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Abstract. We study the behavior of the coupling of solutions to the stochastic heat equa-
tion/parabolic Anderson model (PAM) obtained through convolution with the Greens func-
tion. In this coupling, we show that the PAM with a (sub-)exponentially growing initial
condition has conserved quantities given by the slopes at 8 and ´8. These are then
connected to Hopf-Cole solutions to the KPZ equation and the existence, regularity, and
continuity of the quenched continuum polymer measures. We also show that the Green’s
function is strictly totally positive using a novel coupling argument based on the continuum
directed polymer.
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1. Introduction

This paper is concerned with regularity properties of three interconnected models which
have attracted substantial interest over recent decades: the parabolic Anderson model
(PAM), also known as the multiplicative stochastic heat equation, the Kardar-Parisi-Zhang
(KPZ) equation, and the continuum directed polymer (CDRP). We refer the reader to the
surveys [12, 13, 32, 43, 44] for more information about the broader research area of the KPZ
universality class.

The main object we study is the Green’s function of the PAM, which solves the stochastic
partial differential equation

(1.1)
BtZβpt, x|s, yq “

1

2
BxxZβpt, x|s, yq ` βZβpt, x|s, yqW pt, xq

Zβps, x|s, yq “ δpx ´ yq,

ps, y, t, xq P R4

Ò
“ tps, y, t, xq P R4 : s ď tu and β P R. In this expression, W is space-time

white noise and δ is the Dirac delta measure at 0.
We use the behavior of the Green’s function to control the behavior of the PAM started

from a more general initial condition

(1.2)
BtZβpt, x|s;µq “

1

2
BxxZβpt, x|s;µq ` βZβpt, x|s;µqW pt, xq

Zβps, ¨|s;µq “ µp¨q,

where µ is a positive Borel measure through the superposition identity

Zβpt, x|s;µq “

ż 8

´8

Zβpt, x|s, yqµpdyq.(1.3)

When µpdxq “ fpxqdx for a sufficiently regular Borel measurable function f , which corre-
sponds to function-valued initial conditions, we will instead write Zβpt, x|s; fq as shorthand.
The PAM is connected to the KPZ equation, introduced in [36], through formal computa-

tions which defines the physically relevant “Hopf-Cole” solution. Ignoring the distributional
structure of W , formal computation suggests that if Zβpt, x|s; ef q solves (1.2) for a Borel
measurable f , then

hβpt, x|s; fq “ logZβpt, x|s; ef q(1.4)

solves the KPZ equation

(1.5)
Bthβpt, x|s; fq “

1

2
Bxxhβpt, x|s; fq `

1

2
pBxhβpt, x|s; fqq

2
` βW pt, xq

hβps, x|s; fq “ fpxq.

The Hopf-Cole notion of solution defines the solution hβ of (1.5) through (1.4). Hopf-Cole
solutions arise as a limit of lattice and continuum models which lie in the KPZ class, see
e.g., [2, 6, 31], and is the standard notion of solution to (1.5).
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Formally, one expects that the solution to (1.1) has a Feynman-Kac interpretation as

(1.6)

Zβpt, x|s, yq “ ρpt ´ s, x ´ yqZβpt, x|s, yq, where

Zβpt, x|s, yq “ EBB
ps,yq,pt,xq

„

: exp:

"

β

ż t

s

W pu,Xuqdu

*ȷ

,

and ρpt, xq is the heat kernel,

ρpt, xq “
1

?
2πt

e´x2

2t 1p0,8qptq.

In the expression in (1.6), :exp: denotes the Wick-ordered exponential, and the expectation
is over Brownian bridge paths X from ps, yq to pt, xq. In this interpretation, Zβpt, x|s, yq can
be viewed as the partition function of a point-to-point directed polymer measure which is
intuitively (but not truly [1, Theorem 4.5]) a Gibbsian perturbation of the Brownian bridge
measure. The interpretation of the solution to (1.1) as (1.6) was made rigorous in [1, 2] when
the initial and terminal conditions are fixed. The KPZ equation can then be interpreted as
governing the evolution of the free energy of this polymer.

To make the above discussion more precise, for ´8 ă s ă t ă 8 and x, y P R, the
(quenched) point-to-point polymer distribution Qβ

ps,yq,pt,xq
is the probability measure on the

space Cprs, ts,Rq of continuous functions determined by the following finite-dimensional dis-
tributions, for s “ t0 ă t1 ă ¨ ¨ ¨ ă tk ă tk`1 “ t and with x0 “ x, xk`1 “ y:

(1.7)

Qβ
ps,yq,pt,xq

pXt1 P dx1, . . . Xtk P dxkq “

śk
i“0 Zβpti`1, xi`1|ti, xiq

Zβpt, x|s, yq
dx1:k

“

śk
i“0Zβpti`1, xi`1|ti, xiq

Zβpt, x|s, yq
¨

śk
i“0 ρpti`1 ´ ti, xi`1 ´ xiq

ρpt ´ s, x ´ yq
dx1:k.

1.1. Summary of main results. With the above discussion of the models we consider in
mind, the main contributions of this paper can be summarized as follows.

(i) We show that the Polish space (see Appendix D)

MHE “

"

non-zero positive Borel measures µ on R : @a ą 0,

ż

R
e´ax2

µpdxq ă 8

*

,(1.8)

previously studied in the context of the PAM by Chen and Dalang in [10, 11], is the
sharp class of non-explosive initial conditions for the PAM. By sharp, we mean that
for all initial and terminal times s ă t and all β simultaneously, (1.3) is finite for all x
if µ P MHE and there is finite time blowup if µ R MHE. We show in Theorem 2.5 that
this blow-up time is the same as for the β “ 0 case of the unforced heat equation.

(ii) We show that the Polish space (see Appendix D) of strictly positive continuous
functions which represent measures in MHE,

CHE “

"

f P CpR, p0,8qq : @a ą 0,

ż

R
e´ax2

fpxqdx ă 8

*

,(1.9)

is a natural domain for the PAM. This is natural in two distinct ways: (1) if µ P MHE

then for all s ă t, Zβpt, ‚ |s;µq P CHE and (2), if µ is represented by a function in CHE,
pβ, µ, s, tq ÞÑ Zβpt, ‚ |s;µq is continuous. See Theorem 2.8.
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As a consequence,the Polish space of logs of such functions,

CKPZ “

"

f P CpR,Rq : @a ą 0,

ż

R
efpxq´ax2

dx ă 8

*

.(1.10)

is a natural domain for Hopf-Cole solutions to the KPZ equation in the sense that
solutions to (1.5) from any function-valued initial condition f either explode in finite
time or can be viewed as continuous dynamical systems in CKPZ.

(iii) Using our coupling and growth estimates, we prove conservation of slope at 8 and
´8. Specifically, we show that if there exist λ`, λ´ P R such that

lim
xÑ˘8

log fpxq

x
“ λ˘, then lim

xÑ˘8

logZβpt, x|s; fq

x
“ λ˘

for all s ă t and β P R.
(iv) We construct a coupling of the continuum directed polymer measures for all initial

and terminal conditions and all inverse temperatures simultaneously. We also prove
many basic properties including weak and total variation regularity in the initial and
terminal conditions, variants of the Feller and strong Feller properties, simultaneous
Hölder 1{2´ path regularity, and stochastic monotonicity as the initial condition
varies. Essentially all of these properties are new.

(v) Through analysis of the polymer measures and an argument based on the Karlin-
McGregor theorem, we prove that the map px, yq ÞÑ Zβpt, x|s, yq is strictly to-
tally positive for all t ą s and β P R. More precisely, we show that for all
px1, . . . , xnq, py1, . . . , ynq P Wn “ tpx1, . . . , xnq P Rn : x1 ă ¨ ¨ ¨ ă xnu and all β P R,

det
“

Zβpt, xi |s, yjq
‰n

i,j“1
ą 0.(1.11)

Essentially the same strict total positivity appears in [38] using a different argument.
Our proof readily generalizes to other planar directed polymer models.

This paper provides the setting for a companion paper by the last three authors, [34], where
synchronization, a quenched one force – one solution principle, and a characterization of
ergodic stationary (modulo constants) distributions for the KPZ equation are proven. Com-
bined with [20], which rules out an exceptional class of measures not covered by the methods
of [34], that paper shows that Brownian motions with drift are the only stationary distribu-
tions for the KPZ equation on the sharp space of non-explosive initial conditions described
above. The results described above play a key role in that proof.

1.2. Methods. The key heuristic behind the regularity results discussed above is that if
t ´ s is small, then

Zβpt, x|s, yq “ EBB
ps,yq,pt,xq

„

: exp:

"

β

ż t

s

W pu,Xuqdu

*ȷ

should be close to one. This suggests that all of the singularity of Zβpt, x|s, yq as t ´ s Ñ 0
is contained in the heat kernel, ρpt´ s, x´ yq. Using the fact that Zβpt, x|s, yq is stationary
in its spatial coordinates, it is possible to obtain upper and lower bounds for Zβpt, x|s, yq

and 1{Zβpt, x|s, yq which are uniform over compact intervals in time and sub-polynomial in
space. Our methods to prove these regularity estimates are classical and we do not need to use
any of the pathwise solution theories which have been developed to handle rough equations.
We prove Kolmogorov-Chentsov estimates from the chaos expansion of the solution to (1.1),
keeping track of the growth rates of the constants.



GREEN’S FUNCTION OF THE PARABOLIC ANDERSON MODEL 5

With the growth estimates in hand, we can then reduce most of the regularity questions to
problems involving the heat semi-group, where standard analytic arguments imply regularity.

Similarly, using the absolute continuity of finite dimensional distributions of the polymer
with respect to Brownian Bridge in (1.7), most of the regularity statements for polymer
measures can be reduced to uniform estimates for the finite dimensional distributions of
Brownian bridge measures.

Our proof of strict total positivity comes from a coupling of the polymer measures and
relies on the Karlin-McGregor [37] identity for the density function of independent copies of
a Markov chain conditioned not to intersect. We provide a proof of this identity applicable
to our setting that follows a well-known argument originally due to Varadhan.

1.3. Related work. Using the superposition principle to define general solutions to (1.2)
has been studied previously. See in particular , [1], [15, Lemma 1.18], and [30]. [30] proves a
regularity result of the solution semi-group to (1.1) similar to our Theorem 2.8, which is one of
our main results discussed as point (i) above. In that result, the space on which the solution
semi-group acts (MHE or CHE) is replaced by a weighted Besov space. The construction in
[30] and the resulting coupling is sharper than ours in terms of local regularity of the solution
(allowing negative index distribution initial conditions), but does not cover the sharp growth
conditions that were of interest to us from the ergodic theory perspective.

There has been extensive past work on mild solutions to (1.1). The first paper to study
mild solutions was by Bertini and Cancrini in [5], with subsequent work by Bertini and
Giacomin [6] allowing for random initial conditions which include the Brownian stationary
distributions. The state-of-the-art for non-random initial conditions is the previously men-
tioned series of works by Chen and Dalang [10, 11], which worked on the same class of initial
measures MHE considered here.
In addition to [30], there is now a rich literature of pathwise approaches to solving sto-

chastic partial differential equations including and related to (1.1) and (1.5) using regularity
structures [28, 29], paracontrolled distributions [26, 42], and energy solutions [23, 24, 27].
See also the recent surveys [16, 25].

The CDRP was originally introduced in [1] with a construction that requires fixing initial
and terminal conditions. Existence then holds on an event of full probability that depends on
the initial and terminal conditions. Our contribution in this work is to couple these solutions
and then prove the regularity properties discussed above.

1.4. Organization of the paper. Nonstandard notation is defined when first encountered,
and all notational conventions and some topological and measure-theoretic preliminaries are
collected in Appendix D. In Section 2, we discuss our setting and state our main results.
Section 3 then constructs the field of solutions to (1.1), proves growth estimates, and then
uses these to prove basic properties about solutions to (1.2). In Section 4, we use these results
to build and prove regularity properties of the continuum directed polymer measures, which
lead in particular to the strict total positivity in (1.11). We study more refined regularity
properties of solutions to (1.2) and of polymers in Section 5. Appendix A is devoted to
the equivalence up to indistinguishability between the superposition solution to (1.2) and
the mild solutions which have previously been studied. Appendix B includes a statement of
the version of the Kolmogorov-Chentsov theorem that we use in our construction. Finally,
Appendix C collects most of the purely computational aspects of the present work.
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2. Setting and results

2.1. Setting. We assume that pΩ,F ,Pq is a complete probability space that supports a
space-time white noiseW on L2pR2

q and a group of measure-preserving automorphisms of Ω
which we describe momentarily. A white noise W is a mean zero Gaussian process indexed
by f P L2pR2

q which satisfies PpW paf ` bgq “ aW pfq ` bW pgqq “ 1 and ErW pfqW pgqs “
ş

R2 fpx1:2qgpx1:2qdx1:2 for a, b P R and f, g P L2pR2
q.

The shift maps Ts,y, time and space reflection maps R1 and R2, the shear Ss,ν by ν relative
to temporal level s, rescaled dilation maps Dα,λ, and the negation map N act on f P L2pR2

q

as follows:

(2.1)

Ts,y fpt, xq “ fpt ` s, x ` yq for s, y P R;
R1 fpt, xq “ fp´t, xq and R2 fpt, xq “ fpt,´xq;

Ss,ν fpt, xq “ fpt, x ` νpt ´ sqq for s, ν P R;

Dα,λ fpt, xq “
?
αλfpαt, λxq for α, λ ą 0;

N fpt, xq “ ´fpt, xq.

Their inverses are T´1
t,x “ T´t,´x,R

´1
1 “ R1,R

´1
2 “ R2, S

´1
s,ν “ Ss,´ν , D

´1
α,λ “ Dα´1,λ´1 , and

N´1
“ N.

We assume that pΩ,F ,Pq comes equipped with a group (under composition) of measure-
preserving automorphisms generated by R1, R2 (reflection), tTs,y : s, y P Ru (translation),
tSs,ν : s, ν P Ru (shear), tDα,λ : α, λ ą 0u (dilation), and N (negation), which act on
W by W ˝ Ts,ypfq “ W pT´s,´y fq, W ˝ Ss,νpfq “ W pSs,´ν fq, W ˝ R1pfq “ W pR1 fq,
W ˝ R2pfq “ W pR2 fq, W ˝ Dα,λpfq “ W pDα´1,λ´1 fq, and W ˝ N “ W pN fq. The identity
is given by Id “ T0,0 “ R1 ˝R1 “ R2 ˝R2 “ S0,0 “ D1,1. An example of a Polish space
satisfying these hypotheses in which all of these maps are continuous is described in detail
in [34, Appendix A].

Denote byN the σ-algebra generated by the P-null sets in F . For ´8 ď a ă b ď 8, let La,b

denote the Bpra, bs ˆRq measurable functions in L2pR2q. Let FW,0
s,t “ σpW pfq : f P Ls,tq _N

be the σ-algebra generated by the white noise evaluated at such functions and N. For each
s ď t, we define FW

s,t “ FW,0
s´,t` “

Ş

aăsďtăb F
W,0
a,b to be the associated natural augmented

filtration of the white noise.

2.2. Chaos expansions. We take as given the existing results in the literature on existence
of solutions to (1.1) for fixed initial space-time points. We recap the results that we use in
Appendix A. We will understand (1.1) for fixed s, y P R and β P R through the mild equation

Zβpt, x|s, yq “ ρpt ´ s, x ´ yq ` β

ż t

s

ż 8

´8

ρpt ´ u, x ´ zqZβpu, z |s, yqW pdudzq,(2.2)

where t ą s, x P R, and the stochastic integral is understood in the sense of Walsh [47]. In
the case of β “ 0, Z0pt, x|s, yq “ ρpt´ s, x´ yq is the usual heat kernel. For β P R, existence
of an event Ωs,y,β on which there exists a process Zβp‚, ‚ |s, yq P Cpps,8q ˆ R,Rq which is
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adapted to pFW
s,t : s ď tq and solves (2.2) is originally due to [5] and is included as part of

Lemma A.3 in Appendix A below.
Solving (2.2) by Picard iteration leads to a chaos expansion of the solution. For k P N, we

define ρk : pRˆRqk Ñ R by

ρkpt1:k, x1:k |s, y; t, xq “

k
ź

i“0

ρpti`1 ´ ti, xi`1 ´ xiq,

with the conventions that t0 “ s, x0 “ y, tk`1 “ t, xk`1 “ x. It is shown in [2] (see also [14,
Theorem 2.2]) that for fixed s, y P R and β P R the unique continuous and adapted solution
to (2.2), Zβpt, x|s, yq, admits a chaos series representation as

(2.3)

Zβpt, x|s, yq “ ρpt ´ s, y ´ xq

`

8
ÿ

k“1

βk

ż

Rk

ż

Rk

ρkpt1:k, x1:k|s, y; t, xqW pdt1dx1q ¨ ¨ ¨W pdtkdxkq.

The equality above is understood to hold almost surely and in L2pΩ,F ,Pq for each fixed
quadruple ps, y, t, xq P R4

Ò
“ tps, y, t, xq P R4 : s ă tu and β P R. We include these properties

of Zβpt, x|s, yq in Lemma A.3 below as well and refer the reader to [35, 41] for technical
details concerning chaos expansions.

It will be convenient for us to normalize (2.3) by dividing through by the heat kernel.
Define for s ă t

(2.4)

Zβpt, x|s, yq “
Zβpt, x|s, yq

ρpt ´ s, x ´ yq

“ 1 `

8
ÿ

k“1

βk

ż

Rk

ż

Rk

ρkpt1:k, x1:k|s, y; t, xq

ρpt ´ s, x ´ yq
W pdt1dx1q ¨ ¨ ¨W pdtkdxkq,

again in L2pΩ,F ,Pq. We take the conventions that for all β P R, Zβpt, x|t, yq “ 1 for all

t, x, y P R and Z0pt, x|s, yq “ 1 for all ps, y, t, xq P R4

Ò
“ tps, y, t, xq P R4 : s ď tu. The

expression in (2.4) is a rigorous version of the Feynman-Kac interpretation (1.6).

2.3. Solutions to the PAM and KPZ. We begin with the observation that the pro-

cess Z admits a modification rZ that is pFW
s,t : s ď tq-adapted, with paths as functions of

ps, y, t, x, βq taking values in CpR4

Ò
ˆ R,Rq. Then we define our solution of (1.1) through

rZβpt, x|s, yq “ rZβpt, x|s, yqρpt ´ s, x ´ yq. In the theorem below, Dd
“ tp k1

2n1
, . . . , kd

2nd
q :

k1, . . . , kd P Z, n1, . . . , nd P Nu is the set of dyadic rational numbers.

Theorem 2.1. There exists an event Ω0 with PpΩ0q “ 1 and a σpW pfq : f P L2pR2qq-

measurable random variable rZ ‚ p‚, ‚|‚, ‚q taking values in CpR4

Ò
ˆ R,Rq such that

(i) For all ω P Ω0, all ps, y, t, x, βq P D5 with s ă t,

Zβpt, x|s, yq “ rZβpt, x|s, yq and Zβpt, x|s, yq “ ρpt, x|s, yq rZβpt, x|s, yq,

where Zβpt, x|s, yq is given by (2.4) and Zβpt, x|s, yq is given by (2.3).

(ii) For all ω P Ω0, rZβpt, x|t, yq “ 1 for all t, x, y P R and β P R.
(iii) For all ω P Ω0, rZ0pt, x|s, yq “ 1 for all ps, y, t, xq P R4

Ò
.

(iv) For all ω P Ω0 and all ps, y, t, xq P R4

Ò
and all β P R, 0 ă rZβpt, x|s, yq ă 8.
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(v) For all s ă t, rZ ‚ pt, ‚|s, ‚q is FW
s,t-measurable.

(vi) Fix the initial time-space point ps, yq P R2 and the inverse temperature β ‰ 0. Define

the process rZβpt, x|s, yq on tpt, xq P R2 : t ą su by rZβpt, x|s, yq “ rZβpt, x|s, yqρpt ´

s, x ´ yq. Then

P
ˆ

@t P ps,8q and x P R, rZβpt, x|s, yq “ Zβpt, x|s, yq

˙

“ 1,

where Zβpt, x|s, yq is the unique (up to indistinguishability) continuous and adapted
mild solution to (2.2) satisfying the moment hypotheses of Lemma A.3.

Except in the proofs leading up to the proof of Theorem 2.1 in Section 3, henceforth we

work exclusively with these modifications and drop the tildes. That is, the process rZβ given

by the theorem is denoted simply by Zβ, and the process rZβ defined in part (vi) of the
theorem is denoted simply by Zβ.
The processes Zβ and Zβ inherit certain distributional invariance properties from the joint

symmetries of the Brownian transition probabilities appearing in the multiple stochastic
integrals in (2.3) and (2.4) and the symmetries of the white noise. The following properties
are all reasonably well-known. We include the details for completeness.

Proposition 2.2. The processes Zβpt, x|s, yq and Zβpt, x|s, yq satisfy the following proper-
ties:

(i) (Shift) For each u, z P R, there is an event Ωshiftpu,zq with PpΩshiftpu,zqq “ 1 so that on

Ωshiftpu,zq for all ps, y, t, x, βq P R4

Ò
ˆ R,

Zβpt ` u, x ` z|s ` u, y ` zq ˝ T´u,´z “ Zβpt, x|s, yq

and, for all ps, y, t, x, βq P R4
Ò

ˆR,
Zβpt ` u, x ` z|s ` u, y ` zq ˝ T´u,´z “ Zβpt, x|s, yq.

(ii) (Reflection) There is an event ΩR with PpΩRq “ 1 so that on ΩR, for all ps, y, t, x, βq P

R4

Ò
ˆ R,

Zβp´s, y| ´ t, xq ˝ R1 “ Zβpt, x|s, yq and Zβpt,´x|s,´yq ˝ R2 “ Zβpt, x|s, yq

and, for all ps, y, t, x, βq P R4
Ò

ˆR,
Zβp´s, y| ´ t, xq ˝ R1 “ Zβpt, x|s, yq and Zβpt,´x|s,´yq ˝ R2 “ Zβpt, x|s, yq.

(iii) (Shear) For each pr, νq P R2, there exists an event Ωshearpr,νq with PpΩshearpr,νqq “ 1 so

that on Ωshearpr,νq, for all ps, y, t, x, βq P R4

Ò
ˆ R,

Zβpt, x ` νpt ´ rq|s, y ` νps ´ rqq ˝ Sr,´ν “ Zβpt, x|s, yq,

and, for all ps, y, t, x, βq P R4
Ò

ˆR,

eνpx´yq` ν2

2
pt´sqZβpt, x ` νpt ´ rq|s, y ` νps ´ rqq ˝ Sr,´ν “ Zβpt, x|s, yq.

(iv) (Scaling) For each λ ą 0, there is an event Ωscalepλq with PpΩscalepλqq “ 1 so that on

Ωscalepλq, for all ps, y, t, x, βq P R4

Ò
ˆ R,

Zβ{
?
λpλ2t, λx|λ2s, λyq ˝ Dλ´2,λ´1 “ Zβpt, x|s, yq,
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and for all ps, y, t, x, βq P R4
Ò

ˆR,

λZβ{
?
λpλ2t, λx|λ2s, λyq ˝ Dλ´2,λ´1 “ Zβpt, x|s, yq.

(v) (Negation) There is an event ΩN with PpΩN q “ 1 so that on ΩN , for all ps, y, t, x, βq P

R4

Ò
ˆ R,

Zβpt, x|s, yq ˝ N “ Z´βpt, x|s, yq

and, for all ps, y, t, x, βq P R4
Ò

ˆR,
Zβpt, x|s, yq ˝ N “ Z´βpt, x|s, yq.

We note the following corollary, the distributional part of which has appeared previously
as [3, Proposition 1.4], with the same argument.

Corollary 2.3. For each s ă t and z P R, let r “ s and set ν “ z{pt ´ sq. Then, on
Ωshearps,νq, for all x, y, β P R,

Zβpt, x ` z |s, yq ˝ Ss,´ν “ Zβpt, x|s, yq.

Consequently, for each s, y, t, β P R with s ă t, the process x ÞÑ Zβpt, x|s, yq is stationary.

It will be convenient to extend the notation (1.3) to allow for positive Borel measures
ζ, µ P M`pRq as initial or terminal conditions by setting, for s ă t and β P R,

Zβpt; ζ|s;µq “

ż

R

ż

R
Zβpt, x|s, yqµpdyqζpdxq P r0,8s.(2.5)

The special cases Zβpt, x|s;µq “ Zβpt; δx|s;µq and Zβpt; ζ|s, yq “ Zβpt; ζ|s; δyq return (1.3).
Some of our results will rely on finiteness of certain joint moments of these measures. For
p P r0,8q, recalling (1.8) we define

M2
HEppq “

"

pµ, ζq P M2
HE : @a ą 0,

ż

R

ż

R
e´apw´zq2

p1 ` |w|
p

` |z|
p
qµpdwqζpdzq ă 8

*

(2.6)

and note that M2
HEpqq Ă M2

HEppq for 0 ď p ă q ă 8. These spaces mostly serve as
bookkeeping tools to simplify the statements of our results. We usually work with the case
where at least one of the two measures is Dirac, which always results in a pair of measures
in M2

HEppq for all p, as recorded in the following remark:

Remark 2.4. For all x, y P R and all µ, ζ P MHE, and all p P r0,8q, pζ, δyq, pδx, µq P M2
HEppq.

Our next result discusses some basic properties of Z‚ p‚, ‚|‚, ‚q viewed as the solution semi-
group of (1.2), including finiteness, sharpness of the restriction to MHE, and regularity of the
processes in (2.5). Before stating the result, we collect some notation which is also recorded
in Appendix D. In the statement of part (iv), the local Hölder semi-norm

(2.7) |f |Cα,γ,ηpΓq “ sup
pt1,x1,s1,β1q

‰pt2,x2,s2,β2q PΓ

|fpt1, x1, s1, β1q ´ fpt2, x2, s2, β2q|

|t2 ´ t1|α ` |s2 ´ s1|α ` |x2 ´ x1|γ ` |β2 ´ β1|η

is defined on the space

Γ “ R3
Ò
pT,K, δq ˆ r´B,Bs

“ tps, t, x, βq P R4 : ´T ď s, t ď T, ´K ď x ď K, t ´ s ě δ, ´B ď β ď Bu.
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Recall also the spaces MHE, CHE from (1.8) and (1.9). In Appendix D, we define Polish
topologies on MHE and CHE, with explicit complete metrics dMHE

and dCHE
in equations

(D.2) and (D.6). Convergence in MHE is characterized by vague convergence combined with

convergence of integrals of the form
ş

e´ax2
µpdxq for each a ą 0. In CHE, the convergence

is uniform convergence of f and 1{f on compact sets combined with convergence of the

integrals
ş

R e
´ax2

fpxqdx for a ą 0.

Theorem 2.5. There is an event Ω0 with PpΩ0q “ 1 so that for all ω P Ω0, the following
hold:

(i) (Finiteness and positivity) For all pµ, ζq P M2
HEp4q and all s, t, β P R with s ă t,

0 ă Zβpt; ζ|s;µq ă 8.

(ii) (Preservation of MHE) If µ, ζ P MHE then for all s ă t and all β P R,
Zβpt, x|s;µqdx, Zβpt; ζ|s; yqdy P MHE .

(iii) (Explosion off MHE) If µ, ζ P M`pRq are both not the zero measure, then

1

2pt ´ sq
ă sup

"

a ą 0 :

ż

e´ay2µpdyq “ 8 or

ż

e´ax2

ζpdxq “ 8

*

implies that Zβpt; ζ|s;µq “ 8 for all β P R.
(iv) (Local (1{4´, 1{2´, 1´) Hölder continuity) For all µ, ζ P MHE, all δ ą 0, all

B,K, T ą 0, and all α P p0, 1{4q, γ P p0, 1{2q, and η P p0, 1q, |Z‚ p‚, ‚|‚;µq|Cα,γ,ηpΓq ă 8

and |Z‚ p‚; ζ|‚, ‚q|Cα,γ,ηpΓq ă 8.

(v) (Semi-group property) For all µ P M`pRq, all ps, y, t, x, βq P R4
Ò

ˆR, and all r P ps, tq,

Zβpt, x|s;µq “

ż

R
Zβpt, x|r, zqZβpr, z |s;µqdz and

Zβpt;µ|s, yq “

ż

R
Zβpt;µ|r, zqZβpr, z |s, yqdz.

(vi) (Function-valued initial conditions) For all B,K, T ą 0 and all f P CHE,

lim
δŒ0

sup
yPr´K,Ks,βPr´B,Bs

s,tPr´T,T s,t´sPp0,δq

dCHE
pf,gqăδ

ˇ

ˇ

ˇ

ˇ

ż

R
Zβpt, x|s, yqgpxqdx ´ fpyq

ˇ

ˇ

ˇ

ˇ

“ 0 and

lim
δŒ0

sup
xPr´K,Ks,βPr´B,Bs

s,tPr´T,T s,t´sPp0,δq

dCHE
pf,gqăδ

ˇ

ˇ

ˇ

ˇ

ż

R
Zβpt, x|s, yqgpyqdy ´ fpxq

ˇ

ˇ

ˇ

ˇ

“ 0.

(vii) (Measure-valued initial conditions) For all T,B ą 0, all µ P MHE, and all f P

CpR,R`q for which there exist A, a ą 0 such that 0 ď fpxq ď Ae´ax2
,

lim
δŒ0

sup
βPr´B,Bs,s,tPr´T,T s

dMHE
pµ,ζqăδ,t´sPp0,δq

ˇ

ˇ

ˇ

ˇ

ż

R

ż

R
fpxqZβpt, x|s, yqdxζpdyq ´

ż

R
fpyqµpdyq

ˇ

ˇ

ˇ

ˇ

“ 0 and

lim
δŒ0

sup
βPr´B,Bs,s,tPr´T,T s

dMHE
pµ,ζqăδ,t´sPp0,δq

ˇ

ˇ

ˇ

ˇ

ż

R

ż

R
fpyqZβpt, x|s, yqdyζpdxq ´

ż

R
fpxqµpdxq

ˇ

ˇ

ˇ

ˇ

“ 0.
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Remark 2.6. The case of ζpdzq “ δxpdzq in part (i) and the claim in part (iv) were shown
for fixed µ P MHE and fixed s, β P R on a full probability event depending on µ, s, and β
in Theorem 3.1 of [10]. Strict positivity for certain fixed function-valued initial conditions
and fixed initial times s is originally due to Mueller [40], though the proof generalizes to
other initial conditions. We rely on the later estimates of Moreno-Flores in [39]. Part (vii)
improves on Proposition 3.4 in [10], where the limit holds pointwise in L2pΩ,F ,Pq for fixed
φ, µ “ ζ, β, and s and φ is taken to be compactly supported.

Remark 2.7. A boundary continuity result similar to (vi) appears in Theorem 3.1 of [10],
which includes a Hölder regularity estimate at the boundary for Hölder continuous initial
data, again for fixed µ, s. Our methods can prove similar boundary regularity, but with
suboptimal Hölder exponents. We leave this improvement to future work. The only result
which needs to be improved to obtain optimal regularity at the boundary is Lemma C.8,
where the bound needs to not depend on δ in order to obtain optimal regularity.

Theorem 2.5(v) says that (1.3) defines a solution semi-group to (1.2). We next turn to
the regularity of this semi-group on natural spaces of measures and functions given by MHE

and CHE. We take the following notational conventions. If µ P MHE and f P CHE, then for
all β P R and s ď t, we set

(2.8)

Zβpt, dx|s;µq “

#

Zβpt, x|s;µqdx s ă t

µpdxq s “ t
and

Zβpt;µ|s, dyq “

#

Zβpt;µ|s, yqdy s ă t

µpdyq s “ t
.

Similarly, if f P CHE, then for all β, t P R, we set

Zβpt, ‚ |t; fq “ fp‚q and Zβpt; f |t; ‚q “ fp‚q

With these conventions, we have the following regularity result.

Theorem 2.8. There exists an event Ω0 with PpΩ0q “ 1 on which the following hold.

(i) The following maps from R ˆ MHE ˆtps, tq P R2 : s ď tu to MHE are continuous:

pβ, µ, s, tq ÞÑ Zβpt, dx|s;µq and pβ, µ, s, tq ÞÑ Zβpt;µ|s, dyq.

(ii) The following maps from R ˆ MHE ˆtps, tq P R2 : s ă tu to CHE are continuous:

pβ, µ, s, tq ÞÑ Zβpt, ‚ |s;µq and pβ, µ, s, tq ÞÑ Zβpt;µ|s, ‚q.

(iii) The following maps from R ˆ CHE ˆtps, tq P R2 : s ď tu to CHE are continuous:

pβ, f, s, tq ÞÑ Zβpt, ‚ |s; fq and pβ, f, s, tq ÞÑ Zβpt; f |s, ‚q.

Recall the space CKPZ from (1.10). Note that the bijection gpxq “ efpxq between g P CHE

and f P CKPZ defines a Polish topology on CKPZ (i.e., the topology on CKPZ is the finest
topology in which this identification is continuous). Convergence in this topology is local

uniform convergence of f combined with convergence of integrals of the form
ş

R e
fpxq´ax2

dx
for a ą 0. We record the following immediate corollary of Theorem 2.8(iii) for the KPZ
equation
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Corollary 2.9. There exists an event Ω0 with PpΩ0q “ 1 on which the map from R ˆ

CKPZ ˆtps, tq P R2 : s ď tu to CKPZ given by

pβ, f, s, tq ÞÑ hβpt, ‚ |s; fq,

where hβ is defined through (1.4) if s ă t and hβps, ‚ |s; fq “ fp‚q is continuous.

Remark 2.10. (Uniqueness) Because R ˆ CKPZ ˆtps, tq P R2 : s ď tu is separable and Lemma
A.5 shows that for fixed s, β P R and f P CKPZ, (1.4) agrees with the Hopf-Cole mild
formulation, Corollary 2.9 shows that (1.4) describes the unique continuous modification of
the field of Hopf-Cole solutions of the KPZ equation, up to indistinguishability.

Remark 2.11. (Feller continuity of KPZ on CKPZ) An immediate consequence of Corollary 2.9
is that if F : CKPZ Ñ R is bounded and continuous and if f Ñ g in the topology on CKPZ and
s ă t, then ErF phβpt, ‚ |s; fqqs Ñ ErF phβpt, ‚ |s; gqqs. This is Feller continuity of the solution
semi-group to the KPZ equation, viewed as a CKPZ-valued Markov process.

We next show that the solution h “ logZβ to the KPZ equation (1.5) satisfies the same
conservation law (of asymptotic slope) as is preserved by the unforced viscous Burgers equa-
tion. To that end, for λ´, λ` P R, define

(2.9) Hpλ´, λ`q “

"

f : R Ñ R Borel measurable, locally bounded, lim
xÑ˘8

fpxq

x
“ λ˘

*

.

Proposition 2.12. There is an event Ω0 with PpΩ0q “ 1 so that on Ω0, the following holds:
for all λ`, λ´, β P R, all f P Hpλ´, λ`q, and all s ă t, hβpt, ‚ |s; fq, hβpt; f |s, ‚q P Hpλ´, λ`q,
where hβ is defined through (1.4).

2.4. Quenched continuum directed polymers. Next, we turn to the structure of poly-
mer measures. We first show that there is an event of full probability on which the quenched
point-to-point measures defined in (1.7) all exist, are supported on Hölder p1{2q´ paths, are
Feller, and satisfy basic continuity and measurability properties.

In the statement of the following result, EQβ

ps,yq,pt,xq
is the expectation under Qβ

ps,yq,pt,xq
. The

path space Crs,ts “ Cprs, ts,Rq is endowed with its uniform topology and Borel σ-algebra
BpCrs,tsq, and |f |Cη

rs,ts
is the standard η-Hölder seminorm, which is defined in (D.1) in Ap-

pendix D. X “ pXuquPrs,ts is the path variable on Crs,ts and Gu,v “ σpXr : r P ru, vsq is the
natural filtration. BbpCrs,tsq is the space of bounded Borel functions and M1pCrs,tsq the space
of probability measures on Crs,ts, equipped with its standard topology of weak convergence
generated by CbpCrs,ts,Rq test functions.

Theorem 2.13. There exists an event Ω0 with PpΩ0q “ 1 so that for all ω P Ω0, the following
holds:

(i) (Existence and uniqueness) For each ps, y, t, x, βq P R4
Ò

ˆR, there exists a unique

probability measure Qβ
ps,yq,pt,xq

on pCrs,ts,BpCrs,tsqq with finite-dimensional marginals

(1.7).

(ii) (Hölder 1{2´ path regularity) For each ps, y, t, x, βq P R4
Ò

ˆR and η P p0, 1{2q,

Qβ
ps,yq,pt,xq

p|X|Cη
rs,ts

ă 8q “ 1(2.10)

and

Qβ
ps,yq,pt,xq

pXs “ yq “ Qβ
ps,yq,pt,xq

pXt “ xq “ 1.(2.11)
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(iii) (Markov property) For each ps, y, t, x, βq P R4
Ò

ˆR, each u, v satisfying s ă u ă v ă t,
and each F P BbpCru,vsq

EQβ

ps,yq,pt,xq
rF pX|ru,vsq|Gs,u,Gv,ts “ EQβ

pu,Xuq,pv,Xvq
rF pXqs Qβ

ps,yq,pt,xq
-a.s.

(iv) (Continuity) For all s ă t, the map px, y, βq ÞÑ Qβ
ps,yq,pt,xq

from R3 into M1pCrs,tsq is
continuous.

We next use the point-to-point polymers to construct measure-to-measure polymers for
pµ, ζq P M2

HEp4q. By Theorem 2.5(i), 0 ă Zβpt; ζ|s;µq ă 8 for all such pµ, ζq, s ă t and
β P R. Measure-to-measure polymer distributions on the path space Crs,ts are defined for
A P BpCrs,tsq by

Qβ
ps;µq,pt;ζq

pAq “
1

Zβpt; ζ|s;µq

ż

R

ż

R
Zβpt, x|s, yqQβ

ps,yq,pt,xq
pAqζpdxqµpdyq.(2.12)

Note that Qβ
ps,yq,pt,xq

“ Qβ
ps;δyq,pt;δxq

with this definition. We have the following basic prop-

erties of the measure-to-measure polymers, encompassing their existence, Hölder support,
Markovian structure, and regularity properties. In part (v) below, if µ ´ ζ is not a well-
defined signed measure on R, the total variation measure |µ´ ζ| is defined as a limit of the
(well-defined) total variation measures restricted to compact sets. See Appendix D.

Theorem 2.14. There is an event Ω0 with PpΩ0q “ 1 so that on Ω0, the following hold:

(i) (Existence and density) For all ps, y, t, x, βq P R4
Ò

ˆR and all pµ, ζq P M2
HEp4q, (2.12)

defines a probability measure on pCrs,ts,BpCrs,tsqq. For all t1:k satisfying s “ t0 ă t1 ă

¨ ¨ ¨ ă tk ă tk`1 “ t, the finite dimensional distributions of this measure are given by

(2.13)

Qβ
ps;µq,pt;ζq

pXs P dx0, Xt1 P dx1, . . . Xtk P dxk, Xt P dxk`1q

“ µpdx0qζpdxk`1q

śk
i“0 Zβpti`1, xi`1|ti, xiq

Zβpt; ζ|s;µq
dx1:k.

(ii) (Hölder 1{2´ path regularity) For each s ă t, each β P R, each pµ, ζq P M2
HEp4q and

each η P p0, 1{2q,

Qβ
ps;µq,pt;ζq

p|X|Cη
rs,ts

ă 8q “ 1.(2.14)

(iii) (Initial condition) For all β P R, all s ă t, all µ, ζ P MHE and all x, y P R,

Qβ
ps,yq,pt;ζq

pXs “ yq “ Qβ
ps;µq,pt;xq

pXt “ xq “ 1.

(iv) (Markov property) For all s ă t, all β P R, all u, v P ps, tq satisfying s ă u ă v ă t,
all pµ, ζq P M2

HEp4q, the following holds: for each F P BbpCpru, vs,Rqq,

EQβ

ps;µq,pt;ζq
rF pX|ru,vsq|Gs,u,Gu,ts “ EQβ

pu,Xuq,pv,Xvq
rF pXqs Qβ

ps;µq,pt;ζq
-a.s.
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(v) (Total variation norm comparison) For all pµ1, ζ1q, pµ2, ζ2q P M2
HEp4q, all s ă t, and

all β P R, we have

1

2
}Qβ

ps;µ1q,pt;ζ1q
´ Qβ

ps;µ2q,pt;ζ2q
}TV

ď
Zβpt; |ζ2 ´ ζ1||s;µ1q

Zβpt; ζ1|s;µ1q
` Zβpt; ζ2|s;µ1q

ˇ

ˇZβpt; ζ1|s;µ1q
´1

´ Zβpt; ζ2|s;µ1q
´1
ˇ

ˇ

`
Zβpt; ζ2|s; |µ2 ´ µ1|q

Zβpt; ζ2|s;µ1q
` Zβpt; ζ2|s;µ2q

ˇ

ˇZβpt; ζ2|s;µ1q
´1

´ Zβpt; ζ2|s;µ2q
´1
ˇ

ˇ.

We turn to continuity properties of polymer measures, including a version of the strong
Feller property, with the caveat that in order to connect back to the usual formulation of a
time inhomogeneous Markov process, one needs to view this as a chain which is killed before
time s if run backward in time starting from t and after time t if run forward in time starting
from s.

Theorem 2.15. There is an event Ω0 with PpΩ0q “ 1 on which the following hold.

(i) (Weak continuity) For all s ă t in R2, the maps from R2 ˆ MHE to M1pCrs,tsq

pβ, x, µq ÞÑ Qβ
ps;µq,pt,xq

and pβ, y, ζq ÞÑ Qβ
ps;yq,pt;ζq

are continuous with the weak topology on M1pCrs,tsq.

(ii) (Total variation continuity) If limnÑ8 dMHE
pµn, µq “ 0 and the total variation mea-

sure |µn´µ| converges to the zero measure vaguely, then for all ps, y, t, x, βq P R4
Ò

ˆR,

lim
nÑ8

}Qβ
ps;µnq,pt,xq

´ Qβ
ps;µq,pt,xq

}TV “ 0 “ lim
nÑ8

}Qβ
ps,yq,pt;µnq

´ Qβ
ps,yq,pt;µq

}TV

(iii) (Strong Feller property) For all µ, ζ P MHE, all f P BbpRq, and all r P R, the maps

pβ, s, t, yq ÞÑ EQβ

ps,yq,pt;ζq
rfpXrqs and pβ, s, t, xq ÞÑ EQβ

ps;µq,pt,xq
rfpXrqs

are continuous on tpβ, s, t, xq P R4 : s ă r ă tu.

(iv) (Vague boundary regularity) For all µ, ζ P MHE, f P CcpR,Rq, and r P R, the maps

pβ, s, yq ÞÑ EQβ

ps,yq,pt;ζq
rfpXrqs and pβ, t, xq ÞÑ EQβ

ps;µq,pt,xq
rfpXrqs

are continuous on tpβ, s, yq P R3 : s ď ru and tpβ, t, xq P R3 : t ě ru, respectively.

The path spaces come with a natural partial order: f ď g means that fpuq ď gpuq for
all u in the domain of these functions. Because the paths of the polymer measures are
continuous and we are in a planar setting, it is natural to expect that the polymer measures
are stochastically ordered. One way to rigorize this intuition is through the Karlin-McGregor
identity [37], which we show implies a much stronger strict total positivity condition, recorded
as Theorem 2.16 below. The Weyl chamber Wn was defined above (1.11).

Theorem 2.16. There is an event Ω0 with PpΩ0q “ 1 so that on Ω0, the following holds.
For all n P N, s ă t, all β P R, and all px1, . . . , xnq, py1, . . . , ynq P Wn,

det
“

Zβpt, xj |s, yiq
‰n

i,j“1
ą 0.

The statement of the Karlin-McGregor identity for the polymer measures is Proposition
5.2 below. The resulting stochastic monotonicity is the content of our next result.
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Proposition 2.17. There is an event Ω0 with PpΩ0q “ 1 so that on Ω0 the following holds:
For all s ă t, all β P R, all x1 ă x2, all y1 ă y2, and all µ, ζ P MHE,

Qβ
ps,y1q,pt;ζq

ďst Q
β
ps,y2q,pt;ζq

and Qβ
ps;µq,pt,x1q

ďst Q
β
ps;µq,pt,x2q

.(2.15)

In the statement of the previous result, ďst denotes stochastic dominance. See Appendix
D for a precise definition.

With our main results stated, we turn to the proofs.

3. Continuity, invariance, growth, and the conservation law

In this section, we prove most of our results about the structure of our solutions to (1.1)
and (1.2), beginning with the proofs of Theorem 2.1 and Proposition 2.2. We begin this
section with a brief outline. We take as given the previous results on the existence of mild
solutions to (1.1) and their chaos series representations. We quickly recap these results and
the relevant references in Appendix A. The important points for now are that for a fixed ps, yq

and β P R, a unique continuous and adapted solution to (2.2) exists and for fixed s, y, t, x, β,
this process admits a representation as the chaos series (2.3). We use Kolmogorov-Chentsov
to glue these together and then verify that this process satisfies our assumptions. We include
a version of Kolmogorov-Chentsov satisfying our needs as Theorem B.1 in Appendix B below.
The purely computational parts of the argument are deferred to Appendix C.

We then turn to constructing the modification rZβpt, x|s, yq in Theorem 2.1, which we
obtain by gluing together the processes Zβpt, x|s, yq defined through the chaos series (2.4)
at dyadic rational space-time points. Next, we verify that this process is consistent, i.e. it
defines a version of the processes we started with off the dyadic rationals. This is essentially
immediate from our previous two point estimates. Our Kolmogorov-Chentsov estimates
imply growth bounds, which then allow us to prove most of the remaining results in the
paper.

The first lemma is the restricted version of Proposition 2.2 for the chaos series in (2.4).
Recall the definitions of these transformations at and below (2.1).

Lemma 3.1. The processes Zβpt, x|s, yq and Zβpt, x|s, yq satisfy the following:

(i) (Shift) For each u, z P R and ps, y, t, x, βq P R4
Ò

ˆR, there exists an event Ω1“

Ω1pu, z, s, y, t, x, βq with PpΩ1q “ 1 so that on Ω1,

Zβpt ` u, x ` z|s ` u, y ` zq ˝ T´u,´z “ Zβpt, x|s, yq and

Zβpt ` u, x ` z|s ` u, y ` zq ˝ T´u,´z “ Zβpt, x|s, yq.

(ii) (Reflection) For each ps, y, t, x, βq P R4
Ò

ˆR there is an event Ω1 “ Ω1ps, y, t, x, βq

with PpΩ1q “ 1 so that on Ω1,

Zβp´s, y| ´ t, xq ˝ R1 “ Zβpt, x|s, yq, Zβp´s, y| ´ t, xq ˝ R1 “ Zβpt, x|s, yq,

Zβpt,´x|s,´yq ˝ R2 “ Zβpt, x|s, yq, and Zβpt,´x|s,´yq ˝ R2 “ Zβpt, x|s, yq.

(iii) (Shear) For each ps, y, t, x, βq P R4
Ò

ˆR and each r, ν P R, there exists an event Ω1 “

Ω1ps, y, t, x, β, r, νq with PpΩ1q “ 1 so that on Ω1,

Zβpt, x ` νpt ´ rq|s, y ` νps ´ rqq ˝ Sr,´ν “ Zβpt, x|s, yq

and

eνpx´yq` ν2

2
pt´sqZβpt, x ` νpt ´ rq|s, y ` νps ´ rqq ˝ Sr,´ν “ Zβpt, x|s, yq.
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(iv) (Scaling) For each ps, y, t, x, βq P R4
Ò

ˆR and each λ ą 0, there is an event Ω1 “

Ω1ps, y, t, x, β, λq with PpΩ1q “ 1 so that on Ω1,

Zβ{
?
λpλ2t, λx|λ2s, λyq ˝ Dλ´2,λ´1 “ Zβpt, x|s, yq and

λZβ{
?
λpλ2t, λx|λ2s, λyq ˝ Dλ´2,λ´1 “ Zβpt, x|s, yq.

(v) (Negation) For each ps, y, t, x, βq P R4
Ò

ˆR, there is an event Ω1“ Ω1ps, y, t, x, βq with
PpΩ1q “ 1 so that on Ω1,

Z´βpt, x|s, yq ˝ N “ Zβpt, x|s, yq and Z´βpt, x|s, yq ˝ N “ Zβpt, x|s, yq.

Proof. We write the details of parts (ii), (iii), and (iv). Parts (i) and (v) are similar, but
easier. For m P N and f P L2ppR2

qmq, denote the multiple Wiener-Itô stochastic integral by

Impfq “

ż

pR2qm

f dWm.

Let G P tT´u,´z,R1,R2,Sr,´ν ,Dλ´2,λ´1 ,N u be one of the transformations as in the statement
and let G P tTu,z,R, Sr,ν ,Dλ2,λ,Nu be the associated dual transformation on functions in
L2pR2

q. Then by [35, Theorem 4.5], which we may apply by [35, Theorems 7.25 and 7.26],

Impfq ˝ G “ ImpGm fq, P´a.s.

where Gm is the bounded linear operator mapping L2ppR2
qmq to itself which acts on product

form functions fpx1, . . . ,xmq “
śm

i“1 fipxiq by Gm fpx1, . . . ,xmq “
śm

i“1pG fiqpxiq, where
x1:m P pR2

qm.
Take G “ R1. Call t1:m “ pt1, . . . , tmq and ´tm:1 “ p´tm, . . . ,´t1q. Note that

s ă t1 ă ¨ ¨ ¨ ă tm ă t ðñ ´t ă ´tm ă ¨ ¨ ¨ ă ´t1 ă ´s.(3.1)

Moreover, for t1:m as in (3.1), and with the convention that tm`1 “ t and t0 “ s, we have

Gm ρmp‚ | ´ t, x;´s, yqptm:1, xm:1q “ ρmp´tm:1, xm:1 | ´ t, x;´s, yq

“

m
ź

i“0

ρ
`

´ti ´ p´ti`1q, xi ´ xi`1q
˘

“

m
ź

i“0

ρ
`

ti`1 ´ ti, xi`1 ´ xi
˘

“ ρmpt1:m, x1:m |s, y; t, xq.

Note that if any non-identity permutation of rms is applied to the indices i of the coordinates
pti, xiq, then all of the above expressions would be equal to zero. For s ă t, the chaos series
representation (2.3) gives

Zβp´s, y | ´ t, xq ˝ G “ ρp´s ` t, y ´ xq `

8
ÿ

m“1

βmImrρmp‚ | ´ t, x; ´s, yqs ˝ G

“ ρp´s ` t, y ´ xq `

8
ÿ

m“1

βmImrGm ρmp‚ | ´ t, x; ´s, yqs

“ ρpt ´ s, x ´ yq `

8
ÿ

m“1

βmImrρmp‚ |s, y ; t, xqs “ Zβpt, x|s, yq.

In the above, we have used the symmetrization in the definition of the multiple stochastic
integral for general L2ppR2

qmq functions (for example, item (ii) on p. 9 of [41]) to re-order
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the coordinates into the unique order for which the integrand is non-zero. Dividing through
by ρpt ´ s, x ´ yq “ ρp´s ´ p´tq, y ´ xq gives the analogous identity for Zβ. The proof for
G “ R2 is similar. This completes the proof of part (ii).

Next, we consider G “ Sr,´ν . Once again, take t1:m satisfying the order in (3.1) and let
x1:m P Rm be arbitrary. We maintain the convention that tm`1 “ t, t0 “ s and x0 “ y, xm`1 “

x. Introduce the shorthands ∆xi “ xi`1 ´ xi and ∆ti “ ti`1 ´ ti. Write x1
i “ xi ` νpti ´ rq

and set ∆x1
i “ x1

i`1 ´ x1
i. Then p∆x1

iq
2 “ p∆xiq

2 ` 2ν∆ti∆xi ` ν2p∆tiq
2. We have for m P N,

Gm ρmp‚ |s, y ` νps ´ rq; t, x ` νpt ´ rqqpt1:m, x1:mq

“

m
ź

i“0

p2π∆tiq
´1{2 exp

"

´

m
ÿ

i“0

p∆xiq
2

2∆ti
´ ν

m
ÿ

i“0

∆xi ´
ν2

2

m
ÿ

i“0

∆ti

*

,

“ e´νpx´yq´ ν2

2
pt´sqρmp‚ |s, y ; t, xqpt1:m, x1:mq

Similarly,

ρpt ´ s, x ´ y ` νpt ´ sqq “ e´νpx´yq´ ν2

2
pt´sqρpt ´ s, x ´ yq.(3.2)

Consequently,

Zβpt, x ` νpt ´ rq|s, y ` νps ´ rqq ˝ G

“ ρpt ´ s, x ´ y ` νpt ´ sqq `

8
ÿ

m“1

βmIm
“

ρmp‚ |s, y ` νps ´ rq; t, x ` νpt ´ rqq
‰

˝ G

“ ρpt ´ s, x ´ y ` νpt ´ sqq `

8
ÿ

m“1

βmIm
“

Gm ρmp‚ |s, y ` νps ´ rq; t, x ` νpt ´ rqq
‰

“ e´νpx´yq´ ν2

2
pt´sq

´

ρpt ´ s, x ´ yq `

8
ÿ

m“1

βmIm
“

ρmp‚ |s, y ; t, xq
‰

¯

“ e´νpx´yq´ ν2

2
pt´sqZβpt, x|s, yq.

Dividing by ρpt ´ s, x ´ y ` νpt ´ sqq and appealing to (3.2) gives the corresponding result
in part (iii) for Zβ.

Finally, turning to G “ Dλ´2,λ´1 , we have for s ă t, x, y P R, and λ ą 0,

λρpλ2pt ´ sq, λpx ´ yqq “
λ

a

2πλ2pt ´ sq
e

´
pλpx´yqq2

2λ2pt´sq “ ρpt ´ s, x ´ yq.

Similarly, for t1:m as in (3.1) and x1:m P Rm,

λGm ρmp‚ |λ2s, λy ; λ2t, λxqpt1:m, x1:mq “ λ
3
2
m`1

m
ź

i“0

ρpλ2pti`1 ´ tiq, λpxi`1 ´ xiqq

“ λm{2
m
ź

i“0

ρpti`1 ´ ti, xi`1 ´ xiq “ λm{2ρmp‚ |s, y ; t, xqpt1:m, x1:mq.
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Then

λZβ{
?
λpλ2t, λx|λ2s, λyq ˝ G

“ λρpλ2pt ´ sq, λpx ´ yqq `

8
ÿ

m“1

ˆ

β
?
λ

˙m

Im
“

ρmp‚ |λ2s, λy;λ2t, λxq
‰

˝ G

“ λρpλ2pt ´ sq, λpx ´ yqq `

8
ÿ

m“1

ˆ

β
?
λ

˙m

Im
“

Gm ρmp‚ |λ2s, λy;λ2t, λxq
‰

“ ρpt ´ s, x ´ yq `

8
ÿ

m“1

βmIm
“

ρmp‚ |s, y; t, xq
‰

“ Zβpt, x|s, yq.

The second part of (iv) follows by dividing by λρpλ2pt ´ sq, λpx ´ yqq “ ρpt ´ s, x ´ yq. □

We next turn toward the moment estimates which we use in our application of Kolmogorov-
Chentsov.

Lemma 3.2. For all p P R, all β P R, and all t ě 0,

Dp,t,β :“ sup
0ďsďt

ErZβps, 0|0, 0q
p
s ă 8.

Moreover, calling

Dp,t :“ sup
0ďsďt

ErZ1ps, 0|0, 0q
p
s, we have Dp,t,β “ Dp,tβ4 .(3.3)

Proof. For β “ 0, t “ 0, or p “ 0, there is nothing to prove in either claim because
Zβpt, 0|0, 0qp “ 1 in any of these cases. If β, p ‰ 0 and t ą 0, (3.3) follows from Lemma
3.1(iv) and (v).

Using stochastic analytic methods, it can be shown that for each p ą 0, there exists
C “ Cppq ą 0 so that

Dp,t,β ď etβ
4C(3.4)

for all t ą 0. See, for example, [11, Example 2.10].
For β ‰ 0, t ą 0, and p ă 0, finiteness follows from [39, Theorem 1]. See also [18, Theorem

1.7] for a more refined version of the same idea. □

Remark 3.3. Using inputs from integrable probability, Das and Tsai showed in [19, Theorem

1.2] the sharp result that for all p ą 0, limtÑ8 t
´1 logDp,t “

p3´p
12

.

With the previous notation in mind, the first main goals in this section are the moment
estimates on the increments of Zβpt, x|s, yq and Zβpt, x|s, yq. We start with the spatial
increments.

Lemma 3.4. For p ą 2, there exists C “ Cppq so that for all t ě 0, x, y P R, and β P R,
Er |Zβpt, y |0, 0q ´ Zβpt, x|0, 0q|

p
s ď CDp,t,β |β|

p
|x ´ y|

p{2

Proof. The result is trivial when either t “ 0 or β “ 0, since both terms in the absolute
value are then equal to 1, so we assume that t ą 0. By Lemma A.3, Zβp‚, ‚ |0, 0q admits a
modification solving the mild equation obtained from (2.2) by dividing by the heat kernel:

Zβpt, x|0, 0q “ 1 ` β

ż t

0

ż

R

ρpt ´ r, x ´ zqρpr, zq

ρpt, xq
Zβpr, z |0, 0qW pdz drq.



GREEN’S FUNCTION OF THE PARABOLIC ANDERSON MODEL 19

Using the Burkholder-Davis-Gundy inequality [7, Theorem 4.2.12] and then Hölder’s in-
equality with conjugate exponents p{2 and p{pp ´ 2q, there exists C “ Cppq so that

Er|Zβpt, y |0, 0q ´ Zβpt, x|0, 0q|
p
s

ď C|β|
pE

„ˆ
ż t

0

ż

R

ˆ

ρpt ´ r, y ´ zqρpr, zq

ρpt, yq
´
ρpt ´ r, x ´ zqρpr, zq

ρpt, xq

˙2

Zβpr, z |0, 0q
2dzdr

˙p{2ȷ

“ C|β|
pE

„ˆ
ż t

0

ż

R

ˆ

ρpt ´ r, y ´ zqρpr, zq

ρpt, yq
´
ρpt ´ r, x ´ zqρpr, zq

ρpt, xq

˙2´4{p

ˆ

ˆ

ρpt ´ r, y ´ zqρpr, zq

ρpt, yq
´
ρpt ´ r, x ´ zqρpr, zq

ρpt, xq

˙4{p

Zβpr, z |0, 0q
2dzdr

˙p{2ȷ

ď C|β|
p

„
ż t

0

ż

R

ˆ

ρpt ´ r, y ´ zqρpr, zq

ρpt, yq
´
ρpt ´ r, x ´ zqρpr, zq

ρpt, xq

˙2

dzdr

ȷ
p´2
2

ˆ

„
ż t

0

ż

R

ˆ

ρpt ´ r, y ´ zqρpr, zq

ρpt, yq
´
ρpt ´ r, x ´ zqρpr, zq

ρpt, xq

˙2

ErZβpr, u|0, 0q
p
sdzdr

ȷ

ď C|β|
pDp,t,β

„
ż t

0

ż

R

ˆ

ρpt ´ r, y ´ zqρpr, zq

ρpt, yq
´
ρpt ´ r, x ´ zqρpr, zq

ρpt, xq

˙2

dzdr

ȷp{2

.

To finish,

ż t

0

ż

R

ˆ

ρpt ´ r, y ´ zqρpr, zq

ρpt, yq
´
ρpt ´ r, x ´ zqρpr, zq

ρpt, xq

˙2

dzdr

“

ż t

0

ż

R

„

ρpt ´ r, y ´ zq2ρpr, zq2

ρpt, yq2
`
ρpt ´ r, x ´ zq2ρpr, zq2

ρpt, xq2

´ 2
ρpt ´ r, y ´ zqρpr, zq

ρpt, yq

ρpt ´ r, x ´ zqρpr, zq

ρpt, xq

ȷ

dzdr ď |x ´ y|,

where the last bound follows from Lemmas C.2 and C.5. □

We now estimate the increments of the process in the inverse temperature β:

Lemma 3.5. For t ě 0, x P R, β1, β2 P R, and p ą 2,

Er|Zβ1pt, x|0, 0q ´ Zβ2pt, x|0, 0q|
p
s ď Ctp{4

|β1 ´ β2|
pDp,t,β2e

C|β1|ptp{4

Proof. Notice that the shear invariance in Lemma 3.1(iii) implies that for all z P R and
r ą 0,

E
“ˇ

ˇZβ1pr, z |0, 0q ´ Zβ2pr, z |0, 0q
ˇ

ˇ

p‰
“ E

“ˇ

ˇZβ1pr, 0|0, 0q ´ Zβ2pr, 0|0, 0q
ˇ

ˇ

p‰

and similarly, that

ErZβpt, x|0, 0q
p
s “ ErZβpt, 0|0, 0q

p
s.

Abbreviate Zβpr, zq “ Zβpr, z |0, 0q. Appealing to the Burkholder-Davis-Gundy and Hölder
inequalities (again with conjugate exponents p{2 and p{pp ´ 2q) in the same way as in the
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proof of Lemma 3.4, there exist C,C 1 depending only on p so that

Er|Zβ1pt, xq ´ Zβ2pt, xq|
p
s

ď |β1 ´ β2|
p E

„
ˇ

ˇ

ˇ

ˇ

ż t

0

ż

R

ρpt ´ r, x ´ zqρpr, zq

ρpt, xq
Zβ2pr, zqW pdz drq

ˇ

ˇ

ˇ

ˇ

pȷ

` |β1|
p E

„ˇ

ˇ

ˇ

ˇ

ż t

0

ż

R

ρpt ´ r, x ´ zqρpr, zq

ρpt, xq
pZβ2pr, zq ´ Zβ1pr, zqqW pdz drq

ˇ

ˇ

ˇ

ˇ

pȷ

ď C|β1 ´ β2|
p

ˆ
ż t

0

ż

R

ρpt ´ r, x ´ zq2ρpr, zq2

ρpt, xq2
dzdr

˙
p
2

´1

ˆ

ż t

0

ż

R

ρpt ´ r, x ´ zq2ρpr, zq2

ρpt, xq2
dz ErZβ2pr, 0q

p
sdr

` C|β1|
p

ˆ
ż t

0

ż

R

ρpt ´ r, x ´ zq2ρpr, zq2

ρpt, xq2
dzdr

˙
p
2

´1

ˆ

ż t

0

ż

R

ρpt ´ r, x ´ zq2ρpr, zq2

ρpt, xq2
dz Er|Zβ2pr, 0q ´ Zβ1pr, 0q|

p
sdr

ď C 1
|β1 ´ β2|

pt
p
4Dp,t,β2 ` C 1

|β1|
pt

p
4

´ 1
2

ż t

0

d

t

pt ´ rqr
Er|Zβ2pr, xq ´ Zβ1pr, xq|

p
sdr.

In the third inequality, we appealed to the computations in Lemmas C.1 and C.2. In the
last step, we used shear invariance again to switch 0 to x in the expectation. It follows from
Gronwall’s inequality [7, Lemma A.2.35] and the computation in Lemma C.2 that there is
C2 “ C2ppq ą 0 so that

Er|Zβ1pt, x|0, 0q ´ Zβ2pt, x|0, 0q|
p
s ď C2tp{4

|β1 ´ β2|
pDp,t,β2e

C2|β1|ptp{4

. □

We include two estimates for time differences. The first one will result in a non-sharp
Hölder exponent for all nonnegative times, while the second one results in a sharp Hölder
exponent at times bounded away from zero. The reason our bounds are not sharp at the
boundary t “ 0 is that we use a crude bound in Lemma C.8 to simplify the computation.

Lemma 3.6. For p ą 2, there exists C “ Cppq ą 0 so that for all β P R, all T,K ě 1 and
all h P p0, 1q, if t, t ` h P r0, T s and x P r´K,Ks, then

Er|Zβpt ` h, x|0, 0q ´ Zβpt, x|0, 0q|
p
s ď CDp,T |β|

pT 3p{4Kphp{14.

Moreover, for each δ ą 0, if in addition we have t, t ` h P rδ, T s, then

Er|Zβpt ` h, x|0, 0q ´ Zβpt, x|0, 0q|
p
s ď CDp,T |β|

pδ´3p{2T 3p{4Kphp{4.

Proof. Again for r ą 0 and z P R, abbreviate Zβpr, zq “ Zβpr, z |0, 0q. Appealing again to
the Burkholder-Davis-Gundy and Hölder inequalities (again, with conjugate exponents p{2
and p{pp´2q), there exist C,C 1, C2 ą 0 depending only on p so that the following hold, with
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the convention that integrals below on r0, ts are defined to be zero if t “ 0:

Er|Zβpt ` h, xq ´ Zβpt, xq|
p
s ď

C|β|
pE

„ˇ

ˇ

ˇ

ˇ

ż t

0

ż

R

ˆ

ρpt ´ r, x ´ zqρpr, zq

ρpt, xq
´
ρpt ` h ´ r, x ´ zqρpr, zq

ρpt ` h, xq

˙

Zβpr, zqW pdz drq

ˇ

ˇ

ˇ

ˇ

pȷ

` C 1
|β|

pE
„ˇ

ˇ

ˇ

ˇ

ż t`h

t

ż

R

ρpt ` h ´ r, x ´ zqρpr, zq

ρpt ` h, xq
Zβpr, zqW pdz drq

ˇ

ˇ

ˇ

ˇ

pȷ

ď C 1
|β|

pE
„ˇ

ˇ

ˇ

ˇ

ż t

0

ż

R

ˆ

ρpt ´ r, x ´ zqρpr, zq

ρpt, xq
´
ρpt ` h ´ r, x ´ zqρpr, zq

ρpt ` h, xq

˙2

Zβpr, zq
2dz dr

ˇ

ˇ

ˇ

ˇ

p{2ȷ

` C 1
|β|

pE

«

ˇ

ˇ

ˇ

ˇ

ż t`h

t

ż

R

ρpt ` h ´ r, x ´ zq2ρpr, zq2

ρpt ` h, xq2
Zβpr, zq

2dz dr

ˇ

ˇ

ˇ

ˇ

p{2
ff

ď C 1
|β|

pDp,T,β

„
ż t

0

ż

R

ˆ

ρpt ` h ´ r, x ´ zqρpr, zq

ρpt ` h, xq
´
ρpt ´ r, x ´ zqρpr, zq

ρpt, xq

˙2

dzdr

ȷp{2

` C 1
|β|

pDp,T,β

„
ż t`h

t

ż

R

ρpt ` h ´ r, x ´ zq2ρpr, zq2

ρpt ` h, xq2
dzdr

ȷp{2

ď C2
|β|

pDp,T,βT
3p
4 Kph

p
14 .

The last bound comes from Proposition C.10 and Lemma C.4 in general. If instead we also
require that t, t ` h P rδ, T s, then the last bound becomes

C2
|β|

pDp,T,βδ
´

3p
2 T

3p
4 Kph

p
4 ,

again by Proposition C.10 and Lemma C.4. □

The previous estimates combine into the following bounds. Because of the different growth
rates of our bounds and the different Hölder exponents that they imply, we estimate several
Hölder semi-norms below. We restrict attention in the following results to the estimates
which are required for the results of this paper and the companion [34].

Proposition 3.7. For p ą 14, there exists C “ Cppq so that for psi, yi, ti, xiq P R4

Ò
, i P t1, 2u,

if we call T “ maxt|t1 ´ t2|, |t1 ´ s1|, |t2 ´ s2|u _ 1 and K “ maxt|xi ´ xj|, |yi ´ yj|, |xi ´ yj| :
i, j P t1, 2uu _ 1 and take B ą 0, then

(i) For β P r´B,Bs,

E
“ˇ

ˇZβpt1, y1|s1, x1q ´ Zβpt2, y2|s2, x2q
ˇ

ˇ

p‰

ď CDp,T,BB
pT 2pKp

`

|y1 ´ y2|
p{2

` |x1 ´ x2|
p{2

` |t1 ´ t2|
p{14

` |s1 ´ s2|
p{14

˘

and for β1, β2 P r´B,Bs,

E
“
ˇ

ˇZβ1pt1, y1|s1, x1q ´ Zβ2pt2, y2|s2, x2q
ˇ

ˇ

p‰

ď CeCBpT p{4

Dp,T,BK
p
´

|y1 ´ y2|
p{2

` |x1 ´ x2|
p{2

` |t1 ´ t2|
p{14

` |s1 ´ s2|
p{14

` |β1 ´ β2|
p
¯

.
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(ii) With the same notation as in part (i), for any θ1, θ2 P p0, 1q which satisfy θ1`2θ2 “ 1,
there is C 1 “ C 1pp, θ1, θ2q ą 0 so that for all β1, β2 P r´B,Bs,

E
“
ˇ

ˇZβ1pt1, y1|s1, x1q
´1

´ Zβ2pt2, y2|s2, x2q
´1
ˇ

ˇ

p‰

ď C 1 exp
␣

C 1B
p
θ1 T

p
4θ1

(

D2θ2
´2p{θ2,T,B

Dθ1
p{θ1,T,B

Kp

ˆ

ˆ

|y1 ´ y2|
p{2

` |x1 ´ x2|
p{2

` |t1 ´ t2|
p{14

` |s1 ´ s2|
p{14

` |β2 ´ β1|
p

˙

.

(iii) If, in addition, for some δ P p0, 1q, we have ti ´ si ą δ for i P t1, 2u, we also have

E
“
ˇ

ˇZβ1pt1, y1|s1, x1q ´ Zβ2pt2, y2|s2, x2q
ˇ

ˇ

p‰
ď CeCBpT p{4

Dp,T,Bδ
´3p{2Kp

ˆ

ˆ

|y1 ´ y2|
p{2

` |x1 ´ x2|
p{2

` |t1 ´ t2|
p{4

` |s1 ´ s2|
p{4

` |β1 ´ β2|
p

˙

and

E
“ˇ

ˇZβ1pt1, y1|s1, x1q
´1

´ Zβ2pt2, y2|s2, x2q
´1
ˇ

ˇ

p‰

ď C 1 exp
␣

C 1B
p
θ1 T

p
4θ1

(

D2θ2
´2p{θ2,T,B

Dθ1
p{θ1,T,B

δ´3p{2Kp

ˆ

´

|y1 ´ y2|
p{2

` |x1 ´ x2|
p{2

` |t1 ´ t2|
p{4

` |s1 ´ s2|
p{4

` |β2 ´ β1|
p
¯

.

Proof. Without loss of generality, we assume s1 ď s2. Abbreviate again Zpr, zq “ Zpr, z |0, 0q

and also β “ β2.

(3.5)

2´5p E
“
ˇ

ˇZβ1pt1, y1|s1, x1q ´ Zβ2pt2, y2|s2, x2q
ˇ

ˇ

p‰

ď E
“
ˇ

ˇZβ1pt1, y1|s1, x1q ´ Zβ2pt1, y1|s1, x1q
ˇ

ˇ

p‰

` E
“ˇ

ˇZβ2pt1, y1|s1, x1q ´ Zβ2pt2, y1|s1, x1q
ˇ

ˇ

p‰

` E
“
ˇ

ˇZβ2pt2, y1|s1, x1q ´ Zβ2pt2, y2|s1, x1q
ˇ

ˇ

p‰

` E
“
ˇ

ˇZβ2pt2, y2|s1, x1q ´ Zβ2pt2, y2|s1, x2q
ˇ

ˇ

p‰

` E
“ˇ

ˇZβ2pt2, y2|s1, x2q ´ Zβ2pt2, y2|s2, x2q
ˇ

ˇ

p‰

“ E
“
ˇ

ˇZβ1pt1 ´ s1, x1 ´ y1q ´ Zβ2pt1 ´ s1, x1 ´ y1q
ˇ

ˇ

p‰

` E
“
ˇ

ˇZβpt1 ´ s1, y1 ´ x1q ´ Zβpt2 ´ s1, y1 ´ x1q
ˇ

ˇ

p‰

` E
“ˇ

ˇZβpt2 ´ s1, y1 ´ x1q ´ Zβpt2 ´ s1, y2 ´ x1q
ˇ

ˇ

p‰

` E
“
ˇ

ˇZβpt2 ´ s1, y2 ´ x1q ´ Zβpt2 ´ s1, y2 ´ x2q
ˇ

ˇ

p‰

` E
“
ˇ

ˇZβpt2 ´ s1, y2 ´ x2q ´ Zβpt2 ´ s2, y2 ´ x2q
ˇ

ˇ

p‰
.

The equalities follow from Lemma 3.1, either by shifting ps1, x1q to the origin, or by shifting
pt2, y2q to the origin followed by a reflection:

Zβpt2, y2|s1, x1q ´ Zβpt2, y2|s1, x2q
d
“ Zβp0, 0|s1 ´ t2, x1 ´ y2q ´ Zβp0, 0|s1 ´ t2, x2 ´ y2q

d
“ Zβpt2 ´ s1, y2 ´ x1q ´ Zβpt2 ´ s1, y2 ´ x2q.
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By Lemmas 3.4, 3.5, and 3.6, in general, there exists C “ Cppq ą 0 so that for any fixed
β ą 0,

E
“ˇ

ˇZβpt1, y1|s1, x1q ´ Zβpt2, y2|s2, x2q
ˇ

ˇ

p‰

ď C|β|
pDp,T,BT

pKp
`

|y1 ´ y2|
p{2

` |x1 ´ x2|
p{2

` |t1 ´ t2|
p{14

` |s1 ´ s2|
p{14

˘

,

and for β1, β2 P r´B,Bs,

E
“
ˇ

ˇZβ1pt1, y1|s1, x1q ´ Zβ2pt2, y2|s2, x2q
ˇ

ˇ

p‰

ď CeCBpT p{4

Dp,T,BB
pT 2pKp

ˆ

ˆ

|y1 ´ y2|
p{2

` |x1 ´ x2|
p{2

` |t1 ´ t2|
p{14

` |s1 ´ s2|
p{14

` |β1 ´ β2|
p

˙

.

Note that to obtain these bounds using Lemma 3.6, we need to consider times separated by
at most 1 in Lemma 3.6. To achieve this, consider for example the last expectation in (3.5).
Take u1:ℓ such that s1 “ u0 ă ... ă uℓ “ s2 so that ui ´ ui´1 “ 1 for each i P rℓ ´ 1s and
uℓ ´ uℓ´1 ď 1. In particular, ℓ ď 2T ` 1. Write

(3.6)

ˇ

ˇZβpt2 ´ s1, y2 ´ x2q ´ Zβpt2 ´ s2, y2 ´ x2q
ˇ

ˇ

p

“
ˇ

ˇ

ℓ
ÿ

i“1

`

Zβpt2 ´ ui´1, y2 ´ x2q ´ Zβpt2 ´ ui, y2 ´ x2q
˘
ˇ

ˇ

p

ď ℓp´1
ℓ
ÿ

i“1

ˇ

ˇZβpt2 ´ ui´1, y2 ´ x2q ´ Zβpt2 ´ ui, y2 ´ x2q
ˇ

ˇ

p

Now apply Lemma 3.6 to each term above. The other time increment can be handled
similarly.

Similarly, with the gap of δ ą 0, the bound becomes

E
“ˇ

ˇZβpt1, y1|s1, x1q ´ Zβpt2, y2|s2, x2q
ˇ

ˇ

p‰

ď CDp,T,BB
pδ´3p{2T 2pKp

`

|y1 ´ y2|
p{2

` |x1 ´ x2|
p{2

` |t1 ´ t2|
p{4

` |s1 ´ s2|
p{4
˘

.

By Lemma 3.2, Zβpt, y|s, xq is almost surely non-zero for each ps, x, t, y, βq P R4

Ò
ˆ R, so we

may divide by it for fixed space-time-inverse temperature quintuples. We have

ˇ

ˇZβ1pt1, y1|s1, x1q
´1

´ Zβ2pt2, y2|s2, x2q
´1
ˇ

ˇ “

ˇ

ˇZβ1pt1, y1|s1, x1q ´ Zβ2pt2, y2|s2, x2q
ˇ

ˇ

|Zβ1pt1, y1|s1, x1qZβ2pt2, y2|s2, x2q|
.

It then follows from Hölder’s inequality that for any θ1, θ2 P p0, 1q which satisfy θ1 ` 2θ2 “ 1,
letting q “ p{θ1 and r “ p{θ2,

E
“
ˇ

ˇZβ1pt1, y1|s1, x1q
´1

´ Zβ2pt2, y2|s2, x2q
´1
ˇ

ˇ

p‰1{p

ď Er|Zβ1pt1, y1|s1, x1q|
´r

s
1{r Er|Zβ2pt2, y2|s2, x2q|

´r
s
1{r

ˆ E
“
ˇ

ˇZβ1pt1, y1|s1, x1q ´ Zβ2pt2, y2|s2, x2q
ˇ

ˇ

q‰1{q

ď CD
2{r
´2r,T,BD

1{q
q,T,BBe

C
q
BqT q{4

T
2` 1

4θ1K

ˆ

ˆ

p|y1 ´ y2|
q{2

` |x1 ´ x2|
q{2

` |t1 ´ t2|
q{14

` |s1 ´ s2|
q{14

` |β2 ´ β1|
q

˙1{q

.
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Recalling that p{q “ θ1, p{r “ θ2, and that xθ1 is a subadditive function for x ą 0, we see
that there is C 1 “ C 1pθ1, θ2, pq so that

E
“
ˇ

ˇZβ1pt1, y1|s1, x1q
´1

´ Zβ2pt2, y2|s2, x2q
´1
ˇ

ˇ

p‰

ď C 1 exp

"

C 1B
p
θ1 T

p
4θ1

*

D2θ2
´2p{θ2,T,B

Dθ1
p{θ1,T,B

Kp

ˆ

ˆ

|y1 ´ y2|
p{2

` |x1 ´ x2|
p{2

` |t1 ´ t2|
p{14

` |s1 ´ s2|
p{14

` |β2 ´ β1|
p

˙

.

If, in addition, we have ti ´ si ą δ for i P t1, 2u, then by the same argument,

E
“
ˇ

ˇZβ1pt1, y1|s1, x1q
´1

´ Zβ2pt2, y2|s2, x2q
´1
ˇ

ˇ

p‰

ď C 1 exp

"

C 1B
p
θ1 T

p
4θ1

*

D2θ2
´2p{θ2,T,B

Dθ1
p{θ1,T,B

δ´3p{2Kp

ˆ

ˆ

|y1 ´ y2|
p{2

` |x1 ´ x2|
p{2

` |t1 ´ t2|
p{4

` |s1 ´ s2|
p{4

` |β2 ´ β1|
p

˙

. □

Proposition 3.7 implies the existence of a Hölder continuous modification of Zβpt, x|s, yq

and, away from the line t “ s, of Zβpt, x|s, yq.

Proposition 3.8. The process ps, y, t, x, βq ÞÑ Zβpt, x|s, yq defined on pR4

Ò
ˆRqXD5 by (2.4)

admits a unique (up to indistinguishability) modification rZ ‚ p‚, ‚|‚, ‚q P CpR4

Ò
ˆ R,Rq. This

modification satisfies the following conditions:

(i) For each T,K,B ě 1, p ą 70, α P p0, 1{14 ´ 5{pq, γ P p0, 1{2 ´ 5{pq, and η P

p0, 1 ´ 5{pq, we have

E
”∣∣rZ ‚ p‚, ‚|‚, ‚q

∣∣p
Cα,γ,ηpR4

Ò pT,Kqˆr´B,Bsq

ı

ď CeCBpT p{4

Kp,(3.7)

for some C “ Cpp, α, γ, ηq ą 0. Moreover, if δ P p0, 1q, then for α P p0, 1{4 ´ 5{pq,
γ P p0, 1{2 ´ 5{pq, and η P p0, 1 ´ 5{pq,

E
”∣∣rZ ‚ p‚, ‚|‚, ‚q

∣∣p
Cα,γ,ηpR4

Ò pT,K,δqˆr´B,Bsq

ı

ď CeCBpT p{4

Kpδ´3p{2.(3.8)

(ii) For each β P R, T,K ě 1, p ą 56, α P p0, 1{14 ´ 4{pq, γ P p0, 1{2 ´ 4{pq, we have

E
”∣∣rZβp‚, ‚|‚, ‚q

∣∣p
Cα,γpR4

Ò pT,Kqq

ı

ď C|β|
pDp,T,βT

2pKp,(3.9)

for some C “ Cpp, α, γq ą 0. If δ P p0, 1q, then moreover for α P p0, 1{4 ´ 4{pq,
γ P p0, 1{2 ´ 4{pq,

E
”∣∣rZβp‚, ‚|‚, ‚q

∣∣p
Cα,γpR4

Ò pT,K,δqq

ı

ď CDp,T,βδ
´3p{2

|β|
pT 2pKp,(3.10)

(iii) For each T,K,B ě 1 and θ1, θ2 P p0, 1q with θ1 ` 2θ2 “ 1, for all p ą 70, and all
α P p0, 1{14 ´ 5{pq, γ P p0, 1{2 ´ 5{pq, and η P p1 ´ 5{pq,

E
„∣∣rZ ‚ p‚, ‚|‚, ‚q

´1
∣∣p
Cα,γ,ηpR4

Ò pT,Kqˆr´B,Bsq

ȷ

ď CeCB
p
θ1 T

p
4θ1 D2θ2

´2p{θ2,T,B
Kp

for some C “ Cpp, α, γ, η, θ1, θ2q ą 0. In particular, Zβpt, x|s, yq ą 0 for all

ps, y, t, x, βq P R4

Ò
ˆ R.
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Proof. To apply Theorem B.1 as stated in Appendix B, we fix T,K,B ą 1 and map

R4

Ò
pT,Kq ˆ r´B,Bs to K “ tps, y, t, x, βq : 0 ď x, y, β ď 1, 0 ď s ď t ď 1u by defining

fT,K,Bps, y, t, x, βq “ Z´B`2Bβp´T ` 2Tt,´K ` 2Kx| ´ T ` 2Ts,´K ` 2Kyq(3.11)

for ps, y, t, x, βq P K, where Zβpt, x|s, yq is defined to be equal to one if β “ 0 or s “ t and
is given by (2.4) otherwise. By Proposition 3.7(i),

Er |fT,K,Bpt1, x1, s1, y1, β1q ´ fT,K,Bpt2, x2, s2, y2, β2q|
p

s ď CeCBpT p{4

Dp,T,BK
p
ˆ(3.12)

´

|t1 ´ t2|
p{14

` |s1 ´ s2|
p{14

` |x1 ´ x2|
p{2

` |y1 ´ y2|
p{2

` |β2 ´ β1|
p
¯

,

for pt1, x1, s1, y1, β1q, pt2, x2, s2, y2, β2q P K.
With p ą 70, (3.12) gives assumption (B.1) with ν “ p, d “ 5, αi “

p
14

´ 5 for the time
increments, αi “

p
2

´ 5 for the space increments, and αi “ p´ 5 for the inverse temperature
increments. By Theorem B.1, there is an event ΩT,K with PpΩT,K,Bq “ 1 such that fT,K,B

admits an almost surely unique continuous modification of fT,K,B to K which agrees with
(3.11), defined through (2.4), on the dyadic rationals. Then, the bound (B.2) and the
estimate in (3.4) implies that

(3.13) Er|fT,K |
p
Cα,γ,ηpKq

s ď CeCBpT p{4

Kp

for some C “ Cpp, α, γ, ηq ą 0. To conclude the proof of (ii), the extension of fT,K to K is,

by definition, an almost surely unique continuous modification of Zβpt, x|s, yq to R4

Ò
pT,Kqˆ

r´B,Bs which agrees with Z
´B`2T β̂p´T ` 2T t̂,´K ` 2Kx̂| ´ T ` 2T ŝ,´K ` 2Kŷq defined

via (2.4) for dyadic rational pt̂, x̂, ŝ, ŷ, β̂q P K. On the intersection
Ş

nPN Ω2n,2n,2n , consistency

then gives a unique extension of Zβpt, x|s, yq to R4

Ò
ˆ R which agrees with (2.4) on pR4

Ò
ˆ

Rq X D5. By transferring the variables again as in (3.11),

|fT,K |Cα,γ,ηpKq

“ sup
pt1

1,x
1
1,s

1
1,y

1
1,β

1
1q‰

pt1
2,x

1
2,s

1
2,y

1
2,β

1
2q

pt1
i,x

1
i,s

1
i,y

1
i,β

1
iqPK,

iPt1,2u

|fT,K,Bpt11, x
1
1, s

1
1, y

1
1, β

1
1q ´ fT,K,Bpt12, x

1
2, s

1
2, y

1
2, β

1
2q|

|t11 ´ t12|
α ` |s1

1 ´ s1
2|

α ` |x1
1 ´ x1

2|
γ ` |y1

1 ´ y1
2|

γ ` |β1
1 ´ β1

2|
η

“ sup
pt1,x1,s1,y1,β1q‰

pt2,x2,s2,y2,β2q,
pti,xi,si,yi,βiqP

R4
Ò pT,Kqˆr´B,Bs,

iPt1,2u

"

|Zβ1pt1, x1|s1, y1q ´ Zβ2pt2, x2|s2, y2q|

|t1´t2|α`|s1´s2|α

p2T qα
`

|x1´x2|γ`|y1´y2|γ

p2Kqγ
`

|β1´β2|η

p2Bqη

*

ě |Zβp‚, ‚|‚, ‚q|
Cα,γ,ηpR4

Ò pT,Kqˆr´B,Bsq

and (3.7) follows from (3.13). The proofs of (3.9) and (3.10) are similar.

To prove (iii), we repeat the argument verbatim with (3.11) replaced by

fT,K,Bps, y, t, x, βq “ Z´B`2Bβp´T ` 2Tt,´K ` 2Kx| ´ T ` 2Ts,´K ` 2Kyq
´1.

That we are permitted to divide by Zβ for dyadic rational ps, y, t, x, βq P K follows from
Lemma 3.2. With this definition, take θ1, θ2 as in Proposition 3.7(ii). That result and the
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estimate in (3.4) gives

Er |fT,K,Bpt1, x1, s1, y1, β1q ´ fT,K,Bpt2, x2, s2, y2, β2q|
p

s

ď C expCB
p
θ1 T

p
4θ1 KpD2θ2

´2p{θ2,T,B

ˆ
`

|y1 ´ y2|
p{2

` |x1 ´ x2|
p{2

` |t1 ´ t2|
p{14

` |s1 ´ s2|
p{14

` |β1 ´ β2|
p
˘

for some C “ Cpp, θ1, θ2q ą 0. The remainder of the proof is now identical to the previous
case. □

Next, we show that this construction is consistent with the processes that we started
with, i.e., for each fixed s, y, β P R, it defines a version of the unique continuous and adapted
solution to (2.2).

Lemma 3.9. Let rZ ‚ p‚, ‚ | ‚, ‚q be the process constructed in in Proposition 3.8. Then

(i) For all ps, y, t, x, βq P R4

Ò
ˆ R rZβps, y, t, xq is FW

s,t measurable.

(ii) For any fixed s, y, β P R, the process rZβpt, x|s, yq defined on tpt, xq P R2 : t ą su by
rZβpt, x|s, yq “ rZβpt, x|s, yqρpt ´ s, x ´ yq, satisfies

P
ˆ

@t ą s, x P R, rZβpt, x|s, yq “ Zβpt, x|s, yq

˙

“ 1,

where Zβpt, x|s, yq is the mild solution to (2.2) coming from Lemma A.3.

Proof. Take dyadic rational sequences sn, tn, xn, yn, βn with sn ă s ď t ă tn and tn Ñ t,

xn Ñ x, sn Ñ s, yn Ñ y, and βn Ñ β. Then by construction, rZβnptn, xn, sn, ynq is FW
sn,tn

measurable. Taking limits and appealing to continuity and the left- and right- continuity of
FW

s,t as defined in Section 2 gives the first claim.
Fix s, y, β P R as in the second part of the statement. By Lemma A.3, there exists a unique

(up to indistinguishability) continuous and adapted solution (2.2) satisfying the moment
assumptions of that result and for each fixed t ą s and x, β P R, this process agrees with

the chaos expansion (2.3) with probability one. Because both Zβp‚, ‚ |s, yq and rZβp‚, ‚ |s, yq

are continuous, it suffices to show that for fixed dyadic rationals t and x with t ą s, we

have Pp rZβpt, x|s, yq “ Zβpt, x|s, yqq “ 1. Now, for a sequence sn, yn of dyadic rational points

with sn P ps, tq, sn Ñ s, yn Ñ y, we have P
´

rZβpt, x|sn, ynq “ Zβpt, x|sn, ynq

¯

“ 1 by the

construction of rZβ in Proposition 3.8 and the fact that Zβpt, x|sn, ynq agrees with (2.3) with
probability one. Similarly, Zβpt, x|s, yq agrees with (2.3) with probability one for each fixed
t, s, x, y with t ą s. By Proposition 3.7, we have Er|Zβpt, x|sn, ynq ´ Zβpt, x|s, yq|ps Ñ 0 for

all p ą 2, which implies that rZβpt, x|sn, ynq “ Zβpt, x|sn, ynq converges to Zβpt, x|s, yq in
probability. The result now follows from almost sure continuity. □

With Lemma 3.9 in hand, we now complete the proof of Theorem 2.1 and Proposition 2.2.

Proof of Theorem 2.1. We verify that the process constructed in Proposition 3.8 satisfies all
of the desired conditions. Proposition 3.8 and Lemma 3.9 show the first, fourth, fifth, and
sixth parts of the claim. To see that the second and third hold, note that by definition, we

have rZβpt, x|t, yq “ 1 and rZ0pt, x|s, yq “ 1 for ps, y, t, x, βq P pR4

Ò
ˆ Rq X D5. Continuity

extends to all ps, y, t, x, βq P R4

Ò
ˆ R. □
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Proof of Proposition 2.2. Proposition 2.2 follows from Lemma 3.1, Proposition 3.8, and
Lemma 3.9, except when either β “ 0 or t “ s. In either of these cases, Zβpt, x|s, yq “ 1
and so the result is trivially true. □

Throughout the remainder of the paper, we write Zβpt, x|s, yq to mean the unique continu-
ous extension provided by Proposition 3.8 and set Zβpt, x|s, yq “ ρpt´ s, x´ yqZβpt, x|s, yq.
Lemma 3.9 justifies this, because the mild solutions to (2.2) are defined only up to in-
distinguishability in any case. An immediate corollary of Proposition 3.8 is almost sure
sub-polynomial growth and decay of Zβpt, x|s, yq as a function of the spatial coordinates
x, y for all times and inverse temperatures simultaneously.

Corollary 3.10. For each p ą 70, there exists C “ Cppq so that for all T,K,B ą 1,

(i) We have

E
„

sup
ps,y,t,x,βqPR4

Ò pT,Kqˆr´B,Bs

Zβpt, x|s, yq
p

ȷ

ď CeCBpT p{4

K3p,

E
„

sup
ps,y,t,x,βqPR4

Ò pT,Kqˆr´B,Bs

Zβpt, x|s, yq
´p

ȷ

ď CeCB2pT
p
2D

1{4
´8p,2T,2BK

3p.

(ii) For each β P R, we have

E
„

sup
ps,y,t,xqPR4

Ò pT,Kq

Zβpt, x|s, yq
p

ȷ

ď CDp,2T,β|β|
p
pTKq

3p,

E
„

sup
ps,y,t,xqPR4

Ò pT,Kq

Zβpt, x|s, yq
´p

ȷ

ď CD
1{4
´8p,2T,βD

3{2
2p,2T,β|β|

p
pTKq

3p.

(iii) We have the almost sure growth bounds

P
ˆ

DT ą 0 : lim
KÑ8

K´4 sup
ps,y,t,x,βqPR4

Ò pT,Kqˆr´B,Bs

Zβpt, x|s, yq ą 0

˙

“ 0,(3.14)

P
ˆ

DT ą 0 : lim
KÑ8

K´4 sup
ps,y,t,xqPR4

Ò pT,Kqˆr´B,Bs

Zβpt, x|s, yq
´1

ą 0

˙

“ 0.(3.15)

(iv) We have the almost sure Hölder semi-norm growth bounds

(3.16)

P
ˆ

DT,B ą 0, α P p0, 1{2q, γ P p0, 1{4q, η P p0, 1q :

lim
KÑ8

K´7
|Z ‚ p‚, ‚|‚, ‚q|Cα,γ,ηpR4

Ò pT,K,1{Kqˆr´B,Bsq ą 0

˙

“ 0.

Proof. Recalling that Zβp0, 0|0, 0q “ 1, we have for p ą 70 and γ P p0, 1{14 ´ 5{pq,

sup
ps,y,t,x,βqPR4

Ò pT,Kqˆr´B,Bs

Zβpt, x|s, yq
p

ď 2p ` 2p sup
ps,y,t,x,βqPR4

Ò pT,Kqˆr´B,Bs

ˆ

|Zβpt, x|s, yq ´ 1|

|t|γ ` |x|γ ` |s|γ ` |y|γ ` |β|γ

˙p

5ppTKBq
γp

ď 2p ` 10ppTKBq
p
|Zβp‚, ‚|‚, ‚q|

p

Cγ,γ,γpR4
Ò pT,Kqˆr´B,Bsq

.
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Proposition 3.8(i) then gives the first claim. The second comes from the same argument and
Proposition 3.8 (iii) with θ1 “ 1{2 and θ2 “ 1{4.
We now prove (3.14). Take p ą 70, T,B ą 1 and ϵ ą 0. We have for N P N,

P
`

sup
ps,y,t,x,βqPR4

Ò pT,Nqˆr´B,Bs

Zβpt, x|s, yq ě ϵN4
˘

ď CN´pϵ´p

for some C “ Cpp, T,Bq. The Borel-Cantelli lemma then gives, along the sequence N Ñ 8,

P
ˆ

lim
NÑ8

N´4 sup
ps,y,t,x,βqPR4

Ò pT,Nqˆr´B,Bs

Zβpt, x|s, yq ą 0

˙

“ 0.

Note that sup
ps,y,t,x,βqPR4

Ò pT,Kqˆr´B,Bs
Zβpt, x|s, yq is nondecreasing in T , K, and B. By con-

sidering T,B P N, (3.14) follows. The proof of (3.15) is similar.
To see (3.16), we again appeal to monotonicity of |Zβp‚, ‚|‚, ‚q|Cγ,ηpR4

Ò pT,K,1{Kqˆr´B,Bsq in

T,K, and B. Take α, α1 P p0, 1{2q satisfying α ă α1, γ, γ1 P p0, 1{4q satisfying γ ă γ1,
and η, η1 P p0, 1q satisfying η ă η1, and let T,B ą 1 and K ą maxtT,Bu. Then for
pt1, x1, s1, y1, β1q and pt2, x2, s2, y2, β2q P R4

Ò
pT,K, 1{Kq ˆ r´B,Bs with pt1, x1, s1, y1, β1q ‰

pt2, x2, s2, y2, β2q, observing for example that |x2 ´ x1|
α1

“ |x2 ´ x1|α|x2 ´ x1|α
1´α ď |x2 ´

x1|
α
?
2K, we have

|x1 ´ x2|
α1

` |y2 ´ y1|α
1

` |t1 ´ t2|γ
1

` |s2 ´ s1|γ
1

` |β2 ´ β1|η
1

|x1 ´ x2|α ` |y2 ´ y1|α ` |t1 ´ t2|γ ` |s2 ´ s1|γ ` |β2 ´ β1|η
ď 5

?
2K.

This implies the bound

|Zβp‚, ‚|‚, ‚q|Cα,γ,ηpR4
Ò pT,K,1{Kqˆr´B,Bsq ď 5

?
2K|Zβp‚, ‚|‚, ‚q|Cα1,γ1,η1

pR4
Ò pT,K,1{Kqˆr´B,Bsq

.

Therefore, it is sufficient to show that for each n P N, with αn “ 1{2´1{4n, γn “ 1{4´1{8n,
and ηn “ 1 ´ 1{2n, we have

P
ˆ

DT,B ą 0, : lim
KÑ8

K´7
|Zβp‚, ‚|‚, ‚q|Cαn,γn,ηn pR4

Ò pT,K,1{Kqˆr´B,Bsq ą 0

˙

“ 0.

This follows from the estimates in Proposition 3.8 exactly as in the proof of (3.14). □

Remark 3.11. One quick consequence of Corollary 3.10, which we use frequently, is that for
any T ą 1, there exists C “ CpT,B, ωq so that for all x, y P R, all t, s P r´T, T s, and all
β P r´B,Bs,

C´1
p1 ` |x|

4
` |y|

4
q

´1
ď Zβpt, x|s, yq ď Cp1 ` |x|

4
` |y|

4
q.

The power 4 above is purely an artifact of our proof.

We next turn to the proof of Theorem 2.5, which shows basic properties of our solution
to (1.2). We start with the semi-group property of the fundamental solutions, which is
essentially the Chapman-Kolmogorov identity for the continuum polymer. This result is
already contained in [1, Theorem 3.1(vii)], though the proof there is light on details. For
completeness, we include a more detailed proof here.

Lemma 3.12. There exists an event Ω0 with PpΩ0q “ 1 so that for all ps, y, t, x, βq P R4
Ò

ˆR
and all r P ps, tq,

Zβpt, x|s, yq “

ż

R
Zβpt, x|r, zqZβpr, z |s, yqdz.(3.17)
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Proof. First, fix s, y P R, β P R, and r ą s. Recall that the Cpps,8q,Rq-valued random
variable Zβp‚, ‚ |s, yq is the unique mild solution to (2.2) coming from Lemma A.3. Call
fpzq “ Zβpr, z|s, yq and notice that Lemma 3.2 implies that (A.3) holds for f . It then
follows from Lemma A.5 that for t ą r and x P R,

Zβpt, x|r; fq “

ż

R
Zβpt, x|r, zqZβpr, z |s, yqdz

is the unique Cppr,8q,Rq-valued and adapted solution to the mild equation

Upt, xq “

ż

R
ρpt ´ r, x ´ zqfpzqdz `

ż

R

ż t

r

ρpt ´ v, x ´ wqUpv, wqW pdv dwq

satisfying the moment hypothesis in (A.3). Recalling the mild formulation (2.2), we also
have for all z P R,

fpzq “ Zβpr, z |s, yq “ ρpr ´ s, z ´ yq `

ż

R

ż r

s

ρpr ´ v, z ´ wqZβpv, w |s, yqW pdv dwq

The moment estimates in Lemma 3.2 imply that we may use the stochastic Fubini theorem,
see [17, Theorem 4.33] or [47, Theorem 2.6], to write

Zβpt, x|r; fq “

ż

R
ρpt ´ r, x ´ zqfpzqdz `

ż

R

ż t

r

ρpt ´ v, x ´ wqZβpv, w|r; fqW pdv dwq

“

ż

R
ρpt ´ r, x ´ zqρpr ´ s, z ´ yqdz

`

ż

R
ρpt ´ r, x ´ zq

ż

R

ż r

s

ρpr ´ v, z ´ wqZβpv, w |s, yqW pdv dwqdz

`

ż

R

ż t

r

ρpt ´ v, x ´ wqZβpv, w|r; fqW pdv dwq

“ ρpt ´ s, x ´ yq `

ż

R

ż r

s

ρpt ´ v, x ´ wqZβpv, w |s, yqW pdv dwq

`

ż

R

ż t

r

ρpt ´ v, x ´ wqZβpv, w|r; fqW pdv dwq.

We then have for all t ą r and x P R,

Zβpt, x|r; fq ´ Zβpt, x|s, yq

“

ż

R

ż t

r

ρpt ´ v, x ´ wqpZβpv, w |r; fq ´ Zβpv, w |s, yqqW pdv dwq.

The Burkholder-Davis-Gundy and Gronwall inequalities now imply that

Zβp‚, ‚ |r; fq ´ Zβp‚, ‚ |s, yq “ 0.

(3.17) then holds for all ps, x, t, y, βq P R4
Ò

ˆRXD5 and r P D with r P ps, tq on a single
set of full probability. Continuity of the left hand side of the expression in (3.17) and the
integrand of the right hand side, combined with the growth estimates in Corollary 3.10
and the dominated convergence theorem, imply that the result holds simultaneously for all
ps, x, t, y, βq P R4

Ò
ˆR and r P ps, tq. □
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Proof of Theorem 2.5. On the complement of the event in equation (3.14) of Corollary 3.10,
for each T,B ą 0, there exists a constant C “ CpT,B, ωq so that for all s ă t in r´T, T s,
all β P r´B,Bs, and all x, y P R, C´1p1 ` |x|4 ` |y|4q´1 ď Zβpt, x|s, yq ď Cp1 ` |x|4 ` |y|4q.
Then, for µ, ζ P M2

HE, we have

0 ă C´1

ż

R

ż

R
p1 ` |z|

4
` |w|

4
q

´1ρpt ´ s, z ´ wqζpdzqµpdwq

ď

ż

R

ż

R
Zβpt, z|s, wqζpdzqµpdwq ď C

ż

R

ż

R
p1 ` |z|

4
` |w|

4
qρpt ´ s, z ´ wqζpdzqµpdwq ă 8,

by the conditions defining M2
HEp4q. This implies (i).

We now turn to the first case of (ii). Fix a ą 0 and s, t P R with s ă t. Call b “ 1
2pt´sq

.

Again, by Corollary 3.10, there exist C,C 1 ą 0 depending on s, t, B, ω so that whenever
β P r´B,Bs,

ż

R
e´ax2

Zβpt, x|s;µqdx “

ż

R

ż

R
e´ax2

ρpt ´ s, x ´ yqZβpt, x|s; yqµpdyqdx

ď C

ż

R

ż

R
e´ax2

e´bpx´yq2
p1 ` |x|

4
` |y|

4
qdxµpdyq

ď C 1

ż

R

ż

R
e´a

2
x2

e´bpx´yq2dxµpdyq ` C 1

ż

R

ż

R
e´ax2

e´bpx´yq2
p1 ` |y|

4
qdxµpdyq.

The inner dx integrals can now be computed and result in Gaussian density functions in y,
up to normalization. Therefore, both terms are finite by the condition that µ P MHE. The
remaining case of (ii) is similar.

To prove (iii), suppose that for some K ą 0, ζr´K,Ks ą 0 and µ P M`pRq. Call A ą 0
the supremum in the statement of (iii) and, without loss of generality assume that A is finite

and consider the case that for all a ă A,
ş

e´ay2µpdyq “ 8. We have
ż

R

ż

R
Zβpt, z|s, wqζpdzqµpdwq ě Cζpr´K,Ksq

ż

R

minzPr´K,Ks ρpt ´ s, z ´ wq

1 ` |K|4 ` |w|4
µpdwq.

Limit comparison now shows that if 1
2pt´sq

ă A, then the above integral will be infinite,

implying (iii).
Next, we turn to part (iv). Fix K,B, T ą 0 and ϵ P p0, T {2q and restrict attention to

s ă t ´ ϵ, x P r´K,Ks, and β P r´B,Bs. Then we have

ρpt ´ s, x ´ yqZβpt, x|s, yq ď C
1

a

2πpt ´ sq
e´

px´yq2

2pt´sq p1 ` |x|
4

` |y|
4
q ď C 1e´

y2

8T

for some C 1 “ C 1pK,T,B, ϵ, ωq. Pointwise continuity on R3
Ò

ˆR “ tps, t, x, βq P R4 : s ă tu
follows from the previous estimate and the dominated convergence theorem. Now, we turn to
controlling the Hölder semi-norms. It follows from (3.16) that for each T,B ą 1, α P p0, 1{4q,
γ P p0, 1{2q, and η P p0, 1q, there exists C “ CpT,B, α, γ, η, ωq ą 0 so that for all K ą 1,

|Z ‚ p‚, ‚|‚, ‚q|Cα,γ,ηpR4
Ò pT,K,1{Kqˆr´B,Bsq ď Cp1 ` K7

q.

To see Hölder regularity, take any δ P p0, 1q and letM ą 1 be sufficiently large that 1{M ă δ.
Take pt1, x1, s1, β1q, pt2, x2, s2, β2q P R3

Ò
pT,M, δqˆr´B,Bs with pt1, x1, s1, β1q ‰ pt2, x2, s2, β2q.
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We have

|Zβ1pt1, x1|s1;µq ´ Zβ2pt2, x2|s2;µq|

|t2 ´ t2|α ` |s2 ´ s1|α ` |x2 ´ x2|γ ` |β2 ´ β1|η

ď

ş

R |Zβ1pt1, x1|s1, yq ´ Zβ2pt2, x2|s2, yq|µpdyq

|t2 ´ t1|α ` |s2 ´ s1|α ` |x2 ´ x1|γ ` |β2 ´ β1|η

ď

ş

R |Zβ1pt1, x1|s1, yq ´ Zβ2pt2, x2|s2, yq|ρpt2 ´ s2, x2 ´ yqµpdyq

|t2 ´ t1|α ` |s2 ´ s1|α ` |x2 ´ x1|γ ` |β2 ´ β1|η

`

ş

R |ρpt1 ´ s1, x1 ´ yq ´ ρpt2 ´ s2, x2 ´ yq|Zβ1pt1, x1|s1, yqµpdyq

|t2 ´ t1|α ` |s2 ´ s1|α ` |x2 ´ x1|γ
.

Then, by Corollary 3.10, there exists C “ CpT,B,M, α, γ, η, ωq so that

ż

R

|Zβ1pt1 ´ s1, x1 ´ yq ´ Zβ2pt2 ´ s2, x2 ´ yq|

|t2 ´ t1|α ` |s2 ´ s1|α ` |x2 ´ x1|γ ` |β2 ´ β1|η
ρpt2 ´ s2, x2 ´ yqµpdyq

ď |Z ‚ p‚, ‚|‚, ‚q|Cα,γ,ηpR4
Ò pT,M,δqˆr´B,Bsq

ż M

´M

max
ps,t,xqPR3

Ò pT,M,δq

ρpt ´ s, x ´ yqµpdyq

`

ż

R zr´M,Ms

|Z ‚ p‚, ‚|‚, ‚q|Cα,γ,ηpR4
Ò pT,y,1{yqˆr´B,Bsq max

ps,t,xqPR3
Ò pT,M,δq

ρpt ´ s, x ´ yqµpdyq

ď C

ˆ
ż M

´M

max
ps,t,xqPR3

Ò pT,M,δq

ρpt ´ s, x ´ yqµpdyq

`

ż

R zr´M,Ms

p1 ` |y|
7
q max

ps,t,xqPR3
Ò pT,M,δq

ρpt ´ s, x ´ yqµpdyq

˙

ă 8.

Recall that

Btρpt, xq “

ˆ

x2

2t2
´

1

2t

˙

ρpt, xq(3.18)

and 1{M ă δ. By Corollary 3.10 and the previous observation, there is a constant C “

CpT,B,M, ωq so that we also have

ż

R

|ρpt1 ´ s1, x1 ´ yq ´ ρpt2 ´ s2, x2 ´ yq|Zβ1pt1, x1|s1, yq

|t2 ´ t2|α ` |s2 ´ s1|α ` |x2 ´ x2|γ
µpdyq

ď C

ż

R
max

ps,t,xqPR4
Ò pT,M,δq

ρpt ´ s, x ´ yqp1 ` |y|
4
qµpdyq ă 8.

Part (v) follows from Lemma 3.12, the definition of of a physical solution via superposition
in (1.3), and Tonelli’s theorem.

Turning to (vi), let B,K, T ą 0 be as in the statement. Let ϵ ą 0 and r ě 4K be arbitrary
and let φ P CcpR, r0, 1sq satisfy φpxq “ 1 on r´r, rs and φpxq “ 0 on R zr´2r, 2rs. Take any
δ P p0, 1{2q, any g P CHE with dCHE

pf, gq ă δ, any x P r´K,Ks, any β P r´B,Bs, and any



32 T. ALBERTS, C. JANJIGIAN, F. RASSOUL-AGHA, AND T. SEPPÄLÄINEN

s ă t in r´T, T s with t ´ s ă δ. Use the triangle inequality to write
ˇ

ˇ

ˇ

ˇ

ż

R
Zβpt, x|s, yqgpyqdy ´ fpxq

ˇ

ˇ

ˇ

ˇ

ď

ż

R
ρpt ´ s, x ´ yqgpyq|Zβpt, x|s, yq ´ 1|φpyqdy(3.19)

`

ż

R
ρpt ´ s, x ´ yqgpyq|Zβpt, x|s, yq ´ 1|p1 ´ φpyqqdy(3.20)

`

ż

R
ρpt ´ s, x ´ yq|gpyq ´ fpyq|φpyqdy(3.21)

`

ż

R
ρpt ´ s, x ´ yq|gpyq ´ fpyq|p1 ´ φpyqqdy(3.22)

`

ˇ

ˇ

ˇ

ˇ

ż

R
ρpt ´ s, x ´ yqfpyqφpyqdy ´ fpxq

ˇ

ˇ

ˇ

ˇ

(3.23)

`

ż

R
ρpt ´ s, x ´ yqfpyqp1 ´ φpyqqdy.(3.24)

From the definition of dCHE
, (D.6), there exists C “ Cpr, fq ą 0 so that for all δ P p0, 1{2q

and all g P CHE with dCHE
pf, gq ă δ,

sup
´2rďxď2r

|fpxq ´ gpxq| ď Cδ, and max
´2rďxď2r

gpxq ď C.(3.25)

We begin with the expression in (3.19). For each r as above, there is a δ0 “ δ0pr,K, ϵq P

p0, 1{2q so that whenever δ ă δ0, |Zβpt, x|s, yq ´ 1| ă ϵ for all x P r´K,Ks, y P r´2r, 2rs,
and s ď t in r´T, T s with t ´ s P r0, δq. Bounding g by the constant C from (3.25) on the
support of φ, then bounding φ by 1 and using the fact that the heat kernel integrates to 1,
it follows that applying

lim
rÑ8

lim
ϵŒ0

lim
δŒ0

sup
yPr´K,Ks,βPr´B,Bs

s,tPr´T,T s,t´sPp0,δq

dCHE
pf,gqăδ

(3.26)

to the expression in (3.19) results in a value of 0. A similar argument controls the expression
in (3.21): on the support of φ, use (3.25) to bound |gpyq ´ fpyq| by Cδ, then bound φ by
1 and use the fact that the heat kernel integrates to 1 to see that applying (3.26) to (3.21)
results in a value of 0. Turning to (3.23), notice that fpxq “ φpxqfpxq for x P r´K,Ks. Since
φpxqfpxq is compactly supported and continuous, convergence of (3.23) to 0 after applying
(3.26) is a standard fact about the heat kernel.

By Corollary 3.10, there is a constant C 1 “ C 1pω,B, T,Kq ą 0 so that for all x P

r´K,Ks, y P R, and s ď t in r´T, T s, |Zβpt, x|s, yq ´ 1| ď C 1p1 ` |y|4q. Then we may
bound the sum of the terms in (3.20), (3.22), and (3.24) by

ż

R
ρpt ´ s, x ´ yq1r´r,rscpyqrC 1gpyqp1 ` |y|

4
q ` gpyq ` 2fpyqsdy

For |y| ě 4K and x P r´K,Ks, we have

´2px ´ yq
2

ď ´2y2 ` 4|y||x| ´ 2x2 ď ´2y2 ` 4K|y| ď ´y2.
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For t ´ s ă δ ă 1{8, notice that 1
2pt´sq

´ 2 ě 1
4pt´sq

. Since r ě 4K, we have |x ´ y| ą K if

y P r´r, rsc. For such values of s, t, x, y, this leads to

ρpt ´ s, x ´ yq “
1

a

2πpt ´ sq
e´px´yq2r 1

2pt´sq
´2se´2px´yq2

ď
1

a

2πpt ´ sq
e´ K2

4pt´sq e´y2 .

It follows from the definition of dCHE
that there is a constant C2 “ C2pfq so that if

dCHE
pf, gq ă 1{8, then

ż

R
e´y2

p1 ` |y|
4
qgpyqdy ă C2.

Then there is C3 “ C3pω, f, B, T,Kq ą 0 so that for all g P CHE with dCHE
pf, gq ă 1{8, all

x P r´K,Ks, all s ă t in r´T, T s with t ´ s ă 1{8, and all r ě 4K,
ż

R
ρpt ´ s, x ´ yq1r´r,rscpyqrC 1gpyqp1 ` |y|

4
q ` gpyq ` 2fpyqsdy ď

C3

a

2πpt ´ sq
e´ K2

4pt´sq .

It follows that applying (3.26) to the sum of the terms in (3.20), (3.22), and (3.24) also
results in a value of zero. The remaining case of (vi) is similar.

Next, we turn to part (vii), with the proof being similar to that of part (vi). Let B, T ą 0
be as in the statement. Let ϵ ą 0 and r ě 1 be arbitrary and let φ P CcpR, r0, 1sq satisfy
φpxq “ 1 on r´r, rs and φpxq “ 0 on R zr´2r, 2rs. Take any δ P p0, 1{2q, any ζ P MHE with
dMHE

pζ, µq ă δ, any β P r´B,Bs, and any s ă t in r´T, T s with t ´ s ă δ. Use the triangle
inequality to write

ˇ

ˇ

ˇ

ˇ

ż

R

ż

R
fpxqZβpt, x|s, yqdxζpdyq ´

ż

R
fpyqµpdyq

ˇ

ˇ

ˇ

ˇ

ď

ż

R

ˇ

ˇ

ˇ

ˇ

ż

R
fpxqZβpt, x|s, yqdx ´ fpyq

ˇ

ˇ

ˇ

ˇ

φpyqζpdyq(3.27)

`

ż

R

ż

R
fpxqZβpt, x|s, yqdxp1 ´ φpyqqζpdyq `

ż

R
fpyqp1 ´ φpyqqζpdyq(3.28)

`

ˇ

ˇ

ˇ

ˇ

ż

R
fpyqζpdyq ´

ż

R
fpyqµpdyq

ˇ

ˇ

ˇ

ˇ

.(3.29)

The hypothesis implies that f P CHE so by part (vi), there exists δ0 “ δ0pω, r, B, T q so that
for all β P r´B,Bs, all s ă t in r´T, T s with t ´ s ă δ0, and all y P r´2r, 2rs,

ˇ

ˇ

ˇ

ˇ

ż

R
fpxqZβpt, x|s, yqdx ´ fpyq

ˇ

ˇ

ˇ

ˇ

ă ϵ.

There exists C “ Cpµ, rq ą 0 so that whenever dMHE
pζ, µq ă 1{2,

ş

R φpyqζpdyq ď C. It
follows that applying

lim
rÑ8

lim
ϵŒ0

lim
δŒ0

sup
βPr´B,Bs,s,tPr´T,T s

dMHE
pµ,ζqăδ,t´sPp0,δq

(3.30)

to the expression in (3.27) results in a value of 0.
Recall that we may bound ρp2{a, xqp1 ` |x|4q by a constant depending only on a times

ρp1{a, xq for all x P R. By Corollary 3.10 and the hypothesis on f there exist C 1, C2, C3 ą 0,
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all depending on ω, a,A,B,K and T , so that whenever t´ s ă 1{2, the expression in (3.28)
is bounded by

C 1

ż

Rzr´r,rsc

ˆ
ż

R
ρp2{a, xqρpt ´ s, y ´ xqp1 ` |x|

4
` |y|

4
qdx ` e´ay2

˙

ζpdyq

ď C2

ż

Rzr´r,rsc

ρp1{a ` t ´ s, yq ` ρp1{a, yq ` e´ay2
˙

ζpdyq ď C3

ż

Rzr´r,rsc

e´a
4
y2ζpdyq

ď C3e´a
8
r2
ż

R
e´a

8
y2ζpdyq.

From the definition of dMHE
, there exists C4 “ C4pµ, aq so that whenever dMHE

pζ, µq ă 1{2,
ş

R e
´a

8
y2ζpdyq ď C4. It follows that applying (3.30) to the expression in (3.28) results in a

value of zero. Sending dMHE
pζ, µq Œ 0 sends the expression in (3.29) to zero, directly from

the definition of dMHE
(the topology is generated by test functions satisfying the hypotheses

satisfied by f). The remaining case of (vii) is similar and so the result follows.
□

Next, we turn to the proof of the conservation of asymptotic slope, Proposition 2.12.

Proposition 2.12. The condition defining Hpλ´, λ`q implies that fpzqdz P MHE. Local
boundedness of Zβpt, ‚|s, fq follows from the continuity in Theorem 2.5. Fix T,B ą 0
and restrict attention to ´T ď s ď t ď T and ´B ď β ď B. By Corollary 3.10, there exists
C “ CpT,B, ωq ą 0 so that C´1p1 ` |x|4 ` |z|4q´1 ď Zβpt, x|s, zq ď Cp1 ` |x|4 ` |z|4q for
all z, x P R. Fix ϵ ą 0 and f P Hpλ´, λ`q. By hypothesis, there exist c1, C 1 ą 0 so that the
following hold:

c1

„

1p´8,0spxqepλ´`ϵqx
` 1p0,8qpxqepλ`´ϵqx

ȷ

ď fpxq ď C 1

„

1p´8,0spxqepλ´´ϵqx
` 1p0,8qpxqepλ``ϵqx

ȷ

c1e´ϵp|x|`|z|q
ď p1 ` |x|

4
` |z|

4
q

´1
ď 1, and

1 ď p1 ` |x|
4

` |z|
4
q ď C 1eϵp|x|`|z|q.

We prove one inequality, with the others being similar. We have

lim
xÑ8

1

x
log

ż

R
ρpt ´ s, x ´ zqZβpt, x|s, zqfpzqdz

ě lim
xÑ8

1

x
log

ż

R
ρpt ´ s, x ´ zqp1 ` |x|

4
` |z|

4
q

´1fpzqdz

ě lim
ϵŒ0

lim
xÑ8

1

x
log

ż 8

0

ρpt ´ s, x ´ zqe´ϵzepλ`´ϵqzdz

“ lim
ϵŒ0

lim
xÑ8

1

x
log

ż

R
ρpt ´ s, x ´ zqepλ`´2ϵqzdz “ λ`.

To explain the last two steps, let X be a Normalp0, t´sq random variable on pΩ,F ,Pq. Then
ż 0

´8

ρpt ´ s, x ´ zqepλ`´2ϵqzdz “

ż 8

x

ρpt ´ s, yqepλ`´2ϵqpx´yqdy “ E
„

epλ`´2ϵqpx´Xq1tXąxu

ȷ

,

which has Gaussian decay as x Ñ 8 and so is negligible compared to the full-space integral
of the same function. The form of the Gaussian moment generating function then completes
the proof. □
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We defer the proof of Theorem 2.8 to Section 5, where we prove it along with Theorem
2.15.

4. Continuum directed polymers

We initially view the measures Qβ
ps,yq,pt,xq

defined in (1.7) as measures on the product space

pRrs,ts,BpRqrs,tsq and then show that each induces a unique measure on pCrs,ts,BpCrs,tsqq. That

this is true for all ps, y, t, x, βq P R4
Ò

ˆR “ tps, y, t, x, βq P R5 : s ă tu is the content of
our first main result in this section, Theorem 2.13. This was previously shown for fixed
s, y, t, x, β P R on a event of full probability depending on all of these parameters using a
different argument in [1]. Before turning to our proof of Theorem 2.13, we begin with some
preliminary observations.

For s ă t we define a random variable rX on Cprs, ts,Rq, by

rXu “ Xu ´

ˆ

t ´ u

t ´ s
Xs `

u ´ s

t ´ s
Xt

˙

,

where X is the coordinate random variable. Note that the definition of rX depends implicitly
on s and t, but we suppress this dependence. Denote by PBB

ps,yq,pt,xq
and EBB

ps,yq,pt,xq the law and

expectation associated to a Brownian bridge from ps, yq to pt, xq. We start this section with
an easy lemma recording some well-known and basic properties of Brownian bridge.

Lemma 4.1. For ´8 ă s ă a ă b ă t ă 8, x, y P R, and p ą 1, there exists C “ Cppq so
that

EBB
ps,yq,pt,xqr|Xa ´ Xb|

p
s ď C

ˆ

|b ´ a|
p{2

`
|b ´ a|p

|t ´ s|p
p|t ´ s|p{2

` |x ´ y|
p
q

˙

,

EBB
ps,yq,pt,xqrmax

sďaďt
|X|

p
s
1{p

ď C

ˆ

|t ´ s|1{2
` |y| ` |x ´ y|

˙

.

Moreover, the distribution of X̃ under PBB
ps,yq,pt,xq

p‚q is the same as the distribution of X under

PBB
ps,0q,pt,0q

p‚q.

Proof. Let PBM denote the two-sided Wiener measure pC,BpCqq, i.e., the law of two-sided
standard Brownian Motion, and let EBM denote the corresponding expectation. Computa-
tion of covariances shows that on the interval u P rs, ts, under PBM ,

u ÞÑ Xu´s ´
u ´ s

t ´ s
Xt´s ` y `

u ´ s

t ´ s
px ´ yq

is a Brownian bridge between ps, yq and pt, xq and s. In particular, this representation also

shows that EBB
ps,yqpt,xqrF p rXqs “ EBB

ps,0qpt,0qrF pXqs for all F P BbpCrs,tsq.

EBB
ps,yq,pt,xqr|Xb ´ Xa|

p
s
1{p

ď EBM
r|Xb ´ Xa|

p
s
1{p

`
|b ´ a|

|t ´ s|
pEBM

r|Xt´s|
p
s
1{p

` |x ´ y|q

ď Cpp|b ´ a|
1{2

`
|b ´ a|

|t ´ s|
p|t ´ s|1{2

` |x ´ y|qq,
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for some Cp ą 0 by standard estimates for Normal random variables. A similar argument
and the reflection principle gives for s ă a ă t,

EBB
ps,yq,pt,xqrmax

sďaďt
|Xa|

p
s
1{p

ď Cp

ˆ

|a ´ s|1{2
`

|a ´ s|

|t ´ s|
|t ´ s|1{2

` |y| `
|a ´ s|

|t ´ s|
|x ´ y|

˙

.

Recalling that |a ´ s| ď |t ´ s|, the result follows. □

For s ă t1 ă ¨ ¨ ¨ ă tk ă t, we denote by Qβ
ps,yq,pt,xq

ˇ

ˇ

t1,...,tk
the distribution of pXt1 , . . . , Xtkq

under Qβ
ps,yq,pt,xq

defined in (1.7) and by Pps,yq,pt,xq

ˇ

ˇ

t1,...,tk
the law of pXt1 , . . . , Xtkq under

Pps,yq,pt,xq. We have the following bound on Radon-Nikodym derivatives which will play
a key role in most of what follows.

Lemma 4.2. There exists an event Ω0 with PpΩ0q “ 1 so that on Ω0, the following holds.
For each T,B ą 1 and each k P N, there exists C “ CpT,B, k, ωq so whenever ´T ď t0 “

s ă t1 ă ¨ ¨ ¨ ă tk ă t “ tk`1 ď T and ´B ď β ď B,

C´1
k
ź

i“0

p1 ` |Xti`1
|
4

` |Xti |
4
q

´1
ď
dQβ

ps,yq,pt,xq

ˇ

ˇ

t1,...,tk

dPBB
ps,yq,pt,xq

ˇ

ˇ

t1,...,tk

pXt1 , . . . , Xtkq

ď C
k
ź

i“0

p1 ` |Xti`1
|
4

` |Xti |
4
q, PBB

ps,yq,pt,xq-a.s.

Proof. Observe that by (1.7), we have PBB
ps,yq,pt,xq

almost surely,

dQβ
ps,yq,pt,xq

ˇ

ˇ

t1,...,tk

dPBB
ps,yq,pt,xq

ˇ

ˇ

t1,...,tk

pXt1 , . . . , Xtkq “

śk
i“0Zβpti`1, Xti`1

|ti, Xtiq

Zβptk`1, Xtk`1
|t0, Xt0q

.

The result follows from the growth bounds, (3.14) and (3.15), in Corollary 3.10. □

Next, we turn to the proof of Theorem 2.13, which we prove along with the following
estimate, which will play a role in the proof of Proposition 5.2 below.

Lemma 4.3. There exists an event Ω0 with PpΩ0q “ 1 so that on Ω0, the following holds.

(i) For each T,B ą 1, η P p0, 1{2q and ϵ P p0, 1q, there exists C “ CpT,B, η, ϵ, ωq ą 0 so
that for all s ă t in r´T, T s and all β P r´B,Bs,

EQβ

ps,yq,pt,xq
r|X|Cη

rs,ts
s ď Cp1 ` |x|

4`2ϵ
1´2η

`16
` |y|

4`2ϵ
1´2η

`16
q.(4.1)

(ii) For each T,B ą 1 and each η P p0, 1{2q, there exists C “ CpT,B, η, ωq ą 0, so that
for all s ă t in r´T, T s and all β P r´B,Bs,

EQβ

ps,yq,pt,xq
r| rX|Cηprs,tss ď Cp1 ` |x|

16
` |y|

16
q

Remark 4.4. The bound in (4.1) may look odd in view of the shift invariance implied by
Proposition 2.2, from which one might expect a bound depending only on |x ´ y|. Because
we work on a single full probability event for all initial and terminal points simultaneously,

likely no such bound is possible: the process x ÞÑ EQβ

ps,xq,pt,xq
r|X|Cη

rs,ts
s should be expected to

mix as x Ñ 8 and its distribution can be shown to have unbounded support.
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Proof of Theorem 2.13 and Lemma 4.3. First, notice that Lemma 3.12 implies that the mea-
sures defined in (1.7) define probabilities. Now, take T,B ą 1 as in the statement and
´T ď s ă t ď T and β P r´B,Bs. For s ď a ă b ď t and γ ą 0, appealing to the identity
in (1.7) and Lemma 4.2, there exists C “ CpT,B, ωq so that we have

EQβ

ps,yq,pt,xq
r|Xb ´ Xa|

γ
s “ EBB

ps,yq,pt,xq

„

|Xb ´ Xa|
γZβpt, x|b,XbqZβpb,Xb|a,XaqZβpa,Xa |s, yq

Zβpt, x|s, yq

ȷ

ď C EBB
ps,yq,pt,xqr|Xb ´ Xa|

γ
p1 ` |x|

4
` |y|

4
` |Xb|

4
` |Xa|

4
q
4
s.

By the Cauchy-Schwarz inequality and Lemma 4.1,

EQβ

ps,yq,pt,xq
r|Xb ´ Xa|

γ
s ď C 1 EBB

ps,yq,pt,xqr|Xb ´ Xa|
2γ

s
1{2

p1 ` |x|
16

` |y|
16

q

ď C2

ˆ

|b ´ a|
γ{2

`
|b ´ a|γ

|t ´ s|γ
p|t ´ s|γ{2

` |x|
γ

` |y|
γ
q

˙

p1 ` |x|
16

` |y|
16

q,

ď C3
|b ´ a|

γ{2
p1 ` |x|

16`γ
` |y|

16`γ
q(4.2)

for some C 1, C2, C3 which depend on T,B, γ, and ω. To obtain the last line, it helps to
observe that |b ´ a|{|t ´ s| ď 1 and |t ´ s| ď 2T . Similarly, we have

EQβ

ps,yq,pt,xq
r| rXb ´ rXa|

γ
s “ EBB

ps,yq,pt,xq

„

| rXb ´ rXa|
γZβpt, x|b,XbqZβpb,Xb|a,XaqZβpa,Xa |s, yq

Zβpt, x|s, yq

ȷ

ď C EBB
ps,yq,pt,xq

„

| rXb ´ rXa|
γ
p1 ` |x|

4
` |y|

4
` |Xb|

4
` |Xa|

4
q
4

ȷ

ď C 1 EBB
ps,yq,pt,xqr|

rXb ´ rXa|
2γ

s
1{2

p1 ` |x|
16

` |y|
16

q ď C2
|b ´ a|

γ{2
p1 ` |x|

16
` |y|

16
q

for some C,C 1, C2 depending on T,B, γ and ω, where in the last step we appeal to the
distributional identity in Lemma 4.1.

The existence of a unique measure on pCrs,ts,BpCrs,tsqq with finite dimensional marginal
distributions given by (1.7) follows from the Kolmogorov-Chentsov theorem, recorded as
Theorem B.1, (4.2), and a standard measure theoretic argument as in [46, Theorem 2.1.6].

Now viewing Qβ
ps,yq,pt,xq

as this measure on pCrs,ts,BpCrs,tsqq, the estimate in (4.2), with say

q “ 2, combined with Kolmogorov-Chentsov where we choose γ “ p4 ` 2ϵq{p1 ´ 2ηq, which
satisfies η “ 1{2 ´ p2 ` ϵq{γ P p0, 1{2 ´ 2{γq, implies that (4.1) holds. Lemma 4.3 follows
similarly.

To show (2.11), by path continuity, it suffices to show that

lim
rŒs

EQ
ps,yq,pt,xq

r|Xr ´ y|s “ 0 and lim
rÕt

EQ
ps,yq,pt,xq

r|Xr ´ x|s “ 0.

As above, we have

EQ
ps,yq,pt,xq

r|Xr ´ y|s “ EBB
ps,yq,pt,xq

„

ˇ

ˇXr ´ x
ˇ

ˇ

Zβpt, x|r,XrqZβpr,Xr |s, yq

Zβpt, x|s, yq

ȷ

ď
C

Zβpt, x|s, yq
p1 ` |x|

2
` |y|

2
qEBB

ps,yq,pt,xq

“
ˇ

ˇXr ´ x
ˇ

ˇ

‰

Ñ 0,

as r Œ s, by dominated convergence (dominating by }X‚ }8 ` |x|) and path continuity of
Brownian bridge.
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We now turn to (iii). For f0:n`1 P CcpR,Rqn`2 and s “ t0 ă t1 ă . . . tn ă tn`1 “ t,
and calling z0 “ y and zn`1 “ x, whenever 1 ď i ă j ď n, multiplying and dividing by
Zβptj, zj|ti, ziq inside the integral, we have

EQβ

ps,yq,pt,xq

„ n`1
ź

k“0

fkpXtkq

ȷ

“

ş
śn`1

k“0 fkpzkq
śn

i“0 Zβptk`1, zk`1|tk, zkqdz1:n
Zβpt, x|s, yq

“
f0pxqfk`1pyq

Zβpt, x|s, yq

ż i´1
ź

k“0

fpzkqZβptk`1, zk`1|tk, zkqEpti,ziq,ptj ,zjq

„ j
ź

k“i

fpXtkq

ȷ

ˆ

Zβptj, zj|ti, ziq
n
ź

k“j`1

fpzkqZβptk`1, zk`1|tk, zkqdz1:idzj:n

“ EQβ

ps,yq,pt,xq

„ i´1
ź

k“0

fkpXtkqEpti,Xti q,ptj ,Xtj q

„ j
ź

k“i

fkpXtkq

ȷ n`1
ź

k“j`1

fkpXtkq

ȷ

The monotone class theorem [21, Appendix Theorem 4.3] then implies the result.
To show part (iv), note that by [8, Theorem 8.2], (2.11) and (4.1) imply that the family

tQβ
ps,yq,pt,xqp‚q:´KďxďyďK,´BďβďBu is tight. It therefore suffices to show continuity of the finite

dimensional distributions. This follows from (1.7), continuity of Z‚ pt, ‚|s, ‚q and Scheffe’s
lemma. □

Now, we turn to the study of measure-to-measure polymers and Theorem 2.14.

Proof of Theorem 2.14. We begin by proving part (i). Our first claim is that for any A P

BpCrs,tsq, the map px, yq ÞÑ Qβ
ps,yq,pt,xq

pAq is Borel measurable. Let E “ tA P BpCrs,tsq such

that px, yq ÞÑ Qβ
pt,xq,ps,yq

pAq is Borel measurableu. It is easily checked that E is a λ system. By

the Portmanteau theorem [21, Theorem 3.3.1] and Theorem 2.13, for open sets O P BpCrs,tsq

the map px, yq ÞÑ Qβ
pt,xq,ps,yq

pOq is lower semicontinuous and therefore O P E . By the π ´ λ

theorem [21, Appendix Theorem 4.2], E “ BpCrs,tsq.
Verifying the axioms of a probability measure follows immediately from the fact that each

Qβ
pt,xq,ps,yq

is a probability measure and Tonelli’s theorem. The formula for the density follows

immediately from the definition of Qβ
ps;µq,pt;ζq

in (2.12) and considering expectations of Borel

functions of the form fpXs, Xt1 , . . . , Xtn , Xtq.
Part (ii) is an immediate consequence of (2.10) in Theorem 2.13 and the definition of

Qβ
ps;µq,pt;ζq

in (2.12)

Part (iv) follows from Theorem 2.13 (iii) and (2.12).
To verify part (iii), first recall that pδy, ζq, pµ, δxq P M2

HEp0q Ă M2
HEp4q. The result follows

immediately from (2.11) in Theorem 2.13 and (2.12).
To see Part (v), note that, for example, for any A P BpCrs,tsq

|Qβ
ps;µ1q,pt;ζ1q

´ Qβ
ps;µ1q,pt;ζ2q

pAq| “

ˇ

ˇ

ˇ

ˇ

ş

R2 Zβpt, x|s, yqQβ
ps,yq,pt,xq

pAqζ1pdxqµ1pdyq

Zβpt; ζ1|s;µ1q
´

ş

R2 Zβpt, x|s, yqQβ
ps,yq,pt,xq

pAqζ2pdxqµ1pdyq

Zβpt; ζ2|s;µ1q

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ş

R2 Zβpt, x|s, yqQβ
ps,yq,pt,xq

pAqζ1pdxqµ1pdyq ´
ş

R2 Zβpt, x|s, yqQβ
ps,yq,pt,xq

pAqζ2pdxqµ1pdyq

Zβpt; ζ1|s;µ1q

ˇ

ˇ

ˇ

ˇ
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`

ˇ

ˇ

ˇ

ˇ

ż

R2

Zβpt, x|s, yqQβ
ps,yq,pt,xq

pAqζ2pdxqµ1pdyqpZβpt; ζ1|s;µ1q
´1

´ Zβpt; ζ2|s;µ1q
´1

q

ˇ

ˇ

ˇ

ˇ

ď
Zβpt; |ζ2 ´ ζ1||s;µ1q

Zβpt; ζ1|s;µ1q
` Zβpt; ζ2|s;µ1q|Zβpt; ζ1|s;µ1q

´1
´ Zβpt; ζ2|s;µ1q

´1
|

where in the last step, we bounded the absolute value of an integral (of an arbitrary mea-

surable set) against ζ1 ´ ζ2 by the integral against |ζ1 ´ ζ2| and used Qβ
ps,yq,pt,xq

pAq ď 1. A

similar computation gives

|Qβ
ps;µ1q,pt;ζ2q

´ Qβ
ps;µ2q,pt;ζ2q

pAq| ď

ď
Zβpt; ζ2|s; |µ2 ´ µ1|q

Zβpt; ζ2|s;µ1q
` Zβpt; ζ2|s;µ2q|Zβpt; ζ2|s;µ1q

´1
´ Zβpt; ζ2|s;µ2q

´1
|.

The result follows from the triangle inequality and the fact that for any measurem, }m}TV ď

2 supA |mpAq|. □

5. Regularity of solutions and polymers

Having constructed the measure-to-measure polymers, we now prove the following tech-
nical result, which describes convergence properties of partition functions and quenched
polymer measures.

Proposition 5.1. There is an event Ω0 with PpΩ0q “ 1 so that the following holds for all
ω P Ω0, all s ă t, and all β P R.

(i) Let βn Ñ β, sn ă tn for all n, sn Ñ s, and tn Ñ t. Suppose that pµn, ζnq P M2
HEp4q

is a sequence of measures satisfying for some a ă 1
2pt´sq

sup
n

ż

R2

p1 ` |x|
4

` |y|
4
qe´apx´yq2ζnpdxqµnpdyq ă 8

and that there exist positive Borel measures ζ, µ so that ζn Ñ ζ vaguely and µn Ñ µ
vaguely. Then Zβnptn; ζn|sn;µnq Ñ Zβpt; ζ|s;µq.

(ii) Suppose that for p ą 24 and for n P N, a sequence of measures pµn, ζnq P M2
HEppq

satisfy for some a ď 1
2pt´sq

sup
n

ż

R

ż

R
p1 ` |x|

p
` |y|

p
qe´apx´yq2ζnpdxqµnpdyq ă 8

and there exists pµ, ζq P M2
HEppq so that ζn Ñ ζ and µn Ñ µ vaguely. Let βn Ñ β.

Then Qβn

ps;µnq,pt;ζnq
converges weakly to Qβ

ps;µq,pt;ζq
in M1pCrs,tsq.

(iii) If µn, ζn P MHE are sequences of measures satisfying for some a ď 1
2pt´sq

sup
n

ż

R
p1 ` |x|

4
qe´ax2

ζnpdxq ă 8 and sup
n

ż

R
p1 ` |y|

4
qe´ay2µnpdyq ă 8

and there exist ζ, µ P MHE so that the total variation measures |µn ´ µ| and |ζn ´ ζ|

converge vaguely to zero, then for all x, y P R,

}Qβ
ps;µnq,pt,xq

´ Qβ
ps;µq,pt,xq

}TV Ñ 0 and }Qβ
ps,yq,pt;ζnq

´ Qβ
ps,yq,pt;ζq

}TV Ñ 0.
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Proof. To see (i), notice that vague convergence of the factors implies vague convergence
of the product measure: µn b ζn Ñ µ b ζ. In particular, there exists K ą 0 so that
µn b ζnpr´K,Ks2q Ñ µ b ζpr´K,Ks2q ą 0. Without loss of generality, we assume that
the pre-limit terms are all non-zero as well. Let T ą 1 and B ą 1 be such that for all n,
´T ď sn ă tn ď T and ´B ď βn ď B. By considering n sufficiently large, assume that

1
2ptn´snq

ą a for all n. By hypothesis and Corollary 3.10, there exists C “ CpT,B, a, ωq so

that we have for all n,

sup
n

ż

R2

Zβnptn, x|sn, yqµnpdyqζnpdxq(5.1)

ď C sup
n

ż

R2

p1 ` |x|
4

` |y|
4
qe´apx´yq2µnpdyqζnpdxq ă 8,

sup
n

ż

pR zr´M,Msq2

Zβnptn, x|sn, yqµnpdyqζnpdxq

ď
C

1 ` |M |4
sup
n

ż

R2

p1 ` |x|
4

` |y|
4
qe´apx´yq2µnpdyqζnpdxq.

The estimates above show that Zβnptn, x|sn, yqζnpdxqµnpdyq is tight and bounded in total
variation norm and so every subsequence has a weakly convergent subsequence by Prohorov’s
theorem [9, Theorem 8.6.2]. Consider test functions φ, ψ P CcpRq. Then because the conver-
gence Zβnptn, x|sn, yq Ñ Zβpt, x|s, yq is uniform on the support of φpxqψpyq and everything
is continuous in px, yq, along any weakly convergent subsequence, we have

ż

R2

φpxqψpyqZβnptn, x|sn, yqµnpdyqζnpdxq Ñ

ż

R2

φpxqψpyqZβpt, x|s, yqµpdyqζpdxq.

Thus Zβnptn, x|sn, yqζnpdxqµnpdyq Ñ Zβpt, x|s, yqζpdxqµpdyq weakly. Weak convergence im-
plies

ş

R2 Zβpt, x|s, yqζnpdxqµnpdyq Ñ
ş

R2 Zβpt, x|s, yqζpdxqµpdyq and so part (i) follows.
Turning to part (ii), notice that by Proposition 3.8, for any B,K ą 1

min
px,y,βqPr´K,Ks2ˆr´B,Bs

tZβpt, x|s, yqu ą 0.

Take B sufficiently large that βn P r´B,Bs for all n. We have

Qβn

ps;ζnq,pt;µnq
pXs P r´M,M s

c
q “

ş

R

ş

R zr´M,Ms
Zβpt, x|s, yqζnpdxqµnpdyq

ş

R2 Zβpt, x|s, yqζnpdxqµnpdyq

ď
C supn

ş

R2p1 ` |x|p ` |y|pqρpt ´ s, x ´ yqζnpdxqµnpdyq

p1 ` |M |pqζn b µnpr´K,Ks2q min
px,y,βqPr´K,Ks2ˆr´B,Bs

tZβpt, x|s, yqu
.

Therefore, the one-point distribution of Xs under Q
βn

ps;ζnq,pt;µnq
is tight.

Now, pick η P p0, 1{2q and ϵ P p0, 1q sufficiently small that 4`2ϵ
1´2η

P p0, p ´ 4q. For such η,

(2.12), (4.1), and Corollary 3.10, imply that there exists C “ Cps, t, B, η, ϵ, ωq ą 0 so that
for β P r´B,Bs and ´T ď s ă t ď T ,

EQβ

ps;µq,pt;ζq
r|X|Cη

rs,ts
s ď

ż

R

ż

R

Cp1 ` |x|
4`2ϵ
1´2η

`20
` |y|

4`2ϵ
1´2η

`20
qρpt ´ s, x ´ yq

Zβpt; ζ|s;µq
ζpdxqµpdyq.
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Therefore

EQβn

ps;µnq,pt;ζnq
r|X‚ |Cη

rs,ts
s ď

C
supn

ş

R2p1 ` |x|p ` |y|pqρpt ´ s, x ´ yqµnpdyqζnpdxq

minpx,yqPr´K,Kstp1 ` |x|4 ` |y|4q´1ρpt ´ s, x ´ yquζn b µnpr´K,Ks2q
.

By [8, Theorem 8.2], it follows that tQβn

ps;ζnq,pt;µnq
: n P Nu is tight inM1pCrs,tsq and so it suffices

to show vague convergence of the finite dimensional marginals. Take φ0, . . . , φk`1 P CcpR,Rq.
Then for s “ t0 ă t1 ă ¨ ¨ ¨ ă tk ă t “ tk`1, we have

EQβn

ps;µnq,pt;ζnq

„

φ0pXsq

k
ź

i“1

φipXtiqφk`1pXtq

ȷ

“

ş

R

ş

R φ0pyqEQβn

ps,yq,pt,xq
r
śk

i“1 φipXtiqsφk`1pxqZβnpt, x|s, yqµnpdyqζnpdxq

Zβnpt; ζn|s;µnq
.

The denominator was shown to converge to Zβpt; ζ|s;µq in part (i).The convergence of con-
tinuous functions (in px, yq)

EQβn

ps,yq,pt,xq

„ k
ź

i“1

φipXtiq

ȷ

Ñ EQβ

ps,yq,pt,xq

„ k
ź

i“1

φipXtiq

ȷ

is uniform on the (compact) support of φ0pxqφk`1pyq by Theorem 2.13 (iv). Similarly, the
convergence of the continuous functions (in px, yq) Zβnpt, x|s, yq Ñ Zβpt, x|s, yq is uniform
on the support of φ0pxqφk`1pyq. We may then conclude from vague convergence of µnbζn Ñ

µ b ζ that

EQβn

ps;µnq,pt;ζnq

„

φpXsq

k
ź

i“1

φipXtiqφpXtq

ȷ

Ñ EQβ

ps;µq,pt;ζq

„

φpXsq

k
ź

i“1

φipXtiqφpXtq

ȷ

.

The result follows.
To see that (iii) holds, we appeal to Theorem 2.14 (v) and part (i) of this result. □

With the previous result in hand, we turn to the proof of Theorem 2.8.

Proof of Theorem 2.8. We begin with part (i). Take µn Ñ µ in the metric on MHE defined
in equation (D.2) and βn Ñ β, sn Ñ s, tn Ñ t, and sn ď tn for all n. Let f P CpR,R`q be

any function for which there exist a,A ą 0 such that 0 ď fpzq ď Ae´az2 for all z P R. The
claim is that with the convention in (2.8),

ż

R
fpxqZβnptn, dx|sn;µnq Ñ

ż

R
fpxqZβpt, dx|s;µq.

We first consider the case where s ă t. Then, by hypothesis, we have for any b ą 0
ż

R2

e´bpx´yq2fpyqdyµnpdxq ď A

ż

R2

e´bpx´yq2e´ay2dyµnpdxq

“ A1

ż

R
e´cx2

µnpdxq Ñ A1

ż

R
e´cx2

µpdxq.
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where A1 “ A1pA, a, bq and c “ cpa, bq are explicit and come from standard computations
involving Gaussian kernels. It follows that the integral on the left is bounded as a function
of n. The hypotheses of Proposition 5.1(i) are satisfied and so

Zβnptn; f |sn;µnq Ñ Zβpt; f |s;µq.

Next, suppose that s “ t. If for all sufficiently large n, sn “ t “ tn, then there is nothing
to be shown, so we may assume without loss of generality that for all sufficiently large n,
tn ´ sn ą 0 and tn ´ sn Œ 0. This case follows from Theorem 2.5(vii).

Next, we turn to part (ii). Again take µn Ñ µ in MHE and βn Ñ β, sn Ñ s, tn Ñ t,
and yn Ñ y, where sn ă tn for all n and s ă t. We just showed that the integrals against
f P CpR,R`q for which there exist a,A ą 0 such that 0 ď fpzq ď Ae´az2 for all z P R
converge. To show convergence in CHE, because the limit is strictly positive, it then suffices
to show that for any m P N,

lim
nÑ8

sup
yPr´m,ms

ˇ

ˇ

ˇ

ˇ

Zβnptn, y|sn;µnq ´ Zβpt, y|s;µq

ˇ

ˇ

ˇ

ˇ

“ 0.

If not, then for any ϵ ą 0, there would exist yn P r´m,ms such that |Zβnptn, yn|sn;µnq ´

Zβpt, yn|s;µq| ą ϵ for all n. Passing to a subsequence, we may assume that yn Ñ y P

r´m,ms. By continuity of y ÞÑ Zβpt, y|s;µq, this would imply that for all sufficiently large
n, |Zβnptn, yn|sn;µnq ´ Zβpt, y|s;µq| ą ϵ{2, which contradicts Proposition 5.1(i).
Finally, we turn to part (iii). Take fn Ñ f in the metric on CHE defined in equation (D.6)

and βn Ñ β, sn Ñ s, tn Ñ t, and sn ď tn for all n. Then because uniform convergence
implies vague convergence of the represented measures, we have fnpxqdx Ñ fpxqdx in the
topology of MHE. Part (ii) then implies the result if s ă t. Consider now the case s “ t.
We may assume that tn ´ sn ą 0 for all sufficiently large n, else there is otherwise nothing
to prove. In this case, convergence of the integrals appearing in the metric dCHE

in (D.6)
follows from part (i). As f P CHE is strictly positive, it remains to show that for m P N,

lim
nÑ8

max
´mďxďm

ˇ

ˇ

ˇ

ˇ

Zβnptn, x|sn; fnq ´ fpxq

ˇ

ˇ

ˇ

ˇ

“ 0.

This follows from Theorem 2.5(vi). □

Next, we show the corresponding continuity results for the quenched polymer measures,
recorded as Theorem 2.15.

Proof of Theorem 2.15. Part (i) is an immediate consequence of Proposition 5.1(ii). Simi-
larly, part (ii) follows from Proposition 5.1(iii).

Turning to (iii), take s ă r ă t and f P BbpRq as in the statement and let x, y P R be
given. We have

EQβ

ps,yq,pt,xq
rfpXrqs “

ş

R fpzqZβpt, x|r, zqZβpr, z |s, yqρpt ´ r, x ´ zqρpr ´ s, z ´ yqdz

Zβpt, x|s, yq
.

Continuity in ps, y, t, x, βq now follows from continuity of the denominator and the integrand,
Corollary 3.10, and the dominated convergence theorem, whenever s ă r ă t.

Next, we consider part (iv) f P CcpR,Rq. Take sequences sn Ñ r with sn ď r, yn Ñ y,
and βn Ñ β. Passing to subsequences, we handle the cases of sn “ r for all n and sn ă r for
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all n separately. If sn “ r for all n, then by Theorem 2.13, EQβn

pr,ynq,pt,xq
rfpXrqs “ fpynq which

converges to fpyq by continuity. Now, consider the case of sn ă r with sn Ñ r.

EQβn

psn,ynq,pt,xq
rfpXrqs “

ş

R fpzqZβnpt, x|r, zqZβnpr, z|sn, ynqρpt ´ r, x ´ zqρpr ´ sn, z ´ ynqdz

Zβnpt, x|sn, ynq
.

The denominator converges to Zβpt, x|s, yq by continuity. Convergence of the integral follows
from observing that Zβnpr, z|sn, ynq Ñ 1 uniformly over z P supp f and ρpr´sn, z´ynqdz Ñ

δpyq vaguely. Continuity of pt, x, βq ÞÑ EQβ

ps,yq,pt,xq
rfpXrqs is similar.

Now, take ζ P MHE. We have

EQβ

ps,yq,pt;ζq
rfpXrqs “

ş

R Zβpt, x|s, yqρpt ´ s, x ´ yqEQβ

ps,yq,pt,xq
rfpXrqsζpdxq

Zβpt; ζ |s, yq
.

Continuity of the partition function Zβpt; ζ |s, yq in pt, y, s, βq follows from Theorem 2.5.

Continuity of pt, y, s, βq ÞÑ EQβ

ps,yq,pt,xq
rfpXrqsZβpt, x|s, yqρpt ´ s, x ´ yq, Corollary 3.10, and

the dominated convergence theorem give continuity of the integral, which holds by the result

shown above for the point-to-point measures. Continuity of ps, t, x, βq ÞÑ EQβ

ps;µq,pt,xq
rfpXrqs

is similar. If f P CcpR,Rq, continuity of ps, y, βq ÞÑ EQβ

ps,yq,pt;ζq
rfpXrqs and pt, x, βq ÞÑ

EQβ

ps;µq,pt,xq
rfpXrqs on tps, y, βq P R3 : s ď ru and tpt, x, βq P R3 : t ě ru follow from the

same argument. □

We now turn to the Karlin-McGregor formula, recorded as Proposition 5.2 below. Before
stating the result, we introduce and recall some notation. We denote the Weyl chamber in
Rn by Wn “ tpx1, . . . , xnq : x1 ă ¨ ¨ ¨ ă xnu. For px1, . . . , xnq, py1, . . . , ynq P Wn, s, t, x, y P R
with s ă t, µ, ζ P MHE, and B1, . . . , Bn P BpCrs,tsq, and denoting the coordinate random
variables by pX1, . . . , Xnq, we set

Qβ
ps,y1,...,ynq,pt;ζq

pX i
P Bi, 1 ď i ď nq “

n
ź

i“1

Qβ
ps,yiq,pt;ζq

pX P Biq, and

Qβ
ps;µq,pt,x1,...,xnq

pX i
P Bi, 1 ď i ď nq “

n
ź

i“1

Qβ
ps;µq,pt,xiq

pX P Biq.

That is, Qβ
ps,y1,...,ynq,pt;ζq

is the law of n independent point-to-measure polymers. The polymer

paths start from the points y1, . . . , yn at time s and run until time t, where they share a
boundary condition given by the measure ζ. We view this as a measure on on the product
space Cprs, ts,Rqn. There is a similar interpretation for Qβ

ps;µq,pt,x1,...,xnq
. As before, we replace

ps;µq with ps, yq if µ “ δy, with similar notation for pt, xq. Call Gpnq

s:t “ σpX1
u, . . . X

n
u : s ď

u ď tq the associated natural filtration. For each s ă t and each n P N, introduce the

Gpnq

s:t -stopping time

τ
pnq

s:t “ inftu P rs, ts such that there exist i, j P rns with i ‰ j and X i
u “ Xj

uu.

We say that pB1, . . . , Bnq P BpRqn are coordinate-wise ordered if x P Bi and y P Bj with
i ă j implies x ă y.

Proposition 5.2. There exists an event Ω0 with PpΩ0q “ 1 so that on Ω0, the following
hold:
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(i) For all s ă t, all r P ps, tq, all β P R, all pB1, . . . , Bnq P BpRqn which are coordinate-
wise ordered, all µ, ζ P MHE, and all px1, . . . , xnq, py1, . . . , ynq P Wn,

Qβ
ps,y1,...,ynq,pt;ζq

pX1
r P B1, . . . , X

n
r P Bn, τ

pnq

s:t ą rq

“

ż

B1ˆ¨¨¨ˆBn

det
1ďi,jďn

„

Zβpt; ζ|r, zjqZβpr, zj |s, yiq

Zβpt; ζ |s, yiq

ȷ

dz1:n

and

Qβ
ps;µq,pt,x1,...,xnq

pX1
r P B1, . . . , X

n
r P Bn, τ

pnq

s:t ą rq

“

ż

B1ˆ¨¨¨ˆBn

det
1ďi,jďn

„

Zβpt, xi|r, zjqZβpr, zj|s;µq

Zβpt, xi|s;µq

ȷ

dz1:n

(ii) For all s ă t, all r P ps, tq, all β P R, all px1, . . . xnq, py1, . . . , ynq, pz1, . . . , znq P Wn

and all µ, ζ P MHE,

det
1ďi,jďn

„

Zβpt; ζ|r, zjqZβpr, zj |s, yiq

Zβpt; ζ |s, yiq

ȷ

ą 0 and det
1ďi,jďn

„

Zβpt, xi|r, zjqZβpr, zj|s;µq

Zβpt, xi|s;µq

ȷ

ą 0.

(iii) For all s ă t, all β P R, and all py1, . . . , ynq, px1, . . . , xnq P Wn,

det
1ďi,jďn

“

Zβpt, xj |s, yiq
‰

ą 0.

Note that Theorem 2.16 is Proposition 5.2(iii). The form of the first part of the proof
is adapted from an argument due to Varadhan, which is sketched in the discrete case in
Exercise 4.3.5 of [33].

Proof of Proposition 5.2. Consider β P R py1, y2. . . . , ynq P Wn, ζ P MHE, and φ1, . . . φn P

CcpR,Rq where the sets Bi “ suppφi are coordinate-wise ordered as in the statement. In
particular, note that this condition enforces that suppφi X suppφj “ H if i ‰ j. Call

EQβ

ps,y1,...,ynq,pt;ζq
the expectation under Qβ

ps,y1,...,ynq,pt;ζq
. Denote by Sn the group of permutations

on rns “ t1, . . . , nu and fix σ P Sn. We consider the Gpnq
s:u martingale defined by

Mσ
puq “ EQβ

ps,y1,...,ynq,pt;ζq

„ n
ź

i“1

φipX
σpiq
r q

ˇ

ˇ

ˇ

ˇ

Gpnq
s:u

ȷ

.

Independence of the coordinate random variables and the Markov property of Qβ
ps,yiq,pt;ζq

p‚q

imply that for u ď r, Qβ
ps,y1,...,ynq,pt;ζq

almost surely,

(5.2)

Mσ
puq “

n
ź

i“1

EQβ

pu,X
σpiq
u q,pt;ζq

“

φipXrq
‰

“

ż

Rn

n
ź

i“1

φipziq
n
ź

i“1

Zβpt; ζ|r, ziqZβpr, zi|u,X
σpiq
u q

Zβpt; ζ|u,X
σpiq
u q

dz1:n.

Note that the path continuity ofXu under Q
β
ps,yiq,pt;ζq

combined with Theorem 2.15(iv) implies

that u ÞÑ Mσ
u is then a bounded and continuous Gpnq

s:u martingale on rs, rs underQβ
ps,y1,...,ynq,pt;ζq

.
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Therefore, all of these properties also hold for

Mpuq “
ÿ

σPSn

p´1q
sgnpσqMσ

puq “ det
1ďi,jďn

“

EQβ

pu,Xi
uq,pt;ζq

rφjpXrqs
‰

(5.3)

“

ż

Rn

n
ź

i“1

φipziq det

„

Zβpt; ζ|r, ziqZβpr, zi|u,X
j
uq

Zβpt; ζ|u,Xj
uq

ȷn

i.j“1

dz1:n.(5.4)

By the optional stopping theorem,

Mpsq “ EQβ

ps,y1,...,ynq,pt;ζq
rMpτ

pnq

s:t ^ rqs “ EQβ

ps,y1,...,ynq,pt;ζq
rMpτ

pnq

s:t q1
tτ

pnq
s:t ďru

` Mprq1
tτ

pnq
s:t ąru

s

Note that on the event tτ
pnq

s:t ď ru,Mpτ
pnq

s:t q “ 0 because two rows in the matrix in the
determinant in (5.3) are equal. On the other hand, because the yi are ordered and the
supports of the test functions φi are also ordered, if σ is not the identity, then path continuity
forces

Mσ
prq “

n
ź

i“1

EQβ

pr,X
σpiq
r q,pt;ζq

“

φipXrq
‰

1
tτ

pnq
s:t ąru

“ 0, Qβ
ps,y1,...,ynq,pt;ζq

-almost surely.

When σ is the identity, by Theorem 2.13, Mσprq “
śn

i“1 φipXrq almost surely under

Qβ
ps,y1,...,ynq,pt;ζq

. Consequently, we have

ż

Rn

n
ź

i“1

φipziq det
1ďi,jďn

„

Zβpt; ζ|r, ziqZβpr, zi |s, yjq

Zβpt; ζ |s, yjq

ȷ

dz1:n

“ EQβ

ps,y1,...,ynq,pt;ζq

„ n
ź

i“1

φipX
i
rq1tτ

pnq
s:t ąru

ȷ

.

A standard monotone class theorem [21, Appendix Theorem 4.3] argument then implies
that the previous identity holds with

śn
i“1 φi replaced by f P BbpWnq. In particular, if

pB1, . . . , Bnq are coordinate-wise ordered, then
ż

B1ˆ¨¨¨ˆBn

det
1ďi,jďn

„

Zβpt; ζ|r, ziqZβpr, zi |s, yjq

Zβpt; ζ |s, yjq

ȷ

dz1:n “ Qβ
ps,y1,...,ynq,pt;ζq

pX i
r P Bi, i P rns, τ

pnq

s:t ą rq.

The result for Qβ
ps;µq,pt,x1,...,xnq

is similar. This completes the proof of part (i).

Turning to the proof of parts (ii) and (iii), note that non-negativity of the determinant in
part (ii) follows immediately from part (i). The claim is that this inequality is everywhere
strict. Note that by multilinearity of the determinant, we have

det
1ďi,jďn

„

Zβpt; ζ|r, zjqZβpr, zj |s, yiq

Zβpt; ζ |s, yiq

ȷ

“

śn
j“1 Zβpt; ζ|r, zjq

śn
i“1 Zβpt; ζ |s, yiq

det
1ďi,jďn

„

Zβpr, zj |s, yiq

ȷ

(5.5)

with a similar identity for the other term in part (ii). By strict positivity of the first term
on the right-hand side of this equality, we see that parts (ii) and (iii) are equivalent.

Fix s ă t, r P ps, tq, py1, . . . , ynq P Wn, ζ P MHE, and δ P p0, 1q. Let B1, . . . , Bn P BpRq be
bounded Borel sets of positive Lebesgue measure with the property that if x P Bi and y P Bj

with i ă j, then y ´ x ą δ. Our first claim is that for any sets satisfying these conditions,

Qβ
ps,y1,...,ynq,pt;ζq

pX i
r P Bi for i P rns, τ

pnq

s:t ą rq ą 0.
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y1 y2 y3 y4

s

v

r
B4B3

≥ δ

≥ δ/2

≥ 4ε

B2B1

Figure 5.1. The path Xi starts at yi at time s and reaches Bi (dashed, at level
r) at time r, while remaining inside the tube connecting yi and Bi (drawn in solid
lines) between times s and r. Before time v, the tube is a symmetric cylinder with
diameter 4ϵ around the straight line segment connecting yi and ci. The tube expands
at a time v (which is slightly smaller than r) in order to allow the path enough space
to reach any point in Bi, while still not allowing for intersections with any other

path.

For each i, let rai, bis “
Ş

BiĂra,bs
ra, bs be the smallest closed interval containing Bi. By

hypothesis, we have for i P rn´ 1s, bi ` δ ď ai`1. Call ci “ pai ` biq{2. In order to show that
this event has positive probability, we first show that with positive probability, for some v
slightly smaller than r, each of the n paths remains in a narrow symmetric cylinder of radius
ϵ around the straight line segment connecting ps, yiq and pv, ciq for the entire time interval
rs, vs. These cylinders will be chosen to be narrow enough that the paths cannot intersect
before time v as long as they remain in the cylinders. Then the path is required to end in
Bi at time r, without exiting the interval pai ´ δ{4, bi ` δ{4q on rv, rs. See Figure 5.1 for an
illustration.

Recall that for a ă b, we defined the process X̃ on Cpra, bs,Rq by

rXu “ Xu ´

ˆ

b ´ u

b ´ a
Xa `

u ´ a

b ´ a
Xb

˙

,

Note that the definition of X̃ depends on the space on which it is defined through a and
b, which we suppress. For v P ps, rq denote by ℓi,vpuq the straight line segment connecting
ps, yiq with pv, ciq, where ci “ pai ` biq{2, i.e., for u P rs, vs,

ℓi,vpuq “
v ´ u

v ´ s
¨ yi `

u ´ s

v ´ s
¨
ai ` bi

2
.

Because ζ P MHE, there exists K ą 0 so that ζr´K,Ks ą 0. Without loss of generality,
we may assume that K is sufficiently large that a1 ´ 1, bn ` 1, y1 ´ 1, yn ` 1 P r´K,Ks.
By Lemma 4.3 , there exists C “ Cpt, s,K, ωq ą 0 so that for all x, y P r´K,Ks and all
u, v P rs, ts with u ă v,

EQβ

pu,yqpv,xq
r| rX|C1{4

ru,vs

s ă C.

Let ϵ P p0, δ{4q be sufficiently small that for i P rn ´ 1s, yi`1 ´ yi ą 8ϵ and for i P rns,
bi ´ai ą 8ϵ. In particular, pci ´ϵ, ci `ϵq Ă rai, bis for all i P rns. Take m P N sufficiently large
that Cpr ´ sq1{4{m1{4 ă ϵ2. Let uj “ s` pr ´ sq j

m
, j P t0, . . . ,mu, be a uniform partition of
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rs, rs with mesh size m´1pr´sq. In particular, we have for all x, y P r´K,Ks and all j P rms,

Qβ
puj´1,xq,puj ,yq

ˆ

sup
u,vPruj´1,ujs

| rXu ´ rXv| ě ϵ

˙

ď Qβ
puj´1,xq,puj ,yq

ˆ

| rX|C1{4
ruj´1,uj s

ě
m1{4ϵ

pr ´ sq1{4

˙

ď ϵ,

by Markov’s inequality and the choice of m. The next part of the argument is illustrated in
Figures 5.2 and 5.3. Call

Ei “

"

sup
uPrs,um´1s

|X i
u ´ ℓi,um´1puq| ă 2ϵ, X i

r P Bi, @u P rum´1, rs : X
i
u P

ˆ

ai ´
δ

4
, bi `

δ

4

˙*

.

Momentarily viewing Ei as an event on Crs,ts instead of the product space, for any x P

r´K,Ks and i P rns, we have

Qβ
ps,yiq,pt,xq

pEiq ě Qβ
ps,yiq,pt,xq

ˆ

Xr P Bi; @j P rm ´ 1s : |Xuj
´ ℓi,um´1pujq| ă ϵ;

@j P rms : sup
u,vPruj´1,ujs

| rXu ´ rXv| ă ϵ

˙

“ EQβ

ps,yiq,pt,xq

„m´1
ź

j“1

Qβ
puj´1,Xuj´1 q,puj ,Xuj q

ˆ

sup
u,vPruj´1,ujs

| rXu ´ rXv| ă ϵ

˙

1t|Xuj ´ℓipujq|ăϵu1tXi
rPBiu

ȷ

ě p1 ´ ϵqmQβ
ps,yiq,pt,xq

ˆ

X i
r P Bi; @j P rm ´ 1s : |Xuj

´ ℓipujq| ă ϵ

˙

,

where in the second-to-last step, we have repeatedly applied the Markov property and in the
last step that ϵ ă δ{4. Finally, by Lemma 4.2, there is a constant C 1 “ C 1pT,m, ωq so that

Qβ
ps,yiq,pt,xq

ˆ

X i
r P Bi; @j P rm ´ 1s : |Xuj

´ ℓipujq| ă ϵ

˙

ě
C 1

p1 ` 2Kqm
inf

´KďxďK
PBB

ps,yiq,pt,xq

„

X i
r P Bi; @j P rms : |Xuj

´ ℓipujq| ă ϵ

ȷ

ą 0.

The strict positivity of the infimum follows because the probability being minimized is
positive for each x and continuous in x. Continuity can be seen either by applying dominated
convergence to the integral form of the probability or abstractly as a consequence of the
strong Feller property of Brownian bridge. We have

Qβ
ps,yiq,pt;ζq

pEiq “
1

Zβpt; ζ |s, yiq

ż

R
Zβpt, x|s, yiqQ

β
ps,yq,pt,xq

pEiqζpdxq

ě
C 1ζr´K,Ks

p1 ` 2KqmZβpt; ζ |s, yiq

ˆ inf
xPr´K,Ks

!

Zβpt, x|s, yiqP
BB
ps,yiq,pt,xq

“

X i
r P Bi ; @j P rms : |Xuj

´ ℓipujq| ă ϵ
‰

)

.

Now, notice that by construction, we have |yi ´yj| ą 8ϵ and |ci ´cj| ą δ`4ϵ ą 8ϵ. Therefore
|ℓi,um´1puq ´ ℓj,um´1puq| ą 8ϵ for all u P rs, um´1s and so the tubes in Figure 5.1, which the
event Ei forces the path to remain in, do not intersect up to time um´1. By hypothesis, we
also have ai ´ bi´1 ě δ and so the tubes also do not intersect on rum´1, rs. Consequently, by
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yi

ci

s

um−1

r

u1

.

.

.

um−2

ε 2ε

Figure 5.2. On Ei, the ith path is required to lie within ϵ of ℓi,um´1pujq at the
times tuj : j P rm ´ 1su. Between these times, the path is required to remain inside
the larger cylinder of radius 2ϵ (the union of the light and dark grey regions) around
ℓi,vp¨q (thick). The points ℓi,um´1pujq and some admissible values of Xi

uj
are marked

as bullets. An inadmissible path between these values (due to exiting the cylinder
between um´2 and um´1) is drawn as a zigzag. In order to exit in this way, the
path between Xi

uj´1
and Xi

uj
deviates from the straight line between those points

by more than ϵ.

cici − ε ci + ε

Xi
rBi

um−1

r

Xium−1
ai bi bi + δ/4ai − δ/4

Figure 5.3. By Lemma 4.2, Xi
um´1

P pci ´ ϵ, ci ` ϵq (solid at level um´1) and

Xi
r P Bi (dashed, at level r) with positive probability. If ϵ is such that pci´ϵ, ci`ϵq Ă

rai, bis, then in order to exit the interval rai ´ δ{4, bi ` δ{4s, the path must deviate
by more than δ{4 from the straight line connecting Xi

um´1
and Xi

r on the time

interval rum´1, rs.

independence,

Qβ
ps,y1,...,ynq,pt;ζq

pX i
r P Bi, i P rns, τ

pnq

s:t ą rq

ě Qβ
ps,y1,...,ynq,pt;ζq

pE1, . . . , Enq “

n
ź

i“1

Qβ
ps,yiq,pt;ζq

`

Ei

˘

ą 0.

Now, consider pa1, . . . , anq, pb1, . . . , bnq P Wn with ai´1 ă bi´1 ă ai for i P t2, . . . , nu and call
Bi “ pai, biq. The previous result implies that

"

pz1, . . . , znq P Wn : det
1ďi,jďn

„

Zβpt; ζ|r, ziqZβpr, zi |s, yjq

Zβpt; ζ |s, yjq

ȷ

“ 0

*

č

pB1 ˆ . . . ,ˆBnq
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has Lebesgue measure zero, with a similar result for the other determinant in (ii). By (5.5),
it follows that for all px1, . . . , xnq, py1, . . . , ynq P Wn, the Lebesgue measure of the sets

"

pz1, . . . , znq P Wn : det
1ďi,jďn

“

Zβpr, zj |s, yiq
‰

“ 0

*

and

"

pz1, . . . , znq P Wn : det
1ďi,jďn

“

Zβpt, xj|r, ziq
‰

“ 0

*

are both zero.
For a permutation σ P Sn, set Wσ

n “ tz1:n P Rn : zσp1q ă ¨ ¨ ¨ ă zσpnqu. By the Chapman-
Kolmogorov identity in Lemma 3.12 and the Cauchy-Binet-Andréief identity, [4, Lemma
3.2.3]), for any py1, . . . , ynq, px1, . . . , xnq P Wn and any s ă r ă t,

det
1ďi,jďn

“

Zβpt, yj |s, xiq
‰

“ det
1ďi,jďn

„
ż

R
Zβpt, yj |r, zqZβpr, z |s, xiqdz

ȷ

“
1

n!

ż

Rn

det
1ďi,jďn

“

Zβpt, yj |r, ziq
‰

det
1ďi,jďn

“

Zβpr, zi |s, xjq
‰

dz1:n

“
1

n!

ÿ

σPSn

ż

Wσ
n

det
1ďi,jďn

“

Zβpt, yj |r, ziq
‰

det
1ďi,jďn

“

Zβpr, zi |s, xjq
‰

dz1:n

“
1

n!

ÿ

σPSn

ż

Wσ
n

det
1ďi,jďn

“

Zβpt, yj |r, zσpiqq
‰

det
“

Zβpr, zσpiq |s, xjq
‰

dz1:n

“
1

n!

ÿ

σPSn

ż

Wn

det
1ďi,jďn

“

Zβpt, yj |r, ziq
‰

det
1ďi,jďn

“

Zβpr, zi |s, xjq
‰

dz1:n

“

ż

Wn

det
1ďi,jďn

“

Zβpt, yj |r, ziq
‰

det
1ďi,jďn

“

Zβpr, zi |s, xjq
‰

dz1:n ą 0,

by the previous observation. □

Proof of Proposition 2.17. It suffices to check stochastic monotonicity for the finite dimen-
sional distributions. By Proposition 5.2 (ii), for all s ă r ă t, all β P R, all ζ P MHE, all
y1 ă y2 and all z1 ă z2, we have

Zβpt; ζ|r, z1qZβpr, z1 |s, y1q

Zβpt; ζ |s, y1q

Zβpt; ζ|r, z2qZβpr, z2 |s, y2q

Zβpt; ζ |s, y2q

ą
Zβpt; ζ|r, z1qZβpr, z1 |s, y2q

Zβpt; ζ |s, y2q

Zβpt; ζ|r, z2qZβpr, z2 |s, y1q

Zβpt; ζ |s, y1q

For any a P R, integrating both sides of this expression on p´8, aq with respect to z1 and
on pa,8q with respect to z2, we have

Qβ
ps,y1q,pt;ζq

`

Xr ă a
˘

Qβ
ps,y2q,pt;ζq

`

Xr ě a
˘

ą Qβ
ps,y2q,pt;ζq

pXr ă aqQβ
ps,y1q,pt;ζq

pXr ě aq

All of the probabilities above here are strictly positive, so we may re-write this as

Qβ
ps,y2q,pt;ζq

pXr ě aq

1 ´ Qβ
ps,y2q,pt;ζq

pXr ě aq
ą

Qβ
ps,y1q,pt;ζq

pXr ě aq

1 ´ Qβ
ps,y1q,pt;ζq

pXr ě aq
,
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which holds if and only if

Qβ
ps,y2q,pt;ζq

pXr ě aq ą Qβ
ps,y1q,pt;ζq

pXr ě aq.

We prove stochastic monotonicity of the n-point distributions by induction. Assume that
for all s ă t, all ζ P MHE, all y1 ă y2, all a1:n P Rn, and all r1:n P Rn satisfying s ă r1 ă

¨ ¨ ¨ ă rn ă t, we have

Qβ
ps,y2q,pt;ζq

pXr1 ě a1, . . . , Xrn ą anq ą Qβ
ps,y1q,pt;ζq

pXr1 ě a1, . . . , Xrn ě anq

Now, fix a1:n`1 P Rn`1 and r1:n`1 with r1 ă ¨ ¨ ¨ ă rn ă rn`1. The induction hypothesis
implies that for each y P R,

z ÞÑ Qβ
ps,yq,prn`1,zq

pXr1 ě a1, . . . , Xrn ě anq1tzěan`1u

is non-decreasing. We have

Qβ
ps,y2q,pt;ζq

pXr1 ě a1, . . . , Xrn ě an, Xrn`1 ě an`1q

“ EQβ

ps,y2q,pt;ζq
rQβ

ps,y2q,prn`1,Xrn`1 q
pXr1 ě a1, . . . , Xrn ě anq1tXrn`1ěan`1us

ě EQβ

ps,y2q,pt;ζq
rQβ

ps,y1q,prn`1,Xrn`1 q
pXr1 ě a1, . . . , Xrn ě anq1tXrn`1ěan`1us

ě EQβ

ps,y1q,pt;ζq
rQβ

ps,y1q,prn`1,Xrn`1 q
pXr1 ě a1, . . . , Xrn ě anq1tXrn`1ěan`1us

“ Qβ
ps,y1q,pt;ζq

pXr1 ě a1, . . . , Xrn ě an, Xrn`1 ě an`1q,

where in the first inequality, we apply the induction hypothesis and in the second, we applied
the base case of the induction with r “ rn`1. This implies the first inequality in (2.15). The
second is similar. □

Appendix A. Mild solutions and uniqueness

In this section we discuss some details and partially survey the literature concerning exis-
tence and uniqueness of mild solutions to (1.2) with possibly random initial conditions. We
then show that the superposition formulation of Zβpt, x|s;µq is, up to indistinguishability,
the usual mild solution to (1.2).

Let X be a random variable taking values in the space of positive Borel measures satisfying
PpX P MHEq “ 1 and which is independent of the white noise after some initial time s,

which we will typically take to be zero. For such s, define FW,X
s,t “ ^aăsďtăbσpFW,0

a,b , Xq to
be the augmentation of the natural filtration of the white noise enlarged by σpXq. Setting
W0pgq “ 0 for all g P L2pRq and Wtpgq ´ Wspgq “ W pfs,t,gq, where fs,t,gpr, xq “ 1rs,tsprqgpxq

and ´8 ă s ď t ă 8, it is straightforward to check that Wtp‚q defines an orthogonal

martingale measure for t ě 0 in the sense of [47] with respect to either FW
0,t or FW,X

0,t . See
the discussion in Chapter 2 of [47].

For each s P R, the mild formulation of (1.2) seeks fixed points U to the Duhamel equation

Upt, xq “

ż

R
ρpt, x ´ zqXpdzq ` β

ż t

s

ż

R
ρpt ´ r, x ´ zqUpr, zqW pdz drq(A.1)

which take values in an appropriate class of functions on tpt, xq P R2 : t ą su, where the
stochastic integral is understood in the sense of Walsh [47].
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Various hypotheses for existence and conditions for uniqueness of solutions have appeared
in the literature. For non-random initial data, the minimal assumption that has been studied
is that of [10, 11], who assume that

X is a non-random measure in MHE .(A.2)

The first paper to allow for random initial data was [6], who assume that there exists a
random variable X0 P CpR,Rq so that for each p ą 0, there exists ap ą 0 for which

Xpdxq “ X0pxqdx and sup
rPR

e´ap|r| Er|X0prq|
p
s ă 8.(A.3)

The first paper we are aware of to systematically study mild solutions of (A.1) was [5]. The
results in [5] are stated and proven only under the assumption that for all t ą 0,

X is non-random and sup
rPp0,ts

sup
xPR

?
r

ˆ
ż

R
ρpr, x ´ zqXpdzq

˙2

ă 8.(A.4)

We begin by recalling this original result, appealing to translation invariance of the model
to extend these results from the case of s “ 0 to s P R.

Theorem A.1. ([5, Theorem 3.1]) Under Condition (A.4), for each s P R there exists an
pFW

s,t : s ď tq adapted solution U P Cpps,8q ˆ R,Rq to (A.1) satisfying for all T ą s,

sup
tPps,T s

sup
xPR

ż t

s

ż r

s

ż

R

ż

R
ρpt ´ r, x ´ yq

2ρpr ´ v, y ´ zq
2 ErUpv, zq

2
sdzdydvdr ă 8.(A.5)

Moreover, under (A.4), if U and V are any two solutions satisfying (A.1) and (A.5), then
U and V are indistinguishable.

The most general existence and uniqueness result for non-random initial data is the fol-
lowing result, which comes from combining results in [10] and [11].

Theorem A.2. ([11, Theorem 2.4] with [10, Theorem 3.1]) Under Condition (A.2), for each
s P R, there exists an pFW

s,t : s ď tq adapted solution U P Cpps,8q ˆR,Rq to (A.1) satisfying

(i) For all t ą s and x P R,
ż t

s

ż

R
ρpt ´ r, x ´ zqErUpr, zq

2
sdzdr ă 8

(ii) For all t ą s,

lim
pu,vqÑpt,xq

uąs

E
„ˆ

ż u

s

ż

R
ρpu ´ r, v ´ zqUpr, zqW pdz drq

´

ż t

s

ż

R
ρpt ´ r, x ´ zqUpr, zqW pdz drq

˙2ȷ

“ 0

Moreover, if U and V are any two solutions satisfying these properties, then U and V are
indistinguishable.

Both the results in [10, 11] and [5] apply to show the existence and uniqueness of a solution
to (2.2) for fixed initial conditions s, y, which we record below. The claim about the solution
being represented by (2.3) is sketched in Section 3.2 of [1]. A pedagogical proof appears in
the lecture notes [14, Theorem 2.2].
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Lemma A.3. For each s, y P R, there exists a unique (up to indistinguishability) pFW,X
s,t :

s ď tq-adapted process Zβp‚, ‚ |s, yq taking values in Cpps,8q,Rq which satisfies the mild
equation (2.2) and the conditions in either Theorem A.1 or A.2. Moreover, this process is a
modification of the process defined for fixed ps, y, t, x, βq P R4

Ò
ˆR by (2.3).

We next turn to the assumption in (A.3), which allows for a class of random initial data
which is rich enough to include the exponential of Brownian Motion with drift, which are
increment-stationary for KPZ [22].

Theorem A.4. [6, Theorem 3.1] Under Condition (A.3), for each s P R, there exists an

pFW,X
s,t : s ď tq adapted process Upt, xq taking values in Cprs,8q,Rq which satisfies the mild

equation (A.1). For each T ą s, there exists a constant a ą 0 so that resulting process
satisfies

sup
tPrs,T s

sup
xPR

e´a|x| Er|Upt, xq|
2
s ă 8.(A.6)

Moreover, if U and V are two such continuous and adapted solutions satisfying (A.1) and
(A.6), then PpUpt, xq “ V pt, xq for all t ą s, x P Rq “ 1.

We now show that Zβpt, x|s;Xq defined through (1.3) agrees with the mild solution in
(A.1) in the previous results.

Lemma A.5. Assume that X satisfies either (A.2) or (A.3). For each s P R, up to indistin-
guishability, Zβp‚, ‚|s;Xq (as defined by (1.3)) is the unique continuous and adapted solution
to (A.1) in Theorems A.2 and A.4 respectively.

Proof. Because mild solutions are formulated for fixed initial conditions and fixed β, scaling
and translation invariance implies that it is without loss of generality to consider the case of
β “ 1 and s “ 0. By construction, Z1pt, x|0;Xq is adapted and continuous, so we just need
to check that it solves the mild equation and the moment conditions of the two theorems.
To check that Z1pt, x|0;Xq satisfies (A.1), we will apply the stochastic Fubini theorem; see
[17, Theorem 4.33] or [47, Theorem 2.6]. This result shows that whenever

ż t

0

ż

R

ż

R
ρpt ´ r, x ´ zq

2 ErZ1pr, z|0, yq
2
sXpdyqdzdr ă 8, if (A.2) holds or

ż t

0

ż

R

ż

R
ρpt ´ r, x ´ zq

2 ErZ1pr, z|0, yq
2
sErX0pyq

2
sdydzdr ă 8 if (A.3) holds,

we have

Z1pt, x|0;Xq “

ż

R
Z1pt, x|0, yqXpdyq

“

ż

R
ρpt, x ´ yqXpdyq `

ż t

0

ż

R
ρpt ´ r, x ´ zq

ż

R
Z1pr, z|0, yqXpdyqW pdzdrq

“

ż

R
ρpt, x ´ yqXpdyq `

ż t

0

ż

R
ρpt ´ r, x ´ zqZ1pr, z|0;XqW pdzdrq.
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Recall that we have ErZ1pr, z|0, yq2s ď D2,tρpt, z´yq2. Considering that ErX0pyq2sdy P MHE,
it suffices to consider the first integral under (A.2). By Lemma C.2,

ż

R

ż t

0

ż

R
ρpt ´ r, x ´ zq

2ρpr, z ´ yq
2dzdrXpdyq “

?
πt

2

ż

R
ρpt, x ´ yqXpdyq,

which is finite by hypothesis. It remains to check the moment hypotheses. Call V pt, xq “

Z1pt, x|0, Xq, so that V pt, xq solves (A.1). Under (A.3), by Cauchy-Schwarz applied twice

ErV pt, xq
2
s “

ż

R

ż

R
E
„

Z1pt, x|0, zqZ1pt, x|0, wq

ȷ

ErX0pwqX0pzqsdzdw

ď CD2,t

ż

R

ż

R
ρpt, x ´ zqρpt, x ´ wqe

a2
2

p|w|`|z|qdwdz

ď CD2,t

ˆ
ż

R
ρpt, x ´ zqpe

a2
2
z

` e´
a2
2
z
qdz

˙2

“ CD2,t

ˆ

e
a2
2
x`

a22
8
t

` e´
a2
2
x`

a22
8
t

˙2

,

where C is the value of the supremum appearing in (A.3). This verifies (A.6).
Next, we turn to showing conditions (i) and (ii) in Theorem A.2 under (A.4). We have
ż t

0

ż

R
ρpt ´ r, x ´ zqErV pr, zq

2
sdzdr

ď D2,t

ż t

0

ż

R
ρpt ´ r, x ´ zq

ˆ
ż

R
ρpr, z ´ yqXpdyq

˙2

dzdr

“

ż

R

ż

R

ż t

0

D2,t

p2πq3{2r
?
t ´ r

ż

R
e

´

„

px´zq2

2pt´rq
`

pz´vq2`pz´wq2

2r

ȷ

dzdrXpdvqXpdwq

“

ż

R

ż

R

ż t

0

D2,t

p2πq3{2r
?
t ´ r

ż

R
e´ z2

2

`

1
t´r

` 2
r

˘

ez
`

x
t´r

` v`w
r

˘

dze´

`

x2

2pt´rq
` v2`w2

2r

˘

drXpdvqXpdwq

“

ż

R

ż

R

ż t

0

D2,t

p2πqr
?
t ´ r

b

1
t´r

` 2
r

e

`

x
t´r `

v`w
r

˘2

2

`

1
t´r ` 2

r

˘ ´

`

x2

2pt´rq
` v2`w2

2r

˘

drXpdvqXpdwq

“

ż

R

ż

R

ż t

0

D2,t

2π
a

rpr ` 2pt ´ rqq
e´ x2

2t´r
`

xpv`wq

2t´r
´

pt´rqpv´wq2`rpv2`w2q

2rp2t´rq drXpdvqXpdwq

ď e´x2

t

ż t

0

D2,t

2π
a

rpr ` 2pt ´ rqq
dr

ˆ
ż

R
e

2|x||v|´v2

2t Xpdvq

˙2

ă 8.

In the last step, we bounded |xpv ` wq| ď |x|p|v| ` |w|q, ´pt ´ rqpv ´ wq2 ď 0, and then
t ď 2t ´ r. (i) follows.
Still considering the case of (A.2), we now verify condition (ii). For simplicity, we take

the case of u “ t ` h, h ą 0, h Ñ 0. The case of u “ t ´ h follows similarly.

E
„ˆ

ż u

0

ż

R
ρpu ´ r, v ´ zqV pr, zqW pdz drq ´

ż t

0

ż

R
ρpt ´ r, x ´ zqV pr, zqW pdz drq

˙2ȷ

“ E
„ˆ

ż t

0

ż

R

`

ρpt ` h ´ r, v ´ zq ´ ρpt ´ r, x ´ zq
˘

V pr, zqW pdz drq

˙2ȷ
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` E
„ˆ

ż t`h

t

ż

R
ρpt ` h ´ r, v ´ zqV pr, zqW pdz drq

˙2ȷ

ď D2,2t

ż

R

ż

R

`

ρpt ` h ´ r, v ´ zq ´ ρpt ´ r, x ´ zq
˘2

ˆ
ż

R
ρpr, z ´ wqXpdwq

˙2

1p0,tqprqdz dr

` D2,2t

ż

R

ż

R
ρpt ` h ´ r, v ´ zq

2

ˆ
ż

R
ρpr, z ´ wqXpdwq

˙2

1pt,t`hqprqdz dr

Note that the integrands in both integrals above converge to zero pointwise.We bound

`

ρpt ` h ´ r, v ´ zq ´ ρpt ´ r, x ´ zq
˘2

ˆ
ż

R
ρpr, z ´ wqXpdwq

˙2

1p0,tqprq

ď 2ρpt ` h ´ r, v ´ zq
2

ˆ
ż

R
ρpr, z ´ wqXpdwq

˙2

1p0,tqprq(A.7)

` 2ρpt ´ r, x ´ zq
2

ˆ
ż

R
ρpr, z ´ wqXpdwq

˙2

1p0,tqprq(A.8)

By the generalized dominated convergence theorem [45, Theorem 4.17], to show that the
first integral converges to zero, it suffices to show that

lim
hŒ0
vÑx

ż

R

ż

R
ρpt ` h ´ r, v ´ zq

2

ˆ
ż

R
ρpr, z ´ wqXpdwq

˙2

1p0,tqprqdz dr

“

ż

R

ż

R
ρpt ´ r, x ´ zq

2

ˆ
ż

R
ρpr, z ´ wqXpdwq

˙2

1p0,tqprqdz dr ă 8

Note that there are two claims here: the integral in (A.8) does not depend on h or v and is
the limit of the integral in (A.7) as h Œ 0 and v Ñ x. We must show that the integral in
(A.8) is finite and that the integral in (A.7) converges to it. Arguing as above, we compute
for h ě 0 (now, including the case of (A.8)),

ż

R

ż

R
ρpt ` h ´ r, v ´ zq

2

ˆ
ż

R
ρpr, z ´ wqXpdwq

˙2

1p0,tqprqdz dr

“

ż

R

ż

R

ż t

0

p2πq´2

pt ` h ´ rqr

ż

R
e´ z2

2

`

2
t`h´r

` 2
r

˘

ez
`

2v
t`h´r

`
y`w
r

˘

dze´

`

2v2

t`h´r
`

y2`w2

2r

˘

dr XpdyqXpdwq

“

ż

R

ż

R

ż t

0

p2πq´3{2

pt ` h ´ rqr
b

2
t`h´r

` 2
r

e

`

2v
t`h´r

`
y`w
r

˘2

2

`

2
t`h´r

` 2
r

˘

e´

`

2v2

t`h´r
`

y2`w2

2r

˘

dr XpdyqXpdwq

“

ż

R

ż

R

ż t

0

p2πq´3{2

a

2pt ` hqrpt ` h ´ rq
e´v2

`

2
t`h

` r
pt`hqpt`h´rq

˘

`
vpy`wq

t`h
´

pw´yq2

4r
´

pw`yq2

4pt`hq dr XpdyqXpdwq

The integrand is continuous in h and v, so to show that this integral converges, we may use
the ordinary dominated convergence theorem. For any h P r0, ts and v P r´K,Ks, r P p0, tq
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and y, w P R, we have

p2πq´3{2

a

2pt ` hqrpt ` h ´ rq
e´v2

`

2
t`h

` r
pt`hqpt`h´rq

˘

`
vpy`wq

t`h
´

py´wq2pt`h´rq

4rpt`hq
´

y2`w2

4pt`hq

ď
1

a

t ¨ r ¨ pt ´ rq
e

|K|p|y|`|w|q

t
´

y2`w2

8t ,

and
ż

R

ż

R

ż t

0

1
a

t ¨ r ¨ pt ´ rq
e

|K|p|y|`|w|q

t
´

y2`w2

8t dr XpdyqXpdwq ă 8.

The result follows. It remains to show that

lim
hŒ0
vÑx

ż

R

ż

R
ρpt ` h ´ r, v ´ zq

2

ˆ
ż

R
ρpr, z ´ wqXpdwq

˙2

1pt,t`hqprqdz dr “ 0,

which follows from essentially the same estimates as in the previous case. (ii) now follows. □

Appendix B. Continuity of stochastic processes

This appendix presents a version of the Kolmogorov-Chentsov theorem sufficient for our
purposes. For d ě 2, we consider a process X with values in a complete separable metric
space pS, ϱq and indexed by d´ 2 copies of the unit interval r0, 1s and one copy of the time-
ordered unit triangle Tδ “ tps1, s2q : 0 ď s1 ď s1 ` δ ď s2 ď 1u with a gap δ P r0, 1q.
The case δ “ 0 corresponds to enforcing only the ordering s1 ď s2. Generic points of
r0, 1sd´2 ˆ Tδ are denoted by r “ pr1, . . . , rd´2, rd´1, rdq, with superscripts for coordinates.
The last two coordinates satisfy rd´1 ď rd´δ. Subscripts are reserved for indexing sequences
in r0, 1sd´2 ˆ Tδ.
For n P Z` let

Dδ,n “
␣

pk1, . . . , kdq2´n
P r0, 1s

d´2
ˆ Tδ : k

1, . . . , kd P J0, 2nK
(

and then Dδ “
Ť

nPZ`
Dδ,n, the set of dyadic rational points in r0, 1sd´2 ˆ Tδ.

Theorem B.1. Fix d ě 2 and δ P r0, 1q as above and let pS, ϱq be a complete separable
metric space.

(a) Suppose tXr : r P Dδu is an S-valued stochastic process defined on a complete
probability space pΩ,F ,Pq with the following property: there exist constants A ă 8 and
α1, . . . , αd, ν ą 0 such that

(B.1) E
“

ϱpXs, Xrq
ν
‰

ď A
d
ÿ

i“1

|si ´ ri|d`αi for all r, s P Dδ.

Then there exists an S-valued process tYs : s P r0, 1sd´2 ˆTδu on pΩ,F ,Pq such that the path
s ÞÑ Yspωq is continuous for each ω P Ω and P tYs “ Xsu “ 1 for each s P Dδ. Furthermore,
for all choices of σi P p0, αi{νq for i P rds,

(B.2) E

„

sup
r‰s in r0,1sd´2ˆTδ

∣∣∣∣ϱpYspωq, Yrpωqq
řd

i“1 |si ´ ri|σi

∣∣∣∣ν ȷ ď A

˜

d
ÿ

i“1

2σi`1

p1 ´ 2σi´αi{νqp1 ´ 2´αi{νq

¸ν

ă 8.
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(b) Suppose tXs : s P r0, 1sd´2 ˆ Tδu is an S-valued stochastic process that satisfies the
moment bound (B.1) for all r, s P r0, 1sd´2ˆTδ. Then the process Y of part (a) is a version of
X. If X is almost surely continuous to begin with, then P tYs “ Xs @s P r0, 1sd´2 ˆ Tδu “ 1.

The proof is a standard chaining argument, which we omit.

Appendix C. Computations

The following sequence of lemmas present elementary computations that go into our Hölder
regularity estimates. We omit the details of standard identities.

Lemma C.1. For t ą 0 and x P R,
ż

R

ρpt ´ r, x ´ zq2ρpr, zq2

ρ2pt, xq
dz “

?
t

2
a

πpt ´ rqr
1p0,tqprq

Lemma C.2. For 0 ă t and x P R,
ż t

0

ż

R

ρpt ´ r, x ´ zq2ρpr, zq2

ρpt, xq2
dz dr “

?
tπ

2

Lemma C.3. For t, h ą 0 and x P R,
ż t

0

ż

R

„

ρpt ` h ´ r, x ´ zq2ρpr, zq2

ρ2pt ` h, xq

ȷ

dz dr “

?
t ` h

2
?
π

„

arcsin

ˆ

1 ´
2h

t ` h

˙

`
π

2

ȷ

Lemma C.4. For t, h ą 0 and x P R,
ż t`h

t

ż

R

„

ρpt ` h ´ r, x ´ zq2ρpr, zq2

ρ2pt ` h, xq

ȷ

dz dr “

?
t ` h

2
?
π

„

π

2
´ arcsin

ˆ

1 ´
2h

t ` h

˙ȷ

ď 4
?
h.

Proof. By Lemma C.3,
ż t`h

t

ż

R

ρpt ` h ´ r, x ´ zq2ρpr, zq2

ρ2pt ` h, xq
dz dr “

ż t`h

t

?
t ` h

2
?
π
a

pt ` h ´ rqr
dr

“
1

2
?
π

ż t`h

t

dr

?
t ` h

a

pt ` h ´ rqr
“

?
t ` h

2
?
π

ż 1

t
t`h

du
1

a

up1 ´ uq

“

?
t ` h
?
π

ż 1

t
t`h

du
1

a

1 ´ p2u ´ 1q2
“

?
t ` h

2
?
π

ż 1

t´h
t`h

dv
1

?
1 ´ v2

“

?
t ` h

2
?
π

„

π

2
´ arcsin

ˆ

t ´ h

t ` h

˙ȷ

For the inequality, we observe that for x P p0, 2q, π
2

´ arcsin p1 ´ xq ă 8
?
x. This can be

verified by observing that the two functions are equal at 0 and the derivatives remain ordered
on p0, 2q. Writing pt ´ hq{pt ` hq “ 1 ´ 2h{pt ` hq, we have

?
t ` h

2
?
π

„

π

2
´ arcsin

ˆ

1 ´
2h

t ` h

˙ȷ

ď
4
?
2h

?
π

ď 4
?
h

□
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Lemma C.5. For 0 ă t and x, y P R,
?
πt

2
´

|x ´ y|

2
ď

ż t

0

ż

R

„

ρpt ´ r, y ´ zqρpr, zq

ρpt, yq

ρpt ´ r, x ´ zqρpr, zq

ρpt, xq

ȷ

drdz ď

?
πt

2

Proof. Notice that for r P p0, tq,

py ´ zq2 ` pz ´ xq2

2pt ´ rq
`
z2

r
“

ˆ

t

rpt ´ rq

˙ˆ

z ´
rpx ` yq

2t

˙2

`
x2

2t
`
y2

2t
`
rpx ´ yq2

4tpt ´ rq
.

Therefore, after changing variables, in the second equality,
ż

R

„

ρpt ´ r, y ´ zqρpr, zq

ρpt, yq

ρpt ´ r, x ´ zqρpr, zq

ρpt, xq

ȷ

dz

“
1

p2πq

t

rpt ´ rq

ż

R
e

x2`y2

2t
´

„

py´zq2`pz´xq2

2pt´rq
` z2

r

ȷ

dz

“
1

p2πq

t

rpt ´ rq
e´

px´yq2r
4tpt´rq

ż

R
e´ t

rpt´rq
z2dz “

1

2
?
π

d

t

rpt ´ rq
e´

px´yq2r
4tpt´rq .

To compute the dr integral, we now substitute s “ r
tpt´rq

, which satisfies r “ st2

1`st
.

dr “
t2

p1 ` stq2
ds,

t

tpt ´ rq
“

p1 ` stq2

st2
, dr

d

t

rpt ´ rq
“ ds

t
?
sp1 ` stq

ż t

0

1

2
?
π

d

t

rpt ´ rq
e´

px´yq2r
4tpt´rq dr “

t

2
?
π

ż 8

0

1
?
sp1 ` stq

e´
px´yq2

4
sds

For α ě 0, call

Ipαq “
t

2
?
π

ż 8

0

ds
1

?
sp1 ` stq

e´αs.

We have Ip0q “
?
πt
2

and

I 1
pαq “

´t

2
?
π

ż 8

0

ds

?
s

1 ` st
e´αs

Substitute u “ αs so that

du

α
“ ds,

?
s

1 ` st
“

?
α

?
u

α ` ut
, ds

?
s

1 ` st
“ du

1
?
α

?
u

α ` ut
.

Then

I 1
pαq “

´t

2
?
π

ż 8

0

du
1

?
α

?
u

α ` ut
e´u

ě
´1

2
?
π

1
?
α

ż 8

0

du
1

?
u
e´u

“ ´
1

2
?
α

It follows that

t

2
?
π

ż 8

0

ds
1

?
sp1 ` stq

e´
px´yq2

4
s

“ I

ˆ

px ´ yq2

4

˙

ě

?
πt

2
´

|x ´ y|

2
. □

The next result follows from the previous result by expanding out the square.
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Corollary C.6. For 0 ă t and x, y P R,
ż t

0

ż

R

„

ρpt ´ r, y ´ zqρpr, zq

ρpt, yq
´
ρpt ´ r, x ´ zqρpr, zq

ρpt, xq

ȷ2

dzdr ď |x ´ y|.

Next, we turn to the case where the heat kernels have different time coordinates, but the
same space coordinate. We begin by computing the space integral of the cross-term that
will appear when we expand out the square:

Lemma C.7. For 0 ă t, h ą 0, and x P R,
ż

R

„

ρpt ` h ´ r, x ´ zqρpr, zq

ρpt ` h, xq

ρpt ´ r, x ´ zqρpr, zq

ρpt, xq

ȷ

dz “

a

tpt ` hq
a

2πrppt ` hqpt ´ rq ` tpt ` h ´ rqq

„

e´x2

2t
h2r

pt`hqppt`hqpt´rq`tpt`h´rqqq

ȷ

1p0,tqprq

Proof. Write
ż

R

„

ρpt ` h ´ r, x ´ zqρpr, zq

ρpt ` h, xq

ρpt ´ r, x ´ zqρpr, zq

ρpt, xq

ȷ

dz

“
1

p2πq

d

t ` h

pt ` h ´ rqr

d

t

pt ´ rqr

ż

R

„

e
x2

2pt`hq
`x2

2t
´

`

px´zq2

2pt`h´rq
`

px´zq2

2pt´rq
` z2

r

˘

ȷ

dz 1p0,tqprq

We note that
„

1

2pt ` h ´ rq
`

1

2pt ´ rq

ȷ

px ´ zq
2

`
1

r
z2

“

ˆ

1

2pt ´ rq
`

1

2pt ` h ´ rq
`

1

r

˙

¨

˝z ´

´

1
2pt´rq

` 1
2pt`h´rq

¯

x

1
2pt´rq

` 1
2pt`h´rq

` 1
r

˛

‚

2

`

´

1
2pt´rq

` 1
2pt`h´rq

¯

1
r

1
2pt´rq

` 1
2pt`h´rq

` 1
r

x2.

We have

1

2pt ` h ´ rq
`

1

2pt ´ rq
`

1

r
“

pt ` hqpt ´ rq ` tpt ` h ´ rq

2pt ` h ´ rqpt ´ rqr
,

It follows that
ż

R

„

ρpt ` h ´ r, x ´ zqρpr, zq

ρpt ` h, xq

ρpt ´ r, x ´ zqρpr, zq

ρpt, xq

ȷ

dz

“
1

2π

d

t ` h

pt ` h ´ rqr

d

t

pt ´ rqr

d

2πpt ` h ´ rqpt ´ rqr

pt ` hqpt ´ rq ` tpt ` h ´ rq
ˆ

„

e
x2

2pt`hq
`x2

2t
´

p 1
2pt´rq

` 1
2pt`h´rq q

1
r

1
2pt´rq

` 1
2pt`h´rq

` 1
r
x2
ȷ

1p0,tqprq.

The remainder of the claim is tedious but easy algebra. □

The next result is the point where our results become suboptimal. A more refined analysis
is likely possible to improve this estimate if one is interested in optimal Hölder regularity at
the boundary, but it suffices for our purposes.
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Lemma C.8. For δ ă 1, 0 ă δ ď t ď t ` h ď T with T ą 1, and x P R,
?
πt

2
´

T

δ
?
π

?
h ´ h

?
πT 3{2

8δ3
x2

ď

ż t

0

ż

R

ρpt ` h ´ r, x ´ zqρpr, zq

ρpt ` h, xq

ρpt ´ r, x ´ zqρpr, zq

ρpt, xq
dzdr ď

?
πt

2
.

Proof. Applying Lemma C.7, we define for t, x as in the statement and h P r0, T ´ ts,

Iphq “

ż t

0

ż

R

„

ρpt ` h ´ r, x ´ zqρpr, zq

ρpt ` h, xq

ρpt ´ r, x ´ zqρpr, zq

ρpt, xq

ȷ

dzdr

“

?
t

?
2π

ż t

0

?
t ` h

a

rppt ` hqpt ´ rq ` tpt ` h ´ rqq

„

e´x2

2t
h2r

pt`hqppt`hqpt´rq`tpt`h´rqqq

ȷ

dr

Without loss of generality, take T ą t. Notice that for all h ą 0,

Iphq ď Ip0q “

?
t

2
?
π

ż t

0

1
a

rpt ´ rq
dr “

?
πt

2
.

To see this, notice that the term in the exponential is negative if h ą 0 and that

d
dh

b

t`h
rppt`hqpt´rq`tpt`h´rqq

b

t`h
rppt`hqpt´rq`tpt`h´rqq

“ ´
rt

2pt ` hqppt ` hqpt ´ rq ` tpt ` h ´ rqq
ă 0

Notice that 0 ă r ă t implies that pt` hqppt` hqpt´ rq ` tpt` h´ rqqq ě tpt` hqh ě δ2h
Therefore,

Iphq ě
1

2
?
π

ż t

0

?
t ` h

a

rpt ` h ´ rq
e´x2h

2δ3
rdr “ Jphq.

By dominated convergence, Jp0q “ Ip0q “
?
πt
2
. Differentiating under the integral, for h ą 0,

J 1
phq “ ´

1

2
?
π

ż t

0

„

r

2pt ` hqpt ` h ´ rq
`
x2r

2δ3

ȷ

d

t ` h

rpt ` h ´ rq
e´x2h

2δ3
rdr

ě ´
1

2
?
π

ż t

0

„

r

2δpt ` h ´ rq
`
x2r

2δ3

ȷ

d

T

rpt ` h ´ rq
dr.

We have
ż t

0

dr

?
r

pt ` h ´ rq3{2
“ 2

c

t

h
´ 2 arcsin

˜

c

t

t ` h

¸

,

ż t

0

dr

c

r

t ` h ´ r
“ ´

?
ht ` pt ` hq arcsin

˜

c

t

t ` h

¸

Recognizing that
?
ht ą 0, arcsinp

b

t
t`h

q ą 0, and 0 ă pt ` hq arcsinp

b

t
t`h

q ď π
2
T , we see

that

J 1
phq ě ´

1

2
?
π

„

T

δ

1
?
h

`
x2

4δ3
T 3{2π

ȷ
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and therefore

Jphq ě

?
πt

2
´

T

δ
?
π

?
h ´ h

?
πT 3{2

8δ3
x2. □

Lemma C.9. For h P r0, 1s, α P p0, 1s, t P r0, hαs, and x P R,
ż t

0

ż

R

ˆ

ρpt ` h ´ r, x ´ zqρpr, zq

ρpt ` h, xq
´
ρpt ´ r, x ´ zqρpr, zq

ρpt, xq

˙2

dzdr ď 10hα{2

Proof. By Lemmas C.2 and C.3,
ż t

0

ż

R

ˆ

ρpt ` h ´ r, x ´ zqρpr, zq

ρpt ` h, xq
´
ρpt ´ r, x ´ zqρpr, zq

ρpt, xq

˙2

dzdr

“

ż t

0

ż

R

ρpt ` h ´ r, x ´ zq2ρpr, zq2

ρpt ` h, xq2
`

ż t

0

dr

ż

R
dz

ρpt ´ r, x ´ zq2ρpr, zq2

ρpt, xq2
dzdr

´ 2

ż t

0

ż

R

ρpt ` h ´ r, x ´ zqρpr, zq

ρpt ` h, xq

ρpt ´ r, x ´ zqρpr, zq

ρpt, xq
dzdr,

ď

ż t

0

ż

R

ρpt ` h ´ r, x ´ zq2ρpr, zq2

ρpt ` h, xq2
`

ż t

0

dr

ż

R
dz

ρpt ´ r, x ´ zq2ρpr, zq2

ρpt, xq2
dzdr

“

?
t ` h

2
?
π

„

arcsin

ˆ

1 ´
2h

t ` h

˙

`
π

2

ȷ

`

?
tπ

2
ď 10hα{2.

In the last step, we bounded arcsinp¨q ď π{2,
?
t ` h ď

?
2hα{2, and used a crude bound on

the numerical prefactors. □

Finally, we combine our estimates to obtain the last bound needed for our Hölder estimates.

Proposition C.10. For T,K ą 1, t P r0, T s, x P r´K,Ks, and h P r0, 1s,
ż t

0

ż

R

ˆ

ρpt ` h ´ r, x ´ zqρpr, zq

ρpt ` h, xq
´
ρpt ´ r, x ´ zqρpr, zq

ρpt, xq

˙2

dzdr ď 10T 3{2K2h1{7.

If, in addition, for δ ą 0, we have t, t ` h P rδ, T s, then
ż t

0

ż

R

ˆ

ρpt ` h ´ r, x ´ zqρpr, zq

ρpt ` h, xq
´
ρpt ´ r, x ´ zqρpr, zq

ρpt, xq

˙2

dzdr ď
10

δ3
T 3{2K2

?
h.

Proof. For h “ 0, there is nothing to show, so take h P p0, 1s. The first claim holds by Lemma
C.9 if t P r0, h2{7s. By Lemmas C.2, C.3, and C.8 (with δ “ h2{7), we have for t P rh2{7, T s,

ż t

0

ż

R

ˆ

ρpt ` h ´ r, x ´ zqρpr, zq

ρpt ` h, xq
´
ρpt ´ r, x ´ zqρpr, zq

ρpt, xq

˙2

dzdr

“

ż t

0

ż

R

ρpt ` h ´ r, x ´ zq2ρpr, zq2

ρpt ` h, xq2
dzdr `

ż t

0

ż

R

ρpt ´ r, x ´ zq2ρpr, zq2

ρpt, xq2
dzdr

´ 2

ż t

0

ż

R

ρpt ` h ´ r, x ´ zqρpr, zq

ρpt ` h, xq

ρpt ´ r, x ´ zqρpr, zq

ρpt, xq
dzdr

ď

?
t ` h

2
?
π

„

arcsin

ˆ

1 ´
2h

t ` h

˙

`
π

2

ȷ

`

?
tπ

2
´

?
πt `

T
?
π
h3{14

`

?
π

8
T 3{2K2h1{7
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ď

?
πh

2
`

T
?
π
h3{14

`

?
π

8
T 3{2K2h1{7

ď 10T 3{2K2h1{7.

In the last step, we bounded arcsinp¨q ď π{2 and
?
t ` h ď

?
t `

?
h.

If, instead, t, t ` h P rδ, T s for some fixed δ ą 0, the same argument gives
ż t

0

ż

R

ˆ

ρpt ` h ´ r, x ´ zqρpr, zq

ρpt ` h, xq
´
ρpt ´ r, x ´ zqρpr, zq

ρpt, xq

˙2

dzdr

ď

?
t ` h

2
?
π

„

arcsin

ˆ

1 ´
2h

t ` h

˙

`
π

2

ȷ

`

?
tπ

2
´

?
πt ` 2

T

δ
?
π

?
h ` 2h

?
πT 3{2

8δ3
K2

ď
10

δ3
T 3{2K2

?
h. □

Appendix D. Notation, terminology, and conventions

Constants in proofs. Constants are typically denoted C,C 1, C2, . . . or c, c1, c2, . . . . In the
statements of results, constants reset between results. Within proofs, constants reset for the
proof of each claim of a result, unless otherwise indicated.

Notation. The integers are Z, the non-negative integers are Z` “ t0, 1, 2, . . . u, the natural
numbers are N “ t1, 2, . . . u, the real numbers in d dimensions are Rd, the rational numbers
are Qd, and the dyadic rationals are Dd

“ tp k1
2n1
, . . . , kd

2nd
q : k1, . . . , kd, n1, . . . , nd P Zu. The

standard coordinate basis vectors in Rd are denoted by ei, i “ 1, 2, . . . , d. For n P N, we
denote rns “ t1, . . . , nu. We denote tuples with subscripts. For m ă n with m,n P N, xm:n “

pxm, xm`1, . . . , xnq and xn:m “ pxn, xn´1, . . . , xmq. The Weyl chamber in Rn is denoted by
Wn “ tpx1, . . . , xnq P Rn : x1 ă ¨ ¨ ¨ ă xnu. The maximum of two real numbers a, b P R is
sometimes denoted by a _ b and the minimum is sometimes denoted by a ^ b.
For T,K, δ ą 0, we have the following domains of our various fields of solutions:

R4

Ò
“ tps, y, t, xq P R4 : s ď tu, R4

Ò
“ tps, y, t, xq P R4 : s ă tu,

R3
Ò

“ tps, t, xq P R3 : s ă tu

R4

Ò
pT,Kq “ tps, y, t, xq P R4

Ò
: ´T ď s, t ď T,´K ď x, y ď Ku,

R4
Ò
pT,K, δq “ tps, y, t, xq P R4

Ò
: ´T ď s, t ď T,´K ď x, y ď K, t ´ s ě δu,

R3
Ò
pT,K, δq “ tps, t, xq P R3

Ò
: ´T ď s, t ď T,´K ď x ď K, t ´ s ě δu.

Hölder seminorms on functions. Given K Ă Rd and α P p0, 1s and f P CpK,Rq the α-Hölder
semi-norm is defined by

(D.1) |f |CαpKq “ sup
x1:d,y1:d PK
x1:d‰y1:d

|fpx1, . . . , xdq ´ fpy1, . . . , ydq|
řd

i“1 |xi ´ yi|α

We define time-space Hölder semi-norms for K Ă R4, f P CpK,Rq, and α, ν P p0, 1s by

|f |Cα,νpKq “ sup
pt1,x1,s1,y1q‰pt2,x2,s2,y2q

pti,xi,si,yiqPK,i Pt1,2u

|fpt1, x1, s1, y1q ´ fpt2, x2, s2, y2q|

|t1 ´ t2|α ` |s1 ´ s2|α ` |x1 ´ x2|ν ` |y1 ´ y2|ν
,
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and, similarly, time-space-inverse temperature Hölder semi-norms for K Ă R5, f P CpK,Rq,
and α, ν, γ P p0, 1s by

|f |Cα,ν,γpKq “ sup
pt1,x1,s1,y1,β1q‰

pt2,x2,s2,y2,β2q

pti,xi,si,yi,βiqPK,i Pt1,2u

|fpt1, x1, s1, y1, β1q ´ fpt2, x2, s2, y2, β2q|

|t1 ´ t2|α ` |s1 ´ s2|α ` |x1 ´ x2|ν ` |y1 ´ y2|ν ` |β1 ´ β2|γ
.

Topological conventions and notation. In this section X denotes an arbitrary metric space.
CpX,Rq is the space of continuous functions from X to R with the topology of uniform
convergence on compact sets. CbpX,Rq is the space of bounded continuous functions is
equipped with the supremum norm.

BpXq is the Borel σ-algebra of X. The bounded Borel measurable functions on X are
denoted by BbpXq. A measure µ on pX,BpXqq is said to be positive if µpBq P r0,8s for all
B P BpXq and signed if µpBq P R for all B P BpXq. The zero measure 0 assigns measure 0
to all B P BpXq. A measure is non-zero if it is not the zero measure.

We denote by CcpX,Rq the space of compactly supported continuous functions equipped
with the supremum norm. CcpX,R`q is the space of such functions which are also non-
negative. The positive and locally finite Borel measures on Rd are M`pRd,BpRqq. We
say that µn P M`pRd,BpRqq converges to µ P M`pRd,BpRqq vaguely if

ş

Rd φpxqµnpdxq Ñ
ş

Rd φpxqµpxq for all φ P CcpRd,Rq. M1pXq is the space of probability measures on X. When
restricting attention to finite positive measures, we typically use the weak topology, where
the test functions come from CbpRd,Rq. See [9, Definition 8.1.2].

The space MHE Yt0u defined in equation (1.8) admits a natural Polish topology, which we
metrize as follows. Let tφj : j P Ru P CcpR,R`q be a countable dense subset of CcpR,R`q.
Define for ζ, η P MHE,

dMHE
pζ, ηq “

8
ÿ

j“1

2´j

ˆ

1 ^

"∣∣∣∣ż
R
φjdζ ´

ż

R
φjdη

∣∣∣∣*˙(D.2)

`

8
ÿ

m“1

2´m

ˆ

1 ^

∣∣∣∣ż
R
e´ 1

m
y2ζpdyq ´

ż

R
e´ 1

m
y2ηpdyq

∣∣∣∣˙.
Lemma D.1. pMHE Yt0u, dMHE

q is a complete separable metric space.

Proof. Note that the sum over j in the definition of dMHE
metrizes the vague topology on

M`pRq. Let tζnu be a Cauchy sequence in pMHE, dMHE
q. Then there is a vague limit ζn Ñ ζ.

By completeness of R, there exist tam : m P Nu with

am “ lim
nÑ8

ż

R
e´ 1

m
y2ζnpdyq and Am “ sup

n

ż

R
e´ 1

m
y2ζnpdyq ă 8.

To conclude completeness, we need to show that

(D.3) am “

ż

R
e´ 1

m
y2ζpdyq.

FixCcpR,R`q-functions tψk : k P Nu that satisfy 1r´k,ks ď ψk ď 1r´k´1,k`1s. Vague conver-
gence implies that

am ě lim
nÑ8

ż

R
e´ 1

m
y2ψkpyqζnpdyq “

ż

R
e´ 1

m
y2ψkpyqζpdyq Õ

ż

R
e´ 1

m
y2ζpdyq as k Õ 8.
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Now, let m ă ℓ and k P N.

(D.4)

ż

rk,8q

e´ 1
m
y2 ζnpdyq “

ż

rk,8q

ey
2p 1

ℓ
´ 1

m
qe´ 1

ℓ
y2 ζnpdyq ď ek

2p 1
ℓ

´ 1
m

q

ż

rk,8q

e´ 1
ℓ
y2 ζnpdyq

ď ek
2p 1

ℓ
´ 1

m
qAℓ.

Fix m P N. Since
ş

R e
´ 1

m
y2ζpdyq ă 8,

(D.5) lim
kÑ8

ż

R
e´ 1

m
y2
`

1 ´ ψkpyq
˘

ζpdyq “ 0.

Take ℓ “ 2m in (D.4) and let k P N. Let okp1q denote a quantity that depends on pk, nq and
vanishes as n Ñ 8 when k is fixed.∣∣∣∣ż

R
e´ 1

m
y2ζpdyq ´ am

∣∣∣∣ ď

∣∣∣∣ż
R
e´ 1

m
y2ψkpyqζpdyq ´

ż

R
e´ 1

m
y2ψkpyqζnpdyq

∣∣∣∣
`

ż

R
e´ 1

m
y2
`

1 ´ ψkpyq
˘

ζpdyq `

ż

rk,8q

e´ 1
m
y2 ζnpdyq `

∣∣∣∣ż
R
e´ 1

m
y2 ζnpdyq ´ am

∣∣∣∣
ď okp1q `

ż

R
e´ 1

m
y2
`

1 ´ ψkpyq
˘

ζpdyq ` e´ 1
2m

k2A2m ` op1q.

First keep k fixed and let n Ñ 8 to remove okp1q ` op1q. Then let k Ñ 8. (D.3) has been
verified. It remains to show separability.

We claim that measures of the form
řn

i“1 aiδbi where ai P QXp0,8q and bi P Q are dense.
It suffices to show that for each M,J P N, each ϵ P p0, 1q, and each ζ P MHE, there exists
n P N and a1:n, b1:n as above so that for η “

řn
i“1 aiδbi and all j P rJs and m P rM s,∣∣∣∣ż

R
φjdζ ´

ż

R
φjdη

∣∣∣∣ ă ϵ and

∣∣∣∣ż
R
e´ 1

m
y2ζpdyq ´

ż

R
e´ 1

m
y2ηpdyq

∣∣∣∣ ă ϵ.

Fix K ą 0 so that for all m P rM s,
ż

Rzr´K,Ks

e´ 1
m
y2ζpdyq ă ϵ{2

and suppφj Ă r´K,Ks. The result now follows from density of measures of the form
řn

i“1 aiδbi in the space of finite positive measures on r´K,Ks. □

We also introduce a metric on the space of strictly positive continuous functions repre-
senting measures in MHE, which we denoted by CHE in equation (1.9) above:

CHE “

"

f P CpR, p0,8qq : @a ą 0,

ż

R
e´ax2

fpxqdx ă 8

*

.

We equip this space with the metric defined for f, g P CHE by

dCHE
pf, gq “

8
ÿ

m“1

2´m

ˆ

1 ^ sup
´mďxďm

„

|fpxq ´ gpxq| `

ˇ

ˇ

ˇ

ˇ

1

fpxq
´

1

gpxq

ˇ

ˇ

ˇ

ˇ

ȷ˙

(D.6)

`

8
ÿ

m“1

2´m

ˆ

1 ^

∣∣∣∣ż
R
e´ 1

m
y2fpyqdy ´

ż

R
e´ 1

m
y2gpyqdy

∣∣∣∣˙
We have the following.

Lemma D.2. pCHE, dCHE
q is a complete separable metric space.
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Proof. The first term in the metric ensures that Cauchy sequences in pCHE, dCHE
q are Cauchy

under the supremum norm on any interval r´m,ms for m P N, hence a locally uniform
limit taking values in CpR,R`q exists. The second term ensures that the locally uniform
limit point is strictly positive. Locally uniform convergence implies vague convergence of
the represented measures. The last term in the metric then ensures that these measures are
Cauchy in MHE and so, by Lemma D.1, the integrals against Gaussian kernels converge as
well. Therefore pCHE, dCHE

q is complete. Separability can be seen by taking a dense subset
of compactly supported continuous functions in CpR,R`q and then adding small rational
positive ϵ times Gaussian kernels to each term to make the functions strictly positive. □

Total Variation of (Formal) Signed Measures. Given a signed measure µ on pX,BpXqq, the
total variation measure |µ| is given by the sum of the positive and negative parts in its Jordan-
Hahn decomposition. See [9, Definition 3.1.4]. The total variation norm is }µ}TV “ |µ|pXq,
which satisfies }µ}TV ď 2 supt|µpAq| : A P BpXqu ď 2}µ}TV . Given two finite positive
Borel measures µ, ζ on Rd, we denote by |µ ´ ζ| the total variation measure assigned to
to the signed measure given by their difference. Given two locally finite positive Borel
measures µ, ζ on Rd, the difference µ ´ ζ may not define a signed measure, but we define
the positive measure corresponding to the total variation of the difference by |µ ´ ζ|pAq “

limMÑ8 |µ|r´M,Msd ´ ζ|r´M,Msd |pAq “ limMÑ8 |µ ´ ζ|pA X r´M,M sdq, where the measures

µ|r´M,Msd and ζ|r´M,Msd are the finite measures obtained by restricting µ and ζ to r´M,M sd.
The limit exists by monotonicity.

Stochastic Processes. We call C “ CpR,Rq and denote by X “ pXt : t P Rq the canonical
process on pC,BpCqq. For ´8 ď s ă t ď 8, Gs:t “ σpXu : s ă u ă tq and Gt:t “ σpXtq. For
´8 ă s ď t ă 8, the spaces Crs,ts “ Cprs, ts,Rq of real-valued continuous functions on rs, ts,
equipped with the uniform topology and Borel σ-algebra BpCrs,tsq, are naturally embedded
into pC,BpCqq by restriction. We abuse notation and at times continue to use the notation
X to denote X|rs,ts “ pXu : s ď u ď tq.

If A is set and F and G are stochastic processes on a complete probability space pΩ,F ,Pq

indexed by A, then we say that F and G are modifications of one another if for all α P A,

PpF pαq “ Gpαqq “ 1.

We say that F and G are indistinguishable if

Ppfor all α P A, F pαq “ Gpαqq “ 1.

Stochastic Ordering. We say that a function F : CpR,Rq Ñ R (resp. F : Cprs, ts,Rq Ñ R)
is increasing if F pXq ď F pY q whenever Xt ď Yt for all t. Given two probability mea-
sures P and Q on CpR,Rq (resp. Cprs, ts,Rq), Q stochastically dominates P, denoted P ďst

Q, if
ş

F pXqPpdXq ď
ş

F pXqQpdXq for all increasing F P CbpCpR,Rq,Rq (resp. F P

CbpCprs, ts,Rq,Rq).
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Henri Poincaré Probab. Stat., 57(2):778–799, 2021.

[20] Alexander Dunlap and Evan Sorenson. Viscous shock fluctuations in KPZ. arXiv: 2406.06502,
2024.

[21] Stewart N. Ethier and Thomas G. Kurtz. Markov Processes: Characterization and Conver-
gence. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical
Statistics. John Wiley & Sons, Inc., New York, 1986.

[22] Tadahisa Funaki and Jeremy Quastel. KPZ equation, its renormalization and invariant mea-
sures. Stoch. Partial Differ. Equ. Anal. Comput., 3(2):159–220, 2015.
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[30] Martin Hairer and Cyril Labbé. Multiplicative stochastic heat equations on the whole space.

J. Eur. Math. Soc. (JEMS), 20(4):1005–1054, 2018.
[31] Martin Hairer and Jeremy Quastel. A class of growth models rescaling to KPZ. Forum Math.

Pi, 6:e3, 112, 2018.
[32] Timothy Halpin-Healy and Kazumasa A. Takeuchi. A KPZ cocktail—shaken, not stirred

. . . toasting 30 years of kinetically roughened surfaces. J. Stat. Phys., 160(4):794–814, 2015.
[33] J. Ben Hough, Manjunath Krishnapur, Yuval Peres, and Bálint Virág. Zeros of Gaussian

analytic functions and determinantal point processes, volume 51 of University Lecture Series.
American Mathematical Society, Providence, RI, 2009.

[34] Christopher Janjigian, Firas Rassoul-Agha, and Timo Seppäläinen. Ergodicity and synchro-
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