝐵 implies that 𝑡∗(𝑒) > 0 for these edges.
Consequently the original passage time could not have been optimal. □
The event Ψ𝐵,𝑥 earlier defined in (6.4) has to be reworded slightly for the present

case. Let 𝜋(𝑥) be the 𝑇𝟎,𝑥(𝜔) geodesic chosen in Lemma 5.7.

(6.14)

Ψ𝐵,𝑥 = { inside 𝐵 ∃ path segments 𝜋̂, 𝜋+ and 𝜋++ that share both endpoints
and satisfy 𝜋̂ ⊂ 𝜋(𝑥), both (𝜋(𝑥) ⧵ 𝜋̂) ∪ 𝜋+ and (𝜋(𝑥) ⧵ 𝜋̂) ∪ 𝜋++

are self-avoiding paths from 𝟎 to 𝑥,
|𝜋++| ≥ |𝜋+| + 2, and 𝑇(𝜋̂) = 𝑇(𝜋+) = 𝑇(𝜋++) }.

It is of course possible that 𝜋̂ agrees with either 𝜋+ or 𝜋++. By Lemma 6.6, 𝜔∗ ∈ Ψ𝐵,𝑥
holds on the event {𝜔 ∈ Λ𝐵,𝑣,𝑤,𝑥} ∩ {𝜔∗ ∈ Γ𝐵,𝑣,𝑤}.
Now follow the proof of the previous case from equation (6.5) onwards. Again, since

the boxes 𝐵 in the elements (𝐵, 𝑣, 𝑤) ∈ ℬ𝑗(𝑥) are separated, we can define two self-
avoiding paths𝜋+(𝑥) and𝜋++(𝑥) from 𝟎 to 𝑥 by replacing each 𝜋̂ segment of𝜋(𝑥)with
the 𝜋+ (respectively, 𝜋++) segment in each box 𝐵 that appears among (𝐵, 𝑣, 𝑤) ∈ ℬ𝑗(𝑥)
and for which event Ψ𝐵,𝑥 happens. Then both 𝜋+(𝑥) and 𝜋++(𝑥) are self-avoiding
geodesics for 𝑇𝟎,𝑥(𝜔).
By the construction, the Euclidean lengths of these paths satisfy |𝜋++(𝑥)| ≥ |𝜋+(𝑥)|

+ 2𝑌 where 𝑌 is again the number of (𝐵, 𝑣, 𝑤) ∈ ℬ𝑗(𝑥) for which Ψ𝐵,𝑥 occurs. Hence

𝐿𝟎,𝑥 ≥ |𝜋++(𝑥)| ≥ |𝜋+(𝑥)| + 2𝑌 ≥ 𝐿𝟎,𝑥 + 2𝑌.
This completes the proof of the third case and thereby the proof of Theorem 6.2. □

7. Proofs of the main theorems

This section proves the remaining claims of Section 2 by appeal to the preparatory
work of Section 4 and the modification results of Sections 5 and 6.

7.1. Strict concavity, derivatives, and geodesic length. Theorem 7.1 gives part
(ii) of Theorem 2.2 and thereby completes the proof of Theorem 2.2. Recall that 𝑟0 =
ess inf 𝑡(𝑒) and 𝜀0 > 0 is the constant specified in Theorems 2.1 and A.1.
Theorem 7.1. Assume 𝑟0 ≥ 0, (2.6), and moment bound (2.7) with 𝑝 = 𝑑. Then there
exist strictly positive constants 𝐷(𝑎, ℎ) such that the following holds for all 𝜉 ∈ ℝ𝑑 ⧵ {𝟎}:
whenever 𝑎 ≥ −𝑟0 and −𝑟0 − 𝜀0 < 𝑎 − ℎ < 𝑎,
(7.1) 𝜇𝜉(𝑎 − ℎ) ≤ 𝜇𝜉(𝑎) − ℎ𝜇′𝜉(𝑎+) − 𝐷(𝑎, ℎ)ℎ|𝜉|1.
As a consequence, 𝜇′𝜉(𝑎0+) > 𝜇′𝜉(𝑎1−) whenever −𝑟0 ≤ 𝑎0 < 𝑎1 < ∞ and 𝜇′𝜉(𝑏±) >
𝜇′𝜉((−𝑟0)+) for all 𝑏 ∈ (−𝑟0 − 𝜀0, −𝑟0).
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Note that Theorem 7.1 does not rule out a linear segment of 𝜇𝜉 immediately to the
left of −𝑟0 which happens if 𝜇′𝜉(𝑏+) = 𝜇′𝜉((−𝑟0)−) for some 𝑏 ∈ (−𝑟0 − 𝜀0, −𝑟0). But
this does force 𝜇′𝜉((−𝑟0)−) > 𝜇′𝜉((−𝑟0)+) and thereby a singularity at −𝑟0.

Proof. We start by deriving the last statement of strict concavity from (7.1). Suppose
that 𝜇′𝜉(𝑎0+) = 𝜇′𝜉(𝑎1−) = 𝜏 for some −𝑟0 ≤ 𝑎0 < 𝑎1 < ∞. Then by concavity 𝜇𝜉
must be affine on the open interval (𝑎0, 𝑎1): 𝜇𝜉(𝑎) = 𝜇𝜉(𝑎0) + 𝜏(𝑎 − 𝑎0) and 𝜇′𝜉(𝑎) = 𝜏
for 𝑎 ∈ (𝑎0, 𝑎1). This violates (7.1). The second claim of the last statement follows
similarly.
For this and a later proof, we check here the validity of the middle portion of (2.15).

Let 𝑏 > −𝑟0 − 𝜀0, 𝜉 ∈ ℝ𝑑 ⧵ {𝟎}, 𝜔 ∈ Ω0 = the full measure event specified in Theorem
A.1, and 𝑥𝑛/𝑛 → 𝜉. Take limits (2.8) in the extremes of (2.13), limits lim𝑛−1𝐿(𝑏)𝟎,𝑥𝑛

(𝜔)

and lim𝑛−1𝐿
(𝑏)
𝟎,𝑥𝑛(𝜔) in the middle of (2.13), and then let 𝛿, 𝜂 ↘ 0. This gives

(7.2) 𝜇′𝜉(𝑏+) ≤ lim
𝑛→∞

𝐿(𝑏)𝟎,𝑥𝑛
(𝜔)

𝑛 ≤ lim
𝑛→∞

𝐿
(𝑏)
𝟎,𝑥𝑛(𝜔)
𝑛 ≤ 𝜇′𝜉(𝑏−).

To prove (7.1), consider first the case where 𝑎 > −𝑟0 or 𝑎 = −𝑟0 butℙ{𝑡(𝑒) = 𝑟0} = 0.
The hypotheses of Theorem 5.4 are satisfied for the shifted weights 𝜔(𝑎). In particular,
the extra assumption (5.11) of the bounded weights case that requires the existence
of a positive support point 𝑟1 close enough to the lower bound is valid because either
ess inf 𝑡(𝑎)(𝑒) > 0 or ess inf 𝑡(𝑎)(𝑒) = 0 but 0 is not an atom.
From Theorem 5.4 applied to the shifted weights 𝜔(𝑎) we take the conclusion (5.13)

which is valid in both cases of the theorem:

(7.3) 𝔼[𝑇(𝑎−ℎ)𝟎,𝑥 ] ≤ 𝔼[𝑇(𝑎)𝟎,𝑥 ] − ℎ 𝔼[ 𝐿(𝑎)𝟎,𝑥] − 𝐷(𝑎, ℎ)ℎ|𝑥|1.

The constant 𝐷(𝑎, ℎ) given by the theorem depends now also on 𝑎.
In (7.3) take 𝑥 = 𝑥𝑛, divide through by 𝑛, and let 𝑛 → ∞ along a suitable subse-

quence. The expectations of normalized passage times converge by Theorem A.1. We
obtain

(7.4) 𝜇𝜉(𝑎 − ℎ) ≤ 𝜇𝜉(𝑎) − ℎ lim
𝑛→∞

𝑛−1𝔼[ 𝐿(𝑎)𝟎,𝑥𝑛
] − 𝐷(𝑎, ℎ)ℎ|𝜉|1.

By Fatou’s lemma and (7.2),

(7.5) lim
𝑛→∞

𝑛−1𝔼[ 𝐿(𝑎)𝟎,𝑥𝑛
] ≥ lim

𝑛→∞
𝑛−1𝔼[ 𝐿(𝑎)𝟎,𝑥𝑛

] ≥ 𝔼[ lim
𝑛→∞

𝑛−1𝐿(𝑎)𝟎,𝑥𝑛
] ≥ 𝜇′𝜉(𝑎+).

This substituted into (7.4) gives (7.1).
Last we take up the case 𝑎 = −𝑟0 and 0 < ℙ{𝑡(𝑒) = 𝑟0} < 𝑝𝑐. The shifted weights

𝜔(−𝑟0) satisfy 0 < ℙ{𝑡(𝑒) = 0} < 𝑝𝑐. This puts us in case (i) of Theorem 6.2. Its
conclusion (6.2) implies the existence of a constant 𝐷 > 0 such that

ℙ( 𝐿
(−𝑟0)
𝟎,𝑥𝑛 − 𝐿(−𝑟0)𝟎,𝑥𝑛

≥ 𝐷|𝑥𝑛|1 for infinitely many 𝑛) ≥ 𝛿.

Hence (7.2) implies 𝜇′𝜉((−𝑟0)−)−𝜇′𝜉((−𝑟0)+) ≥ 𝐷|𝜉|1. Note that 𝐷 does not depend on
the sequence {𝑥𝑛} or 𝜉. (7.1) comes from concavity:

𝜇𝜉(−𝑟0 − ℎ) ≤ 𝜇𝜉(−𝑟0) − 𝜇′𝜉((−𝑟0)−)ℎ ≤ 𝜇𝜉(−𝑟0) − 𝜇′𝜉((−𝑟0)+)ℎ − 𝐷ℎ|𝜉|1. □
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Corollary 7.2. Assume 𝑟0 ≥ 0, (2.6), and moment bound (2.7) with 𝑝 = 𝑑. There exists
a constant 𝐷 > 0 such that 𝜆(𝜉) ≥ (1 + 𝐷)|𝜉|1 for all 𝜉 ∈ ℝ𝑑 ⧵ {𝟎}.

Proof. Fix 0 < 𝑎 − 𝑏 < 𝑎 and let 𝐷 = 𝐷(𝑎, 𝑏) from (7.1). Then, for 𝜉 ≠ 𝟎,

(7.6) 𝜆(𝜉) = 𝜇′𝜉(0+) ≥
𝜇𝜉(𝑎) − 𝜇𝜉(𝑎 − 𝑏)

𝑏 ≥ 𝜇′𝜉(𝑎+) + 𝐷(𝑎, 𝑏)|𝜉|1 ≥ (1 + 𝐷)|𝜉|1.

The first equality is from the characterization of the superdifferential in (2.46) if 𝑟0 > 0
and in (2.49) if 𝑟0 = 0. The first inequality is concavity and the second one is (7.1). The
last inequality is the easy bound from (2.14). □

Proof of Theorem 2.3. Weprove the first inequality of (2.15). For 𝑏 ≥ −𝑟0 the character-
izations of the superdifferentials in (2.46) and (2.49) give 𝜇′𝜉(𝑏+) = 𝜆(𝑏)(𝜉). Corollary
7.2 gives constants 𝐷(𝑏) > 0 such that 𝜆(𝑏)(𝜉) ≥ (1 + 𝐷(𝑏))|𝜉|1. By the monotonic-
ity of the derivatives, 𝐷(𝑏) = 𝐷(−𝑟0) works for 𝑏 < −𝑟0. To produce a nonincreasing
function, replace 𝐷(𝑏) with inf−𝑟0≤𝑎≤𝑏 𝐷(𝑎).
The three middle inequalities of (2.15) are in (7.2).
To prove the rightmost bound of (2.15), consider first 𝑏 ∈ (−𝑟0 − 𝜀0, −𝑟0]. Take

𝑎 = (𝑏 − 𝑟0 − 𝜀0)/2 ∈ (−𝑟0 − 𝜀0, 𝑏). Let 𝜔 ∈ Ω0 and 𝑥𝑛/𝑛 → 𝜉. Concavity, (7.2), and
(A.2) give

𝜇′𝜉(𝑏−) ≤ 𝜇′𝜉(𝑎+) ≤ lim
𝑛→∞

𝐿(𝑎)𝟎,𝑥𝑛
(𝜔)

𝑛 ≤ 𝑐
(𝑎 + 𝑟0) ∧ 0 + 𝜀0

|𝜉|1 =
2𝑐

(𝑏 + 𝑟0) ∧ 0 + 𝜀0
|𝜉|1.

The rightmost bound of (2.15) extends to all 𝑏 ≥ −𝑟0 because 𝜇′𝜉(𝑏−) is nonincreasing
in 𝑏. □

Proof of Theorem 2.5. Using Proposition 4.4(i), the continuity of the shape functions 𝜇
and 𝑔𝑜 on int𝒰, and 𝜆(𝜉) ≥ (1 + 𝐷)|𝜉|1 from Corollary 7.2, choose constants 𝜂, 𝛿 > 0
small enough so that for any |𝜉|1 = 1,
(7.7) | 𝜇(𝜉) − 𝜏𝑔𝑜(𝜉/𝜏) | ≤ 𝜂 ⟹ 𝜏 ≥ 1 + 𝛿.
From (4.8) or (A.2) pick finite deterministic 𝜅 and random 𝐾 such that

(7.8) 𝐿𝟎,𝑥 ≤ 𝜅|𝑥|1 for all |𝑥|1 ≥ 𝐾.
Let 𝛼 = 𝛿/4. Increase 𝜅 if necessary so that 𝜅 > 2 + 𝛼. Let 0 < 𝜀 < 𝜂/(1 + 𝜅). Increase
𝐾 if necessary so that (i) 𝐾 ≥ 4/𝛿, (ii) 𝐾 works in (B.1) for 𝛼, 𝜀, and (iii) 𝐾 satisfies the
FPP shape theorem ([2, p. 11], also (A.3))

(7.9) | 𝑇𝟎,𝑥 − 𝜇(𝑥) | ≤ 𝜀|𝑥|1 for |𝑥|1 ≥ 𝐾.
Let |𝑥|1 ≥ 𝐾 and let 𝜋 be a geodesic for 𝑇𝟎,𝑥. Let 𝑘 = |𝜋| ∨ ⌈(1 + 𝛼)|𝑥|1⌉. Then

𝑇𝟎,𝑥 = 𝐺𝑜
𝟎,(|𝜋|),𝑥 = 𝐺𝑜

𝟎,(𝑘),𝑥.

A combination of (B.1) and (7.9), the homogeneity of 𝜇, and 𝑘 ≤ 𝜅|𝑥|1 give
| 𝜇(𝑥) − 𝑘𝑔𝑜(𝑥/𝑘) | ≤ 𝜀|𝑥|1 + 𝜀𝑘 ≤ 𝜀(1 + 𝜅)|𝑥|1

⟹ ||| 𝜇(
𝑥
|𝑥|1

) − 𝑘
|𝑥|1

𝑔𝑜(𝑥/|𝑥|1𝑘/|𝑥|1
) ||| ≤ 𝜀(1 + 𝜅) < 𝜂.
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Now (7.7) implies 𝑘 ≥ (1 + 𝛿)|𝑥|1. On the other hand, |𝑥|1 ≥ 𝐾 > 4/𝛿 implies that
𝑘 = |𝜋| ∨ ⌈(1 + 𝛼)|𝑥|1⌉ ≤ |𝜋| ∨ (1 + 𝛿/2)|𝑥|1.

Together these force |𝜋| ≥ (1 + 𝛿)|𝑥|1. □

Proof of Theorem 2.11. (i) The statements about 𝜆(𝜉) come fromLemma 4.2. The state-
ments about 𝜆(𝜉) come from the definition (4.16) and Proposition 4.4(ii). The semicon-
tinuity claims are in Lemma 4.5. The finite-infinite dichotomy of 𝜆(𝜉) is in (4.17) and
(4.18).
(ii) To derive (2.35), combine Corollary 7.2, (4.17), (4.18), (7.2), and the charac-

terizations of the derivatives 𝜇′𝜉(0±) from (2.46) when 𝑟0 > 0 and from (2.49) when
𝑟0 = 0. □

Proof of Theorem 2.16. Part (i) was proved in Lemma 4.3. Part (ii) comes from Propo-
sition 4.4.
(iii) Begin by noting that differentiability of 𝑡 ↦ 𝑔⋄(𝑡𝜉) is equivalent to differen-

tiability of 𝜏 ↦ 𝜏𝑔⋄(𝜉/𝜏) and on an open interval a differentiable convex function is
continuously differentiable.
Since 𝜆(𝜉) > |𝜉|1 and by the limit (2.48), the union of the superdifferentials on the

right-hand sides of (2.46) and (2.47) is equal to the interval (|𝜉|1,∞). General convex
analysis gives the equivalence

−𝑏 ∈ 𝜕𝜏[𝜏𝑔(𝜉/𝜏)] ⟺ 𝜏 ∈ 𝜕𝜇𝜉(𝑏).
By the strict concavity of 𝜇𝜉, a given 𝜏 lies in 𝜕𝜇𝜉(𝑏) for a unique 𝑏, and hence the
subdifferential 𝜕𝜏[𝜏𝑔(𝜉/𝜏)] consists of a unique value −𝑏 ∈ (−∞, 𝑟0]. This implies that
𝜏 ↦ 𝜏𝑔(𝜉/𝜏) is differentiable at 𝜏 ∈ (|𝜉|1,∞).
Continuous differentiability of 𝜏 ↦ 𝜏𝑔𝑜(𝜉/𝜏) for 𝜏 > |𝜉|1 now follows from Proposi-

tion 4.4. Namely, 𝜏𝑔𝑜(𝜉/𝜏) = 𝜏𝑔(𝜉/𝜏) for 𝜏 ∈ [ |𝜉|1, 𝜆(𝜉)], which we now know to be a
nondegenerate interval, and their common left 𝜏-derivative vanishes at the minimum
𝜏 = 𝜆(𝜉). On [𝜆(𝜉),∞), 𝜏𝑔𝑜(𝜉/𝜏) = 𝜇(𝜉) is constant and hence connects in a 𝐶1 fashion
to the part on [|𝜉|1, 𝜆(𝜉)].
If 𝑔⋄(𝜉/|𝜉|1) = ∞ then necessarily lim𝑡↗|𝜉|−11 (𝑔

⋄)′(𝑡𝜉) = +∞.
The remaining claims follow if we assume 𝑔⋄(𝜉/|𝜉|1) < ∞ and show that

(7.10) lim
𝑡↗|𝜉|−11

𝑔⋄(|𝜉|−11 𝜉) − 𝑔⋄(𝑡𝜉)
|𝜉|−11 − 𝑡

= +∞.

It suffices to treat 𝑔 since 𝑔𝑜 = 𝑔 close enough to the boundary of 𝒰 by part (ii).
Take 𝛼 = 1/𝑡 > |𝜉|1 and rewrite the ratio above as

|𝜉|1𝑔(|𝜉|−11 𝜉) + |𝜉|1
|𝜉|1𝑔(𝜉/|𝜉|1) − 𝛼𝑔(𝜉/𝛼)

𝛼 − |𝜉|1
.

Thus by the duality in Theorem 2.17, (7.10) is equivalent to

(7.11) lim
𝛼↘|𝜉|1

𝜇∗𝜉(𝛼) − 𝜇∗𝜉(|𝜉|1)
𝛼 − |𝜉|1

= ∞.

By concavity, the ratio in (7.11) is a nonincreasing function of 𝛼 > |𝜉|1. Hence if (7.11)
fails, there exists 𝑏0 < ∞ such that, ∀𝛼 > |𝜉|1 and ∀𝑏 ≥ 𝑏0,

|𝜉|1𝑏 − 𝜇∗𝜉(|𝜉|1) ≤ 𝛼𝑏 − 𝜇∗𝜉(𝛼).
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It then follows from the duality ((2.41) or (2.44)) that

𝜇𝜉(𝑏) = |𝜉|1𝑏 − 𝜇∗𝜉(|𝜉|1) for 𝑏 ≥ 𝑏0.

This contradicts the strict concavity of 𝜇𝜉. (7.10) has been verified. □

7.2. Nondifferentiability.

Proof of Theorem 2.6. Bound (2.21) is contained in Theorem 6.2. (2.21) implies that,
along any subsequence {𝑛𝑖},

ℙ( 𝐿𝟎,𝑥𝑛𝑖 − 𝐿𝟎,𝑥𝑛𝑖
≥ 𝐷|𝑥𝑛𝑖 |1 for infinitely many 𝑖) ≥ 𝛿.

Now (7.2) implies 𝜇′𝜉(0−) − 𝜇′𝜉(0+) ≥ 𝐷|𝜉|1. □

Proof of Theorem 2.7. Let 𝑟 < 𝑠 be two atoms of 𝑡(𝑒) in [𝑟0,∞). Fix an arbitrary ℓ ∈ ℕ
and then pick 𝑘 ∈ ℕ so that

(𝑘 − 1)(𝑠 − 𝑟)
2ℓ ≤ 𝑟 − 𝑟0 <

𝑘(𝑠 − 𝑟)
2ℓ .

For𝑚 ∈ ℤ+ let

𝑏𝑚 = (𝑘 + 𝑚)(𝑠 − 𝑟)
2ℓ − 𝑟 ∈ (−𝑟0,∞).

Then 𝑏𝑚 + 𝑟 and 𝑏𝑚 + 𝑠 are atoms of 𝑡(𝑏𝑚)(𝑒) such that
(𝑘 + 𝑚)(𝑠 + 𝑏𝑚) = (𝑘 + 𝑚 + 2ℓ)(𝑟 + 𝑏𝑚) for all𝑚 ∈ ℤ+.

The other hypotheses of Theorem 2.6 are inherited by 𝜔(𝑏𝑚) and so the conclusions of
Theorem 2.6 hold for all 𝜔(𝑏𝑚). In particular, since 𝜇(𝑏𝑚)

𝜉 (𝑎) = 𝜇𝜉(𝑎 + 𝑏𝑚), 𝜇(𝑏𝑚)
𝜉 has a

corner at 0 if and only if 𝜇𝜉 has a corner at 𝑏𝑚.
No point of [−𝑟0,∞) is farther than 𝑠−𝑟

2ℓ from the nearest 𝑏𝑚. We get the dense set 𝐵
by combining the collections {𝑏𝑚} for all ℓ ∈ ℕ. □

Appendix A. First-passage percolation with slightly negative weights

This appendix extends the shape theorem of standard FPP to real-valued weights
{𝑡(𝑒)} under certain hypotheses. The setting is the same as in Section 2.1. As before,
{𝑡𝑖} denotes i.i.d. copies of the edge weight 𝑡(𝑒). Assumption (2.7) is reformulated for
positive parts as

(A.1) 𝔼[ (min{𝑡+1 , . . . , 𝑡+2𝑑})𝑝 ] < ∞.
Passage times 𝑇𝑥,𝑦 are defined as in (2.2) and now the restriction to self-avoiding paths
is essential.

Theorem A.1. Assume 𝑟0 = ess inf 𝑡(𝑒) ≥ 0, (2.6), and (A.1) (equivalently, (2.7)) with
𝑝 = 𝑑. Then there exist

(a) a constant 𝜀0 > 0 determined by the distribution of the shifted weights 𝜔(−𝑟0),
(b) for each real 𝑏 > −𝑟0 − 𝜀0, a positively homogeneous continuous convex function

𝜇(𝑏) ∶ ℝ𝑑 → ℝ+, and
(c) an eventΩ0 of full probability,

such that the properties listed below in points (i)–(iii) are satisfied.
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(i) For each 𝜔 ∈ Ω0 and 𝑏 > −𝑟0 − 𝜀0 the following pointwise statements hold. For
each 𝑥 ∈ ℤ𝑑, 𝑇(𝑏)𝟎,𝑥 is finite and has a geodesic, that is, a self-avoiding path 𝜋 from
𝟎 to 𝑥 such that 𝑇(𝑏)𝟎,𝑥 = 𝑇 (𝑏)(𝜋). There exist a deterministic finite constant 𝑐 and
an 𝜔-dependent finite constant 𝐾 = 𝐾(𝜔) such that

(A.2) 𝐿
(𝑏)
𝟎,𝑥 ≤

𝑐
𝜀0 + (𝑟0 + 𝑏) ∧ 0 |𝑥|1 whenever |𝑥|1 ≥ 𝐾.

The shape theorem holds, locally uniformly in the shift 𝑏: for any 𝑎0 < 𝑎1 in
(−𝑟0 − 𝜀0,∞),

lim
𝑛→∞

sup
|𝑥|1≥𝑛

sup
𝑏∈[𝑎0,𝑎1]

|𝑇(𝑏)𝟎,𝑥 − 𝜇(𝑏)(𝑥)|
|𝑥|1

= 0.(A.3)

(ii) For each 𝑏 > −𝑟0−𝜀0 the following statements hold. 𝑇(𝑏)𝟎,𝑥 ∈ 𝐿1(ℙ) for all 𝑥 ∈ ℤ𝑑.
For any sequence 𝑥𝑛 ∈ ℤ𝑑 with 𝑥𝑛/𝑛 → 𝜉 ∈ ℝ𝑑, the convergence 𝑛−1𝑇(𝑏)𝟎,𝑥𝑛 →
𝜇(𝑏)(𝜉) holds almost surely and in 𝐿1(ℙ).

(iii) The shape function satisfies these Lipschitz bounds for shifts 𝑏2 > 𝑏1 > −𝑟0 − 𝜀0
and all 𝜉 ∈ ℝ𝑑:

(A.4) 𝜇(𝑏1)(𝜉) ≤ 𝜇(𝑏2)(𝜉) ≤ 𝜇(𝑏1)(𝜉) + 𝑐|𝜉|1
𝜀0 + (𝑟0 + 𝑏1) ∧ 0

(𝑏2 − 𝑏1).

For 𝑏 > −𝑟0 − 𝜀0, 𝜇(𝑏)(𝟎) = 0 and 𝜇(𝑏)(𝜉) > 0 for all 𝜉 ≠ 0.
We prove Theorem A.1 at the end of the section after proving a more general shape

result in Theorem A.4.

Lemma A.2. Let ℙ be a probability measure invariant under a group {𝜃𝑥}𝑥∈ℤ𝑑 of mea-
surable bijections. Let 𝐴 be a nonnegative random variable such that 𝔼[𝐴𝑑] < ∞. Then

lim
𝑚→∞

𝑚−1 max
|𝑥|1≤𝑚

𝐴 ∘ 𝜃𝑥 = 0 with probability one.(A.5)

Proof. The conclusion is equivalent to |𝑥|−11 𝐴 ∘ 𝜃𝑥 → 0 as |𝑥|1 → ∞. Apply Borel-
Cantelli with the estimate below for 𝜀 > 0:

∑
𝑥
ℙ{𝐴 ∘ 𝜃𝑥 ≥ 𝜀|𝑥|1} =

∞
∑
𝑘=0

∑
|𝑥|1=𝑘

ℙ{𝐴 ∘ 𝜃𝑥 ≥ 𝑘𝜀} ≤ 1 + 𝐶(𝑑)
∞
∑
𝑘=1

𝑘𝑑−1ℙ{𝐴 ≥ 𝑘𝜀}

≤ 1 + 𝐶(𝑑, 𝜀) 𝔼[𝐴𝑑] < ∞. □

Because the inequalities in the proof can be reversed with different constants, an
i.i.d. example shows that 𝑝 < 𝑑moment does not suffice for the conclusion.
Let 𝑥− = (−𝑥) ∨ 0 denote the negative part of a real number. Following [18], define

the random variable
𝐴 = 2 sup

𝑥∈ℤ𝑑
𝑇−𝟎,𝑥.(A.6)

We first prove a moment bound for the shifts of 𝐴 that was used in the concavity
result of Section 5.2.

Lemma A.3. Assume 𝑟0 ≥ 0 and the subcriticality assumption (2.6). Let 𝛿 > 0 be the
constant in the bound (4.10) for the shifted weights 𝜔(−𝑟0). Then there exists 𝑠 > 0 such
that 𝔼[𝑒𝑠𝐴(𝑏)] < ∞ for all shifts 𝐴(𝑏) = 2 sup𝑥∈ℤ𝑑 (𝑇

(𝑏)
𝟎,𝑥 )

− such that 𝑏 ≥ −𝑟0 − 𝛿.
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Proof. By monotonicity it is enough to consider the case 𝑏 = −𝑟0 − 𝛿. The proof is
the same as that of the corollary of Theorem 3 in [13]. 𝐴(−𝑟0−𝛿) ≥ 𝑎 > 0 implies the
existence of a self-avoiding path 𝛾 from 𝟎 such that 𝑇 (−𝑟0−𝛿)(𝛾) < −𝑎/4. Turn this into

−𝛿|𝛾| ≤ 𝑇 (−𝑟0)(𝛾) − 𝛿|𝛾| = 𝑇 (−𝑟0−𝛿)(𝛾) < −𝑎/4 < 0.
Then |𝛾| > 𝑎/(4𝛿) and (4.10) gives the bound

ℙ{𝐴(−𝑟0−𝛿) ≥ 𝑎} ≤ ℙ{∃ self-avoiding path 𝛾 from the origin
such that |𝛾| ≥ 𝑎/(4𝛿) and 𝑇 (−𝑟0)(𝛾) ≤ 𝛿|𝛾|} ≤ 𝐶𝑒−𝑐1𝑎/(4𝛿). □

The next item is a shape theorem whose hypotheses are stated in terms of the ran-
dom variable 𝐴 of (A.6).

Theorem A.4. Let 𝜔 = (𝑡(𝑒) ∶ 𝑒 ∈ ℰ𝑑) be i.i.d. real-valued weights.
(i) Assume (A.1)with 𝑝 = 1 and that the random variable from (A.6) satisfies 𝐴 ∈ 𝐿1.

Then 𝑇𝑥,𝑦 is a finite integrable random variable for all 𝑥, 𝑦 ∈ ℤ𝑑. There exists a non-
random positively homogeneous continuous convex function 𝜇 ∶ ℝ𝑑 → ℝ+ such that for
any sequence {𝑥𝑛} ⊂ ℤ𝑑 with 𝑥𝑛/𝑛 → 𝜉 ∈ ℝ𝑑,

lim
𝑛→∞

𝔼[|𝑛−1𝑇𝟎,𝑥𝑛 − 𝜇(𝜉)|] = 0.(A.7)

(ii) Assume furthermore (A.1) with 𝑝 = 𝑑 and 𝔼[𝐴𝑑] < ∞. Then the following hold
with probability one:

lim
𝑛→∞

sup
|𝑥|1≥𝑛

|𝑇𝟎,𝑥 − 𝜇(𝑥)|
|𝑥|1

= 0(A.8)

and for all 𝜉 ∈ ℝ𝑑 and any sequence 𝑥𝑛 ∈ ℤ𝑑 such that 𝑥𝑛/𝑛 → 𝜉

𝜇(𝜉) = lim
𝑛→∞

𝑇𝟎,𝑥𝑛
𝑛 .(A.9)

Proof. Let 𝐴𝑥 = 𝐴 ∘ 𝜃𝑥. Consider two paths 𝜋𝑥,𝑦 ∈ Π sa
𝑥,𝑦 and 𝜋𝑦,𝑧 ∈ Π sa

𝑦,𝑧. Their
concatenation may fail to be self-avoiding. Choose a point 𝑢 belonging to both paths
such that erasing the portion of 𝜋𝑥,𝑦 from 𝑢 to 𝑦 (denoted by 𝜋′ᵆ,𝑦) and erasing the
portion of 𝜋𝑦,𝑧 from 𝑦 to 𝑢 (denoted by 𝜋″𝑦,ᵆ) leave a self-avoiding path 𝜋𝑥,𝑧 from 𝑥 to 𝑧.
(If the concatenation was self-avoiding to begin with, then 𝑢 = 𝑦.) Note that 𝜋′ᵆ,𝑦 and
𝜋″𝑦,ᵆ are self-avoiding paths. This implies that

𝑇(𝜋𝑥,𝑦) + 𝑇(𝜋𝑦,𝑧) = 𝑇(𝜋𝑥,𝑧) + 𝑇(𝜋′ᵆ,𝑦) + 𝑇(𝜋″𝑦,ᵆ) ≥ 𝑇𝑥,𝑧 + 𝑇 ,𝑦 + 𝑇𝑦,ᵆ
≥ 𝑇𝑥,𝑧 − 𝑇−ᵆ,𝑦 − 𝑇−𝑦,ᵆ ≥ 𝑇𝑥,𝑧 − 𝐴𝑦.

Taking infimum over 𝜋𝑥,𝑦 and 𝜋𝑦,𝑧 gives 𝑇𝑥,𝑦 + 𝑇𝑦,𝑧 ≥ 𝑇𝑥,𝑧 − 𝐴𝑦. Rearranging, we get
0 ≤ 𝑇𝑥,𝑧 + 𝐴𝑧 ≤ 𝑇𝑥,𝑦 + 𝐴𝑦 + 𝑇𝑦,𝑧 + 𝐴𝑧.(A.10)

To apply the subadditive ergodic theorem, we derive a moment bound.
Let 𝜔+ = (𝑡(𝑒)+ ∶ 𝑒 ∈ ℰ𝑑). Take any ℓ1-path 𝑥0∶𝑘 from 𝟎 to 𝑥 (where 𝑘 = |𝑥|1) and

use the subadditivity of the passage times in weights 𝜔+ to write

𝑇𝟎,𝑥(𝜔+) ≤
𝑘−1
∑
𝑖=0

𝑇𝑥𝑖,𝑥𝑖+1(𝜔+).
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Since 𝔼[𝑇𝟎,±𝐞𝑖 (𝜔+)] are all identical,
𝔼[𝑇𝟎,𝑥(𝜔)] ≤ 𝔼[𝑇𝟎,𝑥(𝜔+)] ≤ 𝔼[𝑇𝟎,𝐞1(𝜔+)] |𝑥|1.(A.11)

Assumption (A.1) with 𝑝 = 1 implies that 𝔼[𝑇𝟎,𝐞1(𝜔+)] < ∞ (Lemma 2.3 in [2]). By
the assumption 𝐴 ∈ 𝐿1,

𝔼[𝑇𝟎,𝑥 + 𝐴𝑥] ≤ 𝐶|𝑥|1 + 𝔼[𝐴] < ∞.
Standard subadditivity arguments give the existence of a positively homogeneous con-
vex function 𝜇 ∶ ℚ𝑑 → ℝ+ such that for all 𝜁 ∈ ℚ𝑑 and ℓ ∈ ℕ with ℓ𝜁 ∈ ℤ𝑑, almost
surely and in 𝐿1,

𝜇(𝜁) = lim
𝑛→∞

𝑇𝟎,𝑛ℓ𝜁 + 𝐴𝑛ℓ𝜁
𝑛ℓ = lim

𝑛→∞

𝑇𝟎,𝑛ℓ𝜁
𝑛ℓ ∈ [0, 𝐶|𝜁|1],(A.12)

and 𝜇(𝜁) does not depend on the choice of ℓ. The assumption 𝐴 ∈ 𝐿1 allows us to drop
the term 𝐴𝑛ℓ𝜁 from above. The first inequality of (A.10) gives 𝜇(𝜁) ≥ 0.
Fix 𝑥, 𝑦 ∈ ℤ𝑑. Use subadditivity (A.10) to write

𝑇𝟎,𝑥 − 𝑇𝟎,𝑦 = 𝑇𝟎,𝑥 + 𝐴𝑥 + 𝑇𝑥,𝑦 + 𝐴𝑦 − 𝑇𝟎,𝑦 − 𝐴𝑦 − 𝑇𝑥,𝑦 − 𝐴𝑥
≥ −𝑇𝑥,𝑦 − 𝐴𝑥 ≥ −𝑇𝑥,𝑦(𝜔+) − 𝐴𝑥.

Switching 𝑥 and 𝑦 gives a complementary bound and so
|𝑇𝟎,𝑥 − 𝑇𝟎,𝑦| ≤ 𝑇𝑥,𝑦(𝜔+) + 𝐴𝑥 + 𝐴𝑦.(A.13)

By (A.11)
𝔼[|𝑇𝟎,𝑥 − 𝑇𝟎,𝑦|] ≤ 𝐶|𝑥 − 𝑦|1 + 2𝔼[𝐴].(A.14)

Now take 𝜁, 𝜂 ∈ ℚ𝑑 and ℓ ∈ ℕ such that ℓ𝜁 and ℓ𝜂 are both in ℤ𝑑 and apply the
above to get

|𝔼[𝑇𝟎,𝑛ℓ𝜁] − 𝔼[𝑇𝟎,𝑛ℓ𝜂]| ≤ 𝐶𝑛ℓ|𝜁 − 𝜂|1 + 2𝔼[𝐴].
Divide by 𝑛ℓ and take 𝑛 to∞ to get

|𝜇(𝜁) − 𝜇(𝜂)| ≤ 𝐶|𝜁 − 𝜂|1.(A.15)

As a Lipschitz function 𝜇 extends uniquely to a continuous positively homogenous
convex function 𝜇 ∶ ℝ𝑑 → ℝ.
Fix 𝜉 ∈ ℝ𝑑 ⧵ {𝟎} and a sequence 𝑥𝑛 in ℤ𝑑 such that 𝑥𝑛/𝑛 → 𝜉. Fix 𝜁 ∈ ℚ𝑑. Take

ℓ ∈ ℕ such that ℓ𝜁 ∈ ℤ𝑑. For 𝑛 ∈ ℕ let𝑚𝑛 = ⌊𝑛/ℓ⌋. By (A.14),
𝔼[|𝑛−1𝑇𝟎,𝑥𝑛−𝜇(𝜉)|] ≤ 𝑛−1𝔼[|𝑇𝟎,𝑥𝑛−𝑇𝟎,𝑚𝑛ℓ𝜁|]+𝔼[|𝑛−1𝑇𝟎,𝑚𝑛ℓ𝜁−𝜇(𝜁)|]+|𝜇(𝜁)−𝜇(𝜉)|

≤ 𝑛−1𝐶|𝑥𝑛 −𝑚𝑛ℓ𝜁|1 + 2𝑛−1𝔼[𝐴] + 𝔼[|𝑛−1𝑇𝟎,𝑚𝑛ℓ𝜁 − 𝜇(𝜁)|]
+ |𝜇(𝜁) − 𝜇(𝜉)|.

Take 𝑛 → ∞ to get

lim
𝑛→∞

𝑛−1𝔼[|𝑇𝟎,𝑥𝑛 − 𝜇(𝜉)|] ≤ 𝐶|𝜉 − 𝜁|1 + |𝜇(𝜁) − 𝜇(𝜉)|.

Let 𝜁 → 𝜉 to get (A.7). This completes the proof of part (i).
Now strengthen the assumptions to 𝔼[𝐴𝑑] < ∞ and (A.1) with 𝑝 = 𝑑. For (A.8) we

follow the proof of the Cox-Durrett shape theorem presented in [2, Section 2.3].
LetΩ0 be the full probability event on which (A.12) holds for all 𝜁 ∈ ℚ𝑑. By Lemma

2.22 and Claim 1 on p. 22 of [2], under (A.1) there exists a finite positive constant 𝜅 and
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a full probability event Ω1 such that for any 𝜔 ∈ Ω1 and 𝑦 ∈ ℤ𝑑 ⧵ {𝟎}, there exists a
strictly increasing random sequence𝑚(𝑛) ∈ ℕ such that𝑚(𝑛+1)/𝑚(𝑛) → 1 as 𝑛 → ∞
and

𝑇𝑚(𝑛)𝑦,𝑧(1 + 𝜔+) ≤ 𝜅|𝑚(𝑛)𝑦 − 𝑧|1 for all 𝑧 ∈ ℤ𝑑 and 𝑛 ∈ ℕ.(A.16)

Here, 𝑇𝑥,𝑦(1 + 𝜔+) is the first-passage time from 𝑥 to 𝑦 under the weights 1 + 𝜔+ =
(1 + 𝑡(𝑒)+ ∶ 𝑒 ∈ ℰ𝑑). The results from [2] apply because these weights are strictly
positive and satisfy (A.1) with 𝑝 = 𝑑.
LetΩ2 be the full probability event on which (A.5) holds for the random variable 𝐴

of (A.6). We show that (A.8) holds for each fixed 𝜔 ∈ Ω0 ∩Ω1 ∩Ω2. Let 𝑥𝑘 ∈ ℤ𝑑 be an
𝜔-dependent sequence such that |𝑥𝑘|1 →∞ and

lim
𝑘→∞

|𝑇𝟎,𝑥𝑘 − 𝜇(𝑥𝑘)|
|𝑥𝑘|1

= lim
𝑛→∞

sup
|𝑥|1≥𝑛

|𝑇𝟎,𝑥 − 𝜇(𝑥)|
|𝑥|1

.(A.17)

By passing to a subsequence we can assume 𝑥𝑘/|𝑥𝑘|1 → 𝜉 ∈ ℝ𝑑 with |𝜉|1 = 1. Let
𝜁 ∈ ℚ𝑑 satisfy |𝜁|1 = 1 and pick ℓ ∈ ℕ such that ℓ𝜁 ∈ ℤ𝑑. Choose 𝑚(𝑛) in (A.16) for
𝑦 = ℓ𝜁. For each 𝑘 ∈ ℕ take 𝑛𝑘 ∈ ℕ such that

𝑚(𝑛𝑘)ℓ ≤ |𝑥𝑘|1 ≤ 𝑚(𝑛𝑘 + 1)ℓ.(A.18)

Abbreviate𝑚𝑘 = 𝑚(𝑛𝑘). There exists 𝜔-dependent 𝑘0 such that for all 𝑘 ≥ 𝑘0,𝑚(𝑛𝑘 +
1) ≤ 2𝑚𝑘. Triangle inequality:

||
𝑇𝟎,𝑥𝑘
|𝑥𝑘|1

− 𝜇(𝜉)|| ≤
|𝑇𝟎,𝑥𝑘 − 𝑇𝟎,𝑚𝑘ℓ𝜁|

|𝑥𝑘|1
+ 𝑚𝑘ℓ
|𝑥𝑘|1

⋅ ||
𝑇𝟎,𝑚𝑘ℓ𝜁
𝑚𝑘ℓ

− 𝜇(𝜁)||

+ ||
𝑚𝑘ℓ
|𝑥𝑘|1

− 1|| ⋅ |𝜇(𝜁)| + |𝜇(𝜁) − 𝜇(𝜉)|.

Use (A.13), (A.16) applied to 𝑦 = ℓ𝜁, and take 𝑘 ≥ 𝑘0:

||
𝑇𝟎,𝑥𝑘
|𝑥𝑘|1

− 𝜇(𝜉)|| ≤
𝑇𝑚𝑘ℓ𝜁,𝑥𝑘(1 + 𝜔+) + 𝐴𝑚𝑘ℓ𝜁 + 𝐴𝑥𝑘

|𝑥𝑘|1
+ 𝑚𝑘ℓ
|𝑥𝑘|1

⋅ ||
𝑇𝟎,𝑚𝑘ℓ𝜁
𝑚𝑘ℓ

− 𝜇(𝜁)||

+ ||
𝑚𝑘ℓ
|𝑥𝑘|1

− 1|| ⋅ |𝜇(𝜁)| + |𝜇(𝜁) − 𝜇(𝜉)|

≤ 𝜅|𝑚𝑘ℓ𝜁 − 𝑥𝑘|1
|𝑥𝑘|1

+
2max|𝑥|1≤2𝑚𝑘ℓ 𝐴𝑥

𝑚𝑘ℓ
+ 𝑚𝑘ℓ
|𝑥𝑘|1

⋅ ||
𝑇𝟎,𝑚𝑘ℓ𝜁
𝑚𝑘ℓ

− 𝜇(𝜁)||

+ ||
𝑚𝑘ℓ
|𝑥𝑘|1

− 1|| ⋅ |𝜇(𝜁)| + |𝜇(𝜁) − 𝜇(𝜉)|.

As 𝑘 → ∞ the right-hand side converges to 𝜅|𝜁 − 𝜉|+ |𝜇(𝜁)−𝜇(𝜉)|. Letting 𝜁 → 𝜉 then
proves that 𝑇𝟎,𝑥𝑘/|𝑥𝑘|1 → 𝜇(𝜉) as 𝑘 → ∞. Since 𝜇 is continuous and homogeneous, we
also have 𝜇(𝑥𝑘)/|𝑥𝑘|1 = 𝜇(𝑥𝑘/|𝑥𝑘|1) → 𝜇(𝜉). Now (A.8) follows from (A.17).
(A.9) follows from (A.8) and the continuity and homogeneity of 𝜇. □

Remark A.5. In the last inequality of the proof above (𝑚𝑘ℓ)−1max|𝑥|1≤2𝑚𝑘ℓ 𝐴𝑥 can be
replaced by a smaller term as follows. First, fix a rational 𝜀 > 0. Take 𝑘0 to be large
enough so that for all 𝑘 ≥ 𝑘0,𝑚(𝑛𝑘 + 1) ≤ 2𝑚𝑘, as before, but also

||
𝑚𝑘ℓ
|𝑥𝑘|1

− 1|| ≤
𝜀
3ℓ and ||

𝑥𝑘
|𝑥𝑘|

− 𝜉||1 ≤
𝜀
3ℓ .
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Take 𝜁 ∈ ℚ𝑑 (still with |𝜁|1 = 1) so that |𝜁 − 𝜉|1 ≤ 𝜀/(3ℓ). Now we have
|𝑥𝑘 −𝑚𝑘ℓ𝜁|1

|𝑥𝑘|1
≤ ||

𝑚𝑘ℓ
|𝑥𝑘|1

− 1|| + |𝜁 − 𝜉|1 + ||
𝑥𝑘
|𝑥𝑘|

− 𝜉||1 ≤
𝜀
ℓ .

Consequently,
|𝑥𝑘 −𝑚𝑘ℓ𝜁|1 ≤ 𝜀ℓ−1|𝑥𝑘|1 ≤ 𝜀𝑚(𝑛𝑘 + 1) ≤ 2𝜀𝑚𝑘.

Thus, instead of (A.5) one now needs the hypothesis that for any fixed 𝑧 ∈ ℤ𝑑,
lim
𝜀↘0

lim
𝑚→∞

𝑚−1 max
𝑥∶ |𝑥−𝑚𝑧|1≤𝜀𝑚

𝐴 ∘ 𝜃𝑥 = 0 almost surely.

In our application to the proof of TheoremA.1 the random variable𝐴 has all moments,
so we do not pursue sharper assumptions on 𝐴 than those stated in Theorem A.4.

Proof of Theorem A.1. The constant in point (a) is taken to be 𝜀0 = 𝛿 = the constant
in the bound (4.10) for the shifted weights 𝜔(−𝑟0). Then by Lemma A.3, 𝐴(𝑏) has all
moments for all 𝑏 > −𝑟0 − 𝜀0. Hence we can apply Theorem A.4 to the shifted weights
𝜔(𝑏) to define the shape functions 𝜇(𝑏) whose existence is asserted in point (b). We
specify the full-probability event Ω0 for point (c) in the course of the proof.

Proof of part (i). Start with the obvious point that 𝑇(𝑏)𝟎,𝑥 ≤ 𝑇 (𝑏)( ̃𝛾) < ∞ for any particu-
lar self-avoiding path ̃𝛾 from 𝟎 to 𝑥. By bound (4.10) there exist a full probability event
Ω0 and a finite random variable 𝐾(𝜔) such that on the event Ω0, every self-avoiding
path 𝛾 from the origin such that |𝛾| ≥ 𝐾 satisfies the bound 𝑇 (−𝑟0)(𝛾) > 𝜀0|𝛾|. Then for
any shift 𝑏 these paths satisfy
(A.19) 𝑇 (𝑏)(𝛾) = 𝑇 (−𝑟0)(𝛾) + (𝑟0 + 𝑏)|𝛾| > (𝜀0 + 𝑟0 + 𝑏)|𝛾|.
From this we conclude that, for any 𝑥 ∈ ℤ𝑑, 𝑏 > −𝑟0 − 𝜀0, and any path 𝛾,

(A.20) |𝛾| ≥ 𝐾 ∨
𝑇(𝑏)𝟎,𝑥

𝜀0 + 𝑟0 + 𝑏 implies 𝑇 (𝑏)(𝛾) > 𝑇(𝑏)𝟎,𝑥 .

Thus the infimum that defines 𝑇(𝑏)𝟎,𝑥 in (2.2) cannot be taken outside a certain 𝜔-
dependent finite set of paths. Consequently on the event Ω0 a minimizing path ex-
ists and both 𝑇(𝑏)𝟎,𝑥 and 𝐿

(𝑏)
𝟎,𝑥 are finite for all 𝑥 ∈ ℤ𝑑 and 𝑏 > −𝑟0 − 𝜀0.

Next, shrink the eventΩ0 (if needed) so that for 𝜔 ∈ Ω0 the shape theorem (A.8) is
valid for the weights 𝜔(−𝑟0). Then we can increase 𝐾 and pick a deterministic positive
constant 𝑐 so that 𝑇(−𝑟0)𝟎,𝑥 ≤ 𝑐|𝑥|1 whenever |𝑥|1 ≥ 𝐾. By monotonicity 𝑇(𝑏)𝟎,𝑥 ≤ 𝑐|𝑥|1 for
all 𝑏 ≤ −𝑟0 whenever |𝑥|1 ≥ 𝐾. If necessary increase 𝑐 so that 𝑐 ≥ 𝜀0. Then by (A.20),
when |𝑥|1 ≥ 𝐾 and 𝑏 ∈ (−𝑟0 − 𝜀0, −𝑟0], a self-avoiding path 𝛾 between 𝟎 and 𝑥 that
satisfies

|𝛾| ≥ 𝑐|𝑥|1
𝜀0 + 𝑟0 + 𝑏

cannot be a geodesic for 𝑇(𝑏)𝟎,𝑥 . We conclude that for 𝜔 ∈ Ω0,

𝐿
(𝑏)
𝟎,𝑥 ≤

𝑐
𝜀0 + 𝑟0 + 𝑏|𝑥|1 whenever 𝑏 ∈ (−𝑟0 − 𝜀0, −𝑟0] and |𝑥|1 ≥ 𝐾.

Since 𝐿
(𝑏)
𝟎,𝑥 is nonincreasing in 𝑏 (Remark 2.4(iii)), we can extend the bound above to

all 𝑏 ≥ −𝑟0 in the form (A.2).
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By taking advantage of (A.2) now proved, we get these Lipschitz bounds: for all
𝜔 ∈ Ω0, 𝑏2 > 𝑏1 > −𝑟0 − 𝜀0 and |𝑥|1 ≥ 𝐾, and with 𝜋(𝑏)𝟎,𝑥 denoting a geodesic of 𝑇(𝑏)𝟎,𝑥 ,

(A.21)
𝑇(𝑏1)𝟎,𝑥 ≤ 𝑇(𝑏2)𝟎,𝑥 ≤ 𝑇 (𝑏2)(𝜋(𝑏1)𝟎,𝑥 ) = 𝑇 (𝑏1)(𝜋(𝑏1)𝟎,𝑥 ) + (𝑏2 − 𝑏1)|𝜋(𝑏1)𝟎,𝑥 |

≤ 𝑇(𝑏1)𝟎,𝑥 + 𝑐(𝑏2 − 𝑏1)|𝑥|1
𝜀0 + (𝑟0 + 𝑏1) ∧ 0

≡ 𝑇(𝑏1)𝟎,𝑥 + 𝜅(𝑏1)(𝑏2 − 𝑏1)|𝑥|1.

The last equality defines the constant 𝜅(𝑏) which is nonincreasing in 𝑏.
We establish the locally uniform shape theorem (A.3). Let 𝐵 be a countable dense

subset of (−𝑟0 − 𝜀0,∞). Shrink the event Ω0 further so that for 𝜔 ∈ Ω0 the shape
theorem (A.8) holds for the shifted weights 𝜔(𝑏) for all 𝑏 ∈ 𝐵. By passing to the limit,
(A.21) gives themacroscopic Lipschitz bounds (A.4) for shifts 𝑏1 < 𝑏2 in this countable
dense set 𝐵.
Let 𝜔 ∈ Ω0, 𝜀 > 0, and 𝑎0 < 𝑎1 in 𝐵. Pick a partition 𝑎0 = 𝑏0 < 𝑏1 < ⋯ < 𝑏𝑚 = 𝑎1

so that each 𝑏𝑖 ∈ 𝐵 and 𝜅(𝑎0)(𝑏𝑖 − 𝑏𝑖−1) < 𝜀/2. Fix a constant 𝐾0 = 𝐾𝑏0,𝑏1,. . .,𝑏𝑚
0 (𝜔)

such that
| 𝑇(𝑏𝑖)𝟎,𝑥 − 𝜇(𝑏𝑖)(𝑥) | ≤ 𝜀|𝑥|1/2 for 𝑖 = 0, 1, . . . , 𝑚 whenever |𝑥|1 ≥ 𝐾0.

Now for 𝑖 ∈ [𝑚], 𝑏 ∈ [𝑏𝑖−1, 𝑏𝑖], and |𝑥|1 ≥ 𝐾0, utilizing the monotonicity in 𝑏 of 𝑇(𝑏)𝟎,𝑥
and 𝜇(𝑏)(𝑥) and the Lipschitz bounds (A.21) and (A.4),

| 𝑇(𝑏)𝟎,𝑥 − 𝜇(𝑏)(𝑥)| ≤ | 𝑇(𝑏𝑖)𝟎,𝑥 − 𝜇(𝑏𝑖)(𝑥)| + 𝜅(𝑎0)(𝑏𝑖 − 𝑏𝑖−1)|𝑥|1 ≤ 𝜀|𝑥|1.
The shape theorem (A.3) has been proved.

Proof of part (ii). The integrability and 𝐿1 convergence follow from Theorem A.4(i).
The almost sure convergence comes from the homogeneity and continuity of 𝜇(𝑏) and
the shape theorem (A.3).

Proof of part (iii). We already established (A.4) for a dense set of shifts 𝑏1 < 𝑏2. Mono-
tonicity of 𝑏 ↦ 𝜇(𝑏)(𝜉) extends (A.4) to all shifts 𝑏.
That 𝜇(𝑏)(𝟎) = 0 follows from homogeneity. The final claim that 𝜇(𝑏)(𝜉) > 0 for

𝑏 > −𝑟0 − 𝜀0 and 𝜉 ≠ 𝟎 follows from (A.19), which implies 𝑇(𝑏)𝟎,𝑥 ≥ (𝜀0 + 𝑟0 + 𝑏)|𝑥|1
whenever |𝑥|1 ≥ 𝐾. □

Appendix B. Restricted path length shape theorem

This section proves the next shape theorem in the interior of𝒰 for the restricted path
length FPP processes defined in (2.24). As throughout, the edge weights {𝑡(𝑒) ∶ 𝑒 ∈
ℰ𝑑} are independent and identically distributed (i.i.d.) real-valued random variables,
𝑟0 = ess inf 𝑡(𝑒), the set 𝒟 ⋄

ℓ of points reachable by ℓ-paths is defined by (2.23), and
𝒰 = {𝜉 ∈ ℝ𝑑 ∶ |𝜉|1 ≤ 1} is the ℓ1 unit ball. We also write {𝑡𝑖} for i.i.d. copies of the
edge weight 𝑡(𝑒).
Theorem B.1. Assume 𝑟0 > −∞ and moment assumption (A.1) with 𝑝 = 𝑑. Fix
⋄ ∈ {⟨𝚎𝚖𝚙𝚝𝚢⟩, 𝑜}. There exists a deterministic, continuous, convex shape function 𝑔⋄ ∶
int𝒰 → [𝑟0 ∧ 0,∞) that satisfies the following: for each 𝛼, 𝜀 > 0 there exists an almost-
surely finite random constant 𝐾(𝛼, 𝜀) such that
(B.1) | 𝐺 ⋄

𝟎,(𝑘),𝑥 − 𝑘𝑔⋄(𝑥/𝑘) | ≤ 𝜀𝑘
whenever 𝑘 ≥ 𝐾(𝛼, 𝜀), 𝑘 ≥ (1 + 𝛼)|𝑥|1, and 𝑥 ∈ 𝒟 ⋄

𝑘 .
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The shape theorem can be proved all the way to the boundary of 𝒰. This requires
(i) stronger moment bounds that vary with the dimension of each boundary face and
(ii) further technical constructions beyond what is done in the proof below, because
there are fewer paths to the boundary than to interior points. We have no need for the
shape theorem on all of𝒰 in the present paper. Our purposes are met by extending the
shape function from the interior to the boundary through radial limits (Theorem 2.10
and Lemma 4.1).
We begin with a basic tail bound on 𝐺 ⋄

𝟎,(ℓ),𝑥.

Lemma B.2. Assume the weights are arbitrary real-valued i.i.d. random variables. Let
ℓ ∈ ℕ, ⋄ ∈ {⟨𝚎𝚖𝚙𝚝𝚢⟩, 𝑜} and 𝑥 ∈ 𝒟 ⋄

ℓ . Assume ℓ − |𝑥|1 ≥ 8. Then for any real 𝑠 ≥ 0,
ℙ{𝐺 ⋄

𝟎,(ℓ),𝑥 ≥ 𝑠} ≤ ℓ2𝑑ℙ{min(𝑡1, . . . , 𝑡2𝑑) ≥ 𝑠/ℓ} .(B.2)

Proof. It is enough to prove the lemma for ⋄ = ⟨𝚎𝚖𝚙𝚝𝚢⟩. Then we can assume that
ℓ − |𝑥|1 is an even integer because otherwise Π𝟎,(ℓ),𝑥 = ∅. The reason that the case
⋄ = 𝑜 is also covered is that 𝐺𝑜

𝟎,(ℓ),𝑥 ≤ 𝐺𝟎,(ℓ−1),𝑥 ∧ 𝐺𝟎,(ℓ),𝑥.
To prove (B.2) we construct a total of 2𝑑 edge-disjoint paths inΠ𝟎,(ℓ),𝑥. Let𝐴 = {𝑧 ∈

ℛ ∶ 𝑧 ⋅ 𝑥 > 0} and 𝐵 = {𝑧 ∈ ℛ ∶ 𝑧 ⋅ 𝑥 = 0} with cardinalities 𝜈1 ≥ 0 and 𝜈2 = 2𝑑 − 2𝜈1,
respectively. Enumerate these sets as 𝐴 = {𝑧1, . . . , 𝑧𝜈1 } and 𝐵 = {𝑧𝜈1+1, . . . , 𝑧𝜈1+𝜈2 }.
Suppose 𝑥 ≠ 𝟎, in which case 𝜈1 ≥ 1. For each 𝑖 ∈ [𝜈1] let 𝜋′𝑖 ∈ Π𝟎,(|𝑥|1),𝑥 be the ℓ1-

path from 𝟎 to 𝑥 that takes the necessary steps in the order 𝑧𝑖, 𝑧𝑖+1, . . . , 𝑧𝜈1 , 𝑧1, . . . , 𝑧𝑖−1.
Then for each 𝑖 ∈ [𝜈1] let𝜋𝑖 ∈ Π𝟎,(ℓ),𝑥 be the path that startswith (ℓ−|𝑥|1)/2 repetitions
of the (𝑧𝑖, −𝑧𝑖) pair and then follows 𝜋′𝑖. For 𝑖 ∈ [𝜈2] let 𝜋𝜈1+𝑖 ∈ Π𝟎,(ℓ),𝑥 be the path
that starts with a 𝑧𝜈1+𝑖 step, then repeats the (𝑧1, −𝑧1) pair (ℓ − |𝑥|1 − 2)/2 times, then
follows the steps of 𝜋′1, and finishes with a −𝑧𝜈1+𝑖 step. Thus far we have constructed
𝜈1 + 𝜈2 = 2𝑑 − 𝜈1 paths. For the remaining 𝜈1 paths we distinguish two cases.
If 𝜈1 = 1 we need only one more path 𝜋2𝑑 ∈ Π𝟎,(ℓ),𝑥. Take this to be the path that

starts with a −𝑧1 step, repeats the (𝑧1, −𝑧1) pair (ℓ − |𝑥|1 − 8)/2 times, takes two 𝑧2
steps, one 𝑧1 step, follows the steps of 𝜋′1, takes one 𝑧1 step, two−𝑧2 steps, and finishes
with a −𝑧1 step.
If 𝜈1 > 1, then for 𝑖 ∈ [𝜈1 − 1], let 𝜋𝜈1+𝜈2+𝑖 ∈ Π𝟎,(ℓ),𝑥 be the path that starts with a

−𝑧𝑖 step, repeats the (𝑧𝑖, −𝑧𝑖) pair (ℓ − |𝑥|1 − 4)/2 times, takes a 𝑧𝑖+1 step, follows the
steps of 𝜋′𝑖+1, and ends with a 𝑧𝑖 step followed by a −𝑧𝑖+1 step. For 𝑖 = 𝜈1 the path 𝜋2𝑑
is defined similarly, except that 𝑧𝑖+1 and 𝜋′𝑖+1 are replaced by 𝑧1 and 𝜋′1, respectively.
One can check that the paths 𝜋𝑖 ∈ Π𝟎,(ℓ),𝑥, 𝑖 ∈ [2𝑑], are edge-disjoint. From

𝐺𝟎,(ℓ),𝑥 ≤ min
𝑖∈[2𝑑]

𝑇(𝜋𝑖)(B.3)

follows

(B.4)
ℙ{𝐺𝟎,(ℓ),𝑥 ≥ 𝑠} ≤

2𝑑
∏
𝑖=1

ℙ{𝑇(𝜋𝑖) ≥ 𝑠} ≤ (ℓℙ{𝑡(𝑒) ≥ 𝑠/ℓ})2𝑑

= ℓ2𝑑ℙ{min(𝑡1, . . . , 𝑡2𝑑) ≥ 𝑠/ℓ} .
If 𝑥 = 𝟎 (and hence 𝜈1 = 0 and 𝜈2 = 2𝑑) then redo the last computation with the

edge-disjoint paths 𝜋𝑖, 𝑖 ∈ [2𝑑] that just repeat the pair (𝑧𝑖, −𝑧𝑖). □

Below we use the condition that a rational point 𝜁 ∈ 𝒰 satisfies ℓ𝜁 ∈ 𝒟 ⋄
ℓ for a

positive integer ℓ such that ℓ𝜁 ∈ ℤ𝑑. When zero steps are admissible (⋄ = 𝑜) this is of
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course trivial, and without zero steps (⋄ = ⟨𝚎𝚖𝚙𝚝𝚢⟩) this can be achieved if ℓ(1 − |𝜁|1)
is even. Therefore, one can take for example ℓ = 2ℓ′ for ℓ′ ∈ ℕ such that ℓ′𝜁 ∈ ℤ𝑑.
Properties of convex sets used below can be found in Chapter 18 of [17].
Theorem B.3 comes by a standard application of the subadditive ergodic theorem.

Theorem B.3. Assume 𝑟0 > −∞. Fix 𝜁 ∈ ℚ𝑑 ∩ 𝒰 and ⋄ ∈ {⟨𝚎𝚖𝚙𝚝𝚢⟩, 𝑜}. Let ℓ ∈ ℕ be
such that ℓ𝜁 ∈ 𝒟 ⋄

ℓ . Assume 𝔼[𝐺 ⋄
0,(ℓ),ℓ𝜁] < ∞. Then the limit

𝑔⋄(𝜁) = inf
𝑛∈ℕ

𝔼[𝐺 ⋄
𝟎,(𝑛ℓ),𝑛ℓ𝜁]
𝑛ℓ = lim

𝑛→∞

𝐺 ⋄
𝟎,(𝑛ℓ),𝑛ℓ𝜁
𝑛ℓ ∈ [𝑟0 ∧ 0, ℓ−1𝔼[𝐺 ⋄

0,(ℓ),ℓ𝜁]](B.5)

exists almost surely and in 𝐿1 and does not depend on the choice of ℓ. As a function of
𝜁 ∈ ℚ𝑑 ∩ 𝒰, 𝑔⋄ is convex. Precisely, if 𝜁, 𝜂 ∈ ℚ𝑑 ∩ 𝒰 are such that 𝔼[𝐺 ⋄

0,(ℓ),ℓ𝜁] < ∞ and
𝔼[𝐺 ⋄

0,(ℓ),ℓ𝜂] < ∞ for some ℓ ∈ ℕ, then for any 𝑡 ∈ (0, 1) ∩ ℚ, 𝔼[𝐺 ⋄
0,(ℓ′),ℓ′(𝑡𝜁+(1−𝑡)𝜂)] < ∞

for some ℓ′ ∈ ℕ and
𝑔⋄(𝑡𝜁 + (1 − 𝑡)𝜂) ≤ 𝑡𝑔⋄(𝜁) + (1 − 𝑡)𝑔⋄(𝜂).(B.6)

Remark B.4 (Conditions for finiteness). By Lemma B.2, assumption (A.1) with 𝑝 = 1
implies that 𝔼[𝐺 ⋄

0,(ℓ),ℓ𝜁] < ∞ for any 𝜁 ∈ ℚ𝑑 ∩ 𝒰 and any large enough ℓ ∈ ℕ that
satisfies ℓ𝜁 ∈ 𝒟 ⋄

ℓ .

Next, from convexity we deduce local boundedness and then a local Lipschitz prop-
erty.

Lemma B.5. Assume 𝑟0 > −∞ and (A.1) with 𝑝 = 1. Fix 𝜁 ∈ ℚ𝑑 ∩ int𝒰 and ⋄ ∈
{⟨𝚎𝚖𝚙𝚝𝚢⟩, 𝑜}. There exist 𝜀 > 0 and a finite constant 𝐶 such that

𝑔⋄(𝜂) ≤ 𝐶 for all 𝜂 ∈ ℚ𝑑 ∩ 𝒰 such that |𝜂 − 𝜁|1 ≤ 𝜀.(B.7)

Proof. Take 𝜀 > 0 rational and small enough so that𝒜 = {𝜂 ∈ 𝒰 ∶ |𝜂−𝜁|1 ≤ 𝜀} ⊂ int𝒰.
Let {𝜂𝑖 ∶ 𝑖 ∈ [2𝑑]} ⊂ ℚ𝑑 ∩ int𝒰 be the extreme points of the convex set 𝒜. For
𝜂 ∈ ℚ𝑑 ∩ 𝒜 write 𝜂 = ∑2𝑑

𝑖=1 𝛼𝑖𝜂𝑖 with rational 𝛼𝑖 ∈ [0, 1] such that∑𝑖∈[2𝑑] 𝛼𝑖 = 1. By
bound (B.5) and Remark B.4, 𝑔⋄(𝜂𝑖) < ∞ for 𝑖 ∈ [2𝑑]. Convexity (B.6) implies

𝑔⋄(𝜂) ≤ ∑
𝑖∈[2𝑑]

𝛼𝑖𝑔⋄(𝜂𝑖) ≤ max
𝑖∈[2𝑑]

𝑔⋄(𝜂𝑖)

and Lemma B.5 is proved. □

Lemma B.6. Assume 𝑟0 > −∞ and (A.1) with 𝑝 = 1. Fix 𝜁 ∈ ℚ𝑑 ∩ int𝒰. There exist
𝜀 > 0 and a finite positive constant 𝐶 = 𝐶(𝜁, 𝜀, 𝑟0) such that for both ⋄ ∈ {⟨𝚎𝚖𝚙𝚝𝚢⟩, 𝑜}
|𝑔⋄(𝜂) − 𝑔⋄(𝜂′)| ≤ 𝐶|𝜂 − 𝜂′|1 ∀𝜂, 𝜂′ ∈ ℚ𝑑 ∩ int𝒰 with |𝜂 − 𝜁|1 ≤ 𝜀 and |𝜂′ − 𝜁|1 ≤ 𝜀.
Proof. The assumptions of LemmaB.5 are satisfied and therefore there exists a rational
𝜀 > 0 and a finite constant𝐶 such that (B.7) holds. By taking 𝜀 > 0 smaller, if necessary,
we can also guarantee that for any 𝜂 ∈ ℝ𝑑, |𝜂 − 𝜁|1 ≤ 𝜀 implies 𝜂 ∈ int𝒰.
Take 𝜂 ≠ 𝜂′ in int𝒰 with |𝜂 − 𝜁|1 ≤ 𝜀/2 and |𝜂′ − 𝜁|1 ≤ 𝜀/2. Abbreviate 𝛿 =

2𝜀−1|𝜂 − 𝜂′|1 and write

𝜂 = 1
1 + 𝛿 ⋅ 𝜂

′ + 𝛿
1 + 𝛿 ⋅ (𝜂 + 𝛿−1(𝜂 − 𝜂′)).

Note that
|𝜂 + 𝛿−1(𝜂 − 𝜂′) − 𝜁|1 ≤

𝜀
2 + 𝛿−1|𝜂 − 𝜂′|1 = 𝜀.
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Therefore, 𝜂 + 𝛿−1(𝜂 − 𝜂′) ∈ int𝒰. By convexity (B.6) and boundedness (B.7) we have

𝑔⋄(𝜂) ≤ 1
1 + 𝛿 ⋅ 𝑔

⋄(𝜂′) + 𝛿
1 + 𝛿 ⋅ 𝑔

⋄(𝜂 + 𝛿−1(𝜂 − 𝜂′)) ≤ 1
1 + 𝛿 ⋅ 𝑔

⋄(𝜂′) + 𝐶𝛿
1 + 𝛿 .

From 𝐶 ≥ 𝑔⋄(𝜂′) ≥ 𝑟0 ∧ 0,

𝑔⋄(𝜂) − 𝑔⋄(𝜂′) ≤ 𝛿
1 + 𝛿 (−𝑔

⋄(𝜂′) + 𝐶) ≤ 𝛿(|𝑟0 ∧ 0| + 𝐶) = 2𝜀−1(|𝑟0 ∧ 0| + 𝐶)|𝜂 − 𝜂′|1.

The other bound comes by switching around 𝜂 and 𝜂′. □

Lemma B.7 is an immediate consequence of the local Lipschitz property proved in
Lemma B.6.

Lemma B.7. Assume 𝑟0 > −∞ and (A.1) with 𝑝 = 1. Then 𝑔 and 𝑔𝑜 extend to locally
Lipschitz, continuous, convex functions on int𝒰.

Before we prove the shape theorem we need two more auxiliary lemmas.

Lemma B.8. Assume (A.1) with 𝑝 = 𝑑. Then there exists a finite constant 𝜅 such that

ℙ{∀pair 𝜖 < 𝜌 in (0, 1) ∃ℓ0 = ℓ0(𝜖, 𝜌, 𝜔) such that

∀ℓ ≥ ℓ0, ∀⋄ ∈ {⟨𝚎𝚖𝚙𝚝𝚢⟩, 𝑜} ∶ sup
𝑦∈𝒟 ⋄

ℓ
𝜖ℓ≤|𝑦|1≤𝜌ℓ

ℓ−1𝐺 ⋄
𝟎,(ℓ),𝑦 ≤ 𝜅} = 1.

(B.8)

Proof. It is enough to work with ⋄ = ⟨𝚎𝚖𝚙𝚝𝚢⟩ since 𝐺𝑜
𝟎,(ℓ),𝑦 ≤ 𝐺𝟎,(ℓ),𝑦. It is also enough

to work with fixed 𝜖 < 𝜌 since the suprema in question increase as we increase 𝜌 and
decrease 𝜖.
Fix an integer 𝑟 ≥ 5 such that

𝜌(1 + 8/𝑟) < 1.
The strategy of the proof will be to bound 𝐺𝟎,(ℓ),𝑦 by constructing edge-disjoint paths
on the coarse-grained lattice 𝑟ℤ𝑑 to a point 𝑦 that approximates 𝑦. An approach to
finding such paths was developed in the proof of Lemma B.2.
Take ℓ large enough so that

ℓ ≥ 2(𝑑 + 8)𝑟𝜖−1 and 𝜌(1 + 8/𝑟)ℓ + (𝑑 + 8)(𝑟 + 8) + 𝑑𝑟 + 8 ≤ ℓ.(B.9)

For each 𝑦 ∈ 𝒟ℓ with 𝜖ℓ ≤ |𝑦|1 ≤ 𝜌ℓ pick 𝑦 ∈ 𝑟ℤ𝑑 so that |𝑦 − 𝑦|1 ≤ 𝑑𝑟. As in
Lemma B.2, let 𝜈1 be the number of 𝑧 ∈ ℛ such that 𝑦 ⋅ 𝑧 > 0 and let 𝜈2 = 2𝑑 − 2𝜈1.
Following the construction in the proof of Lemma B.2 we can produce edge-disjoint
nearest-neighbor paths 𝜋′𝑖, 𝑖 ∈ [2𝑑], on the coarse-grained lattice 𝑟ℤ𝑑 from 𝟎 to 𝑦 such
that, in terms of the number steps taken on 𝑟ℤ𝑑, 𝜋′𝑖 has length ℓ𝑖 = ℓ = |𝑦|1/𝑟 for
𝑖 ∈ [𝜈1], 𝜋′𝑖 has length ℓ𝑖 = ℓ+2 for 𝑖 ∈ {𝜈1 +1, . . . , 𝜈1 +𝜈2}, and for 𝑖 > 𝜈1 +𝜈2, 𝜋′𝑖 has
length ℓ𝑖 = ℓ + 8 if 𝜈1 = 1 and ℓ𝑖 = ℓ + 4 if 𝜈1 > 1.
From |𝑦|1 ≤ 𝜌ℓ and |𝑦 − 𝑦|1 ≤ 𝑑𝑟 follows ℓ = |𝑦|1/𝑟 ≤ (𝜌ℓ + 𝑑𝑟)/𝑟, and then from

(B.9)

(ℓ + 8)(𝑟 + 8) + |𝑦 − 𝑦|1 + 8 ≤ ((𝜌ℓ + 𝑑𝑟)/𝑟 + 8)(𝑟 + 8) + 𝑑𝑟 + 8 ≤ ℓ.
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Define

𝑞 = ⌊12(
ℓ − 8(𝑟 + 8) − |𝑦 − 𝑦|1 − 8

ℓ − 𝑟 − 8)⌋.

Then
0 ≤ 𝑞 ≤ ℓ

2ℓ ≤ 𝑟ℓ
2(|𝑦|1 − 𝑑𝑟) ≤ 𝑟𝜖−1.

Define

(B.10) 𝑚 = ⌊
ℓ − 8(𝑟 + 8) − |𝑦 − 𝑦|1 − 8 − ℓ(𝑟 + 8 + 2𝑞)

2 ⌋.

Then
0 ≤ 𝑚 ≤ ℓ.

Let 𝜋′𝑖,𝑠 denote the position (on the original lattice) of the path 𝜋′𝑖 after 𝑠 steps (of
size 𝑟). Let
(B.11) ℓ𝑖 = (𝑟 + 8)ℓ𝑖 + 2𝑞ℓ + 2𝑚.
For each 𝑖 ∈ [2𝑑] we have this identity:

(𝑟 + 10 + 2𝑞)𝑚 + (𝑟 + 8 + 2𝑞)(ℓ − 𝑚) + (𝑟 + 8)(ℓ𝑖 − ℓ) + ℓ − ℓ𝑖 = ℓ.
This equation gives a way to decompose the ℓ steps from 𝟎 to 𝑦 so that we first go
through the vertices {𝜋′𝑖,𝑠}0≤𝑠≤ℓ𝑖 and then use the last ℓ − ℓ𝑖 steps to go from 𝑦 to 𝑦. We
continue with this next bound:

(B.12)

𝐺𝟎,(ℓ),𝑦 ≤ min
𝑖∈[2𝑑]

{
𝑚−1
∑
𝑠=0

𝐺𝜋′𝑖,𝑠,(𝑟+10+2𝑞),𝜋′𝑖,𝑠+1 +
ℓ−1
∑
𝑠=𝑚

𝐺𝜋′𝑖,𝑠,(𝑟+8+2𝑞),𝜋′𝑖,𝑠+1

+
ℓ𝑖−1

∑
𝑠=ℓ

𝐺𝜋′𝑖,𝑠,(𝑟+8),𝜋′𝑖,𝑠+1 + 𝐺𝑦,(ℓ−ℓ𝑖),𝑦}.

Bound 𝑚 in (B.10) by dropping ⌊ ⌋ to turn (B.11) into this inequality (note that terms
2𝑞ℓ cancel):

ℓ𝑖 ≤ (𝑟 + 8)(ℓ + 8) + ℓ − 8(𝑟 + 8) − |𝑦 − 𝑦|1 − 8 − (𝑟 + 8)ℓ = ℓ − |𝑦 − 𝑦|1 − 8.

Similarly,
ℓ𝑖 ≥ ℓ − |𝑦 − 𝑦|1 − 10 ≥ ℓ − 𝑑𝑟 − 10.

Fix 𝜅 > 0. For 𝑗 = 𝑑 + 1, . . . , 2𝑑 let 𝐞𝑗 = −𝐞𝑗−𝑑. Define the events
ℰ1ℓ = {∃𝑗 ∈ [2𝑑] ∶ 𝐺𝟎,(𝑟+8+2𝑞),𝑟𝐞𝑗 ≥ 𝜅ℓ/14 or 𝐺𝟎,(𝑟+10+2𝑞),𝑟𝐞𝑗 ≥ 𝜅ℓ/14},
ℰ2ℓ = {∃𝑗 ∈ [2𝑑] ∶ 𝐺−𝑟𝐞𝑗 ,(𝑟+8),𝟎 ≥ 𝜅ℓ/14

or 𝐺−𝑟𝐞𝑗 ,(𝑟+8+2𝑞),𝟎 ≥ 𝜅ℓ/14 or 𝐺−𝑟𝐞𝑗 ,(𝑟+10+2𝑞),𝟎 ≥ 𝜅ℓ/14},
ℰ3ℓ = {∃𝑘 ∈ ℕ, 𝑧 ∈ 𝒟𝑘 ∶ |𝑧|1 ≤ 𝑑𝑟, |𝑧|1 + 8 ≤ 𝑘 ≤ 𝑑𝑟 + 10, 𝐺𝑧,(𝑘),𝟎 ≥ 𝜅ℓ/14},

and the event ℰ4ℓ,𝑦 on which for all 𝑖 ∈ [2𝑑]
𝑚∧(ℓ−1)−1

∑
𝑠=1

𝐺𝜋′𝑖,𝑠,(𝑟+10+2𝑞),𝜋′𝑖,𝑠+1 +
ℓ−2
∑

𝑠=𝑚∨1
𝐺𝜋′𝑖,𝑠,(𝑟+8+2𝑞),𝜋′𝑖,𝑠+1 ≥ 𝜅ℓ/14.(B.13)
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Then for ℓ0 large enough to satisfy (B.9) and 𝜅 > 0,

{sup
ℓ≥ℓ0

sup
𝑦∈𝒟ℓ

𝜖ℓ≤|𝑦|1≤𝜌ℓ

ℓ−1𝐺𝟎,(ℓ),𝑦 > 𝜅} ⊂ ( ⋃
ℓ≥ℓ0

ℰ1ℓ) ∪ ( ⋃
ℓ≥ℓ0

⋃
𝑦∈𝑟ℤ𝑑

𝜖ℓ/2≤|𝑦|1≤ℓ

ℰ2ℓ ∘ 𝜃𝑦)(B.14)

∪( ⋃
ℓ≥ℓ0

⋃
𝑦∈ℤ𝑑

𝜖ℓ≤|𝑦|1≤ℓ

ℰ3ℓ ∘ 𝜃𝑦) ∪ ( ⋃
ℓ≥ℓ0

⋃
𝑦∈𝒟ℓ

𝜖ℓ≤|𝑦|1≤ℓ

ℰ4ℓ,𝑦).

Here is the explanation for the inclusion above.
(i) Further down the proof we add auxiliary paths around the 𝑟-steps of the path

𝜋′𝑖. Because the first 𝑟-steps share their initial point 𝟎, their auxiliary paths
would intersect and independence would be lost. The same is true for the last
𝑟-steps that share the endpoint 𝑦. Hence these special steps are handled sepa-
rately.
The event ℰ1ℓ takes care of the first step of the path 𝜋′𝑖 which is either in the

first sum on the right in (B.12), or in the second sum in case 𝑚 = 0 and the
first sum is empty.
The event ℰ2ℓ takes care of the last step to 𝑦 which can come from any one

of the three sums on the right in (B.12). We have to check that the possible
endpoints fall within the range 𝜖ℓ/2 ≤ |𝜋′𝑖,𝑠|1 ≤ ℓ of the union of shifts of ℰ2ℓ:
for 𝑖 ∈ [2𝑑] and ℓ ≤ 𝑠 ≤ ℓ𝑖,

|𝜋′𝑖,𝑠|1 ≥ |𝑦|1 − (𝑑 + 8)𝑟 ≥ 𝜖ℓ/2

and since 𝜋′𝑖,𝑠 is on an admissible path of length ℓ from 𝟎 to 𝑦, it must be that
|𝜋′𝑖,𝑠|1 ≤ ℓ.

(ii) The event ℰ3ℓ takes care of the path segment from 𝑦 to 𝑦.
(iii) On the complement of the first three unions on the right-hand side of (B.14)

we have for each 𝑖 ∈ [2𝑑],

𝐺𝜋′𝑖,0,(𝑟+10+2𝑞),𝜋′𝑖,1𝟙{𝑚 ≥ 1} + 𝐺𝜋′𝑖,0,(𝑟+8+2𝑞),𝜋′𝑖,1𝟙{𝑚 = 0} + 𝐺𝜋′𝑖,ℓ−1,(𝑟+10+2𝑞),𝜋′𝑖,ℓ𝟙{𝑚 = ℓ}

+ 𝐺𝜋′𝑖,ℓ−1,(𝑟+8+2𝑞),𝜋′𝑖,ℓ𝟙{𝑚 < ℓ} +
ℓ𝑖−1

∑
𝑠=ℓ

𝐺𝜋′𝑖,𝑠,(𝑟+8),𝜋′𝑖,𝑠+1 + 𝐺𝑦,(ℓ−ℓ𝑖),𝑦 < 13𝜅ℓ/14.

Since ℓ𝑖 − ℓ ≤ 8, the left-hand side has at most 13 terms, which explains the
bound on the right. Thus, if in addition 𝐺𝟎,(ℓ),𝑦 > 𝜅ℓ, then event ℰ4ℓ,𝑦 must
occur.

By bounding the probabilities of the unions on the right of (B.14), we show next that
for some fixed 𝜅 that does not depend on 0 < 𝜖 < 𝜌 < 1,

(B.15) lim
ℓ0→∞

ℙ{sup
ℓ≥ℓ0

sup
𝑦∈𝒟ℓ

𝜖ℓ≤|𝑦|1≤𝜌ℓ

ℓ−1𝐺𝟎,(ℓ),𝑦 > 𝜅} = 0.

This will imply the conclusion (B.8) as we point out at the end of the proof.
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𝟎

𝑦

Figure B.1. The light dashed grid is the coarse-grained lattice 𝑟ℤ𝑑 . The
thin lines along this grid represent four 𝜋′𝑖-paths from 𝟎 to 𝑦. Three 𝑟-steps
on two𝜋′𝑖-paths are decoratedwith auxiliary paths represented by thick lines.
The auxiliary paths are edge-disjoint as long as they associate (i) with differ-
ent 𝜋′𝑖-paths, (ii) with nonconsecutive 𝑟-steps on the same path 𝜋′𝑖 , or (iii)
with 𝑟-steps that are neither the first nor the last one of a 𝜋′𝑖-path.

By (B.2), ℙ(ℰ1ℓ) is summable if (A.1) is satisfied with 𝑝 = 1. Then ℙ(⋃ℓ≥ℓ0 ℰ
1
ℓ ) → 0

as ℓ0 →∞. Next, observe that

⋃
ℓ≥ℓ0

⋃
𝑦∈ℤ𝑑

𝜖ℓ≤|𝑦|1≤ℓ

ℰ3ℓ ∘ 𝜃𝑦 ⊂ ⋃
ℓ≥𝜖ℓ0

⋃
𝑦∈ℤ𝑑
|𝑦|1=ℓ

ℰ3ℓ ∘ 𝜃𝑦

and hence
ℙ( ⋃

ℓ≥ℓ0
⋃
𝑦∈ℤ𝑑

𝜖ℓ≤|𝑦|1≤ℓ

ℰ3ℓ ∘ 𝜃𝑦) ≤ ∑
ℓ≥𝜖ℓ0

ℙ( ⋃
𝑦∈ℤ𝑑
|𝑦|1=ℓ

ℰ3ℓ ∘ 𝜃𝑦),

which goes to 0 when ℓ0 → ∞ if ℓ𝑑−1ℙ(ℰ3ℓ) is summable. This is the case if (A.1) is
satisfied with 𝑝 = 𝑑. The union over ℰ2ℓ ∘ 𝜃𝑦 is controlled similarly.
It remains to control the probability of the union of the events ℰ4ℓ,𝑦 in (B.14). For

𝑖 ∈ [2𝑑] and 𝑠 ∈ [ℓ − 2], for each segment [𝜋′𝑖,𝑠, 𝜋′𝑖,𝑠+1], bound both passage times
𝐺𝜋′𝑖,𝑠,(𝑟+10+2𝑞),𝜋′𝑖,𝑠+1 and 𝐺𝜋′𝑖,𝑠,(𝑟+8+2𝑞),𝜋′𝑖,𝑠+1 as was done in (B.3) by using 2𝑑 indepen-
dent auxiliary paths of the appropriate lengths. For each segment [𝜋′𝑖,𝑠, 𝜋′𝑖,𝑠+1] add the
two upper bounds and denote the result by 𝐴𝜋′𝑖,𝑠,𝜋′𝑖,𝑠+1 .
The terms for 𝑠 = 0 and 𝑠 ≥ ℓ − 1 were excluded from the events ℰ4ℓ,𝑦 so that

for distinct indices 𝑖 ∈ [2𝑑] the 2𝑑 auxiliary paths constructed around the segments
{[𝜋′𝑖,𝑠, 𝜋′𝑖,𝑠+1]}𝑠∈[ℓ−2] stay separated. (We chose 𝑟 ≥ 5 at the outset to guarantee this
separation.) Replace the edge weights 𝑡(𝑒) with 𝑡+(𝑒) = max(𝑡(𝑒), 0) to ensure that
the upper bounds are nonnegative. After these steps, the left-hand side of (B.13) is
bounded above by∑ℓ−2

𝑠=1 𝐴𝜋′𝑖,𝑠,𝜋′𝑖,𝑠+1 .
All the 𝐴-terms have the same distribution as 𝐴𝟎,𝑟𝐞1 . As explained above, over dis-

tinct indices 𝑖 ∈ [2𝑑] the random vectors {𝐴𝜋′𝑖,𝑠,𝜋′𝑖,𝑠+1 ∶ 𝑠 ∈ [ℓ − 2]} are indepen-
dent. For any particular 𝑖 ∈ [2𝑑], {𝐴𝜋′𝑖,𝑠,𝜋′𝑖,𝑠+1 ∶ 𝑠 ∈ [ℓ − 2] even} are i.i.d. and
{𝐴𝜋′𝑖,𝑠,𝜋′𝑖,𝑠+1 ∶ 𝑠 ∈ [ℓ − 2] odd} are i.i.d. because now we skip every other 𝑟-step. See
Figure B.1.
We derive the concluding estimate. Recall that

ℓ ≤ (𝜌ℓ + 𝑑𝑟)/𝑟 ≤ (𝜌𝑟−1 + 1)ℓ.
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Let 𝑐 = ⌈(𝜌𝑟−1 + 1)/2⌉. Let 𝑆𝑛 denote the sum of 𝑛 independent copies of 𝐴𝟎,𝑟𝐞1 . Since
the 𝐴-terms are nonnegative we have

ℙ( ∑
𝑠∈[ℓ−2] even

𝐴𝜋′𝑖,𝑠,𝜋′𝑖,𝑠+1 ≥ 𝜅ℓ/28) ≤ ℙ(𝑆𝑐ℓ ≥ 𝜅ℓ/28).

The same holds for the sum over odd 𝑠. Thus we have
ℙ(ℰ4ℓ,𝑦) ≤ 22𝑑ℙ(𝑆𝑐ℓ ≥ 𝜅ℓ/28)2𝑑.

Take 𝜅 > 28𝑐𝔼[𝐴𝟎,𝑟𝐞1] and use the fact that there are no more than (2ℓ + 1)𝑑 points
𝑦 ∈ 𝒟ℓ to get

ℙ( ⋃
ℓ≥ℓ0

⋃
𝑦∈𝒟ℓ

𝜖ℓ≤|𝑦|1≤𝜌ℓ

ℰ4ℓ,𝑦) ≤ ∑
ℓ≥ℓ0

(2ℓ + 1)𝑑ℙ(ℰ4ℓ,𝑦) ≤ ∑
ℓ≥ℓ0

(8ℓ + 4)𝑑ℙ(𝑆𝑐ℓ ≥ 𝜅ℓ/28)2𝑑

≤ ∑
ℓ≥ℓ0

(8ℓ + 4)𝑑𝑐2𝑑 Var(𝐴𝟎,𝑟𝐞1)2𝑑
(𝜅/28 − 𝑐𝔼[𝐴𝟎,𝑟𝐞1])4𝑑ℓ2𝑑

.

The bound (B.4) can be utilized to show that each 𝐺𝟎,(ℓ),𝑥 and thereby 𝐴𝟎,𝑟𝐞1 is square-
integrable if (A.1) holds with 𝑝 = 2. The above then converges to 0 as ℓ0 → ∞. We
have verified (B.15). The claim of the lemma follows:

ℙ{∀ℓ0 ∃ℓ ≥ ℓ0 ∶ sup
𝑦∈𝒟ℓ

𝜖ℓ≤|𝑦|1≤𝜌ℓ

ℓ−1𝐺𝟎,(ℓ),𝑦 > 𝜅}

= lim
ℓ0→∞

ℙ{∃ℓ ≥ ℓ0 ∶ sup
𝑦∈𝒟ℓ

𝜖ℓ≤|𝑦|1≤𝜌ℓ

ℓ−1𝐺𝟎,(ℓ),𝑦 > 𝜅} = 0. □

Lemma B.9. Assume (A.1) with 𝑝 = 𝑑. Then for any 0 < 𝜖 < 𝜌 < 1 there exists a
deterministic constant 𝜅 ∈ (0,∞) such that, with probability one for each 𝑥 ∈ ℤ𝑑, there
exists a strictly increasing random sequence {𝑚(𝑛)}𝑛∈ℕ ⊂ ℕ such that𝑚(𝑛+1)/𝑚(𝑛) → 1
and for ⋄ ∈ {⟨𝚎𝚖𝚙𝚝𝚢⟩, 𝑜} and ℓ ∈ ℕ

𝐺 ⋄
𝑚(𝑛)𝑥,(ℓ),𝑧 ≤ 𝜅ℓ ∀𝑧 ∈ 𝑚(𝑛)𝑥 + 𝒟 ⋄

ℓ such that 𝜖ℓ ≤ |𝑧 − 𝑚(𝑛)𝑥|1 ≤ 𝜌ℓ.(B.16)

Proof. If 𝑥 = 𝟎 take𝑚(𝑛) = ℓ0 +𝑛 from Lemma B.8. Next suppose 𝑥 ≠ 𝟎. Fix 𝜖 < 𝜌 in
(0, 1). Apply Lemma B.8 to choose a finite constant 𝜅 such that

ℙ(ℰ) ≡ ℙ{∀⋄ ∈ {⟨𝚎𝚖𝚙𝚝𝚢⟩, 𝑜} ∶ sup
ℓ∈ℕ,𝑦∈𝒟 ⋄

ℓ
𝜖ℓ≤|𝑦|1≤𝜌ℓ

ℓ−1𝐺 ⋄
𝟎,(ℓ),𝑦 ≤ 𝜅} > 0.

The ergodic theorem implies that with probability one, for each 𝑥 ∈ ℤ𝑑 ⧵{𝟎} there exist
infinitely many𝑚 ∈ ℕ such that

∀⋄ ∈ {⟨𝚎𝚖𝚙𝚝𝚢⟩, 𝑜} ∶ sup
ℓ∈ℕ,𝑦∈𝑚𝑥+𝒟 ⋄

ℓ
𝜖ℓ≤|𝑦−𝑚𝑥|1≤𝜌ℓ

ℓ−1𝐺 ⋄
𝑚𝑥,(ℓ),𝑦 ≤ 𝜅.

Enumerate these 𝑚’s as a strictly increasing sequence {𝑚(𝑛) ∶ 𝑛 ∈ ℕ}. Then for ℙ-
almost every 𝜔

lim
𝑛→∞

𝑛
𝑚(𝑛) = lim

𝑛→∞
1

𝑚(𝑛)
𝑚(𝑛)
∑
𝑘=1

𝟙{𝜃𝑘𝑥𝜔 ∈ ℰ} = ℙ(ℰ) > 0.
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Consequently,𝑚(𝑛 + 1)/𝑚(𝑛) converges to 1. □

We are ready for the shape theorem.

Theorem B.10. Assume 𝑟0 > −∞ and (A.1) with 𝑝 = 𝑑. Fix ⋄ ∈ {⟨𝚎𝚖𝚙𝚝𝚢⟩, 𝑜}. Let 𝒱 be
a closed subset of int𝒰. The following holds with probability one:

lim
ℓ→∞

max
𝑥∈𝒟 ⋄

ℓ ∶𝑥/ℓ∈𝒱
ℓ−1|𝐺 ⋄

𝟎,(ℓ),𝑥 − ℓ𝑔⋄(𝑥/ℓ)| = 0.(B.17)

Proof. The proof follows steps similar to those of (A.3). We treat the case ⋄ = 𝑜, the
other case being a simpler version. Let Ω0 be the full probability event that consists
of intersecting the event on which (B.5) holds for all 𝜁 ∈ ℚ𝑑 ∩ int𝒰 with the event in
(B.8) and the events in Lemma B.9 for all rational 𝜖 < 𝜌 in (0, 1). Fix 𝜔 ∈ Ω0. We show
that for this 𝜔

lim
ℓ→∞

min
𝑥∈𝒟 ⋄

ℓ ∶𝑥/ℓ∈𝒱
ℓ−1(𝐺𝑜

𝟎,(ℓ),𝑥 − ℓ𝑔𝑜(𝑥/ℓ)) ≥ 0 and(B.18)

lim
ℓ→∞

max
𝑥∈𝒟 ⋄

ℓ ∶𝑥/ℓ∈𝒱
ℓ−1(𝐺𝑜

𝟎,(ℓ),𝑥 − ℓ𝑔𝑜(𝑥/ℓ)) ≤ 0.(B.19)

Proof of (B.18). Fix (𝜔-dependent) sequences ℓ𝑘 → ∞ and 𝑥𝑘 ∈ 𝒟𝑜
ℓ𝑘 that realize the

lim on the left-hand side of (B.18). Since 𝑥𝑘 ∈ 𝒟𝑜
ℓ𝑘 there are coefficients 𝑎

±
𝑖,𝑘 ∈ ℤ+

such that

𝑥𝑘 =
𝑑
∑
𝑖=1
(𝑎+𝑖,𝑘 − 𝑎−𝑖,𝑘)𝐞𝑖 and

𝑑
∑
𝑖=1
(𝑎+𝑖,𝑘 + 𝑎−𝑖,𝑘) ≤ ℓ𝑘.(B.20)

Pass to subsequences, still denoted by ℓ𝑘 and 𝑥𝑘, such that

𝑎±𝑖,𝑘/ℓ𝑘 ⟶𝑘→∞
𝛼±𝑖 ∈ [0, 1] with

𝑑
∑
𝑖=1
(𝛼+𝑖 + 𝛼−𝑖 ) ≤ 1.(B.21)

Let 𝜉 = ∑𝑑
𝑖=1(𝛼

+
𝑖 − 𝛼−𝑖 )𝐞𝑖 = lim𝑘→∞ 𝑥𝑘/ℓ𝑘 ∈ 𝒱 ⊂ int𝒰. We approximate 𝜉 with a

rational point 𝜁 to which we can apply (B.5). Bound (B.18) comes by building a path
from𝑥𝑘 to amultiple of 𝜁 and by the subadditivity of passage times. Here are the details.
First, we dispose of the case where there are infinitely many 𝑘 for which 𝑎+𝑖,𝑘 =

𝑎−𝑖,𝑘 = 0 for all 𝑖 ∈ [𝑑]. If this is the case, then going along a further subsequence we
can assume that 𝑥𝑘 = 𝟎 for all 𝑘. Applying (B.5) with 𝜁 = 𝟎 gives ℓ−1𝑘 𝐺𝑜

𝟎,(ℓ𝑘),𝑥𝑘 → 𝑔𝑜(𝟎)
and since 𝑔𝑜(𝑥𝑘/ℓ𝑘) = 𝑔𝑜(𝟎) for all 𝑘we see that the lim on the left-hand side of (B.18)
is 0. We can therefore assume that for each 𝑘 there exists some 𝑖 ∈ [𝑑] such that 𝑎+𝑖,𝑘 ≥ 1
or 𝑎−𝑖,𝑘 ≥ 1. Consequently, if we let ℐ denote the set of indices 𝑖 ∈ [𝑑] for which 𝑎+𝑖,𝑘 ≥ 1
or 𝑎−𝑖,𝑘 ≥ 1 for infinitely many 𝑘, then ℐ ≠ ∅.
Let

𝛾 = min{𝛼−𝑖 ∶ 𝛼−𝑖 > 0, 𝑖 ∈ [𝑑]} ∧ min{𝛼+𝑖 ∶ 𝛼+𝑖 > 0, 𝑖 ∈ [𝑑]} > 0,(B.22)

with the convention thatmin∅ = ∞, which takes care of the case 𝛼±𝑖 = 0 for all 𝑖 ∈ [𝑑].
Let 𝛿 be a rational in (0, (𝛾 ∧ 1)/(4𝑑)). For 𝑖 ∈ [𝑑] ⧵ ℐ let 𝛽+𝑖 = 𝛽−𝑖 = 0 and note that we
also have 𝛼+𝑖 = 𝛼−𝑖 = 0. For 𝑖 ∈ ℐ take 𝛽±𝑖 ∈ [𝛿, 1] ∩ ℚ such that |𝛼±𝑖 − 𝛽±𝑖 | ≤ 2𝑑𝛿,

𝑑
∑
𝑖=1
(𝛽+𝑖 + 𝛽−𝑖 ) ≤ 1, and ∀𝑗 ∈ ℐ ∶ (1 + 5𝑑𝛾−1)(𝛽+𝑗 − 𝛽−𝑗 ) ≠ 𝛼+𝑗 − 𝛼−𝑗 .
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Let 𝜁 = ∑𝑑
𝑖=1(𝛽

+
𝑖 − 𝛽−𝑖 )𝐞𝑖 and take 𝛿 > 0 small enough so that 𝜁 ∈ int𝒰. We will

eventually take 𝛿 → 0, which sends 𝜁 → 𝜉.
We have for all 𝑖 ∈ ℐ

(1 + 5𝑑𝛿𝛾−1)𝛽+𝑖 − 𝛼+𝑖 ≥ 𝛿 and (1 + 5𝑑𝛿𝛾−1)𝛽−𝑖 − 𝛼−𝑖 ≥ 𝛿.(B.23)

To see this, note that when 𝛼+𝑖 > 0 we have
(1 + 5𝑑𝛿𝛾−1)𝛽+𝑖 − 𝛼+𝑖 ≥ (1 + 5𝑑𝛿𝛾−1)(𝛼+𝑖 − 2𝑑𝛿) − 𝛼+𝑖 ≥ 𝑑𝛿/2 ≥ 𝛿

and when 𝛼+𝑖 = 0 (but 𝑖 ∈ ℐ) we have
(1 + 5𝑑𝛿𝛾−1)𝛽+𝑖 − 𝛼+𝑖 = (1 + 5𝑑𝛿𝛾−1)𝛽+𝑖 ≥ 𝛽+𝑖 ≥ 𝛿.

The same holds with superscript −.
Let

𝜁′ =
∑𝑖∈ℐ((1 + 5𝑑𝛿𝛾−1)(𝛽+𝑖 − 𝛽−𝑖 ) − (𝛼+𝑖 − 𝛼−𝑖 ))𝐞𝑖
∑𝑖∈ℐ((1 + 5𝑑𝛿𝛾−1)(𝛽+𝑖 + 𝛽−𝑖 ) − (𝛼+𝑖 + 𝛼−𝑖 ))

.

The choice of 𝛽±𝑖 guarantees that 𝜁′ ≠ 𝟎. Furthermore, (B.23) shows that 𝜁′ is a convex
combination of the vectors {±𝐞𝑖 ∶ 𝑖 ∈ ℐ} with all strictly positive coefficients. Conse-
quently, 𝜁′ ∈ int𝒰.
Take rational 𝜖 < 𝜌 in (0, 1) such that 𝜖 < |𝜁′|1 < 𝜌. Let ℓ ∈ ℕ be such that

ℓ𝛽+𝑖 , ℓ𝛽−𝑖 ∈ ℕ for 𝑖 ∈ ℐ and take ̄𝑛𝑘 such that
𝑚( ̄𝑛𝑘 − 1) ≤ (1 + 5𝑑𝛿𝛾−1)ℓ𝑘/ℓ ≤ 𝑚( ̄𝑛𝑘),

for the sequence𝑚(𝑛) in Lemma B.9 corresponding to the above choice of 𝜖 and 𝜌 and
to 𝑥 = ℓ𝜁. Abbreviate𝑚𝑘 = 𝑚( ̄𝑛𝑘). Using (B.23) we have for 𝑖 ∈ ℐ

lim
𝑘→∞

ℓ−1𝑘 (𝑚𝑘ℓ𝛽+𝑖 − 𝑎+𝑖,𝑘) = (1 + 5𝑑𝛿𝛾−1)𝛽+𝑖 − 𝛼+𝑖 ≥ 𝛿.(B.24)

The same holds with superscript −. Thus, for all 𝑖 ∈ ℐ and for large 𝑘
𝑚𝑘ℓ𝛽±𝑖 ≥ 𝑎±𝑖,𝑘 + 𝛿ℓ𝑘/2.(B.25)

This implies that when 𝑘 is large,𝑚𝑘ℓ𝜁 (which belongs to ℤ𝑑) is accessible from 𝑥𝑘 by
an ℛ-admissible path of length

𝑗𝑘 =
𝑑
∑
𝑖=1
(𝑚𝑘ℓ𝛽+𝑖 − 𝑎+𝑖,𝑘) +

𝑑
∑
𝑖=1
(𝑚𝑘ℓ𝛽−𝑖 − 𝑎−𝑖,𝑘).(B.26)

Note that

lim
𝑘→∞

𝑗𝑘/ℓ𝑘 =
𝑑
∑
𝑖=1
((1 + 5𝑑𝛿𝛾−1)𝛽+𝑖 − 𝛼+𝑖 ) +

𝑑
∑
𝑖=1
((1 + 5𝑑𝛿𝛾−1)𝛽−𝑖 − 𝛼−𝑖 ) ≤ (4𝑑 + 5𝛾−1)𝑑𝛿.

(B.27)

The first equality and (B.24) imply that

lim
𝑘→∞

𝑚𝑘ℓ𝜁 − 𝑥𝑘
𝑗𝑘

= 𝜁′

and therefore 𝜖𝑗𝑘 ≤ |𝑚𝑘ℓ𝜁 −𝑥𝑘|1 ≤ 𝜌𝑗𝑘 for 𝑘 large enough. This will allow us to apply
(B.16).
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Since 𝑥𝑘 is accessible from 𝟎 by an ℛ-admissible path of length∑𝑑
𝑖=1(𝑎

+
𝑖,𝑘 + 𝑎−𝑖,𝑘) ≤

ℓ𝑘, concatenating this path and the one from 𝑥𝑘 to 𝑚𝑘ℓ𝜁 gives an ℛ-admissible path
from 𝟎 to𝑚𝑘ℓ𝜁 of length

𝑑
∑
𝑖=1

𝑚𝑘ℓ(𝛽+𝑖 + 𝛽−𝑖 ) ≤ 𝑚𝑘ℓ.

Hence𝑚𝑘ℓ𝜁 ∈ 𝒟𝑜
𝑚𝑘ℓ

. Subadditivity now gives

𝐺𝑜
𝟎,(𝑚𝑘ℓ),𝑚𝑘ℓ𝜁

≤ 𝐺𝑜
𝟎,(ℓ𝑘),𝑥𝑘 + 𝐺𝑜

𝑥𝑘,(𝑗𝑘),𝑚𝑘ℓ𝜁
.

Using this, (B.16), and (B.27), we get

(1 + 5𝑑𝛿𝛾−1)𝑔𝑜(𝜁) = lim
𝑘→∞

𝐺𝑜
𝟎,(𝑚𝑘ℓ),𝑚𝑘ℓ𝜁

≤ lim
𝑘→∞

𝐺𝑜
𝟎,(ℓ𝑘),𝑥𝑘
ℓ𝑘

+ 𝜅(4𝑑 + 5𝛾−1)𝑑𝛿.

Taking 𝛿 → 0 and the continuity of 𝑔𝑜 on int𝒰 gives

𝑔𝑜(𝜉) ≤ lim
𝑘→∞

𝐺𝑜
𝟎,(ℓ𝑘),𝑥𝑘
ℓ𝑘

.

Since 𝑥𝑘/ℓ𝑘 ∈ 𝒱 ⊂ int𝒰 and 𝑥𝑘/ℓ𝑘 → 𝜉, using again the continuity of 𝑔𝑜 on int𝒰
completes the proof of (B.18):

lim
𝑘→∞

ℓ−1𝑘 (𝐺𝑜
𝟎,(ℓ𝑘),𝑥𝑘 − ℓ𝑘𝑔𝑜(𝑥𝑘/ℓ𝑘)) ≥ 0.

Proof of (B.19). Proceed similarly to the proof of (B.18), but with the sequences ℓ𝑘 →
∞ and 𝑥𝑘 ∈ 𝒟𝑜

ℓ𝑘 realizing the lim on the left-hand side of (B.19). Again, we have the
representation (B.20), the limits (B.21), and 𝜉 = ∑𝑖∈[𝑑](𝛼

+
𝑖 − 𝛼−𝑖 )𝐞𝑖 ∈ 𝒱.

We start by treating the case when 𝜉 = 𝟎. In this case let 𝑗𝑘 = 2|𝑥𝑘|1 or 𝑗𝑘 =
2|𝑥𝑘|1 + 1, so that ℓ𝑘 − 𝑗𝑘 is even. Observe that 𝑗𝑘/ℓ𝑘 → 0 and hence ℓ𝑘 ≥ 𝑗𝑘 for 𝑘
large. Thus, one can make an admissible loop of length ℓ𝑘 − 𝑗𝑘 from 𝟎 back to 𝟎 and
then take a path of length 𝑗𝑘 from 𝟎 to 𝑥𝑘. From (B.5) we have ℓ−1𝑘 𝐺𝑜

𝟎,(ℓ𝑘−𝑗𝑘),𝟎 → 𝑔𝑜(𝟎).
If 𝑗𝑘 is bounded then so is |𝑥𝑘|1 and we have ℓ−1𝑘 𝐺𝑜

𝟎,(𝑗𝑘),𝑥𝑘 → 0. On the other hand,
if 𝑗𝑘 → ∞ along some subsequence, then along this subsequence, and for 𝑘 large, we
have 𝑗𝑘/3 ≤ |𝑥𝑘|1 ≤ 2𝑗𝑘/3 and, applying (B.8), we then get

𝐺𝑜
𝟎,(ℓ𝑘),𝑥𝑘 ≤ 𝐺𝑜

𝟎,(ℓ𝑘−𝑗𝑘),𝟎 + 𝐺𝑜
𝟎,(𝑗𝑘),𝑥𝑘 ≤ 𝐺𝑜

𝟎,(ℓ𝑘−𝑗𝑘),𝟎 + 𝜅𝑗𝑘,

for 𝑘 large enough. Dividing by ℓ𝑘 and taking 𝑘 → ∞ we deduce that

lim
𝑘→∞

ℓ−1𝑘 𝐺𝑜
𝟎,(ℓ𝑘),𝑥𝑘 ≤ 𝑔𝑜(𝟎).

The continuity of 𝑔𝑜 at 𝟎 implies then that the lim on the left-hand side of (B.19) is 0.
For the rest of the proof we can and will assume that 𝜉 ≠ 𝟎.
Define 𝛾 ∈ (0,∞) as in (B.22). Let 𝛿 be a rational in (0, 𝛾/2). Choose 𝛽±𝑖 , 𝑖 ∈ [𝑑],

so that for � ∈ {−,+}, when 𝛼�
𝑖 = 0 we have 𝛽�

𝑖 = 0 and when 𝛼�
𝑖 > 0 we have

𝛽�
𝑖 ∈ [𝛿, 1] ∩ ℚ such that |𝛼�

𝑖 − 𝛽�
𝑖 | ≤ 𝛿 and overall we have

𝑑
∑
𝑖=1
(𝛽+𝑖 + 𝛽−𝑖 ) ≤ 1 and (1 − 2𝛿𝛾−1) ∑

𝑖∈[𝑑]
(𝛽+𝑖 − 𝛽−𝑖 )𝐞𝑖 ≠ ∑

𝑖∈[𝑑]
(𝛼+𝑖 − 𝛼−𝑖 )𝐞𝑖.
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This is possible since 𝜉 ≠ 𝟎 and therefore 𝛼�
𝑖 > 0 for some 𝑖 ∈ [𝑑] and � ∈ {−,+}. Let

𝜁 = ∑𝑑
𝑖=1(𝛽

+
𝑖 − 𝛽−𝑖 )𝐞𝑖 and choose 𝛿 small enough so that 𝜁 ∈ int𝒰. Note that

𝛼�
𝑖 − (1 − 2𝛿𝛾−1)𝛽�

𝑖 ≥ 0 for all 𝑖 ∈ [𝑑] and � ∈ {−,+}.

Indeed, this clearly holds when 𝛼�
𝑖 = 0 and when 𝛼�

𝑖 > 0 we have

𝛼�
𝑖 − (1 − 2𝛿𝛾−1)𝛽�

𝑖 ≥ 𝛼�
𝑖 − (1 − 2𝛿𝛾−1)(𝛼�

𝑖 + 𝛿) ≥ 𝛿.

The above two observations imply that

𝜁′ =
∑𝑖∈[𝑑]((𝛼

+
𝑖 − 𝛼−𝑖 ) − (1 − 2𝛿𝛾−1)(𝛽+𝑖 − 𝛽−𝑖 ))𝐞𝑖

𝛿 +∑𝑖∈[𝑑]((𝛼
+
𝑖 + 𝛼−𝑖 ) − (1 − 2𝛿𝛾−1)(𝛽+𝑖 + 𝛽−𝑖 ))

∈ int𝒰 ⧵ {𝟎}.

We can then find rational 𝜖 < 𝜌 in (0, 1) such that 𝜖 < |𝜁′|1 < 𝜌.
Let ℓ ∈ ℕ be such that ℓ𝛽+𝑖 , ℓ𝛽−𝑖 ∈ ℤ+ for 𝑖 ∈ [𝑑] and take 𝑛𝑘 such that

𝑚(𝑛𝑘) ≤ (1 − 2𝛿𝛾−1)ℓ𝑘/ℓ ≤ 𝑚(𝑛𝑘 + 1),

for the sequence𝑚(𝑛) in Lemma B.9 corresponding to 𝑥 = ℓ𝜁 and to the above choice
of 𝜖 and 𝜌. Abbreviate𝑚𝑘 = 𝑚(𝑛𝑘) and observe that if 𝛼

+
𝑖 > 0 then

lim
𝑘→∞

ℓ−1𝑘 (𝑎+𝑖,𝑘 −𝑚𝑘ℓ𝛽
+
𝑖 ) = 𝛼+𝑖 − (1 − 2𝛿𝛾−1)𝛽+𝑖 ≥ 𝛿.(B.28)

Then for large 𝑘

𝑎+𝑖,𝑘 −𝑚𝑘ℓ𝛽
+
𝑖 ≥ 0.(B.29)

This inequality is trivial if 𝛼+𝑖 = 𝛽+𝑖 = 0. The same computation works with minus
sign superscripts. This implies that 𝑥𝑘 is accessible from𝑚𝑘ℓ𝜁 in

𝑗
𝑘
=

𝑑
∑
𝑖=1
(𝑎+𝑖,𝑘 −𝑚𝑘ℓ𝛽

+
𝑖 ) +

𝑑
∑
𝑖=1
(𝑎−𝑖,𝑘 −𝑚𝑘ℓ𝛽

−
𝑖 )

ℛ-steps and ⌊𝛿ℓ𝑘⌋ 𝟎-steps. Note that

lim
𝑘→∞

𝑗
𝑘
/ℓ𝑘 =

𝑑
∑
𝑖=1
(𝛼+𝑖 − (1 − 2𝛿𝛾−1)𝛽+𝑖 ) +

𝑑
∑
𝑖=1
(𝛼−𝑖 − (1 − 2𝛿𝛾−1)𝛽−𝑖 ) ≤ (2𝑑 + 2𝛾−1)𝛿.

As a consequence,

lim
𝑘→∞

𝑥𝑘 −𝑚𝑘ℓ𝜁
⌊𝛿ℓ𝑘⌋ + 𝑗

𝑘

= 𝜁′

and one can then apply (B.16). Then, as in the proof of (B.18), using subadditivity then
taking 𝑘 → ∞ and then 𝛿 → 0 and using the continuity of 𝑔𝑜 on int𝒰 give

lim
𝑘→∞

𝐺𝑜
𝟎,(ℓ𝑘),𝑥𝑘
ℓ𝑘

≤ 𝑔𝑜(𝜉).

Another use of the continuity of 𝑔𝑜 completes the proof of (B.19). □

Proof of Theorem B.1. Apply Theorem B.10 with 𝒱 = {𝜉 ∈ 𝒰 ∶ |𝜉|1 ≤ 1/(1 + 𝛼)}. □
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Appendix C. Peierls argument

This appendix follows the ideas of [11, 20]. First we prove a general estimate and
then specialize it to prove Lemma 5.3. Let 𝑑 ∈ ℕ. Tile ℤ𝑑 by 𝑁-cubes 𝑆(𝐤) = 𝑁𝐤 +
[0, 𝑁)𝑑 indexed by 𝐤 ∈ ℤ𝑑. Each 𝑁-cube 𝑆(𝐤) is colored randomly black or white in
a shift-stationary manner. Let 𝑝 = 𝑝(𝑁) be the marginal probability that a particular
cube is black and assume that

(C.1) 𝑝(𝑁) → 1 as 𝑁 → ∞.
Assume finite range dependence: there is a strictly positive integer constant 𝑎0 such
that

(C.2) ∀𝐮 ∈ ℤ𝑑, the colors of the cubes {𝑆(𝐤) ∶ 𝐤 ∈ 𝐮 + 𝑎0ℤ𝑑} are i.i.d.
There are 𝐾0 = 𝑎𝑑0 distinct i.i.d. collections, indexed by 𝐮 ∈ {0, 1, . . . , 𝑎0 − 1}𝑑.
It may be desirable to let the separation of the cubes be a parameter. For a positive

integer 𝑎1 and𝐮 ∈ {0, 1, . . . , 𝑎1−1}𝑑, define the collection𝒮𝑎1,𝐮 = {𝑆(𝐤) ∶ 𝐤 ∈ 𝐮+𝑎1ℤ𝑑}
of cubes with lower left corners on the grid 𝐮 + 𝑎1ℤ𝑑. For a given 𝑎1, 𝐾1 = 𝑎𝑑1 is
the number of distinct collections 𝒮𝑎1,𝐮 indexed by 𝐮 ∈ {0, 1, . . . , 𝑎1 − 1}𝑑. We always
consider 𝑎1 ≥ 𝑎0 where 𝑎0 is the fixed constant of the independence assumption (C.2).
Let 𝔹(0, 𝑟) = {𝑥 ∈ ℤ𝑑 ∶ |𝑥|1 ≤ 𝑟} denote the ℓ1-ball (diamond) of radius ⌊𝑟⌋ in ℤ𝑑,

with (inner) boundary 𝜕𝔹(0, 𝑟) = {𝑥 ∈ ℤ𝑑 ∶ |𝑥|1 = ⌊𝑟⌋}.

Lemma C.1. Assume (C.1) and (C.2). Let 𝑎1 ∈ ℤ≥𝑎0 and 𝐾1 = 𝑎𝑑1 . Then there exists a
constant 𝑁0 = 𝑁0(𝑑) such that for 𝑁 ≥ 𝑁0 and 𝑛 ≥ 2(𝑑 + 1)𝑁,

(C.3)
ℙ{ ∀lattice path 𝜋 from the origin to 𝜕𝔹(0, 𝑛) ∃𝐮 ∈ ([0, 𝑎1 − 1] ∩ ℤ)𝑑 such that

𝜋 intersects at least 𝑛
4𝑁𝐾1

black cubes from 𝒮𝑎1,𝐮 } ≥ 1 − exp(− 𝑛
2𝑁 ).

To prove Lemma C.1 we record a Bernoulli large deviation bound.

LemmaC.2. Assume (C.2) and let𝑝 ∈ (0, 1) be themarginal probability of a black cube.
Then there exist constants 𝐴(𝑝, 𝐾, 𝛿) > 0 such that, for all integers 𝑎1 ≥ 𝑎0,𝑚 ∈ ℕ, and
𝛿 ∈ (0, 𝑝/𝐾1), with 𝐾1 = 𝑎𝑑1 , and for any particular sequence 𝑆(𝐤1), . . . , 𝑆(𝐤𝑚) of distinct
𝑁-cubes, the following estimate holds for some 𝐮 determined by {𝑆(𝐤𝑖)}𝑚𝑖=1:
ℙ{ 𝑆(𝐤1), . . . , 𝑆(𝐤𝑚) contains at least𝑚𝛿 black cubes from 𝒮𝑎1,𝐮} ≥ 1 − 𝑒−𝐴(𝑝,𝐾1,𝛿)𝑚.

Furthermore, lim𝑝↗1 𝐴(𝑝, 𝐾, 𝛿) = ∞ for all 𝐾 ∈ ℕ and 𝛿 ∈ (0, 𝑝/𝐾).

Proof. Pick 𝐮 so that 𝒮𝑎1,𝐮 contains at least ⌈𝑚/𝐾1⌉ of the cubes 𝑆(𝐤1), . . . , 𝑆(𝐤𝑚). Since
these are colored independently and 𝛿 < 𝑝/𝐾1, basic large deviations give

ℙ(at most𝑚𝛿 cubes among {𝑆(𝐤𝑖)}𝑚𝑖=1 ∩ 𝒮𝑎1,𝐮 are black)
≤ ℙ(at most𝑚𝛿 cubes among ⌈𝑚/𝐾1⌉ independently colored cubes are black)

≤ exp{− 𝑚
𝐾1
𝐼𝑝(𝐾1𝛿)} = 𝑒−𝐴(𝑝,𝐾1,𝛿)𝑚,

where the last equality defines 𝐴 and the well-known Cramér rate function [16] of the
Bernoulli(𝑝) distribution is

𝐼𝑝(𝑠) = 𝑠 log 𝑠𝑝 + (1 − 𝑠) log 1 − 𝑠
1 − 𝑝 for 𝑠 ∈ [0, 1].
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To complete the proof, observe that

lim
𝑝↗1

𝐴(𝑝, 𝐾, 𝛿) = lim
𝑝↗1

1
𝐾 𝐼𝑝(𝐾𝛿) = lim

𝑝↗1
(𝛿 log 𝐾𝛿𝑝 + 1 − 𝐾𝛿

𝐾 log 1 − 𝐾𝛿
1 − 𝑝 ) = ∞. □

Proof of Lemma C.1. Consider for the moment a fixed path 𝜋 from 0 to a point 𝑦 such
that |𝑦|1 = 𝑛. Assume 𝑛 > 𝑑𝑁 so that 𝑦 ∉ 𝑆(𝟎).
For 𝑗 ∈ ℤ+ let level 𝑗 of 𝑁-cubes refer to the collectionℒ𝑗 = {𝑆(𝐤) ∶ |𝐤|1 = 𝑗}. Since

points 𝑥 = (𝑥1, . . . , 𝑥𝑑) ∈ 𝑆(𝐤) satisfy

𝑘𝑖𝑁 ≤ 𝑥𝑖 ≤ 𝑘𝑖𝑁 + 𝑁 − 1 for 𝑖 ∈ [𝑑],

level 𝑗 cubes are subsets of {𝑥 ∶ 𝑁𝑗 − 𝑑(𝑁 − 1) ≤ |𝑥|1 ≤ 𝑁𝑗 + 𝑑(𝑁 − 1)}.
To reach the point 𝑦, path 𝜋 must have entered and exited at least one 𝑁-cube at

levels 0, 1, . . . , 𝑚0 where𝑚0 satisfies

𝑁𝑚0 + 𝑑(𝑁 − 1) < |𝑦|1 ≤ 𝑁(𝑚0 + 1) + 𝑑(𝑁 − 1).

This calculation excludes the cube that contains the endpoint 𝑦. From this

(C.4) 𝑚0 ≥
|𝑦|1 − 𝑑(𝑁 − 1)

𝑁 − 1 ≥ 𝑛
𝑁 − (𝑑 + 1).

Consider the sequence of 𝑁-cubes that path 𝜋 intersects: 𝑆(𝟎) = 𝑆(𝐤0), 𝑆(𝐤1), . . . ,
𝑆(𝐤𝑚1), with the initial point 0 ∈ 𝑆(𝟎) = 𝑆(𝐤0) and the final point 𝑦 ∈ 𝑆(𝐤𝑚1). Remove
loops from this sequence (if any), for example by the following procedure:

(1) Let 𝑖0 be the minimal index such that 𝐤𝑖0 = 𝐤𝑗 for some 𝑗 > 𝑖0. Let 𝑗0 be the
maximal 𝑗 for 𝑖0. Then remove 𝑆(𝐤𝑖0+1), . . . , 𝑆(𝐤𝑗0).

(2) Repeat the same step on the remaining sequence 𝑆(𝐤0), . . . , 𝑆(𝐤𝑖0), 𝑆(𝐤𝑗0+1),
. . . , 𝑆(𝐤𝑚1), as long as loops remain.

After loop removal relabel the sequence of remaining cubes consecutively to arrive
at a new sequence 𝑆(𝐤0), 𝑆(𝐤1) . . . , 𝑆(𝐤𝑚2) of distinct 𝑁-cubes with 𝑚2 ≤ 𝑚1 and still
0 ∈ 𝑆(𝟎) = 𝑆(𝐤0) and 𝑦 ∈ 𝑆(𝐤𝑚2). This sequence takes nearest-neighbor steps on
the coarse-grained lattice of 𝑁-cubes, in the sense that |𝐤𝑖 − 𝐤𝑖−1|1 = 1, because this
property is preserved by the loop removal. Since 𝜋 enters and leaves behind at least
one 𝑁-cube on each level 0, . . . , 𝑚0, we have the bound𝑚2 − 1 ≥ 𝑚0.
We have now associated to each path 𝜋 a sequence of 𝑚0 distinct 𝑁-cubes that 𝜋

both enters from the outside and exits again. We apply Lemma C.2 to these sequences
of cubes.
Take 𝑎1 ≥ 𝑎0 ≥ 1 and 𝐾1 = 𝑎𝑑1 as in the statement of Lemma C.1. Let 𝛿0 = (2𝐾1)−1.

Fix 𝑁 large enough so that 𝑝 = 𝑝(𝑁) > 1
2 = 𝛿0𝐾1 and the constant given by Lemma

C.1 satisfies

𝐴(𝑝, 𝐾1, 𝛿0) > log 2𝑑 + 1.
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Consider 𝑛 ≥ 2(𝑑+1)𝑁 to guarantee that the rightmost expression in (C.4) and thereby
also𝑚0 is larger than 𝑛/(2𝑁). Then also𝑚0𝛿0 ≥ 𝑛/(4𝑁𝐾1). By Lemma C.2,

ℙ{∀ path 𝜋 ∶ 0 → 𝜕𝔹(0, 𝑛) ∃𝐮 such that 𝜋 enters and exits

at least 𝑛
4𝑁𝐾1

distinct black cubes from 𝒮𝑎1,𝐮}

≥ ℙ{every nearest-neighbor sequence of𝑚0 𝑁-cubes starting at 𝑆(𝟎)
contains at least𝑚0𝛿0 black cubes from some 𝒮𝑎1,𝐮}

≥ 1 − (2𝑑)𝑚0𝑒−𝐴(𝑝,𝐾1,𝛿0)𝑚0 ≥ 1 − 𝑒−𝑚0 ≥ 1 − 𝑒−𝑛/(2𝑁).

This completes the proof of Lemma C.1. □

Proof of Lemma 5.3. Surround each 𝑁-cube 𝑆(𝐤) with 2𝑑 𝑁-boxes so that each 𝑑 − 1
dimensional face of𝑆(𝐤) is directly opposite a large face of one of the𝑁-boxes. Precisely,
first put 𝑆(𝐤) at the center of the 3𝑁-cube 𝑇(𝐤) = 𝑁𝐤 + [−𝑁, 2𝑁]𝑑 on ℤ𝑑, and then
define 2𝑑 𝑁-boxes 𝐵±𝑗(𝐤) = 𝑇(𝐤) ∩ 𝑇(𝐤 ± 2𝐞𝑗) for 𝑗 ∈ [𝑑]. Any lattice path that enters
𝑆(𝐤) and exits 𝑇(𝐤) must cross in the sense of (5.8) one of the 𝑁-boxes that surround
𝑆(𝐤).
Color 𝑆(𝐤) black if all 2𝑑 𝑁-boxes surrounding it are black. The probability that

𝑆(𝐤) is black can be made arbitrarily close to 1 by choosing 𝑠0 and 𝑁 large enough and
𝛿0 > 0 small enough in the definition (5.4)–(5.5) of a black 𝑁-box. The color of 𝑆(𝐤)
depends only on the edge variables in the union 𝑇(𝐤) of the 2𝑑 boxes 𝐵

±𝑗
(𝐤) enlarged

as in (5.2). The separation of 𝑎0 in (C.2) can be fixed large enough to guarantee that
over 𝐤 ∈ 𝐮 + 𝑎0ℤ𝑑 the cubes 𝑇(𝐤) are pairwise disjoint.
Apply Lemma C.1 with 𝐾1 = 𝑎𝑑1 = 𝑎𝑑0 . Tighten the requirement 𝑛 ≥ 2(𝑑 + 1)𝑁 of

Lemma C.1 to 𝑛 ≥ 4𝑑𝑁 to guarantee that if a path 𝜋 intersects 𝑆(𝐤) then it also inter-
sects the complement of 𝑇(𝐤). (If 𝜋 remains inside 𝑇(𝐤) then the ℓ1-distance between
the endpoints of 𝜋 is at most 3𝑑𝑁 and 𝜋 cannot connect the origin to 𝜕𝔹(0, 𝑛).) Thus
for every 𝑆(𝐤) intersected by 𝜋, at least one of the 𝑁-boxes surrounding 𝑆(𝐤) is crossed
by 𝜋 in the sense of (5.8). In conclusion, on the event in (C.3) each path from the ori-
gin to 𝜕𝔹(0, 𝑛) crosses at least ⌈𝑛/(4𝑁𝐾1)⌉ = ⌈𝑛𝑎−𝑑0 /(4𝑁)⌉ disjoint𝑁-boxes. Of these, at
least ⌈𝑛𝑎−𝑑0 /(4𝑁)⌉/𝐾 must come from some particular collection ℬ𝑗 . Thus in Lemma
5.3 we can take 𝛿1 = 1/(4𝑎𝑑0𝑁𝐾), 𝑛1 = 4𝑑𝑁 and 𝐷1 = 1/(2𝑁). □

Appendix D. Convex analysis

Lemma D.1. Let 𝑓 be a proper convex function on ℝ𝑑 (−∞ < 𝑓 ≤ ∞ and 𝑓 is not
identically∞) and 𝜉 ∈ ri(dom𝑓). Then the following statements are equivalent.

(a) For some 𝑏 ∈ ℝ, 𝜕𝑓(𝜉) ⊂ {ℎ ∈ ℝ𝑑 ∶ ℎ ⋅ 𝜉 = 𝑏}.
(b) 𝑓∗ is constant over 𝜕𝑓(𝜉).
(c) 𝑡 ↦ 𝑓(𝑡𝜉) is differentiable at 𝑡 = 1.

Proof. (a)⟹ (b). For all ℎ ∈ 𝜕𝑓(𝜉), 𝑓∗(ℎ) = ℎ ⋅ 𝜉 − 𝑓(𝜉) = 𝑏 − 𝑓(𝜉).
(b) ⟹ (a). Suppose 𝑓∗(ℎ) = 𝑠 for all ℎ ∈ 𝜕𝑓(𝜉). Then for all ℎ ∈ 𝜕𝑓(𝜉), ℎ ⋅ 𝜉 =

𝑓∗(ℎ) + 𝑓(𝜉) = 𝑠 + 𝑓(𝜉).
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(c)⟹ (a). Let 𝑏 = (𝑑/𝑑𝑡)𝑓(𝑡𝜉)|𝑡=1 and ℎ ∈ 𝜕𝑓(𝜉). Then for all |𝑠| ≤ 𝜀, by convexity,
𝑓(𝜉 + 𝑠𝜉) − 𝑓(𝜉) ≥ 𝑠ℎ ⋅ 𝜉. This says that ℎ ⋅ 𝜉 lies in the subdifferential of the function
𝑡 ↦ 𝑓(𝑡𝜉) at 𝑡 = 1, but by assumption this latter equals the singleton {𝑏}.
(a) ⟹ (c). The directional derivatives satisfy the following, where in both equa-

tions the second equality comes from [17, Thm. 23.4].

𝑓′(𝜉; 𝜉) = lim
𝑠↘0

𝑓(𝜉 + 𝑠𝜉) − 𝑓(𝜉)
𝑠 = sup{𝜉 ⋅ ℎ ∶ ℎ ∈ 𝜕𝑓(𝜉)} = 𝑏

and

𝑓′(𝜉; −𝜉) = lim
𝑠↘0

𝑓(𝜉 − 𝑠𝜉) − 𝑓(𝜉)
𝑠 = sup{−𝜉 ⋅ ℎ ∶ ℎ ∈ 𝜕𝑓(𝜉)} = −𝑏.

From this we see the equality of the left and right derivatives of 𝜑(𝑡) = 𝑓(𝑡𝜉) at 𝑡 = 1:

𝜑′(𝑡−) = lim
𝑡↗0

𝑓(𝜉 + 𝑡𝜉) − 𝑓(𝜉)
𝑡 = −𝑓′(𝜉; −𝜉) = 𝑏

and
𝜑′(𝑡+) = lim

𝑡↘0

𝑓(𝜉 + 𝑡𝜉) − 𝑓(𝜉)
𝑡 = 𝑓′(𝜉; 𝜉) = 𝑏. □
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