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NON-EXISTENCE OF NON-TRIVIAL BI-INFINITE GEODESICS
IN GEOMETRIC LAST PASSAGE PERCOLATION

by Sean GROATHOUSE, Christopher JANJIGIAN & Firas RASSOUL-AGHA (*)

ABSTRACT. — We show non-existence of non-trivial bi-infinite geodesics in the solvable last-passage percolation model
with i.i.d. geometric weights. This gives the first example of a model with discrete weights where non-existence of non-
trivial bi-infinite geodesics has been proven. Our proofs rely on the structure of the increment-stationary versions of the
model, following the approach recently introduced by Balazs, Busani, and Seppéldinen. Most of our results work for a
general weights distribution and we identify the two properties of the stationary distributions which would need to be
shown in order to generalize the main result to a non-solvable setting.

1. Introduction

This paper considers directed last-passage percolation (LPP), which is a prototypical example of a lattice
interface growth model in 141 dimensions. Such lattice growth models have played a central role in the
development of modern probability over the last fifty years, with 141 dimensional LPP rising in importance
over recent decades as a member of the Kardar-Parisi-Zhang (KPZ) universality class. See the recent surveys
[3, 14, 15, 28, 42, 43].

Last-passage percolation, along with closely related models like first-passage percolation, directed poly-
mers, and certain stochastic Hamilton-Jacobi equations, have interpretations as a kind of directed analogue
of a metric. For this point of view, see for example the discussion in [18, 19] and also [5]. This connection
is exact in the case of first-passage percolation, which genuinely describes a random metric on the lattice.
In these interpretations, it is often possible to interpret the solution in terms of random paths, which are
variously called geodesics, random polymers, or characteristics, among others. The structure of these random
paths has been a major focus of research in the field.

This project considers a particular subset of questions related to bi-infinite geodesics, which are bi-infinite
paths with the property that the restriction of the path to any finite subpath is a geodesic between its
endpoints. The study of such paths traces back at least to a question Furstenburg posed to Kesten on first-
passage percolation [37, p. 258], where the existence of such paths is equivalent to the existence of non-trivial
ground states in the ferromagnetic Ising model with random impurities [3, p. 105]. It is generally believed
that in models of the type we consider, non-trivial bi-infinite geodesics should not exist, for reasons we will
discuss shortly. Much of the mathematical progress toward proving this conjecture traces back to the seminal
ICM note of Newman [41], which instigated a fruitful line of research on the structure of semi-infinite and
bi-infinite geodesics in first-passage percolation [31, 32, 39]. These ideas motivated subsequent work on first
[1, 16, 17, 29, 30] and last passage percolation [12, 13, 26, 27, 36], as well as related models [4, 6, 7, 34].
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One of the main predictions of the KPZ class concerns the structure of fluctuations of analogues of
geodesics, and in particular their characteristic 2/3 scaling exponent in 14+1 dimensions. At an ACM work-
shop in 2015 [3, Section 4.5.1], Newman gave a heuristic argument that in dimensions for which this transver-
sal fluctuation exponent is greater than 1/2, non-trivial bi-infinite geodesics should not exist. Two different
implementations of this heuristic were recently carried out in the last-passage percolation model with i.i.d. ex-
ponential weights by Basu, Hoffman, and Sly [? | and Baldzs, Busani, and Seppélainen [8]. The former imple-
mentation uses integrable methods heavily, while the latter relies on the structure of the increment-stationary
distributions for the model. Both approaches rely in essential ways on the exact solvability of the exponen-
tial last-passage percolation model. A general version of Newman’s argument under strong conditions on the
passage time was recently implemented by Alexander in [2]. Perhaps the strongest unconditional result in
this direction is the recent [11].

The present paper abstracts the approach of [8]. We consider a novel implementation of the argument
to the last-passage percolation model with geometric weights, giving an example of a model with discrete
weights for which non-trivial bi-infinite geodesics do not exist. More broadly, we re-cast the approach of
[8] without reference to particular weight distributions and identify two properties of increment-stationary
distributions, recorded as Assumptions 4.1 and 5.2 below, which would need to be proven in order to realize
this program for non-integrable models. After introducing each of these assumptions, we discuss the types
of hypotheses on the last-passage percolation model which would need to be proven in order to verify these
conditions. It is noteworthy that it is known from [27, 34] that the increment stationary models we discuss
in these assumptions have been shown to exist generally.

Our main result, Theorem 5.3, shows that under our abstract hypotheses, non-trivial bi-infinite geodesics
do not exist. We verify our conditions in the geometric model using exact solvability. Along the way, we
also prove some novel results about geometric last-passage percolation in order to verify our hypotheses.
In particular, we prove a new, sharp bound for exit times in increment-stationary geometric last-passage
percolation following a strategy recently introduced in [21, 22]. This is recorded as Theorem B.1 below.

2. Setting and the main result

Let Q = RZ” and equip it with the product topology and its Borel o-algebra F. A generic element in
is denoted by w and is sometimes referred to as an environment. Let (wy)zez2 be the coordinates of w. w,
is referred to as the weight at x. We assume the following throughout the paper: we are given a probability
measure P on (£2, F) such that

(2.1) (Wz)zeze arve iid. under P, Je>0: E[Jwo|*™] <0, and Var(wp) > 0.

Denote by T' = {T, : € Z*} the natural group of shift operators on 2, which satisfy (Tyw), = wy4, for
x,y € Z2. Given sites x,y € Z? with x < y (coordinatewise), an up-right path from x to y is a sequence of
lattice vertices with increments in the set {e1, e}, the canonical basis of R2. The collection of up-right paths
from z to y is denoted by II¥. The passage time (or the weight) of an up-right path 7 € II¥ is the sum of
the weights of the vertices of the path: >
defined to be
(2.2) Gy y(w) = max Z Wy

melly

ver Wo- For x <y in Z2, the (bulk) last-passage time from x to y is

VET
In particular, G4 z(w) = wy. As is customary in probability theory we often omit the w from the argument
of Gy,y.

A path 7 € ITY which realizes the maximum in (2.2) is called a geodesic. This terminology is by analogy with
the related model of first-passage percolation where G, ,, defines a random pseudo-metric on Z2. Geodesics
are unique when P(wg < t) is continuous in ¢, but when this distribution function is not continuous, multiple
geodesics can exit.

Our main interest in the present paper is in the structure of bi-infinite geodesics, which we now define.
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DEFINITION 2.1. — A bi-infinite up-right path m_q.c0 = (7 )nez Is said to be a bi-infinite geodesic if for
every m < n in Z, the segment T,,.,, is a geodesic between 7, and T,.

For each x € Z? and k € {1,2}, the path = + Ze, = (z + jey : j € Z) is a trivial bi-infinite geodesic. This
is because there is only one up-right path between any two sites on such a path. Bi-infinite geodesics which
are not of this form are said to be non-trivial. Our main theorem says that non-trivial bi-infinite geodesics
do not exist when the weights are geometric random variables.

THEOREM 2.2. — Assume wy is a Geom(r) random variable for some r € (0,1). Then with P-probability
one there are no non-trivial bi-infinite geodesics.

Our main result, Theorem 2.2, follows from Theorem 5.3, which applies to a general weight distribution.
It requires two assumptions, which are then verified (in the appendix) to hold when wy is geometrically
distributed. These are the only two places where solvability is used. We include the following comments on
our use of solvability:

a) The independence property in Theorem A.2(c) and the explicit knowledge of marginal distributions in
Theorem A.2(d) are used in the proof of the tail bound in Theorem B.1, which verifies our Assumption 4.1.
These methods seem unlikely to generalize, as they rely on a certain structure of Radon-Nikodym derivatives
of the marginal distributions which is satisfied for solvable poylmer and percolation models, but not general
distributions. See [21-23]. Using these methods, the bound we prove is sharp, with cubic exponential decay.
This is stronger than is necessary for the rest of our arguments: Assumption 4.1 only asks for a polynomial
bound with exponent strictly greater than two.

b) The independence property in Theorem A.2(b) is used when verifying Assumption 5.2. This is an
assumption concerning certain random walks which, in a general setting, would be built out of using the
Busemann process constructed in [27, 34]. In the setting with geometric weights, this independence allows us
to turn the probability of an intersection in (5.5) to a product of probabilities. Moreover, it is used to deduce
that the random walks in (5.2) have independent increments. Our key random walk estimate, Lemma C.1,
assumes that the random walk increments are independent for this reason. For a general weight distribution,
we expect that the increments of the associated random walks in question are mixing, but not independent.
A version of Lemma C.1 can be expected to hold for such random variables, subject to some extra moment
hypotheses.

Organization of the paper: Section 3 introduces boundary models. In Section 4 we derive geodesic
fluctuation bounds under Assumption 4.1. Section 5 has the proof of the nonexistence of bi-infinte geodesics,
under Assumptions 4.1 and 5.2. Appendix A.l recalls results that provide the boundary weights for the
boundary models needed for the proofs. Sections 3-5 and Appendix A.1 are for general weights and can be
read independently. The rest of the appendixes deal with the case of geometric weights and can each be
read independently. Theorem B.1 in Section B verifies that Assumption 4.1 holds in the case of geometric
weights. Lemma C.2 uses the extra independence structure in Theorem A.2 and the random walk estimates
in Lemma C.1 to verify that Assumption 5.2 holds in the case of geometric weights.

2.1. Notation

N denotes the natural numbers {1,2,...}, Z is the set of integers {0, +1,+2,...,}, and R is the set of real
numbers. For a € R, Rx, = [a,®), Rs, = (a,0), Zzq = [a,0) " Z, and Z~, = (a,0) N Z. Rey, Ry, Zga,
and Z., are defined analogously. For a,b € R with a < b we write [[a, b] to denote the integers that are in
[a,b] and we abbreviate [n]] = [[1,n]]. For points u,v € R? u < v and v > u mean u; < v and uz < va. For
such v and v, let [u,v] = {r e R? 1 u < x < v} and [Ju,v]] = {x € Z? : u < z < v}.

We denote the canonical basis vectors of R? by e; = (1,0) and ez = (0,1). Set 0 = (0,0). An up-right
path T = (T, Tmtt, ..., T,) is a collection of vertices m; € Z2 which satisfies m; — ;1 € {e1, ez} for
i€ [[m+ 1,n]. For x <y, the set of up-right paths which start at z and end at y is denoted by IT¥.
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Let U = [eq,e1] = {te1 + (1 —t)es : 0 < t < 1}. Its relative interior is denoted by rild = (eq,e1) =
{te;1 + (1 —t)ez : 0 <t < 1}. We will use the notation a v b = max(a,b) and a A b = min(a, b).

For r € (0,1), a Geom(r) random variable X satisfies P(X =n) = r"(1 — r) for n € Zso. For p€ [0,1], a
Ber(p) random variable X satisfies P(X =1)=1—-P(X =0) = p.

3. Models with boundary

The main player in the proof of Theorem 2.2 is a coupling of the bulk passage times and a collection of
passage times in models with boundary conditions. Given weights w € © and numbers {I,,J, : * € Z?},
referred to as boundary weights, the boundary passage time Ggg(w,l, J) from z to y, with < y, is the
maximum weight of up-right paths from x to y, where each path collects 0 weight at the site x, I weights
at each vertex on the horizontal boundary = + Z>gpe;, J weights at each vertex on the vertical boundary
x+Zspez, and bulk weights w at each vertex in the bulk z + N2. See Figure 3.1. Rigorously, for = (z1,22) €
7Z? and k € N we set GOSCV;’ =0,

k k
(3-1) GiYaZJrkel = Z Iyyies s and GiYXJrkeg = Z Juties-
i=1 i=1
Then for y € x + N? we let
k 4
(3-2) Gi,\?j = 1<kn\<13f—ml{i_1]9””el + Gm+ke1+ez,y} 1<fr232X—wz{jZl Jr+je2 + Gz+e1+fe2,y}'

Note that GEV;’ is a function of {I;4ie,, lotjes,ws : i,j € N,z € x + N?}. Hence the superscript SW which
stands for southwest as this is where the w-weights are switched to I and .J.

Figure 3.1. An illustration of paths in the model with boundary conditions. The boundary is contained
between the dashed lines, the geodesic is solid, and the exit point of the geodesic from the boundary is
circled.

As in the bulk model, a geodesic in the model with boundary conditions is an up-right path that achieves
the maximum in (3.1-3.2). Recall that geodesics are not necessarily unique if the weights do not have a
continuous distribution.

Each geodesic path must exit the boundary at some point. See the circled vertex in Figure 3.1 for an
illustration of such an exit point. We denote by Exitig(w,l ,J) the set of locations of exit points of the
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geodesics from x to y, relative to the starting point x. That is, with the convention that we index exit points
from the vertical boundary with negative numbers,

k
EXitiEf = {k € [[173/1 - xl]] : Z Ipyie, + Gz+ke1+e2,y = Gijzf}
i=1

4
U{*K :le[[1,y2 — x2] and Z Jrtjes T Guttester,y = Gig}

Jj=1

The furthest exit point in the e; direction is then given by
SW,e1 _ . SW
7" = max Exity )
and the furthest exit point in the es direction is given by
SW,es _ L SW
7% = min Exity ) .

Note that if I,4 ge, < lzike, for integers 1 < k < (y — ) - ey, then Zﬁ};Vxel (w,I,J) < Zﬁ};Vxel (w,I,J), with a
similar statement if the J-weights are increased.

The boundary weights that we will use in this paper are the random variables {I, J§ s,y € Z*}, supplied
by Theorem A.1 for each fixed £ € rild. We then use the notation

(3.3) G;y(w) = Gi)\;’(w,lg(w),J&(w)).

Exitiyy and Zﬁ:;k are defined similarly.

When the starting point is the origin 0 we will omit it from the index and abbreviate quantities of the
form Ag , by writing A, or A(x). We will also sometimes write A(m,n) = Ame, +ne,-

The significance of the particular choice of boundary weights is that while the bulk passage times are
subadditive:

(3.4) Gry—wy +Gy,—w, <Gz.—w, YVr<y<z,

)

the boundary passage times are additive:
(3.5) GS,+G5. =G5
In particular, for any z = (m,n) € Z;O

E[G}.,] = E[G} o, Im + E[G} o,]n = E[IS, Im + E[JE, ]n.

0,e; 0,e2
The above leads to a variational characterization of the limiting shape of the bulk model. Indeed, [40,
Theorem 2.3] and a standard coarse-graining argument (see, for example, [33]) imply that if E[|wo|>*¢] < o0
for some £ > 0, then for P-almost every w,

(3.6) lim 7! max |Go. —7(z)] =0,
n—00 1622;0
[z[1=n
where
(3.7) v(z) = y(x1,22) = EérrlifM{E[Igl]xl +E[JE, ]z} for z e R,

This expression for 7 is an immediate consequence of the construction in [34, Theorem 4.7], which defines our
I¢ and J¢ (see (4.3) and Lemma 4.12 there), and the variational characterization of a homogeneous concave
function in terms of its superdifferential.

Another property of the (1€, J¢) process is that it is stationary and, as a consequence,

(3.8) {G§+m)z+y ty > xin Z*} has the same distribution as {Géy cy>xin 72} VzeZ2

x
This explains why the last-passage percolation model with these boundary weights is called the stationary
model or the stationary LPP.
The significance of specializing to the case where the weights are geometric random variables, i.e. wy ~
Geom(r) for some r € (0,1), is that because of the memoryless property of the geometric distribution, many
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explicit computations are possible. For this reason, this case is said to be solvable. For example, for any = <y
in Z2 and any € e rilf,

(3.9) :n € ZLso,i€{1,2},z—x €N’} are independent

13 13
{wz’ Gx,er(nJrl)ei - Gw,y*—nei

3
— G5, ~ Geom(p) and G

x x,y+e2

r(& + &) + (r+ DVr&ile
& + 1€y + 24/161 &
These are some of the properties contained in Theorem A.2.
For a fixed r € (0,1), (3.10) gives a bijection from riif to (r,1) with the inverse function given by
1—p)? — )2
(p) = rl —p) : (b —r) e rild.
p?(r+1)—dpr+r(r+1)" p?(r+1) —4pr +r(r+1)
Switching from £ to p in the variational formula (3.7) and then using the explicit distributions allows to
solve (3.7) explictly and get

and, marginally, Gi)y +e

- Giy ~ Geom(r/p), with p = p(&) given by

(3.10) (&) =p(61,8) = € (r,1) for £ eRZ,.

(3.11)

2

. r 24/r
(3.12) 1(@) = A(w1,72) = inf MP(w) = —— (21 + 22) + 2YL VT,
pe(r,1) 1—7r 1—1r
where
Lx
(313) Mp(x)ZMp(:Z?l,:EQ): pIT1 " pL2 _ pIT1 " X9

l-p 1-2 1-p p-r1’

4. Geodesic Fluctuation Bounds

Theorem A.1 produces random variables {I§, J§ cx,y € Z2,€ e rild} and the passage times that use these
variables as boundary weights, which we denote by G§ ,(w) = G5 (w, I¢(w), J¢(w)).

In this section, we give bounds on the size of the fluctuations of the point-to-point geodesics under the
following assumption on the tails of Zg:;’“, when |z|; is large and x/|z|; is close to £. For 6 € (0,1), define
the cone

Ss={reRi,:z-e >06r-e;and x-ey = 6x-e;}.

ASSUMPTION 4.1. — There exist a v > 2 and a g € (0,1) such that for any § € (0,0¢) and k > 0, there
exist positive finite constants Cy(0), No(d, k), and so(0, k) such that
(4.1) P{|Z&° (m,n)| v | Z5%2(m,n)| = s(m +n)*/3} < Cos™,

for all (m,n) € S5 N 72y, , s > so, and € € rild such that & € (6,1 — 6) and |& — 2| < k(m +n)~1/3.

m+n

By Theorem B.1, this assumption is satisfied for any v > 2 when wy is geometrically distributed. This
assumption is verified in the case of exponential weights in [8, Corollary 4.3], with a sharp bound appearing
in [22, Corollary 3.2].

We begin with some preliminary observations about the structure of last-passage percolation. Given points
x <y in Z? and weights w, define the boundary weights
I"NW) = Gy y(W) — Goy—o, (W), when z <y — ey, and

(4.2) !
Jw) = Gay (@) = Gryey (@), whenz <y —es.

Then for z € y + 72, let

T SW T T z|,e _ 7SW,e T T
Glrl(w) = G (w, 1M (), T (W) and  Z7he2 (w) = Z5We (w, 117 (w), I (w).

z

The following is immediate from the definitions. See, for example, [? , Lemma A.1].
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LEMMA 4.2. — Let x < y < z in Z%. Fix a configuration of weights w € ). Then G ,(w) = Gy y(w) +
Gl (w). Furthermore, if an upright path is a geodesic of Gy -(w), then its restriction to y + 72, is part of a
geodesic of GLI,]Z (w). Likewise, if an upright path is part of a geodesic of GLI,]Z (w), then it can be extended to
a geodesic of Gy, ,(w).

The next lemma is a direct consequence of the one above.

LEMMA 4.3. — Let £, m be positive integers. Let x > y be in Z?. Take i € {1,2}. Fix a configuration of
weights w € . Then Z3%° (w) = £+ m if and only if Z[m] o (W) = m. Similarly, Z3%® (w) = =€ —m if

z+leq,y
and only if ZU[EJF];; yW) =—m.

The above definitions and lemmas are deterministic statements and work for every fixed choice of the
environment w. Therefore, by considering passage times with boundary weights I¢ and J¢ and recalling
(3.5), we see that both lemmas hold if we replace G, ., Gy y, Gy[fl, ZSW i and Zg[;i]’ef: S {1, 2}, with,

GS ., GS ., Z&e and Z5° i€ {1,2}.

respectively, G¢ ey Ggz0 42y z+Le;,y

x,z)

COROLLARY 4.4. — Suppose Assumption 4.1 holds. Then for any § € (0,60), A > 0, and x > 0 there
exist positive finite constants C1 (0, dg, v, A), N1(9,00,x) = 1, and s1(d, do, k) such that

(4.3) P{Z%% (m,n — |s(m +n)*?]) < 0} < Cys7
and
(4.4) P{Z5 (m,n + [s(m + n)¥?]) > 0} < C1s7

for all (m,n) € Ss V22 y,, s = s1, § € rild such that & € (5,1 —9) and &, — 2= | < K(m+n)~ 13 and with
n — |s(m +n)??| > 1, in the case of (4.3), and s < A(m +n)"/3, in the case of (4.4).

Proof. — Fix § and k as in the claim. Recall the constants Ny and s¢ in Assumption 4.1. Take (m,n) €
SsNZ2 N, and s > max(2so, 21/3N(;2/3) such that n—|s(m 4+ n)%3] = 1. Take € € rild such that & € (§,1—9)
and |& —

| < k(m +n)~/3. Apply shift-invariance, Lemma 4.3, and (4.1) to obtain

m+n
]P’{Z5 €2 (o ls(m )35 < 0} = ]P’{Z5 €2 )25 () < 0}
]P’{ZE ©2 ) < —|s(m +n)?3| I} < IED{ZE €2 ) < —s(m + n)2/3/2}
< 2”005 V.

For (4.4), let Ny = No(6/2, % + 1) and
_ —1+7—2/3 —1en71/3
50 = max(s0(0/2, K +1),2(1 +6)0~ "Ny 7", (1 +6)"'oN,”).

Take (m,n) € S5 N 2221\70 and s > 5o. Let d = |s(m +n)?3], i = n+d and m = m + |42 |. Then

5<5n+55(m+n)2/3—175 m 1<2
2 n+ s(m + n)?/3 A
Take & € ritd such that & € (6,1 —6) and [§ — =2 | < k(m + n)~ /3. Then
m m md — n|dm/n] —-1/3 -1 —-1/3
_ < — < < 1 .
& m+ﬁ| & ern| (ot )2 k(m +n) + (m +n) (k +1)(m +n)

Furthermore, if we take s < A(m + n)'/3, then we get

m o+ 1 5+ 1)d
man g, 0 Fhd
m+n m-+n

+ (0 P+ Ds(m+n)" <1+ (07 + DA
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Now, similar to the above computation, we have

P{Z5 (m,n + [s0m + n)?]) > 0} = {261 (n,0) > |22}

< P{Z%° (i, 1) > $s(m + n)*/3}
P{Z5° (i, 7) > 36(1 + (67" + 1)A) s + )73}
< (2/0)7(1+ (67" + 1)A)*PCy(5/2)s7. O
For (m,n) e N2, a € (0,1), and s > 0, define
civ™ = [(lam], |an]) — s(m +n)*?es, (Jam, |an]) + s(m + n)*e,]).

N

c{™ is the symmetric vertical line segment centered at (lam/|,|an]) with length 2s(m + n)%3. For x €

a,s

R2\{0}, let
X

((x) = =
|z]1

Let w(mm)e1 and 7(mn)-€2 denote, respectively, the rightmost and the upmost geodesics of G(m,n).

(0,0)

Figure 4.1. An illustration of the high probability event in Lemma 4.5. The upmost and rightmost

geodesics from (0, 0) to (m,n) will intersect the vertical line segment ng’n)

LEMMA 4.5. — Suppose Assumption 4.1 holds. For 0 < § < g and 0 < & < %, there exist finite positive
constants Ca (0, 0, v,€), Na(d,00) = 1, and s2(0, dg) such that the following holds: for all (m,n) € S5 N Z;Nz,
ae(e,1—¢), and s € s, ?J(f—jl)(m +n)13],

(4.5) P{(ﬂmﬁn%el A CIm™) = @) (e A ) — @)} < Cos.
Proof. — Fix §, ¢ as in the claim. Take
Ny = max{g—lNl(5/3, 80,1), (3= 08)0 e (N1(6/3,60,1) +1),3(3 = 6)5 %",

(4.6) 2(1—5/3)eL, (2 — 26/3)¥2(1 + 3/5) /21, %(25—1(3 —a)Y -,

§ 1 1 1 —1\3/2 B ed -3
55 NO(6/371)75 72(38 ) (1 3(6+1)) }

Take
sy = max{2,85%/3s1(5/3,80,1),250(6/3,1)}.
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Take (m,n) € Ss N Z2 y, and

S€ (m+n)1/3].

€
[ 30+ 1)
This ensures that n — s(m +n)?3 > (1 —¢/3)n > 0. Let £* = ((m,n— s(m +n)%3) and &, = ¢(m,n+s(m +
n)?3). Let 7 denote the upmost geodesic of G¢ (m,n) and m, be the rightmost geodesic of G (m,n).
Theorem A.1 gives a coupling of the weights {w,, IS, J§ , IS, J& : x € Z?} that is stationary and such

that almost surely, for all z € Z2,

*

(4.7) wy < IS

S <Id and w, < JS < S

Take a € (g,1—¢) and define & = (|am], |a(n — s(m + n)*?3)]). By Lemma 4.2, the point where 7* crosses
the southwest boundary of the rectangle [0, (m,n)] is the same as the exit point of the upmost geodesic of
G<

3, (mn) from the same boundary. Furthermore, we clearly have
lan| + 2s(m +n)?? = |a(n — s(m +n)?3)| + 2s(m +n)?/3,
and the fact that m +n > 1 and s > 1 implies (2 — a)s(m +n)*3 = 1 + ¢ > 1, which implies

lan] — 2s(m +n)?? < |a(n — s(m +n)??)].

Therefore,
{7* n ng’s") =g} {r* N [0,0+2s(m+n)"e] = @} {Zg*(;fn) ¢ [—2s(m +n)¥3, —1]}.
Consequently,
B(n €5 = 2) < P25, ¢ [-2s(m + n)?®, —1])
(4.8) = P(ng(f;n) > 0) + P(ng(ﬁfn) < —2s(m +n)?3).

To bound the first of these two probabilities, let

~

n—|a(n —s(n+m)?3)| -7
(m + 7)2/3

m=m—|am|, n=|&Em/E], and §=

We next check that we can apply Corollary 4.4 with these parameters.

Note that
. m m 0 0
& = > > > 5
m+n—sm+n)23 " m+n_ d+1 3
and
¢ < m om o0+1 - 1 <1i5
" mtn—gEs (m+n) m+n 0+1-e§/3 T 1+50/6 3

Next, we use the choice of Ny in (4.6) repeatedly. First, we have

ﬁl = (1 — a)m = ENQ = N1(5/3,50, 1)
and
5/3

-eNy —1 = Ni(§/3,00,1).

We also have
m 5/3
= —— = > -
Sm/Er 1-0/37 3

(9]

SHESH

and

< m < !

~ ~ ~ 6
sm/E —1 35

SRS

- 3
1 S5
o~ 0
In other words, (7, 7) € Ss5/3. Furthermore,

~

T+ 7)< (7).

- Ta

m ‘

‘ ~

m+n
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Lastly, we derive bounds on 5. An upper bound is given by

. n— |a(n — s(n +m)?3)| -7 < n < m/é§
2+ W) (i + /et — 1) (/- 8/3) - 1)
e (1 —a)m/s

T (/1 —d/3)-1)7" < (200 - 0/3) 6 et < A+ )P,
/0= 3/3)

where A is the constant in front of m'/3 in the middle of the second line. We similarly have the lower bound
n—an+as(n+m)®® —gm—am+1)/&  (1-a)(n—&gm/E) + as(n +m)** — &/
((m —am+ 1)/{{)2/3 - ((m —am + 1)/51)2/3
s(m +n)?3 — ¢/t - s(m+n)?3 —(3-106)/6 - s(m +n)?/3
((m —am +1)/e0)** ~ (36-1((1 —e)m+1))** ~ 2(65-1(1 — £)m)

In the last inequality we used s = so and the choice of ss.
Now, apply Corollary 4.4 to get

5=

> 6%35/8 = 51(5/3,00,1).

2/3

P(Z5(22,) > 0) = P(Z87 2 (i, 7i + |3( + 7)?3]) > 0) < C1(6/3, 6o, 2, A5~
< C1(6/3,00,2, A)(0%3/8) s

To bound the second probability in (4.8) start by using Lemma 4.3 to write

*
)

]P’(Z§ ezn) < —2s(m + n)2/3) < ]P’(Zﬁ*’e2 < —2|s(m + n)2/3j)

»(m, 0,(m,n)
&,
= P(Za+ﬁsz(m+n)2/3jez,(m7n) < —|s(m+ n)2/3j)
= ]}D(Zg*7e2 (m/, TL/) < —[s(m + n)2/3j),
where
m' =m—|am| and n' =n—|a(n—s(n+ m)2/3)J — s(m + n)2/3J.

Now we check that we can use Assumption 4.1. We have

m’ >eNy > N0(5/3, 1)

and
n' = (1—-a)(n—s(m+ n)2/3) >(1—-a)(l—¢/3)n=5(1—-a)n/6>5:N3/6 = Ny(§/3,1).
Also,
é\ 5 < (1—a)m \ﬁ\(lfa)melgEJr 6 <§'
3 1+1/3+e /Ny (1—04)n+3(§—_‘?_1)(n+m)+1 n = 5(1—a)n/6 50  5eNa 0§

We already checked that £ € (6/3,1 — 6/3), and we have

/

m - |s(m +n)?3(m — [am]) — m|s(n + m)*3| + nlam] — m|a(n — s(n + m)¥3)]|

& - <

Lomiw (1= a)(1 = 55) (m + n)?
_ s(m +n)?*3 + 2m - ?,(§—<i1)+2
< > S(m+n)TV3 < (m! 4+ /)T

S 2
e(1 = gitmy) (2N2)°
We can now use (4.1) to write
P(Z5 22 (m/, ') < —|s(m +n)*?]) < P(Z5°2(m/,n') < —[s|(m’ + n')*?)

<
< Co(0/3)|s]7Y < 2Cos™".
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Using the above bounds in (4.8), there exists a finite constant C'(d, §o, v,€) > 0 such that

(4.9) P(r* A M = z) < Cs™v.

«@,2s

Next, write
P2 (m.n) > 0F = B{Z€* (m.n — [s(m + n)?*] + |s(m +n)*]) > 0
_ P{Z£*7el (m//, n + ls//(m// + n//)2/3J) > 0},

where

s(m +n)?/3

(m// 4 n//)2/3 ’

Similarly to the above, we can check that the conditions of Corollary 4.4 are satisfied, with 6/3 in place of §
and with xk = 1, provided we choose N5 large enough. Therefore, (4.4) gives the upper bound

m" =m, n"=n—|s(m+n)¥?, and " =

(4.10) IE"{Zg*’e1 (m,n) >0} < Cs™",

where C' is a (possibly different larger) finite positive constant depending only on 6, dy, v, and e.
An identical reasoning gives the bounds

(4.11) P(r. A CUW™ = @) < Cs™ and  P{Z%°2(m,n) <0} < Cs™".
Next, we argue that 78 ez (m,n) < 0 implies that n(mn).e2 pever goes strictly above 7*. To argue by

contradiction, suppose there existed a positive integer k and x € Z2>0 such that 7} = w,(cm’")’@ =T, My =

z+ep, and 77,(;1:’1")’92 — z+4ey. Since Z£°2(m, n) < 0, the upmost geodesic 7 goes from 0 to e; and therefore

k > 1 and z + e; lies in the bulk N2. Consequently, Tt 1:man 15 @ geodesic for G, e, (m,n)- Since w,(cmi)h@

is the upmost geodesic of G, (), it must be that the passage time of ﬁ,(cmlngyffn is at least as large as the

passage time of 73 ., ., and the former path never goes strictly below the latter one. Now, the bounds in
(4.7) say that the edge weights on the boundary Ney are at least as large as the bulk weights there. Therefore,

the passage time of 7} ., ., (Which only uses bulk weights) is no larger than the passage time of w,(ﬁlnr)nizn,

even when the latter uses boundary weights on Ney (which is possible if z is on that boundary). But this
(m,n),e:

k+1:m+2n
strictly above *. This contradicts the definition of 7* as the upmost geodesic. Consequently, 7("™™):¢2 can

means that replacing 77, ..., by 7 in 7 gives a geodesic for G¢ (m,n) that at some point goes

never go strictly above 7*.

Similarly, if Z&°(m,n) > 0, then m(mn)et never goes strictly right of .. Consequently, if we have both
Z&®2 (m,n) < 0 and Z%° (m,n) > 0, then all the geodesics of G(m, n) are sandwiched between 7* and 7.
If, furthermore, 7* and 7, both intersect Cg:;’s"), then both 7(mm)er [ e {1, 2}, are forced to intersect it as
well. We have thus shown that

{(rimmer nelmm — g) o (mme o clnm — o)
c {Zg*’el (m,n) > O} U {Zg*’ez(m,n) < 0} v {ﬂ'* ngZ’S") = @} U {w* ngZ’S") = @}.

This, together with (4.9-4.11) complete the proof of the lemma. O

5. Non-existence of bi-infinite geodesics

We begin by proving non-existence of non-trivial axis-directed bi-infinite geodesics, which is essentially an
immediate consequence of the uniqueness of axis-directed semi-infinite geodesics.

LEMMA 5.1. — With probability one, for each x € Z2 and ¢ € {1,2}, the only semi-infinite geodesic
starting at x satisfying lim,_, k™ xy - e3¢ = 0 is the trivial geodesic {zx + kes}{_,.
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Proof. — The proof of this result is essentially the same as that of [36, Lemma A.6], where there is an
additional assumption that the weight distribution is continuous. We include the proof for completeness.
It suffices to prove the result for semi-infinite geodesics starting at the origin which are e;-directed. Fix a
strictly decreasing sequence of directions &; € rilf such that & \, e; and ~ is differentiable at &; for each i.
By Lemma 4.1(b) in [26], each B% given by Theorem A.l produces an upmost semi-infinite geodesic z..,
that starts at the origin and follows the minimal increments of B¢, taking an e, increment in case of a tie.
By [26, Theorem 4.3], for each 4, the limit points of ¢, /n, as n — o0, lie on the same (possibly degenerate)
linear segment of v that contains &;.

Due to the uniqueness of the upmost geodesic between any pair of points = < y, any e;-directed semi-
infinite geodesics starting from the origin must stay weakly to the right of all of the geodesics z}.,,.

The result now follows if we show that for any m € Zs( and any i large enough, z{., = [0, me;]. We
prove this by induction. This claim is trivial for m = 0. Suppose the claim is true for some m € Zsy.
Lemma 5.1 in [26] says that B%(mej,me; + e2) — o0 as i — oo. This implies that for i large enough
B%i (mey, me;1 + ) > wpe, = B%(mey, (m + 1)e;), which implies that 2!, ., = (m + 1)e;. O

Next, we turn to interior-directed bi-infinite geodesics. Recall that the passage times Gi_’y that use the
boundary weights {Iﬁ +kel7J§ tke, - K € N} on the southwest boundary of z + Z% give a stationary LPP
process satisfying (3.5). We will now need to consider the stationary LPP process that corresponds to putting
appropriate weights on the northeast boundary. To this end, define the reflected weights & = (D4 )zezz with
Wy = W_,. Define the boundary weights

(5.1) IE(w) =TI, (@) and JSw)=J°,@).
JgeQ J;71+62
JS, Jo
(0,0) » * (1,0)
JEQQ ng—ez

Figure 5.1. The edges involved in S5".

Given &, n e rild let

n £ T
2i=1je, = J21+(j—1)e2)’ n €Lz,
(5.2) S&m =<0, n=0,
0 ¢ e
- Z]:n+l(‘]]e2 - Jg1+(j—1)92)7 ne Zg_l
Given &*, &, ™, ne € Tild, we can use Theorem A.1 to couple the weights
(5.3) {wa, I8, JE IS J& I J7" I J0 : e Z2Y.

This produces a coupling of {wg, J& , J&, JT" J1 : x € Z2} and of {wy, IS, IS, IT I : x € 72},

stz o

ASSUMPTION 5.2. — There exist an ag € (1/3,2/3) and a dy € (0,1) such that for any ¢ € (0,dp), there
exist positive finite constants C3(d) and N3(6) such that for all N > N3, and all n.,n*,&,&* € rild with
ej-coordinate in (§,1 — §) and such that

(5.4) N2 <E eg—n e <0 and — N2 <y, e9—& e <0,
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we have

(5.5) ]P’{ sup S,E*’n* <0 and sup S,E*’"* < 0} < O33N~ %,
0<k<N?2/3 —N2/3+1<k<0

By Lemma C.2, this assumption is satisfied for any ag € (1/3,2/3) when wq is geometrically distributed.
This assumption is verified in the exponential model in [8, Lemma C.1] with ag = 2/5.
Theorem 2.2 now follows from Theorem B.1, Lemma C.2, and the following, more general result.

THEOREM 5.3. — Suppose Assumptions 4.1 and 5.2 hold with

(5.6) ap < %

Then with P-probability one there are no non-trivial bi-infinite geodesics.

Remark 5.4. — By exchanging the roles of the two axes, one sees that the above theorem also holds if
Assumption 5.2 holds with 7, -increments instead of J7, . We expect that if the assumption holds with one
set of increments, then it holds with the other set as well.

Given 6 € (0,1) and a positive integer N, define the southwest boundary,
(5.7) oM = ({=N} x [N, =0N]) u ([N, —é6N] x {~N}),
and the northeast boundary,
(5.8) N = ({N} x [6N, N]) u ([6N, N] x {N}).

By Lemma 5.1 a nontrivial bi-infinite geodesic must eventually take an e; step. Then by the shift-invariance
of P, to prove Theorem 5.3 it suffices to show that almost surely there are no nontrivial bi-infinite geodesics
that take the edge (0,e1). Thus, this theorem follows from Lemma 5.1 and the next result.

For u < v in Z? define the event

(5.9) U"" = {at least one geodesic of G, , goes through both 0 and e;}.

THEOREM 5.5. — Suppose Assumptions 4.1 and 5.2 hold with (5.6) satisfied. Let

(5.10) ay = min(ao, (% - %)u) € (1/3,2/3).

For each ¢ € (0,0q) there exist positive finite constants N4(0, o, v, ag) and Cy(d, do, v, ag) such that for all
N = N,

(U Um)<anen,

u€oN:8 veoN,é

The reason behind the relation (5.6) is that if v is close to 2, then this affects the bound (4.1) and, as a
consequence, we do not have good control over the geodesic fluctuations in (4.5). Then, when using (5.5) in
the argument against the existence of bi-infinite geodesics, we need to allow for a larger interval in (5.4),
which means using a smaller ag. That said, it should be the case that if the i.i.d. environment has finite
exponential moments, then Assumption 4.1 holds for all ¥ > 2 and Assumption 5.2 holds for ag € (1/3,2/3).

The rest of the section builds up towards the proof of the above theorem. Define the vertical segment

(5.11) T = {0} x [-N?/3, N?7].

For N>1,1<s< %N1/3, and o € Z2>0 U Z2<0, define the directions
O —_ p—
¢(o) = L G(0) = C(0) + (—sN~V3, sN1/3)
(5.12) 01 + 02
and  (*(0) = ((0) + (sN 3, —sN %),
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> dN?/3

o S N2

Figure 5.2. An illustration of the high probability event in Lemma 5.6. The upmost geodesic of ngéo)
exits at least dN?/3 to the right of o. The rightmost geodesic of Gg_]fo) exits at least dN?/3 above o.

LEMMA 5.6. — Suppose Assumption 4.1 holds. For any § € (0,do) there exist finite positive constants
Cs (6, 50, I/), N5(6, 50) = 8673, and 85(6, 50) such that for all N > Ns, if
0 0
(5.13) 1<d< 6—4N1/3 and max(ss, 8d) < s < ZN1/3’
then for all x € Z, and o € 0™V-°,
(5.14) P(Z5:{7° < AN??) < C5s™"
(5.15) P(ZS (1 > —dN*/?) < Css77.

Proof. — The condition that N > 8/§% guarantees that —dN + 1 < —N?/3, which implies that —|N| <
—|N?3] and hence @V is entirely below Z. We prove (5.14) and the second bound follows analogously. Let
0 = —(aN,bN) where a vb=1and a A b e [4,1]. Abbreviate £, = («(0). The upmost geodesic from o to
| N 2/ 3]es must stay above any geodesic from o to x € Z. This, Lemma 4.3, and shift-invariance give

Ex, 2/3 5*79 2/3 _ &x e
(5.16) P{Z‘)@ez <dN? } < P{Zo,lNQ‘Z/SJez <lan? J} - P{Z0+I;N2/31917[N2/3J92 < 0}

= P{ 28 s o panvaige, < O = B{ZE 2 (N — [dN*2],N + [N*)) < 0.

Next, we check that we can apply Corollary 4.4 with

,  n—bN—|N?3|
.7’rLJ7 and s :W7

mé. -ng B [b—i— (a+b)sN~1/3
¢&-er 1 la—(a+0b)sN-1/3

if we take NV large enough and s as in (5.13). Here are the details. Take
N5 = max(85~% + 1,64(N1(5/4, 00, 1) + 1)/(636%))

m = aN — [dN2/3J, n = l

and
s5 = max (4,8/(38), 2351 (5/4, 00, 1)/(36), 4/(1 + 6), 2'%351(6/4, 80, 1) /6%/).
Take N > N5 and d and s as in (5.13). Then m > 636N /64 > N1, n = bm/a—1 > 635°N /64 — 1 > Ny, and
0 a—(a+b)/4 _m m a 2
< <—<

- x T x T < < < <
4 " b+(a+b)/4 " n " bm/a—1  b—64a/(630N5) I

Also
(a+b)%s —bd — d(a + b)6/4 — 2 __s/2-2d 6235

2/3 = 2461\2/3 = 910/3
b+(a+b)d/4 240
0?3 (1+ e ) (5%

(n+m)3 >4 >

= 81.
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And
5 1 5 1 6 1 1 8
5.17 S ——— S ——— - <éore1 < < <1-—-.
(5:17) ISTH6 15Tvojor 155 O STio 0 ST59 2
And lastly,
mé. - e _ -
€1 — m+n] —|n- %’(ern) le, ey < (m+n)"L.
Thus, (4.3) gives
]P’{Zg)*g;ez < dNQ/B} < P{ZE*’92(m,n — &' (m+n)??) < 0} < Cs™”
for some positive finite constant C(4, dp, v/). O

To control coarse graining on the scale N2/3, we use the parameters d; for the southwest boundary and
do for the northeast boundary of the square [—N, N]|2. Let d = (dy,dz). For o € "> define

Loa = { 2

Because Z, 4 is a connected portion of the boundary of a square, it contains a unique point o. such that
o < u coordinate-wise for each point u € Z, 4.
For s < 6N 1/3_ define the directions

(518) & = C*(Oc) and & = C*(OC)
as in (5.12). Use Theorem A.1 to couple the weights {w,, IS, J§ , I&, J& : x € Z?} so that (4.7) holds almost

surely and for all € Z2. Define the event

(5.19) Ao {Zf e

©Narsje, < —iN?and Z5

O e, d1N2/3}.

Recall the boundary weights defined in (4.2).

LEMMA 5.7. — Suppose Assumption 4.1 holds. Then for any 6 € (0,d9), N = N5(6,6), o € oV, and
(dy, s) satistying (5.13),

(520) ]P)( g,d) < 205(6, 50, V)Siy
On the event A, 4, the following inequalities hold for all x € Z and u € Z, 4:
(5.21) Tihe, < e, < TSies

Proof. — Lemma 5.6 implies (5.20). We prove the second inequality of (5.21) and the first inequality follows
similarly. Let Gm . be the LPP process on the quadrant o, + Z2 Zo with weights &,, = 0, Wo, +je, =
for each j = 1, and @y, 44 = Wo, +» Whenever x - e; > 0.

£
J octjes

First consider the case that u = o, + jes for some j > 0. On the event A, 4, we have that the rightmost
geodesic of GE:17[N2/3JQ2 exits the boundary above o, + dy N?3e,. Therefore, for any z € (—|N?/3| + Zs)e,

every geodesic of ngw must exit the boundary above o, + diN?/3ey, i.e.,

78 e « g, N?/3,

O¢,X
Thus, every geodesic of Gg:w includes u and u + ez. Since the weights used by G and G€” are the same away

from the horizontal boundary, and on that boundary the weights used by the former are smaller than the
ones used by the latter, we get that

£ * ~ ~
GOC7:E+92 - ch, = Gu xt+es Gu -
By [8, Lemma B.1], éu JT4+es — éu ¢ 2 Guartes — Gua- Puttmg these together gives J§+e2 > Ejr]%_
If instead u = o, + ie; for some ¢ > 1, then as before G£ = Goc ». Furthermore, since Gu@ does not use

the vertical weights above o, then Guﬁz =Gy By [8, Lemma B.2],

Goc+el,m+ez - GOC+e1,m < GOC,$+62 - Goc,w-
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Inductively, this gives Go, z+es — Gouw = Gu,z+e, — Gu,» and applying [8, Lemma B.1] for the first inequality
we get
ch,mﬁ-ez ch,x = G0c7w+92 - Goc@ = GOC7I+92 - GOum = GU7CE+92 - Gu,ﬂﬂ' ]

Now we do an analogous construction for the stationary process with a northeast boundary. Recall the
northeast boundary (5.8). We continue to drop the ¢ from the notation. Recall also the weights (5.1). For
x = (z1,22) and y = (y1,y2) in Z? set G5, = 0 if z < y, while if <y then let

1<k<syi—z1 1<l<y2—x2

k ¢
(5.22) G57 = max {GI,y,kel,e2 + Z fj_ieﬁ} max {G’I,y,el,ge2 + Z fs_jeQ},
i=1 j=1

with the convention that maxg = 0. In particular, égm = 0. Then

~E el S

Gy,x(w) - sz,fy(w)'
The additivity (3.5) becomes

~E € E

(5.23) Gy + Gy =G,

¢ ~
for x < y < z in Z2. The quantities Exit,, , and ZS:; ¢k are defined analogously to Exitjx and Zgjgk. Precisely,

¢ k N

Exit, , = {k e[l,y1 — 1] : Z fj_iel + Gry—kei—es = ng}

i=1
e ~
U{_ﬂ Le [[17 Y2 — x2]] and Z j\s—jeg + Gm,y—feg—el = G;z}a
j=1

— & ﬁ
ZE —° = max Ex1t and ZE —~ = min Ex1t

Y,
For 6e N9 Jet

~ N daN?/3 — 1

Tou= {02 ooy < DYV 21
and let 0. be the unique point of fa)d such that 0, > v for each point v € Ig g- For 1 <s < 5N1/3 define
(5.24) e = (e () and 0 =(* (o)

as in (5 12) Couple the weights {ww,I" J" , I, J1} using Theorem A.1. This produces a coupling of
{wg, IN", J" I J™} such that

~ ~

v A
< I <I™ and w, < JF < J)!

)

the analogue of (4.7), holds almost surely and for all x € Z2.
Define the increment variables analogously to (4.2):

fg[gy] =Ggy— Grtery, when z+e; <y, and
JW = Gy — Guteyys When z+ey <.
Define the event
- 2/3 s 2/3
(5.25) Bsa = { zr Njenre < 2N ZI T ey > AN }

The next result follows from Lemma 5.7.

LEMMA 5.8. — Suppose Assumption 4.1 holds. Then for any 6 € (0,60), N = Ns(d,dp), 0 € éN“S, and
(ds, s) satistying (5.13),

(526) ]P( g,d) < 205((5, 0o, V)8 "
On the event B; 4, the following inequalities hold for all t € 7 and v € f@d:
(5.27) TP e ve, < L < J"

r+ey +e2 r+ep+ex”
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Let o€ 0N G e 0N and consider the LPP process from points u € Z, 4 to the interval Z and the reverse
LPP process from points v € Z5 4 to the shifted interval e; + Z. Recall (5.18) and (5.24). Use Theorem A.1
again to couple the weights in (5.3) and thus produce a coupling of the weights

{wa, JE, JE Jr jg* cxe 7).

x 'Yx Yx

Recall the random walks S&7" and S¢" "+ as defined in (5.2). Define also

n [v] _ 7lv]
Zj:l(Jjez - Jel+(j—1)92)7 n = 1,
S’ =10, n=0,
0 [w]  %lv]
B Zj:"+1(JjeQ o Jel+(j—l)e2)’ n< -1
The following is immediate from (5.21) and (5.27).
LEMMA 5.9. — On the event A, g N Bs 4, for allueZ, q and v e f57d7

(5.28) S < Suv < S§ forn e [0, N*]  and
5.28 . ‘
S§m < St < S5 for e [-N*P 41,0].

Recall the event U™ defined in (5.9).

LEMMA 5.10. — Suppose Assumptions 4.1 and 5.2 hold with (5.6) satisfied. For any ¢ € (0,dq) there
exist finite positive constants Cg(9, 0o, v, ag) and Ng(d,00) = 862 such that for all N > Ng and o € oV-0, if
0=—0eN% dy =1,dy = N372 /18, and s = 8ds, then

(5.29) P( U Uu)<GN T,

uEIO’d ,UEI@Yd

where a; is defined in (5.10).

Proof. — Let o€ 0V9, 6= —0, u € Zo,d, and v € fgﬁd. The walk S*v determines where the geodesics of
Gy, leave the vertical axis, since

Gy = ., ax {Gu,(o,n) + ém(l)n)}

2SNKU2
= wotn v, {[Gu,m,n) ~ G 0.0)] + Cu00) + Cor0) - [@”*(170) B é”’(l’”)]}
- 2217?2;112 {Gu,(O,O) + GU’(I’O) + Sn) } ’

Therefore, a geodesic of G, takes the edge (jez, e + jes) if and only if j € [Jug, v2]| is such that S;“J =

MaXy,<n<wv, On’. Consequently,

U™ < { sup SV < O} N { sup S < O}.
0<k<N2/3 —N2?/341<k<0

This and (5.28) imply that on the event A, 4 N Bs.q
U U“’ c { sup S,E*’"* < 0} N { sup Si*’n* < O},

~ <N2/3 _N2/3
uE€T o 4,0685.4 0<k<N N2/34+1<k<0

where £*, &, n*, 1. were defined in (5.18) and (5.24). As a result, we have

630) B( | ve)<p({ sw 57 <oba{ s SO <0}) 4P B,
weT,, q,v€25 4 0<k<N?/3 —N2/341<k<0 ' '

Take N > N3(8) v N5(8,80) and such that s > s5(0,00), d < IN'/3/64, and hence s < IN'/3/4. Since
0=—0
|oc + 0c|1 < |oc — 0|1 + [0c — 0|1 < (d1N2/3 + d2N2/3)/2 < d2N2/3
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and thus
Oc Oc |Oc+6c|1 “Ocll - |ac|1‘ 2|Oc+6c|1

|0c|1 |6c|1 1 h |Oc|1 |0c|1 h |Oc|1

|C(Oc) - C(ac)|1 < < 2d2N_1/3.

Therefore
— N7/ = 9@y N3 _9sNTY3 <€, o1 — 0t -e1 < 2daN7V3 —2sN~13 <0
and similarly
7N7a0/2 < Nx €1 75* e < 0.

Furthermore, the inequalities in (5.17) verify that the ej-coordinates of £*,&,, 0", n, are all in (6/4,1 — §/4).
We can now apply (5.5), (5.20), and (5.26), which together with (5.30) give

IP’( g U“*”) < C5(6)N™% + 4C5(8, 80, v)s ™" < CeN 1. O
uEID,d,’UEi@d
Just as above, for 0 € 0V9, let 6 = —o and set
~ A dyN?/3 — 1
fa)dz{veaN’6:|6—v|1>72 ) }

LEMMA 5.11. — Suppose Assumption 4.1 holds. For any a € (0,2/3) and é € (0,dg), there exist positive
finite constants C7(6, o, ) and N7(6,80,a) > 853 such that for any N = Ny and o € oV-°, if d; = 1 and
dy = N3~% /18, then

(5.31) (| vv) <ot
€T, 4,0 F5 4
Proof. — Define the boundaries
8]?570; = {v € ]?5),1 :due f@d such that |[v —ul; = 1} and
0Loq = {v €Zpq:3ue 8N’6\Ioﬁd such that |[v —ul; = 1}.

Their cardinalities are either 1 or 2, since it may happen that f@d contains an endpoint such as (N, |[0N]).
Additionally, 1 < |0F5.4] < |0Z,,4] < 2 because dy < dg, so Zs 4 would include an endpoint of the boundary
whenever Z, q does. Label the points in 07, 4 as h! and h? and label those of 0F5.q as f' and f? so that

1 2 1 2 1 ~ 2 1 ~ 2
hi=o01>=hi, hy<o2<h; fi<or</fi, and f3 =022 f5.

Traveling clockwise around the boundary of the square [N, N]? starting at (0, V), the points that exist
come in this order: f1,0, f2,ht, 0, h2.

We will show that if some geodesic from u € Z, 4 to v € ﬁ@d uses the edge (0, e;) then, for some i € {1, 2},
m? ¢ the e;-most geodesic of Gp: yi, deviates by at least 5d2N2/3/16 from the straight line segment from
h* to f*. To this end, define

Prvei = i n {x €eZ?:x; = m}.
This is the intersection of the e;-most geodesic of G, with the vertical line £; = m. For ¢ > 0 let

V2 — U2

2
(5.32) DY = R
" 1:U1 p=(p1,p2)€Py " U1 — U1

(mful)fpg‘ >t}

be the event that at the vertical line 1 = m, some geodesic from u to v deviates from the straight line
segment from v to v by more than t.
ForueZ,q and v e Fj5 4, let €* = u—o and e’ = v — 0. Then F5 4 is the union of two disjoint pieces

f§7d= {U€f57d2611) <O<e§} and f§7d= {Ue}'ayd:eg <0<611)},
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separated by Ia 4, one of which can be empty. ]-1 .4 1s to the left and above IO 4, and if it is not empty, then
it is separated from Ia 4 by the point f1. F5 F2 4 1s to the right and below IO ., and if it is not empty, then it

is separated from Z; 4 by the point f2.
Take N > max(v/8, (1 + §)/6%, Na(6,60)/(20)) and large enough so that

2dy 5d2 ds é 6(4N)1/3
— < = ) ) < . '
dy > 16s2(0,00), and 16 ~4(1+40) 3(1+9)

_ dyN?3 -1 o daN?3 -1 - do N?/3

le“]; < ) . ety > 5 = and e} <0 <ej.
Using this, together with v; —u; = 0; + e} — (0; +€¥) = —20; + €/ — e, =N < 0; < —0N, and § <
(v —u2)/(v1 —u1) < 1/6, we get
up i Vo — U (_u1) _ 0261 — 0162 _ 0261 — 016 Te + Vg — U (—6?)
U1 — U1 U1 — U1 U1 — U1 U1 —u1
IN |e’]
> - F140" ) u
ON <2N5 el

1

(5.33) > §5d2N2/3 — 207 YA, N?P > E(SdQNQ/B.

Similarly, for uw e Z, 4 and v € ]-"g 4» We have

v v u U
02€1 — 0169 02€1 — 01€9 V2 — U2

= = (1 - = _ u 1 — ¥
U2+U1_u1( UI) V1 — U1 V1 — U1 +e2+’U1—’U,1( 61)
IN |e’] N 4 4
< — 1+6 “ )
5N + 5Ns +1+ le“]; +
1 1
(5.34) < f§5d2N2/3 +2671d N?P < 71—66d2N2/3.

Now suppose that for some v € Z, g and v € f'@d some geodesic of Gy, ,, goes through the edge (0,e1). We
have these two cases:

(i) Ifve ﬁéd, then the rightmost geodesic rht e stays to the right of all the geodesics from u to v.
Consequently, this geodesic crosses the axis Rey at or below 0. Then (5.33) with u = h! and v = f! shows
that 7" +F "1 avoids the vertical interval of radius %&ZQN 2/3 centered around the point on the line segment
from h' to f! with e;-coordinate x; = 0.

(i) fv e ]-A'g_’d, then the upmost geodesic rh? f% e stays above all the geodesics from u to v and therefore
crosses Rey at or above 0. Then (5.34) with u = h% and v = f2 shows that 7" *.f%e2 ayvoids the vertical
interval of radius 166d2N 2/3 centered around the point on the line segment from h? to f? with e;-coordinate
xr = 0.

We can now apply Lemma 4.5 with ¢ = (1+5) because we took N large enough so that f® — h’ e
S5 O LNy (6,60)

d2N2/3 86 1/3
§= —————=7 € [5200,00), g5 [fi = hils
16|fz _ hzlf/g [ 3(5 + 1) ]
and
— ! . .
o fllf’lli € [% sl c (e, 1-¢) in case (i),
»12%}1,?26[% 5 + mw | © (6,1 —¢) in case (ii).

1 1
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Combining these results, we conclude that

w,v [ h?.f?
P( U U ) <P (DO,5d2N2/3/16 e D1,6d2N2/3/16)
uEID,d,Uej}@d
do
16 - 22/3
The lemma is proved. O

< 2C5(6,00,v,6)87" < Cg( )_” = C7N*(%*%)V'

Using a union bound and Lemmas 5.10 and 5.11 we get the following.

LEMMA 5.12. — Suppose Assumptions 4.1 and 5.2 hold with (5.6) satisfied. For any 6 € (0,0¢) there exist
positive finite constants Cs(6, o, v, ag) and Ng(6,80,a0) = 873 such that for all N > Ng and o € oV-°, if
dy =1 and dy = N3~% /18, then

(U uw)<an
ueID,d,veéN’é
where ay is given in (5.10).

We are now ready to prove Theorem 5.5.
Proof of Theorem 5.5. — Take di = 1 and dy = N%*aTo/l& Let

ON _ aNs <{<N +idi (IN?3] - 1), —N) }iEZZOU{<7N7 —N + jdi (|N?3] - 1)) }jEZ>O> .

Then we can decompose

y vy Uy u

u€oN:8 veoN,é 0eON u€ZL,, q,v€0N 8

Since |ON| < Cd'N'=%/3 = CN'/3, for some positive finite constant C, a union bound and Lemma 5.12

give
P( U UW) < ) P( U UW) < CyN~(@1=1/3),

uedN 8 veoN:d 0eON u€Z,, q,vE0N 8

The theorem is proved. O

Appendix A. Stationary boundary
A.1. General weight distribution

The next theorem provides the boundary weights I§ and J§ that are used throughout our proofs. It follows
directly from Theorem 4.7 of [34]. Note that when the weights are geometric, random variables, Theorem
A.2 below gives an alternate construction of these boundary weights, with some additional independence
properties. The purpose of the theorem in this section is to give a construction that works for a general
weight distribution. If the reader is only interested in the geometric weights setting, then Theorem A.1 can
be bypassed and Theorem A.2 can be used instead.

Recall the shape function 7 defined in (3.7). The subadditivity (3.4) and the limit (3.6) imply that ~ is
a convex positively homogeneous function on R;O. As such, we can define the right-gradient v(¢+) via the

_ iy V€ Fger) = (6 _ iy 28 = (€ — e
e - Vy(€+) = 21\14% - and eq - Vy(&+) = 21\14% . .
Let Up be a countable dense subset of ritd. Let Ho = {—V~(+) : £ € Up}. Let Q = O x RZ*{1.2}xHo 4pq

equip it with the product topology and the Borel o-algebra G. Let T = (fx)xezz be the natural group of
shifts on Q. For A < Z? let AS = {x € Z* : 3y € A with z < y} and A~ = Z*\ AS.

limits
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THEOREM A.l. — Assume (21) There exist a T-invariant probability measure P on (€, G) and random
variables (x,&,0) € Z2 x ritd x Q — (I§, J§) € R? such that the following properties hold.
(a) P is the restriction of P onto €.
(b) For any A < Z2, the process {wy, IS, J5 : v € A, € e rild} is independent of {w, : x € A~ }.
(c) For each ¢ € rild and x € Z2, I§ and J§ are integrable and E[(I€, J$)] = Vy(£+).
(d) There exists an event Qq such that ]?D(SA)O) =1 and the following all hold for & € Q-
(d.1) For each z,y € Z* and € € 1ild, I§(T,0) = IS, ,(®) and JE(T,8) = J5,,(@).
(d.2) For each x € Z? and &,¢ € rild with & < (i we have w, = I§ A J§,
e < IS < IS, and wm<J5<J§.

(d.3) For § erild, x = (21, 22) € Z*, and k € N set G, =

k
(A1) mm+ke1 Z z+ie; and Gz x+kes _ 1J£+ie2'
iz
Fory ez + N2 Jet
(A.2) G;y = 1<krr<131x wl{z arie; T Gz+ke1+ez,u} 1<ér232x IQ{Z otjes T Gm+e1+€ez,u}
Then for all x < y < z in Z? and £ € rild we have
(A.3) GS, + G5, =G5
In particular, for any € € rild and z € 7>
(A4) I§+e1 + Jm+el+e2 J§+e2 + Iz+e1+e2

(e) For eachu > v in Z2,

{(G

u,v+x

-GS, er>0,§er1L{}—{( toure t T EZEG € eTiUY.

Proof. — Taking = o0 in Theorem 4.7 of [34] we get a process B® MO (x4, &), x,y e Z?, & € KAZ, and
¢ e rild. For & € Q) let @ € Q be such that @, = &_,, for all x € Z2. Set IE(@) = BPMOY (g, —x + e1,@)
and JS(&) = BPMO+ (—x, —x + o, D).

Properties (a-c) follow from [34, Theorem 4.7(a-c)]. (d.1) comes from [34, (4.4)] and (d.2) comes from [34,

(4.7-4.8)].
It is immediate from the cocycle property (4.4) and the recovery property (4.7) in [34, Theorem 4.7] that
for any 2 < y in Z2, we have P-almost surely, for any ¢ € rilf, G5, (w) = B* 2O+ (—y, —z,@). Then the

additivity (A.3) (and (A.4)) is exactly the cocycle property [34, (4.4)].
Next, note that (A.3) implies G, -GS, = Syes

vtz Lhen property (e) follows from the T-invariance
of P and the shift-covariance property in part (d.1). O

u, v+

A.2. Geometric weights

When the weights are geometric the process in Theorem A.1 has some independence features and explicit
one-dimensional marginals. Recall the bijection (3.11). Let € = € x RZ *{1:2} x RZ*x{1.2} and equip it with
the product topology and the Borel o-algebra G. Let (w(@), I} (@), J} (@), I2(@), J2(@)), x € Z2, denote the
coordinate projections of an element @ € Q. Let T = (T,),ez2 be the natural group of shifts on Q.

THEOREM A.2. — Fix 0 < r < 1 and let the bulk weights {w, : ¥ € Z?} be iid. Geom(r) random
variables. Then (2.1) is satisfied and for each r < q; < ga < 1 there exist a T-invariant probability measure
Py, .4, on (,G) such that the following properties hold.

(a) The properties in Theorem A.1(a-e) all hold:
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(a.i) P is the restriction of Py, 4, onto ).
(a.il) For any A c Z?, the process {wy, I}, JL, I2, J2 : x € A} is independent of {w, : v € A~}.

(a.iii) For each { € {1,2} and x € Z?, I and J. are integrable and

~

(A.5) E[(12, J2)] = VY (E(qe)) = (1 féq/ " - T)'

(a.iv) There exists an event Qg such that Py, ,,(Q0) = 1 and the following all hold for @ € Qq:
(aiv.1) For each x,y € Z* and { € {1,2}, I:(Tyw) = I., (@) and JL(T,w) = J., ,(@).

(a.iv.2) For each x € Z% and £ € {1,2} we have w, = I} A J.,
we < I2< 1L, and w, <J!<J2

(a.iv.3) For (e {1,2}, if we define Gﬁyy as in (A.1-A.2), with £ replaced by ¢, then for allz <y < z
in Z? we have

(A.6) G, +G, . =GL .
In particular, for any x € Z>
¢ ¢ ¢ ¢
(A7) Ierel + Jm+el+e2 = JereQ + Iz+e1+e2'
(a.v) For eachu >v in 7%
d
{(Gi,v-i—m - Gf},,v ‘X E Z2207€ € {17 2}} = {(Gﬁ,uﬁ-m ‘T e Z2207€ € {17 2}}
In addition, we have the following independence properties.
(b) The vertical increments {.J}, ;o, : j < 0} and {JZ, ., : j = 1} are mutually independent. Similarly,
the horizontal increments {I}; ;. :i <0} and {I} ,, :i > 1} are mutually independent.
(c) For each { € {1,2}, the increment variables {I_ o ,J. o, : i,j = 1} are mutually independent. Also
the increment variables {If;_iel , Jﬁ_jez 11> 0,7 > 0} are mutually independent.

(d) Foreachi>1,j > 1, and { € {1,2}, the increments have marginal distributions: I’ ~ Geom(qy)

u+tiey
and JﬁHez ~ Geom(r/qq).

Remark A.3. — The edge weights needed to define the stationary boundary models we used in Sections 4
and 5 came from the process produced by Theorem A.1. Theorem A.2 can be used just the same to produce
these edge weights, since by Theorem A.2(a), the process {ws, I}, JL, 12, J2 : x € Z*}, under Py, ,,, satisfies

all the properties of the process {w., Ig('h), Jf('h), Iﬁ(qz), JE@) . g e Z?}, under P. The advantage of using
the process from Theorem A.2 is that in the case of geometric weights, one has the additional independence
properties in Theorem A.2(b-d). These properties are used to verify that Assumptions 4.1 and 5.2 hold
when the weights are geometric random variables. In the rest of this appendix (specifically, in Corollary A.4,
Theorem B.1, and Lemma C.2 below), although we continue using the notation from Theorem A.1, we mean
to use the process from Theorem A.2. We also remark that the proof of Theorem 5.6 in [? | implies that the

two processes actually have the same distribution, but we do not need this fact.

COROLLARY A.4. — Fix 0 < r < 1 and let the bulk weights {w, : € Z?} be ii.d. Geom(r) random
variables. Let &.,£*,m.,n* € rild be such that & - ey < " - e and 7, - €1 > n* - e1. The processes {SE:*"* :
me [-N?3,—1]} and {S§"" : n e [1,N?/]}, as defined in (5.2), are independent.

Proof. — Examining the construction in the proof of the previous theorem one sees that the processes
{Jg*a JE }mEI and {Jgjrelv Jngel
Zs1 x Z} and {wy : x© € Zgo x Z} implies that the joint distribution of the two process (that are now defined
on a larger, product space) is in fact a product measure and the two processes are independent.

Next, Theorem A.2 says that {wa }i<o is independent of {Jf,;2 }i=1 and that {J(:”l*_k(j_l)e2 }i<o is indepen-

dent of {J7 , i 1\,

}zez can be constructed simultaneously. Then the independence of {w, : = €

}i=1. The claim follows from these independence properties. 0
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The proof of Theorem A.2 follows closely that of [8, Theorem 3.1]. It is based on a few results from queuing
theory. The queuing-theoretic interpretation is not important for this paper; however, it gives some intuition
behind the algebra that follows. To this end, consider a queue or service station with a single server and
unbounded room for customers waiting to be served. Index the bi-infinite sequence of customers by j. The
server serves one customer at a time. Once the service of customer j is complete, they leave the queue and
customer j + 1 enters service if they were already waiting in the queue. If the queue is empty after the
departure of customer j, then the server remains idle until customer j + 1 arrives. Let s = (s;)jez denote the
service process, i.e. s; is the time it takes to service customer j. Let a = (a;) ez be the inter-arrival process,
i.e. a; is the time elapsed between the arrivals of customers j — 1 and j. Assume that

0
(Ag) hIPoo (Sz — ai+1) = —00.
Let G = (G;)jez be a sequence of customer arrival times such that a; = G; — G;_1. Define the sequence
G = (Gj)jez by
J
(A.9) G, = sup{Gk + Z si}.

k<j i—k

Condition (A.8) guaranties that the supremum is achieved and that G ;j is a finite real number. The recurrence
relation

(AlO) éj = (éjfl + Sj) \Y (GJ + Sj)
provides a natural interpretation of C~¥j as the time customer j leaves the service station.

It is noteworthy that (A.9) is not the only solution to (A.10). For example, the sequence that is identically
equal to oo is another solution. However, adapting the proof of [35, Lemma 4.3] to the current setting shows
that under the assumptions that (s;) is i.i.d., (a;) is ergodic and independent of (s;), and the mean of a; is
strictly larger than the mean of s;, (A.9) is the unique stationary almost surely finite solution to (A.10).

Define the inter-departure process d = (d;)jez = D(a,s) by d; = éj - C:’j,l. Define the sojourn process
t = (t;)jez = S(a,s) by t; = G; — G,. Define the dual service times § = (5;)jez = R(a,s) by §; = a; A t;_.
These definitions do not depend on the particular sequence G which was selected.

Note that

(A.ll) tj +a; = (N;j - Gj_l =1t;_1+ dj.
Also, (A.10) implies
(Al?) Sj < dj for allj e 7.

Subtracting G; from both sides in (A.9) and expanding G, — G; = — Zz:kﬂ a; shows that
(A.13) the sojourn times ¢; are non-increasing functions of the inter-arrival times a;.
The following is Lemma A.1 from [8].
LEMMA A.5. — The following holds for any a, b, s for which all the involved departure times are defined:
D(D(b,a),s) = D(D(b, R(a,s)), D(a,s)).
For horizontal edge weight I, vertical edge weight J, and vertex weight w, define
I'sw+({I-J0)", J=w+{T-J)", and ' =1nJ

The next lemma can be proved for example using Laplace transforms. It is essentially a consequence of the
memoryless property of the Geometric distribution.

LEMMA A.6. — Fix0<r<landr <gq<1. Let w~ Geom(r), I ~ Geom(q), and J ~ Geom (2) be
independent. Then the following hold.
(a) I —J and I A J are independent.
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(b) The distribution of (I — J)" is the same as that of the product of a Ber(ﬁ) and an independent

Geom(q) random variables.
(c) The triple (I', J',w’) has the same distribution as (I, J,w).

Take 0 < 0 < a1 < ag in (0,1). Let b’ be an i.i.d. sequence of Geom(c;) random variables for i € {1,2}
and let s be an i.i.d. sequence of Geom(c) random variables, which are all mutually independent. Define
the arrival sequences (a',a?) = (b', D(b?,b')). Define d* = D(a*,s), t* = S(a*,s), and ¥ = R(a*,s) for
ke {1,2}.

LEMMA A.7. — The following statements are true.

(a) Marginally, a? is a sequence of i.i.d. Geom(az) random variables.
(b) For each k € {1,2} and m € Z, the random variables {d¥};<m, t)

m?’

and {8%};<,, are mutually

), and 5% ~ Geom(o).

(c) For each k € {1,2}, the sequences d* and §* are mutually independent. Their marginal distributions
are d¥ ~ Geom(ay) and 5% ~ Geom(o).

(d) (d',d?) = (a',a%).

(e) For each m € Z, the random variables {a}}i<m and {aj}j>m+1 are mutually independent.

independent. Their marginal distributions are d;? ~ Geom(ay,), th, ~ Geom(aik

The proof of the first three claims follows from Lemma B.2 of [? ] by replacing the exponential version
of the induction with the geometric version in Lemma A.6. The proof of the last two claims follows from
Lemma A.2 of [8] with the same replacements. Note that (A.12) and (A.13) imply

(A.14) ajl- < a? and tjl- > t? for all j € Z.

Proof of Theorem A.2. — Fix u € Z*. We start by constructing a joint LPP process (L., L2) eu+7-0xz-
In the bulk, we have the i.i.d. Geom(r) weights {w, : #1 > u1}. For £ € {1,2}, let Y* = {Y/};cz be a sequence
of i.i.d. Geom(r/qe) random variables such that {Y!, Y2 w} are mutually independent. Note that ¢; < g2
implies that (A.8) holds almost surely with s = Y' and a = Y2, For £ € {1,2}, define J* = {J{ o, }jez by
(J1,J%) = (Y', D(Y?,Y!)). By Lemma A.7(a), marginally {.J¢

For ¢ € {1,2}, define the LPP values on this vertical axis by

+jez }iez are i.i.d. Geom(r/qe).

¢ ¢ ¢ ¢ :

(A.15) L, =0 and L e, — Lyi(j-1)e, = Jutje, forjeZ.

Note that this means Lﬁﬂ-ez is negative for j < 0. Now, we define the LPP values for x € u + Z~o x Z:
(A.16) L= sup {L,je, +Guiertjesa}, Io=Li—L, . and Jo=LL—LL .

JijSm2—u2
The supremum is achieved at a finite j because the boundary variables J¢ stochastically dominate the bulk
weights w, as we show next. Note that one has

(A.17) I ANJ.=w, forallzeu+Z-ogxZand £ e {1,2}.

For k > 0 and £ € {1,2} let J°F = {J7*}icp = {J5, e, ie, tiez and ¥ = {55} icz = {Wusres+jes ez
Then J%0 is the original boundary sequence on the vertical axis. In the notation of Lemma A.7, with o = r,
a1 = q1, and ag = go, setting b’ = Y gives (a!,a?) = (J9,J4%). Then, for any ¢ € {1,2}, (A.8) is satisfied,
Gﬁ = Lﬁﬂew j € Z, is a sequence of arrival times, and Gﬁ = L£+e1+jeg7 J € Z, is the corresponding sequence
of departure times. Consequently, J&! = D(J%0 s!). Lemma A.7(d) then implies (J11,J21) £ (J1, J2).
Repeating this inductively gives that J&*+1 = D(J6F sk+1) and (JLF J2F) £ (1 J2) for all k > 0. This
and the first inequality in (A.14) imply
(A.18) Jl<J? forallzeu+7Z, xZ.

Furthermore, Lemma A.7(e) implies that for any x € u + Z>o % Z,

(A.19) {Jx2+je2 1J < O} and {J;Jrje2 1= 1} are mutually independent.
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The definition (A.16) satisfies a semi-group property: For each k > 0, the values LY for z such that
x1 > u1 + k + 1 satisfy
(A2O) Li = sup {Lﬁ-k—kel-}—jeg + Gu+(k+1)e1+j92,m} .

JijSx2—u2
This and the distributional equality (J1F, J*) 4 (J1,J2) imply that for any z € Z>q x Z,

(A21)  {Th e Pavrers Jha Iy i W €U+ Zog X L} L {IL o 12 e, I J2 i€ u+ Zsg X L}

The index on the I increments requires = + e; because the increments are not defined on the boundary,
where 1 = u.
Next, we claim that for ¢ € {1,2}, and for any u € Z2,

{ utier Ju +Je2 11,7 € Z>0} are mutually independent with marginal distributions

(A.22)

Iﬁﬂel ~ Geom(qy) and J¢ ~ Geom(r/qq).

u+jes
We have already shown that J* are i.i.d. Geom(r/qg) random variables. Also notice that {Il e, 1121}
wtjes - J =1} What
remains to prove is that the horizontal increments are i.i.d. and to determine their maginal distribution. For
this, we prove the following claim inductively in n > 1:

{1 ie,s L

u+ier’ Yut+ne;+jes :

are a function of only {J{, ., Wutie +je, : © = 1,j < 0} which are independent of {J§

1<i1<n,j< O} are mutually independent with

A.23
( ) marginal distributions Iuﬂe1 ~ Geom(qe) and J£+nel+je2 ~ Geom(r/qq).
This and the fact that IﬁJr(nH)e is a function of {J! wtner +jess Wut(nilg) - J < 0} imply the mutual inde-

pendence of the horizontal increments.

We now prove (A.22). For the base case n = 1, consider inter-arrival times {a; = Juﬂez :j < 0} and

service times {s; = Wy+te,+jes : 4 < 0}. The inter-departure times are {d; = J* : 7 < 0}. The sojourn

utej+jes *
time is tg = I’ ., . Lemma A.7(b) then gives the above claim for n = 1.

For the inductive step, assume the claim holds for a fixed n > 1. Then use inter-arrival times {aj =

L . .
Ju+ne1+je2 . u+ie; °
1 < i < n} by the inductive hypothesis. Then compute the correspondlng inter-departure times {d; =
Jut(nt1)er+jes 2 J < 0} and the sojourn time ¢, = Iﬁ+(n+1)e1' Lemma A.7(b) again gives the validity of the
claim for n + 1, completing the proof of the claim (A.23).

Combining (A.11) with observation that I’ are sojourn times gives

J < 0} and service times {s; = Wyy(n+1)e4+je; : J < 0} which are independent of {If

(A.24) I e+ T eiiey = Jbrey ¥ oeise, forallzeu+ZsoxZandle{1,2}.
And with the second inequality in (A.14) we get
(A.25) I! >1? forall z € Zogy x Z.
Lastly, observe that {L! : z € u+7Z2%,} are last passage times with boundary weights {I¢ wtier inﬂ-ez ti,j €

Z~o} and bulk weights w,, * € u + N2, Indeed, if we denote by Gu,m the passage time from u to x € u + N?
with these boundary and bulk weights, then as in (3.2)

14 4 4
Gu,w = max {Z Iu+ze1 + Gu+k:e1 +e2,x } \/ max {Z Ju+je2 + Gu+e1 +mez,x }

1<k<zi—u1 1<m<zo—us

— ¢
- max {Lu+ke1 + Gu+kel +e2,x} \/ max {Lu+me2 + Gu+e1 +m92-,1}

1<k<zi—u1 Ism<zTa—us2

¢
= sup{Luﬂez + max [Gutie,+jes,utkes + Gu+ke1+e2,z]} \/ max  {L} e, + Guie +lesa}

<0 1<k<zi—u1 1<m<zo—usg

= sup {LiJrjez + Gu+e1+jez,x} = Li-
JijSw2—u2
By (A.17), the weights wz can be recovered from the edge weights I° and J:. Then, due to (A.21) we can
extend the process {wx, sters w+e1 JJLJ2 e u+ Zsg % Z} to a stationary process on the whole lattice.
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This produces a T-invariant probability measure th on (£2,G) whose marginal on (2 is exactly P. We now
verify that all the claims in the theorem hold for this choice of measure.

Property (a.i) holds by construction and the independence property (a.ii) follows from the definition (A.16).
Recall that an @ € Q has coordinate projections {wm, ILI2,J 2z € Z2}. Thus, the shift-covariance in
(a.iv.1) holds trivially. The recovery and monotonicity properties in (a.iv.2) follow from (A.17), (A.18), and
(A.25). The additivity property (A.7) is given in (A.24) and (A.6) follows from that. Then, as it was the
case for Theorem A.1(e), property (a.v) follows from (A.6) and the shift-invariance of Py, ,.

Observe that (I%, J%) has mean (g¢/(1 — q¢),7/(ge —7)). A direct computation using the explicit formulas

(3.11) and (3.12) shows that this is equal to Vy(£(ge)). This completes the proof of part (a) of the theorem.
Part (b) follows from (A.19) and parts (c¢) and (d) from (A.22) and (A.23). O

Appendix B. Verifying Assumption 4.1 for the geometric LPP

This appendix is dedicated to the proof of an exponential tail bound for the location of exit points. It can
be read independently of the rest of the paper. We assume throughout the section that wg ~ Geom(r) for a
given r € (0,1).

For § € (0,1) recall the definition of the cone

S(;:{xeRiO::r-e1>5:c~e2 and x - eq = dz - e1}.

THEOREM B.1. — Assume wy ~ Geom(r) for some r € (0,1). For any 6 € (0,r) and k > 0 there exist
positive finite constants co = ¢o(6,r), No = No(d,7, k), and so = s¢(d,r, k) such that

P{|Z% (m,n)| v | Z5°2 (m,n)| = s(m +n)**} < exp{—cos®}

for all (m,n) € S5 N 72y, , s = so, and £ € rild such that & € (5,1 —6) and |& — 2| < Kk(m +n)~1/3.

m+n

For p,q € (r,1) consider random variables {I}, , I\, ,J}. ,Ji, :i,i € N} that are mutually independent
and independent of the weights w and such that the I? variables are Geom(p), the I variables are Geom(q),
the JP? variables are Geom(r/p), and the J9 variables are Geom(r/q). Note that this parametrization in terms
of p and ¢ does not agree with the parametrization of the I and J random variables elsewhere in the paper.
This abuse of notation is to simplify the formulas in this section; we will also abuse notation and continue
to write P and E for the probability and expectation on the larger probability space on which this collection
of random variables is defined.

We will write
(B.1) GP9 = G5V (w, 1P, J9), GP =GV (w,IP,JP), and GI=GV(w,19,J9).

The quantities Exit?’?, Zb-2ek  Exitl, ZPex Exit?, and Z2° are defined similarly.
From (3.9) (which follows from Theorem A.2(c)) we see that {GE : z € Z2} has the same distribution as

{ch(p) : @ € Z2,}. The same, of course, holds when p is replaced by q.
One of our major uses of the exact solvability of the model comes through an exact formula for a particular
log moment generating function of the increment stationary passage time.

PROPOSITION B.2. — Let m,n € Z%,, and p,q € (r,1). Then

IOgE[eXp{IOg(%)GP’q(m,n)}] = mlog(%z) + nlog(ii—?),

P
Proof. — Start by writing

tog E[explog(£) 67 (m. )} | - tog E|[ [(a/p) o eostan(@®mm)=G72(m0)
=1

(B.2) _ m1og(1*—p) n 10g]E[n(P . (q/p)fﬁ-,o))elog(q/p)(Gpv%m.,mfcpv%m,o»]_
—q T —p
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D
Next, note that E[}T_g(q/p)liel] = 1 and for any n € Zx¢

B[r—20/n) ™ 1L, =] = 01— )

This means that the product inside the expectation on the right-hand side in (B.2) is a Radon-Nikodym
derivative and using it to change the measure P switches the distribution of the boundary I” weights to have
the same distribution as the I? weights. Consequently, (B.2) is equal to

mlog(l;fq?) 4 1OgE[elogm/p)(c:q<m,n>—cq<m70>>]

1—
mlog(i Py 10gE[elogm/p)(c;aq)<m,n>7GE<q><m,o>>]
—q

mlog(l ) i logE[ log(q/p)GE(q)(O_’n)]'
l1—g¢q
For the last equality we used the additivity (3.5) and the shift-invariance (3.8). Now, simply compute

1-— z 1— n
mlog(l—_z) + logE[elog(q/p)cgm(o’”)] = mlog(sz) + 1ogE[elog(q/p)J?0~1)]

p)—l—nlog(lig). O

1—
=mlog( T r

1—
We prove Theorem B.1 after a series of calculus lemmas. The following lemma is immediate from the

definitions. Recall (3.10-3.13).

LEMMA B.3. — Fix a,b > 0. The function p — MP(a,b) is continuous and strictly convex on (r,1),
decreasing on (r,p(a,b)] with range [y(a,b), ), and increasing on [p(a,b), 1) with range [vy(a,b), ).

Consequently, for each A € (1,1/r), there exists a unique pair p* (a, b) € (r,B(a, b)) and P} (a,b) € (B(a, b), 1)

such that ﬁi‘r(a,b) = \p* (a,b) and MP (a,b) = MP3 (a,b). Precisely, using a little bit of calculus, we get
that if a # rb, then

r(A+1)(a—1b) ++/r2(A + 1)2(a — b)2 — 4rA(ra — b)(a — rb)

(B.3) P2 (a,b) = 27\(a — 1)

and if a = rb, then
r+1

P ab) =

This extends continuously to A = 1 and A = 1/r with p} (a,b) = p(a, b), 7" (a,b) = r, and ﬁir/r(a, b) = 1.
For £ e R2, and p,q € (r,1), define

—_

1—

Q3
N—

L) = LP(61,6) = € log({ =) + & log (1=

—_

’ﬁlﬁ

Then for £ € R and g € [r, 1) set
(B.4) LM = inf  LPM(E)

g<s<l/A

when A € [1,1/q) and £M9(€) = oo when A > 1/q. In the special case where ¢ = r we abbreviate £*(£) =
LA (8).

LEMMA B.4. — Let £ € Roog, g€ [r,1), and X € (1,1/q). Then the infimum in (B.4) is uniquely achieved
at 5 — max{a, 7 (€)}.
Proof. — A direct computation gives

0 S,\s _
L) =

trnl)—l

(M) — M*(€)) for se (r,1/).
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By Lemma B.3, this is a continuous strictly increasing function of s with range R. It is equal to zero at
s =D (€). P (&) € (¢,1/)), then the unique infinimum in (B.4) is attained at 7* (€). If 2 (€) € (r, q], then
L#23(€) strictly increases on (g,1/A) and is thus minimized at s = q. O

For k,¢,m,n € Z with m > k and n > ¢ let G‘(Ik 0 (m,n|1,0) be the last-passage time for paths which start

at (k,¢), immediately take an e; step, and then go to (m,n), while collecting the weights {I,Z_‘rje1 ,jeN}
on the south boundary. Precisely,

J
G((Zk,e) (m,n[1,0) = 1<§1§}3§_k{2 Il(cZJriel,E + G(k+j)e1+(é+1)e2,me1+ne2}-
= i=1
When (k,¢) = 0 we omit it from the index.
LEMMA B.5. — Let myneN, g€ [r,1), and A > 1. Then

logE[elog()\)Gq(m,n\l,O)] < Ek,q(m,n)'

Proof. — The case A > 1/q is trivial because the right-hand side is infinite. When A = 1 we have
L5%(m,n) =0 for all s € (r,1) and the claim is again trivial. Therefore, assume X € (1,1/q).
Using
A
GP(m,n) = 12 + G%(m,n|1,0) = GI(m,n|1,0)
and Proposition B.2 we see that

(B.5) logE[elog(A)Gq(m’"‘l’O)] < logE[elog(’\)Gq’kq(m’")] = L9 (m,n).

Geometric random variables are stochastically increasing in the parameter. Therefore, if ¢ < 7 (m,n),
-
log B[N (mnlL0)] < Jog B[loeNE"~ (mm)|10)] < [P35 (1, )

where the last inequality follows from applying (B.5) with 7* (m, n) in place of q.
We have thus shown that

1OgE[elog()\)Gq(m,n|l,O)] < Lmax{q,ﬁi},)\max{q,;ﬁi}(m, n) _ E)"q(m,n),
where the equality holds by Lemma B.4. O
LEMMA B.6. — Foralla,b> 0, e € (0,min(r,1—s,(1 —r)/2), s€ (r,1), and A € [max((r +¢)/s,1), (1 —
£)/s]

20t - (- ) (-2 + S‘fr) ~lo- 1)2((1“_52)2 - ’”("fj T);”))\ <2 3(a + b)(A - 1)°.

Proof. — Fix a, b, €, and s as in the claim and perform a Taylor expansion of A — L**%(a,b), defined on
(r/s,1/s), at A = 1. For the error term write

‘ a—BLS”\S(a,b)‘ _ ’ 2br(3\2s% — 3Ars + r?) N 2as3 ’
ON3 A3(As —1)3 (1 —Xs)3
anduse \> 1, As —r>¢,As<1,7r<1,s<1,and 1 — As = ¢ to bound the above by 8¢~ 3(a + b). ]

LEMMA B.7. — Fix 6 € (0,7). Let Cy = Cy(d,r) be given by

P+ D[A+7r)26+2r2+2]  r(r+1)(61+1) N o +1 }
8(1—7)28 41— r)Wré 2(1—r)vré)
Then for any A € (1,1/r) and a,b > 0 such that (a,b) € Ss

Cy = max{r +1,

ﬁi(aab) *ﬁ(avb) = *OO(/\ - 1)
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Proof. — Fix positive a and b with (a,b) € Ss. Let

fA) =r(a— b)% + %\/7‘2(/\ +1)2(a —b)%2 —4rA(ra — b)(a — rb) .
Then
sy —T(a—0) —2r2(A + 1)(a — b)? + 4r\(ra — b)(a — 7b)
F = A2 * 2X24/r2(A + 1)%2(a — b)2 — 4rX(ra — b)(a — rb)

r(l1—1t) [2\/73()\ + 12t —1)2—drA(rt— 1)t —r)—2r(A+ 1)1 — t)] +4rA(rt —=1)(t —r)
N 202, /12(A + 1)2(t — 1)2 — drA(rt — 1)(t — ) b

where t = a/b. Let

an(t) = 24/r2( N+ 1)2(t — 1)2 —drX(rt — 1)(t —r) — 2r(A + 1)(1 — 1).

Then
D2t —1)—2rA(t—7) —2X(rt — 1
i) = 2r(7"(A DDA ) Z 2D 1).
A2+ 1)2(t = 1)2 —drA(rt — 1)(t — 1)
The quadratic equation in ¢ inside the radical is minimized at
A+ DPr =202+ 1) L 2A(1 —r)? <1 2rt(1—r)? 1
(A—=1)2r - r(A—1)2 r(r-1—-1)2

Since this value for ¢ is negative, the quadratic is smallest at t = 6. With ¢ = §, the quadratic as a function
of A is minimized at

2(r6—1)(6—1) _ 2(1—17)%6
it R e e 2

Since this is strictly below 1, the minimum over the interval [1,1/r) is achieved at A = 1. The resulting
minimum is thus

(B.6) 4r%(1 — 6)% —4r(ré —1)(6 —r) = 467(1 —r)* > 0.
This yields

r(r~t+1)267 +2r + 2971
46r(1 —r)?

g5 (t)] < 27“( +rl g 1)

7,2—1 ,],.2
_ a4+ ()167;/;7 T2 o4 =C@6r)=C

for all t € [6,1/6] and X € (1,1/r).
Since gx(r) = 0 the Mean Value Theorem implies that g (t) = ¢4 (s)(t —r) for some s between ¢ and r. In
particular, since § < r, s € [4,1/d], and |gx(r)| < C|t — r|. Returning to f'(\) we get
(1 —t)ga(t) + 4rA(rt — 1)(t — 1)

A2\ /2N + 1)2(t—1)2 — drA(rt — 1) (t—7)

_ Cr(6='+ 1) +4(ro=t +1)
TP+ 1)2(E— )2 —ArA(rt — 1)(t —1)
_ Cr(6~'+ 1) +4(ro=t +1)

4(1 = r)Wor
where in the second-to-last inequality we used A > 1 and the lower bound (B.6) on the expression under the
radical.

= |

St—rlb

- la — rb| < 2Cy|a — rb|,
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Now, if a # rb, then

(a + b+ 2v/rab)(r(a — b) + f(N) — 2(a — rb)(r(a + b) + (r + 1)v/rab)
2(a —rb)(a + rb + 2v/rab)

ﬁi (av b) - 1_7(0“7 b) =

I -
2(a —1b)

By the Mean Value Theorem, f(A\) = f(1) + f'(¢)(A — 1) for some ¢ € (1,A). In particular, ¢ € (1,1/r).
Therefore, |f(A) — f(1)] < 2Cpla — rb|(A — 1) and

7" (a,b) — Bla,b) = —Co(A — 1).
If, on the other hand, a = rb, then

7 (a,b) — pla,b) = r+1  r(a+b)+(r+1)vrab

X+1  a+rb+2vrab
(r+1)(A-1)
=" = HA=1)=-Co(A—1
and the claim holds again. O

LEMMA B.8. — Let 0 < § < 1. Let

2’]” -T
C1=Ci(4,1) = % and Cp = Cs(r) =

2(r +1)2
r(l—r) "

Then for all £,( € Ss we have

I a G
(B.7) &) = 20| < & - = o]

And for all € € R2, and q € (r,1) we have
(B.5) €0 o1~ | < Cula — 51

Proof. — Note that (¢,1 —t) € S5 if and only if ¢ € (%57 ﬁ) For such ¢,

r(l—r) . (14 8)2r(1 — 1)
R S B

(B.7) follows from this bound and the fact that p(£) = p(c€) for any ¢ € R%, and ¢ > 0.
For the second claim, differentiate £(q) - e1 to get

iﬁ(tal 7t) ==

dt = *01(5, T).

2r(1 —r)(1 — q)(q — 1) o 2r(1 —r)3 - 2(r +1)2 _ G

- ((qz(r +1)—4dgr+r(r+ 1))2 - ((q2(7’ +1)—4dgr+r(r+ 1))2 - r(l—r)

(B.8) follows from this bound and the fact that £(B(&1/|€]1)) = &1//€]1 for all € € R2,. O

The following estimates are immediate from (3.10) and (3.12).

LEMMA B.9. — Forz € R,

r <r+\/7_°
r

e < () <
LEMMA B.10. — For any ¢ € (0,1) and x € S5 we have

T+m<§(iﬂ)<l*

(1= 7)o
EENE '

1+ /r
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Proof. — Let t = xo/x1. Then

py = FAFD A DV A= 0td v o (=04 V) (= 1)ivi
p 1+7rt+2v/rt L+rt+2vrt (1+W)2 i 1+ r2
Similarly,

) =1 LDV A= VS ) (=8
PO e ST e e -

We are now ready to prove Theorem B.1.

Proof of Theorem B.1. — Fix § € (0,7), kK > 0, and € € (O,ﬁ). Take integers (m,n) € Ss and
k < e(m + n) and write
_ _ rtm+n—Fk)+ (r+1)/rn(m—%k) rim+n)+(r+1)/rmn
p(m—k,n)fp(m,n) = -
m—k+rn+ 24/rn(m — k) m+rn + 2y/rmn
(1 —=r) (rnk + v/ra(rn — m)(y/m — v/m — k) + ky/rmn)
(m —k+rn+2+4/rn(m —k))(m + rn + 2y/rmn)
rnk + /rn(rn —m)(v/m — vVm — k) + ky/rmn
(y(m —k,n)+m—k)(m+rn+2y/rmn)
If m — rn > 0, dropping the v/m — k from the denominator and using rn > 0, we have
k(m —
(m—rn)(vm—+vm—k) = #;n—zk < kyvm.

The same inequality holds trivially if m —rn < 0. In the next computation use the above inequality to bound
the numerator of (B.9), then bound the denominator using the upper bound from Lemma B.9 and the facts
that 24/mn < m +n and (m,n) € Ss:

(B.9) -

(1 —y/r)rnk - (1 —+/r)rk _ aop(9, )k
L+yr)(m+n)2” 20+r) (0L +1)(m+n) m+n

Next, take § € rid with & € (6,1 — ¢) and such that [§; — 75| < K(m + n)~1/3. Abbreviate ¢ = p(€).
Note that £ € S5 and therefore Lemma B.8 implies that
(B.11) lg — p(m,n)| < Crr(m + n)~1/3.
Let so = so(d, 7, k) = max(1,16C1k/ag). Let
r (1=7)6vVrs (1 —/r)%5?

e=e(5,r)=min<§, AT viE 20+ Vi) )

(B.10) p(m —k,n) —p(m,n) = o

Take 7 so that

(1= V) a

logr 1
— 1
5o log(1+ 1+ r ) " 321+ Co(0/2,7))

0<n< min{f
(B.12)

1 € e6%a?
c log(l + ﬁ) * 100 (4€2 + ag/5 + 16¢) } '

Let No = (so/e)® and take (m,n) € S5 0 Z2 . Take s € [so,e(m + n)/?] and set

(B.13) A = exp{ns(m +n) "3} < e e (1,1/r).

Then by Lemma B.10 and the choice of n
1—7r)5v/rd 1—4/1)8 1—/r)%6?

(B.14) r+e<r+M<q<Aq<A2q<e2m‘(1—M) N ok U L
(L+/r)? L+4/r 4(1+ /r)?

Since ns(m +n) "3 < ne < 1 and e* — 1 < 2z for z € [0,1],
2ns

B.15 AM—-g<A—-1< —C
(B.15) q—q CETDLE



32 Sean GROATHOUSE, Christopher JANJIGIAN & Firas RASSOUL-AGHA

The choices of ¢ and k and that (m,n) € Ss imply that (m — k,n) € S5/5. Then Lemma B.7 implies

2Cyns
(m +n)t/3°

Take k = [s(m +n)?3] — 1 and abbreviate p, = p? (m — k,n) and p = B(m — k,n). Note that
(B.17) 50/2 < 2%Psg —1 < s(m+n)?3 -1 <k <s(m+n)?? <e(m+n).

Putting this, (B.10-B.12), and (B.15-B.17) together we get

(ap —2n —2Con)s — C1k aop

- =\ —A
P—q=pl —q=pl —Ag=

(m +n)1/3 Cm+4n
Taps _ aps
T 8(m 4 n)l3  228(m 4 n)l/3
(B.18) 8 <.

2 s —
5(m + n)l/3

Thus, by Lemma B.4, LA (m — k,n) = PP} (m — k,n). Also, Lemma B.10 and the choice of n in (B.12)
imply

U L S e (1~ SVl \/F)(S) <1 U=V

r+es<r+ ——5- < qg<pl 21+ 1)

CEVGE st-e

EEEOo

In particular,p—r > q—r>=cand 1 —=p = 1 — A\p > ¢. Using this, (m — k,n) € Ss/2, (m,n) € S, and the
identity a(p(a,b) —r)? —rb(1 — p(a,b))? = 0, we get

(m —k)(@X —7r)(g—r) —nr(l =p2)(1 —q)
<(m—=k)@P-r)g—r)—nr(l-=p)(1—q)
=(m—k)F-r)?°+(m—k)F-r)q-p) —nr(l-p)* —nr(l -5)(F -~ q)
=—@-9((m—Fk)(p-r)+nr(l-D)
(B.19) < —e8%(p —q)(m +n)/2.

We have now collected all the necessary pieces to be able to bound the probability of interest. The first
line below uses the stochastic monotonicty of geometric random variables in their inverse mean parameter
and the monotonicity of the exit points in the boundary weights. The second line uses that, on the event
in the indicator function the value inside the exponent is 0. The third line drops the indicator function and
uses the Cauchy-Schwartz inequality. The fourth line uses independence and shift-invariance. Write

P{Z%® (m,n) > k}?> < P{Z 9% (m,n) > k}?

_ E[n{z%%el (m,n) > k}ex {logw (GM(k,0) + G,

2
(ma n|1a O) - qu,q(m, n)) }]
E[exp{log(\) (G*(k,0) + e k 0)(m,n|1,0 ) H E[exp{—1log(A\)G**?(m,n)}]
= E[exp{log(A\)G*(k,0)}| E[exp{log(A\)G(m — k,n|1,0)}] E[exp{— log(A\)G**4(m,n)}].
Bound the third expectation on the last line using Proposition B.2, the second expectation using Lemma
B.5, and compute the first expectation explicitly using the moment generating function of the Geometric
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distribution, to get:

1—
2logP{Z%® (m,n) > k} < klog(l ;\2(] ) + LMY (m — k,n) + L 9 (m, n)
— Aq
- 1-Xg A 0,Mq
—klog(l_)\zq>+L +(m —k,n) — LY (m,n)
= klog(il — N > + Lﬁi’m(m —k,n)— klog( 1-4g >
1—)X\2q ’ 1—)\g
(A—1)% 5 A
= —klog(l — W) + LP- P+(m — k,n) — L9 Q(m _ k,n)
Next, use (B.13), (B.14), and (B.12) to deduce
(A—1)%q -2 2
< e _1)2 < 1/2.
@ agp =C sy
Use this, the fact that —log(1 —t) < 2t for t € [0, 1], (B.14), (B.17), and (B.15) to continue with the bound
(A —1)%g

21og P(Z9° (m,n) > k) < 2k + PP (m — Ky n) — L9 (m — k, n)

(1= Ag)?

<26 2k(A = 1)2 + LP> P2 (m — k,n) — L9 (m — k,n)
(B.20) <A 2288 + LP2 P (m — kyn) — L9 (m — k, n).
Using Lemma B.6, (B.19), (B.18), and (B.15) we get

PP+ (m—k,n)— Lq’Aq(m —k,n)

<o-y(Ge -, )
1. af(m— k:)p (m—=k)g® nr(2p_—r)  nr(2g—r)
(e i e )
+2¢ 3 (m +n)(\ — 1)3
e m=RE @) - -p)(1—q)
O et B [ [ s [ g
1.0 o m )( +q—=2p_q) nr(=p_r+2p_q—rq)
#3000 -0 (Tt G e )
+ 263N = 1)*(m +n)
< —;—ii(A —1)FE- - 9F-a)(m+n)+ e A=12F —q)(m+n) + 2 (A= 1)*(m +n)

ed%atn  4ntay 1677

_ 3 o _ 3
<( 50t 5l & )t < ~( 50t 5t & )s"
Setting ¢; = ¢1(8,7) = € *€62a3n/200 and using (B.20) and the choice of 1 in (B.12) we get

ed%akn  4ntag  160?

P{Z%° (m,n) > s(m + n)*3} < e
for s € [sg,e(m + n)'/3]. When s > (m + n)'/3, the above probability is 0 and the bound holds trivially.
When s € [e(m + n)/3, (m + n)/3] we have

]P){Zq,el (m7n) > s(m + n)2/3} < ]P){Zq,el (m7n) > s(m + n)} < e—cla(m-t-n)l/s < 6_01853,

The claim of the theorem is thus proved for the case of Z9°. The equivalent bound for vertical exit points
follows by symmetry. O
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Appendix C. Verifying Assumption 5.2 for the geometric LPP

We first prove a bound on the probability that an i.i.d. random walk with non-positive drift remains
non-positive for its first n steps, given some control over the step’s higher moments.

LEMMA C.1. — Let {X;,i € N} be i.i.d. random variables. Suppose pn = E[X1] < 0 and 1/ Var(X;) = ¢
and E[|X; — pP] < D for some p = 3 and ,D € (0,0). Call S, = Zle X;. There exists a finite C' =
C(p,D,e) > 0 such that for alln € N,

(C.1) P(51<0,8 <0,...,8,<0) < C(n*zfpfn v |pl)  and
C
(C.2) P(Sl>0,52>0,...,5n20)§%.

Proof. — Since p < 0 the probability in (C.2) is bounded above by the probability of {S; = u,Ss >
24, ..., Sp = nu}. The bound (C.2) then follows from Theorem 5.1.7 in [? ].

Let n € N be sufficiently large that ¢, = n"T0 < e and let Vn = (u+t,)". Note that v, —p = ¢, v |p| > 0.
Let gkm = S, — kv,. Then

P(Sl 0,5 <0,.. 7Sn<0)<P(§1,n<07§2,n<0,---7§n,n<0)-
0 0

For k € N define pyn, = P(S1n < 0,5, <0,...,8 1, < 0,5k, > 0) and 7, = inf{k : Sy, > 0}. For
€ [0,1], set

and observe that P(7, = o) = 1 — p,(1). By the Sparre-Andersen Theorem, Theorem XII.7.1 in [? ], for
e [0,1),

1 s —
C.3 log ——— = —P(Sk,n > 0).
(C.3) —— k; - E )
Denote by ®(x) and ¢(z) the cumulative distribution function and probability density function of a standard
Normal random variable. Recall that p > 3. By the Berry-Esseen theorem [20, Theorem 3.4.9], for all z € R
and ke N,

Sk — pk + vnk 3D
eVk e3vVk
Set my, = 2(5%2_”“) = 30, VQ\TLD > 0. Since ¢ is decreasing on [0, ) with ¢(0) = 1/4/2m,
VE
N e 1 (—pwvVEk 1 Vk
1—®<(un—u)—)=——f gb(x)d:cz——Q:—— .
€ 2 0 2 eV 2w 2 2m,

Then we have

Z% S;m>0) Z %p(§k7n>o)> Z %(1_(1)(_(#_””)@)_31)3/10)

1<k<m2 1<k<m2 € ek
1 3D G
= Z Z 3 Z k3/2
1<k<m2 1<k<7n2 k=1
9p3/p

=>logm, —1—

)

&3
where the empty sum is, as usual, equal to 0. When m,, > 1, each of the three bounds in the last line comes
from integral comparison. The bounds are trivial when 0 < m,, < 1. It then follows from (C.3) that

D3/P
9—3+1

€

P(r, = o) < W(tn v ).
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On the other hand, by the Markov and Burkholder-Davis-Gundy [? , Theorem 4.2.12] inequalities followed
by integral comparison,

0 0

PAk=n:S, >0) < 2 P(Sjn>0) < 2 P(|Sy, — kpl? > |k(u— vp)|P)

22/0)"*9D 1,

p/2 D —p
< 2/ D 2 e (to v 1)
Combining these results, we have
P(S1<0,...,5, <0) < P(r, = 0) + P(3k > n such that Sy, > 0)
9p3/p
Tt 2(2/e)?/?pP D
TRV i Lol e

R
eV2m —2

Note that n'=P/2t-? = t,, and, if ¢, < |u|, then we have n'~P/2|u|~P = t1+P|u|=P < |u|; in this case, we have
n P2(t, v |u|) 7P = |p| = tn v |p|. On the other hand, if ¢, > |u|, then t,, = n'=P/2t;P < n'~P/2|u|~P and,
consequently, n*=P/2(t, v |u|)7P = (' P2t P) A (n'P/2|u|7P) = t,, = t, v |u|. Bound (C.1) follows. O

LEmMA C.2. — Ifwy ~ Geom(r), then Assumption 5.2 holds for any ag € (1/3,2/3).

Proof. — Fix ag € (1/3,2/3). The steps of the random walk S,E*’"* for k € [0, N?/3] are i.i.d. differences
of independent geometric random variables with parameters r/p(¢,) and r/p(n*). Under the conditions of
Assumption 5.2 on &, and n*, Lemma B.8 implies that
p(&)  P(n")

r T

—Crr T NP < = E[SFT] = <0.

Since p(&x) and P(n*) are both above r, the variance of S’f*’"* is bounded below by ¢ = 2r/(1 — r)2. Since
& - e and n* - ep are assumed to be in (6,1 — 0), p(&.) and P(n*) are bounded away from r, uniformly in
N, and thus for any p > 1 there exists a finite constant D = D(6,p) such that E[|S$*" " — uP] < D(4,p) for
all N € N. Take p > 3 large enough so that 3( +1) > ap/2. The conditions of Lemma C.1 are satisfied. If we

take n = | N?/3|, then (C.1) gives, for N large enough,
P{st < 0,887 <0, 557, <0} < C((Crr 'N~%/2) v (IN?B)) ") < 0Oy IN /2,
Repeating this same argument for S,E M ke [-N?3,0], yields

P(SEy™ < 0,555™ <0,..., 8, < 0) < OO N7,

Bound (5.5) follows from the independence proved in Corollary A.4. The lemma is proved. O
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