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STRONG EXISTENCE AND UNIQUENESS OF THE TILT-INDEXED
BUSEMANN PROCESS IN THE PLANAR CORNER GROWTH MODEL

CHRISTOPHER JANJIGIAN, FIRAS RASSOUL-AGHA, AND TIMO SEPPALAINEN

ABSTRACT. We show that the Busemann process indexed by tilts in the super-differential of the
limit shape exists and is unique in the strong sense in the i.i.d. planar corner growth model. This
means that every probability space that supports the field of i.i.d. weights supports a copy of the
process and any two realizations of the process are equal almost surely.
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1. INTRODUCTION

The corner growth model, or directed last-passage percolation (LPP), is a cornerstone model
of random growth in the Kardar-Parisi-Zhang universality class which can profitably be thought
of as a directed version of first-passage percolation (FPP), a prototypical example of a random
(psuedo-)metric on the lattice.

FPP is constructed by assigning non-negative weights to the edges of the lattice and then defining
the distance between sites to be the infimum over the weights collected along all self-avoiding paths
between those sites. As usual, the optimizing paths are known as geodesics. In FPP, substantial
recent attention [1, 8, 9, 19] has focused on the structure of semi-infinite geodesics, which are also
known as geodesic rays.

The planar corner growth model has a similar structure with a few differences. Edge weights
are replaced by vertex weights and the set of admissible paths is restricted to those which either
go up or right in each step. This path restriction allows the vertex weights to take both negative
and positive values. By convention, we also replace the minimum over paths with a maximum
over paths. This model arises naturally in the context of tandem queueing, for example, where
the passage time satisfies the same recursion as the time at which labeled customers are served at
labeled service stations. Once again, we have optimizing paths, which we call geodesics by way of
analogy to first-passage percolation. Similarly, significant recent attention has been focused on the
structure of semi-infinite geodesics.
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In the context of metric geometry, a frequently used tool to understand the structure of geodesic
rays are objects known as Busemann functions, originally introduced in [4]. In lattice growth
models, a slight generalization of this notion, which we call generalized Busemann functions, can
be viewed as the natural coupling of all ergodic and translation invariant stationary distributions
of the model. See the introductions to [18, 22, 23] for a discussion of these connections and a more
thorough review of the related literature.

The last decade has seen several constructions of generalized Busemann functions in various
models. In both first- [8] and last-passage percolation [14, 28], as well as related models like
directed polymers [21] and generalizations like random walks in random potentials [17], most of
this work shows what is known as weak existence in the stochastic analysis literature. This means
that existence statements take the form: “there exists a probability space on which generalized
Busemann functions are defined.”

Throughout the study of random growth models, a quantity known as the limit shape or free
energy plays a central role. In general, the existence results mentioned above show that for each
element of the sub-differential (super-differential in LPP) of the shape, a generalized Busemann
function field exists. In planar last-passage percolation, these can be glued together by monotonicity
to form a Busemann process indexed by the tilts in the sub-gradient. It is known [23] that this
Busemann process encodes geometric properties of geodesics into its analytic behavior.

A line of work originating with Newman [30] shows that Busemann functions are almost sure
attractors in an appropriate sense, which proves both strong existence (meaning that every proba-
bility space supporting the weights supports the Busemann process) and strong uniqueness (any two
generalized Busemann functions associated to the same deterministic tilt are equal almost surely).
These methods require control of the curvature and differentiability properties of the limit shape.
Proving these types of estimates is a long-standing and difficult open problem outside of exactly
solvable models. A collection of results in this vein implying strong existence and uniqueness in
the exactly solvable Exponential LPP originally appear in [5, 7, 12].

About a decade ago, Ahlberg and Hoffman introduced a theory of “random coalescing geodesics”
in FPP in [1]. One of the contributions of that paper is a proof of strong existence of the Busemann
functions without unproven hypotheses on the limit shape: namely, that what we call generalized
Busemann functions previously constructed in the weak sense in planar first-passage percolation
previously constructed by Damron and Hanson in [8] can be pulled back to the original probability
space. In [1], this was phrased in terms of the associated covariant geodesics but we will see in
the sequel, the two perspectives are equivalent. They also introduce a labeling scheme that allows
them to prove a similar strong uniqueness statement to the one we prove below (and much more
besides). There are some technical differences between our treatment and theirs, but our methods
are largely inspired by those of [1]. We do not use the geodesic labeling scheme introduced in [1],
preferring to work directly with the tilt indexing.

As discussed in [22, 23] among other places, one can essentially think of fields of Busemann
functions for percolation models as eternal solutions of a (discrete) stochastic partial differential
equation. From that stochastic analytic point of view, whether or not strong solutions exist and
if they satisfy strong uniqueness are standard topics of intrinsic interest. We refer the reader to
[25, 26] for a higher-level perspective on strong existence and uniqueness of stochastic equations.
Aside from this intrinsic interest, our purpose in writing this paper, and showing strong existence
in particular, is to provide the right setting for future work. Working on an extended probability
space is unnatural and introduces technical issues. For example, weight modification arguments
that control infinite geodesics generated by Busemann functions become delicate because the extra
noise from the extension is not independent of the weight field. This extended space is also in
general only stationary, rather than ergodic, under shifts. This complicates the application of
standard results in the area. See, for example, Remark A.5 in [23], which discusses working around
this technical issue.
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Strong uniqueness is of interest for related reasons. Without control on regularity of the limit
shape, the only uniqueness results that existed concerned the finite-dimensional marginal [6, 11, 31]
distributions of generalized Busemann functions. We include [11] here because the proof of Theorem
5.6 in that work can be made general under the same hypotheses as [6], though it is not phrased
as such. These results were not sufficiently strong to show that any two such processes would have
to be equal, leaving open the possibility of multiple Busemann processes existing. Pre-existing
distributional uniqueness results also require extra hypotheses: applying the results of [6, 11] would
require the weights to be unbounded from above, while applying [31] would require the weights to
be bounded from below.

Our results, like those of [1], are limited to the planar setting. The reason why both strong
existence and uniqueness are accessible in a planar setting but remain open in non-planar settings
is geodesic coalescence and a path ordering coming from the nearest-neighbor paths and planarity.
In both first- and last-passage percolation, this coalescence comes from the Licea-Newman argument
[27].

We rely on a seminal result of Martin [29] concerning the curvature of the limit shape of the
ii.d. corner growth model near the boundary. That result requires i.i.d. weights, while [1] are able
to work somewhat more generally in their more abstract Condition A2. We have made no attempt
to prove Martin’s result in a setting comparable to that condition in order to generalize beyond
the i.i.d. setting.

As a consequence of strong existence, we also obtain a significant extension of the previously-
known ergodicity properties of the Busemann process in the i.i.d. corner growth model. Prior to
this work, it was known that Busemann functions which correspond to extremal tilt vectors in
the subdifferential were separately ergodic under the e; and eg shifts [6]. Because the Busemann
process can be realized as a function of an i.i.d. field, this can now be upgraded to strong mixing
under all non-trivial lattice shifts.

1.1. Outline. In Section 2, we state the assumptions of the model, define terms, recall basic
facts from the previous literature, and then state our main results. The proofs of the two main
results concerning strong existence and uniqueness appear in Section 3. Section 4 then shows an
equivalence between two ways of setting up the problems we consider. Appendix A collects some
technical lemmas. Finally, Appendix B proves that every non-trivial geodesic generates a finite
Busemann function.

1.2. Notation and conventions. 7Z are the integers, Z, the nonnegative and Z_ the nonpositive
integers. N = {1,2,3,...}. Q are the rational numbers, and R are the real numbers. Z-, are
integers > a. Similarly for Z ., Zz,, and Z<,. [a,b] = [a,b] N Z.

When a symbol is needed, £ denotes the Lebesgue measure on [0,1]. We write integrals with

respect to this measure using the standard notation So s)ds.
The end of a non-proof structured environment ends w1th a A\ to help delineate these from the
rest of the text.

2. SETTING AND MAIN RESULTS

2.1. Probability space. (Q 6 ]P’) denotes a generlc Polish probability space equlpped with a
group of contmuous bijections T = {T T € ZQ} from  onto itself. In partlcular Tg is the identity
map and T T Txﬂ/ for all z,y € Z?. Let [ denote expectation relative to P. Suppose

P is invariant under Tx for each x € Z>.

Let Z be the o-algebra of events that are invariant under the group of shifts T. A generic element
of Q) is denoted by &. As usual, the & can be dropped from the arguments of random variables.



4 C. JANJIGIAN, F. RASSOUL-AGHA, AND T. SEPPALAINEN

We are given random variables w, : O— R, x € Z?, which satisfy the shift-covariance property

~

(2.1) we (T20) = watz(@)

almost surely under P. We assume also that

(2.2) {we : @ € Z*} are i.i.d. under P and satisfy E[|wo|**] < oo for some € > 0.
To dispense with trivialities we assume

(2.3) E[w?] > E[wo]?.

Let & denote the o-algebra on Q generated by w = {w, : € Z?}. For x € Z? let 6} = & denote
the o-algebra on Q generated by {w, : y — z € Z2 }.
Q) denotes the product space RZ and F = B (RZQ) its Borel o-algebra. We slightly abuse notation

and use the symbol w = (w;),ez2 to denote both the Q — Q mapping @ — wW(®) = (W (D))zez2
and a generic element of Q. The shifts T = {7}, : € Z?} on Q are defined by

(2.4) (Tow)y = Was.

The shiﬁts on the two spaces are related via the following identity, valid for z, z € Z? and P-almost
all 0 € Q:

e (24) (def.) 21
(2.5) (Telw@)])s =" [w@)]s42 =" weta(@) =" wo(Tow).

For z € Z? let F;7 = F denote the o-algebra on § generated by {w, : y —z € Z2}. We denote
by P(-) = P{® : w(®) € +} the probability measure induced by pushing forward P by the map
W +— w(w). By (2.2), P is an i.i.d. product measure on €.

2.2. Path spaces and order relations. A path 7., = (m;);,, of points in 72 is called up-right
if it only takes steps in {ei, e2}, meaning m;11 — m; € {e1, ea} for all integers i € [m,n — 1]. This
definition extends naturally to semi-infinite and bi-infinite up-right paths. Paths are indexed by
antidiagonal levels, that is, m; - (1 + e2) = i for all 4 in the relevant range.

The symbol o denotes the index of the point of origin of a path: =, is the first point of ~,
regardless of the actual index. When u < v are points on a path v, 7,., is the segment of v from
u to v, including the endpoints v and v. Then 7, .-, is abbreviated by vp.,. If m is an index and
u € v, then mixtures vp,., and vy, are also entirely unambiguous.

For £ € 7Z and u € Z? with u - (e; + e2) = ¢, X,, denotes the space of semi-infinite up-right paths
on Z? that start at w. This path space is compact in the product-discrete topology, which can
be metrized by d(y, ) = .., 2*(i*£+1)1{%¢m}. X = Uyez2 Xy is the space of all up-right lattice
paths.

We use < to denote southeast type partial order relations on various spaces. Our convention is
then that b > a means a < b, a < b means a < b but a # b, and b > a means a < b.

For h,h/ € R?, h < h/ means h-e; < h' -e; and h-ey > h' - ey. In particular, the simplex
[e2,e1] = {(t,1 —t) e R? : 0 < t < 1} of direction vectors is ordered so that ¢ < 7 if and only if
(-e1 <n-eq.

An asymptotic version of southeast ordering is defined for semi-infinite up-right paths 7,y € X
as follows: Vi.o0o <q Tr.qo means that mp.o, is eventually weakly to the right of v4..o. Equivalently,
there exists an integer m > k v £ such that v, < m, for all integers n > m. If there exists an integer
m = k v £ such that ~, = m, for all n = m, then these paths coalesce, abbreviated by vg.c0 A Tp.00-
EqUivalently7 Vk:o0 =a Tp:00 and Vi:o Za Te:00-

For B, B' € R%” | B < B’ means B(z,z + e1) = B'(z,2 +¢1) and B(z,z + €3) < B'(z, 2 + e3) for
all x € Z2.
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These partial order relations turn out to be total order relations and will happen to be all
consistent with each other when we use them on the spaces we study (the super-differential of the
shape function, semi-infinite geodesic trees, and recovering cocycles).

2.3. Last-passage percolation. Given weights w = (wy)ez2 € R%* and two distinct points u < v
(coordinatewise) in Z?2, let

Ly, = max{ Z wy : T is up-right from u to v}.

zem\{v}

A maximizing path in the above is called a point-to-point geodesic (from u to v). The rightmost
geodesic  from u to v is the unique geodesic between the two points that is to the right of any
other geodesic from u to v: if v is another geodesic, then v < 7.

A semi-infinite geodesic, starting at u € Z* with m = u - (e1 + e2), is a path 7 with m,, = u,
miy1 — T € {e1, e} for all integers i = m, and such that 7., is a geodesic from 7 to 7y, for any
pair of integers £ > k > m. The semi-infinite geodesic is said to be locally-rightmost if each finite
segment is the rightmost geodesic between its endpoints.

When 7 and ~ are both locally-rightmost geodesics that start at the same point 7, = v,, ™ <g v
is equivalent to 7 < ~.

For ue Z? and m e Z with m = k = u - (e + ez) let G m denote the set of rightmost geodesics
that start at u and end at some z € u + Z2 with m = z - (e1 + ea) > k. The set of semi-infinite
up-right paths 7x.o that start at m, = u and satisty 7., € Gy, for all m € Z>y is denoted by
G¥. This is the set of all locally-rightmost semi-infinite geodesics started at w. A discussion of
measurability of G appears in Appendix A. It is immediate from the definition that

(2.6) u + QOTW =Gy forallue 72 and w € Q.

The (deterministic) uniqueness of finite rightmost geodesics implies that G is a tree. Therefore,
we will hereafter refer to a locally-rightmost semi-infinite geodesic as a geodesic ray. There are two
trivial geodesic rays in G given by w + Zie; and u + Ziea. That these are always geodesic rays
follows from the path structure.

The uniqueness of rightmost point-to-point geodesics implies that < is a total order on G¥.
Precisely, the following three facts hold for each pair of geodesics 7 and v in G&:

(2.7) T <y < 7 is equivalent to m = .
(2.8) If m < v then 7 and v separate at some point and never intersect again.
(2.9) Exactly one of m < v, m > v and m = ~ holds.

2.4. Limit shape. By the shape theorem [29], there exists a shape function g : Ri — R such that
with P-probability one
Lo —

(2.10) im  max e 8@l

n—% geZ?:|zli=n n
g is symmetric, concave, and positively homogeneous of degree one. Homogeneity implies g is
determined by its restriction to U = [ea, €1].

The super-differential of g at £ € Ri is

(2.11) g() = {heR*: g(¢) —g(§) < h- (¢ —¢) for all ¢ e R}
By homogeneity, dg(¢) = 0g(c€) for any ¢ > 0. Thus dg(+) is also determined by points on U.
Concavity implies the existence of one-sided derivatives at relative interior points £ € rild:

Vg(gi) ey = il\i% g(§ + 5118) - g(&) and Vg(&i—) ceg = i{% g(€ + 5;28) - g(g) )
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By [20, Lemma 4.7(c)| differentiability of g at £ € riif is the same as Vg({+) = Vg({—). More
generally, these values are the extreme points of the convex set dg(&).

In addition to the shape theorem mentioned above, a contribution of Martin [29] shows a certain
universal behavior of the limit shape in planar last-passage percolation with i.i.d. weights near
the coordinate axis boundaries. In particular, this result implies that the limit shape must have
infinitely many faces and that dg(e1) = dg(e2) = J. These facts are often critically important
in non-triviality arguments and this is the primary reason why we must assume the weights are
iid. in (2.2).

Remark 2.1. The result of [29] mentioned above has a slightly weaker moment assumption than
in (2.2). The existence result in [21] recorded below as Theorem 2.7 also relies on a variational
characterization of the limit shape from [14], which requires this stronger moment hypothesis. A

An important index set for Busemann functions is the total superdifferential of the shape func-
tion, denoted by

(2.12) dg(U) = {h € R? : there exists & € U with h e dg(£)}.

In the sequel, we will call elements of this set tilts.

2.5. Recovering cocycles and Busemann functions.

Definition 2.2. A function A : 72 x 7Z?> — R is a cocycle if
(2.13) Az, y) + Ay, 2) = Ay, z)  for all z,y,z € Z2. A

Definition 2.3. Given real weights w = (wy),ez2 € Rz2, a function A : Z? — R is said to recover
the weights w if it satisfies the following recovery property:

(2.14) Alz,x +e1) A Alz,x +e3) = w,  for all x € Z2. A

Given a recovering cocycle A, a semi-infinite up-right path 7 is called an A-geodesic in weights
w if it satisfies

(2.15) A(u,v) = Ly y(w).

for all v < v on 7. Such a path is always a geodesic in weights w because for any other up-right
path (x;)!",, from u to v,

n—1 n—1
Z Wz, < Z Ap(xi, xig1) = Ax(u,v) = Ly »(w).

By Theorem B.1 in Appendix B, under (2.2), there exists an event Qy € & of full P-probability
on which, for every non-trivial geodesic ray 7, the limits

(2.16) Az (w,z,y) = ,}E%O(L%”n (W) = Ly x, (w))

define a recovering cocycle. This is the definition originally introduced by Busemann [4] in metric
geometry. Thus, A, is called the Busemann function generated by .

The definition of A, implies that (2.15) holds for any v > uw on . Therefore, 7 is always an
A-geodesic.

The fact that Ly, y+2(w) = Ly y(Tow) gives that if 7 is a semi-infinite geodesic in the weights
T.w then z + 7 = (2 + u: u e m) is a semi-infinite geodesic in the weights w and

(2.17) Avir(w,x + 2,y + 2) = Az (Tow, x, y).

Lemma B.3 states that, P-almost surely, for any nontrivial v < 7 in G, A, < A;. Consequently,
if v X7, then A, = Ar.
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2.6. Generalized Busemann functions and the Busemann process. The last observation
motivates restricting attention to objects which are shift covariant.

Definition 2.4. A measurable function B :Q x 7% — R is shift-covariant if for P-almost every @,
(2.18) é(@, T4z, y+z)= é(ﬁ@,x, y)  for all x,y,z € Z°.

It is said to be Ll(ﬁ,é,]@’) if

(2.19) E[|B(z,y)|] <o for all z,y € Z2. A

The main objects that we consider in this work are shift covariant, recovering, L' cocycles, which
we call generalized Busemann functions.

Definition 2.5. A shzft covariant Ll(Q S, IP’) _recovering cocycle is an Ll(Q S, IP’) shift-covariant
measurable functzon B: Q%72 — R that is P-almost surely a recovering cocycle. The space of

shift-covariant Ll(Q, G,IF’) recovering cocycles is denoted by K. Such objects are called generalized
Busemann functions. A

For B € K define the random 2-vector h(é) = h(é,@) e R? via

(2.20) h(B) - e; = —E[B(0,¢;)|Z], ie{1,2}.

By [21, Theorem 4.4] (see [20, Theorem B.3] for the details), for P-a.c. &,

(2.21) lim n~! max [B(®,0,z) +h(B,d) - z| = 0.
n—=0  |zli<n

We have the following lemma connecting generalized Busemann functions to the superdifferential
of the shape function. Recall the set dg(U/) defined in (2.12).

Lemma 2.6. [21, Lemma 4.5] A generalized Busemann function B e K has the following properties:
(a) —h(é) takes values in 0g(U), P-almost surely.
(b) If —E[h(B)] € dg(€) for some € € U, then —h(B) € dg(¢) P-almost surely.

(c) If —E[h(B)] € {Vg(é+), Vg(E—)} for some & € U, then h(B) = E[h(B)] P-almost sureli

As mentioned in the introduction, under some additional hypotheses on the weights, it is known
from the results of [6, 31] that for each h € —dg(U), there is at most one distribution of a generalized
Busemann function with the property that P{h(B) = h} = 1.

Existence of stationary queueing fixed points for the tandem queueing model connected to the
general i.i.d. weight corner growth model was originally established by Mairesse and Prabhakar [28]
under the assumption that the weights are bounded from below with > 2 moments, but phrased
in queueing language. These were used to generate generalized Busemann functions for the corner
growth model in [16]. Connections to geodesics were explored in [15]. [21] subsequently removed
the boundedness below requirement for existence. By monotonicity, these constructions also build a
Busemann process on the extended space. This is a covariant, recovering cocycle-valued stochastic
process indexed by —dg(U) x {+, —} as described by the next theorem.

Theorem 2.7. [21, Theorem 4.7] There exists a probability space (SA), @, @), equipped with an addi-

tive group of continuous bijections T = {fx :x € Z2} and satisfying the hypotheses of Section 2.1,
on which there exists a stochastic process

(2.22) (B"(z,y) : z,y € 2, h e —dg(Ud), O € {+,—})
with the following properties:
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(a) (No £ distinction at fized h) For each h € —og(U),
P(B" (a.y) = B" (z,y)) = 1.

When éh*(@,x,y) = §h+(@,:p,y), call the common value éh(@,x,y).
(b) (Generalized Busemann function) For each h € —dg(U), B" € K.
(¢) (Mean —h) For each h € —dg(U), E[E(O,ei)] =—h-e;.
(d) (Monotonicity) For h,h' € —0g(U) with h-e; < k' - ey, all z € Z*, and P almost every &

B'(z,z+e)=>B" (x,x+e)=B" (z,x+e1) = B" (2,2 + e1)
and
B'" (2,24 e2) < B" (w2 + e3) < BY (z,2 4 e2) < B" (z, 2 + fes).

(e) (Left-/right-continuity) For P almost all &, for all h e —adg(U),

Bh~ T,y) = lim Bh* z, and B" T,y) = lim Bht z,y).
(@y) = dm, B @y) (@y) = dm, B @y)
h'-e1,h-er h'-e1\\h-e1

(f) (Backward independence) For any I < 72, the random variables {wx,éhi(x,y) Dy
x,x € [,h € —0g(U)} are independent from the set of weights behind I, {w, : x is not
z, for all z € I}.

> WV WV

Remark 2.8. The Busemann process is also often indexed by directions. This indexing corresponds
to restricting the process to the subset of dg(i/) given by the extreme points of each super-differential
interval, —h € {Vg(éD),: £ e U,0 € {+,—}}. In principle, it is possible that tilt-indexing gives a
richer process if there exist directions of non-differentiability. If the shape is differentiable, as is
widely believed to be true in the setting of this work, then the two are equivalent. A

2.7. Shift-covariant systems of geodesic rays.

Definition 2.9. A random geodesic out of u € Z? is a measurable mapping 7 : Q- Xy such that
P{&:7(@) e g¥@) = 1. A

Definition 2.10. A system of random geodesics is a family of random geodesics {7%(®) : u € Z*}
such that for each u e Z%, 7% is a random geodesic out of .
The system is coalescing if

P{Vu,ve 72 : 74Q) A7 (@)} = 1.

The system is said to be shift-covariant if, P-almost surely,

FUR) = u+7NT,0)  forueZ2.

AC denotes the set of shift-covariant coalescing systems of random geodesics. A
Remark 2.11. [1] refers to what we call a shift-covariant system of coalescing geodesics as random
coalescing geodesics. We use this slightly different terminology because in last-passage percola-
tion, it has been proven that there exist random systems of coalescing geodesics which are not
shift-covariant. For example, the system of rightmost geodesics in the exponential last-passage per-

colation going in the direction of the competition interface rooted at the origin. See [23, Theorem
3.11]. A similar statement can be expected to hold in first-passage percolation as well. A

Any shift-covariant system of random geodesics can be generated by the member emanating
from 0. Conversely, every random geodesic 7 out of 0 generates a shift-covariant system of random
geodesics 7%, u € Z2, defined by

(2.23) FUR) = u+ 7(Tu@) € 6@ for u e Z2.
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With this notation, 7% = 7. We Will abbreviate {7% : u € Z*} by writing 7°.
For Be K and z € Z2 let S SB.0 - {e1,ea} be the &-measurable random variable defined by

§§@) _Je if ]EE((I;,J:,QC +e1) < @((D,x,x + eg),
* ex if B(@,z,z +e1) > B(w,z,x + e2).

Think of $Z = {SB x € 7%} as placing arrows at the lattice sites so that = points to x + SB( )
For u € Z? let gZ)B “(@) denote the path that starts at u and follows the arrows given by SB( ).

For P-almost every @, these paths satisfy (2.15) for A = B( ). Therefore, these are semi-infinite
geodesws in the LPP model with weights w(@). We know from [15, Lemma 4.1] that these are

also, P-almost surely7 locally—rlghtmost semi-infinite geodesms that is, qﬁB “w)e Q . Therefore,
we refer to gsz “(@) as the B- geodesic (ray) out of u. SP is a measurable way to encode all the
(locally-rightmost) semi-infinite B- geodesics.

The shift-covariance of B gives, P-almost surely, gf (T.5) = §§+Z(G)) for all z, z € Z2, and hence

(2.24) @Btz () = 2 + PP TLG).
Lemma A.4 in the appendix says that
(2.25) IP’{w qﬁB“( ) ¢ {u+ Zyer,u+Zyex}} = 1.

Definition 2.12. Given a Shzft covariant Ll(Q 6 IP’) recovermg cocycle B we say that it has
coalescing geodesic rays if gbB “@) X <Z>B Y(Q) for all u,v € Z* and P-almost all @. Denote the space
of shift-covariant LI(Q 6 IP’) recovering cocycles with coalescing geodesic rays by IC A

We introduce analogous notation on the canonical space (€2, F,P).

Definition 2.13. Let K be the space of T-covariant L'(Q, F,P) recovering cocycles. Let K. = K
be the subspace of cocycles that have coalescing geodesics. A cocycle B € K is said to be forward
measurable, if for any u € Z* and any x,y € u+ Z2, B(z,y) is F,f -measurable. Let K+ < K be the
subspace of cocycles that are forward measurable and let KI =K. n KT. A

2.8. Main results. Our first result is strong existence of Busemann functions.

Theorem 2.14. Let B € K, and h = E[h(B)]. Assume that P{h(B) = h} = 1. Then there exists

~

a forward measurable cocycle B € K such that E(@) = B(w(@)), P-almost surely. A
The second result is strong uniqueness.
Theorem 2.15. Let By, By € K. Assume h(B;) = h(Bg). Then By = Bs, P-almost surely. A

With those in mind, we are now ready to construct the tilt-indexed Busemann process on the
canonical space 2. Let

(2.26) H = {h(B): BeK.).

denote the collection of tilts associated to covariant recovering cocycles with coalescing geodesics
which are defined on Q. Because P is ergodic, h(B) is non-random for each B € K.. Recall from

Lemma 2.6 that —E[h(B)] € {Vg(¢+), Vg(€—)} for some & € U is also sufficient for a non-random
tilt: h(B) = E[h(B)] P-almost surely. Applying Theorem 2.14 to the cocycles from Theorem 2.7
and recalling part (i) of Lemma 2.6, we see that

(2.27) {-Vg(n):£eUU,oe{+,—}} cH < —dg(U)
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Remark 2.16. If g is differentiable, as is widely expected under assumption (2.2), both inclusions in
(2.27) are equalities. As mentioned in Remark 2.8, if directions of non-differentiability exist, then
the associated super-differential is a liAne segment. If an interior tilt exists which is associated to
an ergodic cocycle (i.e. an element of & with h(B) deterministic), then the first inclusion is strict.
The second inclusion is an equality if and only if every tilt is associated to an ergodic cocycle, i.e.,
if there are no gaps in H. Brito and Hoffman [3] give an example of an ergodic FPP model where
there are only four semi-infinite geodesics on the entire lattice, which provides an example where
gaps in the associated H exist. A

The index set of the tilt-indexed Busemann process on 2 will be H x {—,+}. The process is
obtained by taking left and right limits of an appropriate countable set of elements in /..

Theorem 2.17. There exists a stochastic process
(2.28) (B"(x,y) : 2,y e Z? he H, 0 € {+,-})
on (2, F,IP) with the following properties:
(a) (No t distinction at fized h) For each h € H,
P(B"" (x,y) = B""(z,y)) = 1.
When B" (w,z,y) = B" (w,z,y), call the common value B"(w, z,vy).
(b) (Forward measurable Busemann function) For each h e H,B" € KF.
(c) (Mean —h) For each h e H, E[B"0,¢;)] = —h - e;.
(d) (Monotonicity) For h,h' € H with h-e1 < h'-e1, all x € Z?, and P almost every w
B'(z,x+e1) =B (z,x+e) =B (z,x+e) = B" (z,2+e))
and
B (2,2 + e3) < B (2,2 + e3) < B (2,2 + €2) < BY " (z, 2 + e3).

(e) (Left-/right-continuity) For P almost all w, for all h € H,

B"(z,y) = lim B"(z,y) and B" (z,y) = lim B"¥(z,y).
Hah'—h Hah'—h
h'-e1 /h-ey h'-e1\\h-e1

Moreover, this process is unique in the sense that any two processes satisfying the above conditions
are equal almost surely. A

Remark 2.18. If one instead wishes to work with the (potentially) smaller direction-indexed Buse-
mann process coming from restricting to {—Vg(£+) : £ € U} < H, strong uniqueness of the process
still holds. AN

Remark 2.19. The shift-covariance implicitly contained in part (b) of Theorem 2.17 is inherited by
the full process. In particular, we have that

(B*(2,y) : v,y € Z?)oT, = (B (z +x,2+9) : x,y € Z*)
P almost surely. A

As a consequence of the above observation and the fact that P is an i.i.d. measure on 2 = RZQ,
we have strong mixing of the process.

Corollary 2.20. Call B* = (B*(x,y) : z,y € Z*) and let T € {T, : z # 0}. Then B" is strongly
mixing under T'. Explicitly, this means that for all events A e F and Borel C,

lim P(4, B" o T" € C) = B(A)P(B" € C). A
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3. STRONG EXISTENCE AND UNIQUENESS OF GENERALIZED BUSEMANN FUNCTIONS

The main aim of the first part of thls section is to start with a given generalized Busemann
function on Q) with coalescing geodesics, Be ICC, construct an G-measurable version of its coalescing
geodesics, and subsequently use this to obtain an G-measurable version of B itself. While one
could try to rely on general measure-theoretic techniques (e.g., sections) to produce a system
of coalescing geodesics—similar to the approach used in [21, Theorem 3.2] to establish the P-a.s.
existence of directed geodesics after proving their P-a.s. existence—the challenge lies in maintaining
shift-covariance across all T,w.

The basic idea, following a similar construction in [1], is to apply a variant of the classical inverse
CDF sampling method to the conditional distribution on the path space of a E—geodesic ray rooted
at u, given &. Because the path space is totally ordered, we can define quantile functions and this
method works essentially the same way for real random variables. The outcome is a process of
random geodesics which is shift-covariant by construction. We then show that under appropriate
hypotheses on B , this process is essentially constant and deﬁIAles a family of coalescing geodesics,
which then generate a Busemann function that is equal to B almost surely. Strong uniqueness
comes from showing that there is a total ordering on such objects indexed by the tilt vector and so
in particular any two generalized Busemann functions with the same deterministic tilt vector must
be equal. Extending these properties to the full process is essentially immediate from monotonicity.

We begin with left- and right-isolated geodesics. These play a central role in the argument.

3.1. Isolated geodesics. Since G’ is totally ordered and compact, it has the greatest lower bound
and least upper bound properties. For u € Z?2, let m = u - (e1 + e3) and define these collections of
semi-infinite geodesics rooted at wu:

LIY = U {inf{m € G : Tpin = Omm}} and
Om:n Up-right, n€Z=m

Hﬂ’eg,ﬁ)l Tm:n=0m:n

RIY = U {sup{w € Gy T = am;n}}.

Om:n Up-right n€Z>m,

ITeGy: Tmn=0m:mn

(3.1)

Note that the conditions in the unions above and the geodesic rays appearing in (3.1) (e.g. sup{m €
GY : T = Omn} for some finite up-right path o,., with o, = u) are & -measurable, because
they can be constructed inductively from the arrows thx (w) described at the beginning of Appendix
A.

A non-trivial geodesic ray A € G is left-isolated if it is not a limit of members of G from the
left, equivalently, A > sup{y € G¥ : v < A}. Analogously, a non-trivial p € G is right-isolated if
p < inf{y € G¥ : v = p}. A non-trivial ray is right-isolated if and only if it is in RI¥ and it is
left-isolated if and only if it is in LI¥. To see this, take a non-trivial left-isolated ray A and consider
the first index n at which A differs from the supremum of rays strictly less than it. Then X is the
infimum of all geodesic rays which contain the segment A,.,. The right-isolated case is similar.
Note also that RI; is right-dense in G and LI is left-dense in GY.

Let
w _ U gloj

ueZ?

be the collection of all geodesic rays from all starting points.

On the union G¥, m <, v and v <, m happen together if and only if 7 X . In this situation,
after their first meeting the two remain together, again by virtue of the uniqueness of rightmost
point-to-point geodesics.
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3.2. Strong existence. Let v“ denote the conditional distribution on ((AZ, é) given &. Recall the
countable right-dense set of & -measurable right-isolated geodesics RI% < G¥, defined in (3.1), and
note that by definition RIZ** = RI¥_, for all u,z € Z2.

B,u,s

For u € Z? and s € Q n [0, 1], define an &-measurable geodesic ray 7 € G¥ via

(3.2) wBws () = inf{pe RIZ®) 2@ (gBu < p) > 5},

The set in (3.2) is not empty because it contains the trivial geodesic u+Ze;. We took the infimum
in (3.2) over the countable set RI‘J(“}) to ensure measurability. We verify that this expression is

measurable in Corollary A.2 below.
Extend this definition to s € [0, 1] by setting

(3.3) Wé’“’s(w) Sup{ﬂB“T @):reQn0,1], r < s}.

In Lemma 3.1(a), we show that (3.2) and (3.3) agree on rational s. In Lemma 3.1(c), we show that
the infimum can be taken over the uncountable tree G5 for any s € [0, 1].
Denote by wB%* the process (mwBws . [0 1]), defined through (3.3). Since G¥ is closed, we

have, for P-almost every @, mBu #(W) € Qu ) for all s e [0,1]. In the statement of the next result,
Drcru([0,1],X,) and Drcri([0,1],GY) are Skorokhod spaces of left-continuous paths with right
limits (see [10, Section 3.5] for a definition of the Skorokhod topology) taking values in the compact
metric spaces X, and G, respectively.

In what follows, the phrase “for P-almost every " means the existence of an S-measurable
event of full P-measure such that the stated property holds for each @ in this event. By taking
intersections with all shifts by {7} : 2 € Z?}, this event can without loss of generality be assumed
to be shift invariant.

Lemma 3.1. For each B € I%, the process wB™* satisfies the following properties:

(a) For P-almost every &, the definition in (3.3) agrees with (3.2) for rational s, so wé’“"(@)
1s well-defined.

(b) & Wl?’u’.(@) is an &-measurable, D1,cry ([0, 1], X,,)-valued random variable which almost
surely takes values in Drcry ([0, 1], g;j(“)),

(c) For P-almost every & and all s € [0,1],

(3.4) wBus (@) = inf{y e g¥@ . @ (pPu < 5) > 5}

Consequently, B“’”( ) < ﬂ'B“s( ) forr s in [0,1].

(d) For P-almost every @ and all vy € gu ),

(3.5 {se0,1]: 7 Bius Q) <7} = [0, (pBr < )]

)
(e) For P-almost every &, all u,z € Z2, and all s € [0,1],
)

(36 Wé,u+z,s<@) =2+ wé,u,S(j—\vZ&\))‘ YaN

Proof. First note that if 7 < s and both are rational, then using definition (3.2), we have w8%" <

w843 Monotonicity and the fact that G¥ has the least upper bound and greatest lower bound

properties imply the existence of left and right limits of these paths, which lie in G < X,,.
We check that (3.4) holds for rational s, with the definition in (3.2). For such s, we have

aBus — inf{p e RI} : v (gbB“ <p)>s}>inf{yegy: (¢§,u <7)=s}=7"
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because the set in the infimum on the left is a subset of the one on the right. Continuity of
probability implies that

(3.7) V(P < 7% = .

B,u,s

Either w° € RI¥, in which case we have 7#° = &

u? .
P\, 7. But then we must have v*(¢* < p") > s by monotonicity, which implies that 7
B,u,s

, or there exists a sequence p" € RI; with
B,u,s <
inf{p" : n € N} = 7° and again 7° = 7

Next, observe that if s is any number in [0, 1] for which (3.4) holds, then for all v € G¥

(3.8) mBuws < 7= s < (pP" < ).

<« comes from (3.4) and = comes from (3.7) and that 7° = ﬂ'é3 2%, In particular, since we showed

above that (3.4) holds for all rational s € [0, 1], we now know that (3.8) holds for all such s.
With this observation in mind, we check that the process w2%"* is well-defined, i.e., that with
the definition in (3.2), we have left-continuity over the rational s € [0, 1]. For s € [0, 1], call

= sup{ﬂ'é’"”" cr<s,reQn |0, 1]}

The monotonicity observed at the beginning of the proof 1mphes that if s € [0, 1] is rational, then
7 < wbus. On the other hand, from v (qﬁB“ <7T) =V (qu“ < ﬁB“’") > r for all rational
r with r < s, we see that v (qu“ < 7°) = s, which implies mBus < 7 by (3.8). This is
left-continuity on the rationals and part (a) follows.

The definition (3.3) is left-continuous with right limits by construction and monotonicity on the
rationals. G-measurability then follows from the fact that the path 7B is determined by the
values of w5 defined according to (3.2) for s € Q n [0,1], the & -measurability of the paths in
RI¥, and the G-measurability of v*. Part (b) is proved.

Next, we show that (3.4) holds also for irrational s. For s irrational, we denote the infimum
in (3.4) by 7%, similarly to what was done above. Arguing exactly as above, by continuity of
probability, we have l/w(qbé’“ < 7°) > s. Since we already proved (3.4) for rationals, we get that
for all r rational with r < s, mBur < %5 Then by (3.3), ™ Bus < s

On the other hand, we already showed that v (d)B w < B, ™) = r holds for all rational r € [0, 1].
Hence, v ((bB“ < TFBUS) > v ((bB“ < 7rB‘”") > r for all rational r < s, which implies that

(¢B w < b %) > s and so the reverse inequality mBus > %5 also holds. Part (c) is proved,
Which in turn implies that (3.8) holds for all s € [0, 1] and proves part (d).

We Verify ( ) using (3.4) for each s. First, we note that by definition, v € G¥ if and only if
z+v€E Qu 12", where the addition is understood as the translation (z +7)i =2+ 7. Similarly, for
’y € Xy, the shift covariance of B in (2.18) implies that T_AG gbB YD) < v} ={©: ¢B“( ) <

— z}. Changing variables by 7' = v — z, we deduce part (e):

B u+z, S(T zw inf{’y c gw(szw) (T_zw)(d)B u+z < ’Y }

u+z
=z +inf{y € Ge@) e “’)(¢B’“ <9') = s} =z + wPE@). O
Note that there is no dependence in B on & through the superscript B. The B in the

superscript is just to remind us that if we use a different cocycle we get a different path. Due to

BUS(

the G-measurability in Lemma 3.1(b), instead of W) we write 7 Bus (w(@)) and frequently

B,u,s(w)

simplify it further to = because now these paths can be regarded as functions of either

weorwel.
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Example 3.2. Suppose that the conditional distribution Vw{fgjg € -} is supported on finitely many
distinct geodesics 7! < 72 < -+ < 7™ with aj = V“’{d)B’“ = 7Tk}, bo =0, and by = aj +-- -+ ay, for
ke{l,...,m}. Then

X 0, ify=x~l,
P <t = { by, ifnf <y xRt for 1 <k <m, and
1, ify =7,

Thus, for s € [0, 1],

A u+ Ziey if s =0 and

wlus —inf{y e G2 (6P <) = 5} = { k A

T if by <s<bgforke{l,...,m}.
Recall that £ is the Lebesgue measure on [0, 1], but we write integrals with respect to this
measure using the standard notation Sé f(s)ds.

Lemma 3.3. Fiz B e K and u € 72 and define B s in Lemma 3.1. Equip Q x Xy, with the
product Borel o-algebra. The distribution on Q x X, of (w(®), ¢P™(D)) under P(d®D) is the same
as the distribution of (w, w55 (w)) under P(dw) ® L(ds). A

Proof. To prove the lemma, it suffices to show that for all A € B(X,) and V € F,

~ 1 ~
PweV, Pt e A) = f P(wB%% e A, V) ds.
0
For this to hold, it is sufficient to consider A of the form A = {y e X, : v < 7} for fixed 7 € X,,
because the collection of sets of this form is closed under intersections and generates B(X,). See
Lemma A.3.
Fix 7 € X,,. We then have

]/I\”(w eV, gbé’“ <m = @[uw(qﬁé’“ <m)ly(w)] = E[V“J(qﬁé’u < m)ly(w)].

Call 9% = sup{\ € LI¥ : A < 7} € G¥. Then 1* is & -measurable and the set inside the supremum
is non-empty (as it always contains u + Zeg2). Moreover, for any p € G¥, p < +* if and only if
p <. R

Working on the P-almost sure event where v*(¢%% € G¥) = 1, we may write

V(P < m) = (6P < ).

By Lemma 3.1(d) and the Fubini-Tonelli theorem, we have
1

B[ (65 < ()] = B[P <4910 ()] = 5]

1y (W) L{mBus < 4} ds]
0

1 .
= j P(wBws < 4% V) ds.
0
For each s, restricting to the P-almost sure event on which nBws ¢ Gy, this last expression is equal
to

1 .

J P(wPws < 7, V)ds.

0

The result now follows. 0

Next we narrow the assumptions to include coalescence of é-geodesics. In the statement of the
next result, for u,v € Z2, we say that (7,7) € G¥ x G¥ is a coalescing pair if 7 X 7.
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Lemma 3.4. Fiz B € lec. Then with wB®* and wBv* defined as in Lemma 3.1, for P-almost
every w, for any u,v € Z2, and for all coalescing pairs (m,7) € G¥ x G¥,

(3.9) {(s€[0,1]: wPus(w) < 7} = {s € [0,1] : wBV*(w) < 7).
A

Proof. By B € K. and Fubini’s theorem, the event () = {& : V“’(gbé’“ N gbé’”) = 1} has P-
probability one. Let €y be the intersection of £2; with the full P-probability event in Lemma
3.1(d). Take w € Q. Then for any u,v € Z2, (7,7) € G¥ such that m & -y, we have

PP <) = (P < m) < (0P = m, 0P <) <1 - (9P L 6P) = 0

and

<
€
©-
o)
2
IA
A
|
<
€
©-
sy
=
IA
2
N
<
€
©-
sl
2
IA
A
©-
s}l
=
1\
2
N
—
|
N
€
©-
s}l
=
s
©-
[ss}}
=
e

Tegy and*ye_g‘”. - OJ
Lemma 3.5. Fiz B € I/C\C. For all u,v € 7?2, with B and whos defined as in Lemma 3.1,

1 _ -
f P(rBws A wB0s)ds = 1. A
0

Proof. Fix u,v € Z?. Using Lemma 3.3,
1= P{gP R ¢Bv) < P{@: Im e ¢¥@ st 7 A ¢B)
- Ll IP’{w cdne Gy st ]\ﬂ'é’“’s}ds.
By symmetry, switching the roles of v and v,
1= fol IP’{w cdre Gy st A ﬂé’v’s} ds.
Thus there exists a measurable set Dy < © x (0, 1] such that P® £(Dy) = 1 and Y(s,w) € Dy:

(3.10) Iy e Q¥ st y AwBws and 3y € G¥ st 4 A wBvs,
By Lemma 3.4, there exists an event {2y € & with P(2y) = 1 and on which (3.9) holds for all
coalescing pairs (7, 7) € G¥ x G¥. We claim that for (s,w) € Do (€ x (0, 1]), wB%3(w) X w805 (w).
By (3.10) there is a coalescing pair (7%%% ) € G¥ x G¥. Then by (3.9), #%¥* < ~. Thus

wBvs < gBus A symmetric argument gives gBus < gBvs, Hence, the two paths coalesce. [

Because geodesics proceed up-right in directed last-passage percolation, it is natural to expect
that a shift-covariant family of coalescing geodesics will be measurable with respect to the weights
ahead of the root. The next result records this fact if the weights are i.i.d. We phrase this result
on {2, but an analogous statement holds on Q with F,I replaced by & if the geodesics are &
measurable.

Lemma 3.6. Let {7 : u € Z?} be a shift-covariant system of coalescing geodesics on 2. Then for
each u € 72, ™ is F,, -measurable up to sets of measure zero. A

Proof. Recall that we assumed the weights are i.i.d. in (2.2). Let P(dw,d®) be the probability
measure on % that couples two copies of P as follows: &y = w if x € Zi and (W, : = ¢ Zi) is
independent of (w, : = ¢ Z2) with the same distribution.
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For every (w,d), G§ = G% and therefore 7°(w) < 70(&) or 70(w) = 7 (&). We claim that both
hold almost surely. To derive a contradiction, assume that P{n(w) # 7°(©)} > 0. By symmetry

P{r%(w) < (@)} = P{n°(w) = 7%(&)} > 0.
Denote the two events in the above display by A and A’. By the ergodic theorem, for P-almost
every (w,w), Tke, (w,@) € A occurs for infinitely many integers k and Ty, (w,d) € A’ occurs for
infinitely many integers ¢. Thus, for P-almost every (w,), there exist integers k < ¢ such that
The, (w, @) € A and Ty, (w,w) € A’. This implies that

7 () 5 7R (@) A 7 (@) 5 1 ()

These inequalities prevent the coalescence 7%¢1 (w) A 71 (w), thereby contradicting the assumption
that {7% : u € Z?} is a coalescing system of geodesics. Thus 7°(w) = 7°(&) almost surely. It follows
from a standard measure theoretic fact (see e.g. Lemma A.2 in [25]) that this implies that there
exists a o(wy : € Z2) measurable function F : Q — Xj so that 7%(w) = F(w) P-almost surely. [

Recall the definition (2.16). For s € (0,1] define
(3.11) A5, 2,9) = A5 (01,3
Lemma 3.7. Fiz Be K. Suppose s € (0,1] satisfies
(3.12) P(Vu,ve 22 : whuws f pBos) — 1,

Then A*, defined by (3.11), is a shift-covariant recovering cocycle. For any u € 7Z* and any
T,y € u+ Zi, As(x,y) is F,F -measurable, up to sets of P measure zero. A

Proof. That A? is a recovering cocycle comes from Theorem B.1. The shift-covariance (3.6) and the
coalescence (3.12) imply that {w%%* : u € Z?} is a shift-covariant system of coalescing geodesics.
Bus 5 GF-measurable. Take u € Z2 and z,y € u + Z%r. Then L B . and

Tn

By Lemma 3.6, 7

L 4., are both & -measurable (for n > u- (e; + e2)) and, consequently, so is Aﬂ.B,u . ( x,y).
y? n

Lemma B.3 and the coalescence ﬂB’“’S N 71'B’0’5 implies

(313) As(w,x,y) = Aﬂé,u,s(w)(waxay)u

for all z,y,u € Z?. Thus, we see that A%(w,z,y) is F, -measurable, for all z,y € u + Z2.

(3.13) also implies the shift-covariance:
A¥(w,z+ 2,y +2) = Aﬂé’z,s(w)(w,x +z,y+z)=A4A w, T+ 2,y + 2)

=A

z+7r]§v0!5(T w)(
WB’O‘S(TZUJ) (Tzwa x,y) AS( W, T y)

where the first equality used (3.13) with u = z, the second equality used the shift-covariance (3.6),
and the third equality used the shift-covariance (2.17). O

Lemma 3.8. Take B € I’C\c. Then for P-almost every & and all u,x,y € 7>
(3.14) Aypoi (@@),2,y) = B@,2,y). A

Proof. Since ¢B“( ) ¢B (@), and gbé’y(@) all coalesce, there exists a 2z € Z? that is on all three
geodesics. The recovery property gives that B(&,z,2) = Ly .(w(®)) = A(z)g,z(@)(w(@),:v,z) and
the coimlescence of the geodesics gives Ad)g’x(@) (W), z,2) = A¢§’u(w(®))(w(&)),x,z). Similarly, we
have B(W,y,2) = Ad)gy(a)(w(&}),y, z) = A(z)g’u@)(w(o’}),y,z). (3.14) now follows from the cocycle
property. ]
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Lemma 3.9. Fiz B € K,. The distribution of (w(@),é(@)) under I’E;’(d@) is the same as the
distribution of (w, A*(w)) under P(dw) ® L(ds). A

Proof. Apply Lemma 3.3 to the measurable mapping (w,~) — (w, A,(w)) to get that the distri-
bution of (w,A4_3., .(w)) under P(dw) ® L(ds) is the same as that of (w(@),qug’u(@) (w(@))) under

]f”(d@) . The claim then follows from (3.13) and (3.14). O

Given a shift-covariant L' (€, S, I@’) recovering cocycle B, recall the random vector h(B,®) defined
n (2.20). Note that if B € K, from the assumption that P is i.i.d., h(B) is a deterministic vector,
i.e. h(B) = E[h(B)], P-almost surely.

Lemma 3.10. Fiz B € K.. Let h = Iﬁ[h(g)] Assume that I@{&\; . h(B,&) = h} = 1. Then for
every s € (0,1], A% € K} and h(A®) = h, P-almost surely. Furthermore, P{Vs,t € (0,1] : A® =
Aty =1. A

Proof. By Lemmas 3.5 and 3.7 there exists a Borel set D; < (0, 1] such that £(D;) = 1 and for each
s € Dy, A® is a forward measurable shift-covariant recovering cocycle with coalescing geodesics.

The assumption h(B,&) = h, identity (3.14), and the cocycle shape theorem (2.21) give for
P-almost every @

Tim ’A¢B,0(@)(w(w)707x> +h- :B‘ _0
a1 =0 |z

Then Lemma 3.3 says that there exists a Borel set Dy < (0,1] with £(D3) = 1 and such that for
each s € Do,

. |Aﬂ§,0,s(w)(w, 0,2) + h - x|
IP{ lim

=o}=1

|1 —00 |z[1

Thus, for each s € D1 n Dy, A% is a forward-measurable shift-covariant recovering cocycle (on 2)
that satisfies

o |A%(0,x) + h - x|

||y —o0 |z[1

=0, P-almost surely.

Then n=1A%(0,ne;) — h-e; and n=1A%(0, nez) — h-ep. The shift-covariance, the cocycle property,
the inequalities A®(w,z,z +€;) = w, € Ll( ), and Birkhoff’s ergodic theorem give integrability and
h(A®) = h, so in particular A% € K}.

So far, we proved that for L-almost every s € (0,1], A* € K} and h(A®) = h. This implies that
there exists a countable dense set D3 < (0, 1] such that for every s € D3, A% € K and h(A®) = h.
The monotonicity of w295 in s implies the monotonicity of A° by Lemma B.3. This monotonicity
and the equal expectations imply that P-almost surely, for any s,t € D3, A% = A!. Using the
monotonicity one more time extends this to all s,¢ € (0,1]. O

From Lemmas 3.9 and 3.10 we can now establish the strong existence claimed in Theorem 2.14.

Proof of Theorem 2.14. We set B(x,y) = S(l] A®(x,y)ds so that B is a Borel-measurable random
field on Q. By Lemma 3.10, P-almost surely, A° = B for all s € (0 1] and so B € Kf. Lemma 3.9
now implies that the joint distribution of ( (@), B (W)) under P is the same as that of (w, B(w))
under P. It follows that P-almost surely, B(w) = B(w(@)). This last claim is essentially Lemma
2.2 in [25], but we include the proof. We can uniquely (up to sets of P-measure zero) factorize the
joint distribution of (w (&), B (@)) under P as the distribution P(dw) of w together with a transition
kernel 7(db|w) that represents the conditional distribution of B given w. Do the same on the
other side of the equality in distribution to see that n(db|w) = dp(,)(db) P-almost surely. Thus

P(@: B(@) = Bw(@))} = E[B(B = B|&)] = O
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3.3. Strong uniqueness. Recall the order relation on cocycles: for B, B’ € RZQ, B < B’ means
B(x,z +e1) = B'(r,2 + 1) and B(z,7 + e3) < B'(x,7 + e) for all x € Z?. Extend this order
relation to an order relation <,5 on K by defining

By <4 By if P{Bl < BQ} =1.

Clearly, if By <,s By and By <,5 Bi, then B; = By as random variables, i.e. with P-probability
one. The next lemma shows that <,s is a total order on K.

Lemma 3.11. Let By, By € K.. Then either P(B; < Bs) =1 or P(By < By) = 1. A

Proof. On the full P-probability event where ¢pB1% R P10 and ¢P2% R P20 for all u,v € Z2, we
have that ¢P19 < ¢B2:0 implies ¢pB1% < ¢B2: for all u € Z?. Thus the event {¢P10 < ¢B20} is
shift-invariant and thereby has P-probability of 0 or 1 by the ergodicity of P. The same holds for
the event {¢pP10 > ¢B20},

Since the < is a total order on G, we have that P-almost surely, either pB10 < ¢pB20 or pB1O >
¢P20. Since we just showed that these two events are trivial, we get that either ¢P10 < ¢B2.0,
P-almost surely, or ¢P19 > P20 P-almost surely. Lemmas 3.8 and B.4 imply then that either
B < Bs, P-almost surely, or By > Bo, P-almost surely. O

Strong uniqueness follows.

Proof of Theorem 2.15. By the total order in Lemma 3.11, equality h(B;) = h(Bs2) of the means
is sufficient for almost sure equality. 0

The following is an immediate corollary of Theorem 2.14.
Corollary 3.12. K. =K* =K. A

Proof. By an adaptation of the Licea-Newman [27] coalescence argument given in Theorem A.l
n [13], K* < K.. Forward measurability gives the finite energy condition used in the coalescence
proof. The previous inclusion then gives Kt < KT, so we have K} = K. Theorem 2.14 implies

that also K. < KF and hence K. = Kt = K. O

Recall Theorem 2.7 and the consequence that #H contains {—Vg({O) : £ e U,0 € {+,—}}. By
Theorem 2.15, for each h € H there exists a unique B" € K} such that h(B") = h. The following
is a direct consequence of Lemma 3.11 and the fact that if By < By in K, then h(B;) < h(Bs).

Lemma 3.13. For any h,h € H, either we have h < I and B" < B" or we have W' < h and
BM < B". In particular, < is a total order on H and H 5 h — B" is nondecreasing. A

Let H° be a countable dense subset of . Using the monotonicity in Lemma 3.13 and the cocycle
property (2.13) that B" he MO, satisfy, define the process
—h— . n —h+ . n
B (z,y)= lim B"(z, and B (zr,y)= Ilim B"(z,y),
(x,y) o (x,y) (x,y) oo (z,y)
for x,y € Z* and h € H. Then for P-almost every w, for any h € H and O € {—, +}, B" is a

recovering cocycle.
The following lemma says that for a fixed h € H, the above definitions recover B".

Lemma 3.14. Fiz h € H. Then P-almost surely, for any x,y € Z2, Eh_(m,y) = §h+(m,y) =
B""(z,y). In particular, this holds for P-almost every w, simultaneously for all h € H°. A

Proof. We have that B'~ € K, B~ < B", and by monotone convergence, h(B"") = h(B"). This
implies that B =B , P-almost surely. The case of B"" is similar. 0
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Proof of Theorem 2.17. In view of the above lemma, we will drop the overline from B and just
write B, Furthermore, when B"~ = B’ we drop the sign distinction and write B*. In
particular, for each h € H, P-almost surely, B"~ = B"* = B". The claimed monotonicity follows
from Lemma 3.13. Using dominated convergence, this implies that the mean —h condition holds.
The cocycle, recovery, and covariance properties are closed under limits. By almost sure left- and
right- continuity, uniqueness for fixed h implies uniqueness of the process. O

We close this section with the observation that Theorem 2.14 and Corollary 3.12 imply that
(3.15) H={h(B):BeK.,}={h(B):Bek*}={heR*: BeK,, P(h(B)=h)=1}.

4. SHIFT-COVARIANT COALESCING SYSTEMS OF RANDOM GEODESICS AND COCYCLES

In [1], the authors start from a shift-covariant coalescing system of geodesics and use these to
construct Busemann functions. We instead started with a field of generalized Busemann functions
and then used those to build a system of coalescing geodesics. We show in this section that these
two approaches are equivalent.

We say that a shift-covariant system of geodesics is non-crossing if

P{VuveZ2 @) ARY(D) or AUD) N7 (@) = @} = 1.

The recovering cocycle Az« generated by the random geodesic 7 is a function on Q defined in
terms of (2.16) by

(4.1) Az (@,2,Y) = Azu)(W(D), 2, Y).
Recall the space of shift-covariant systems of coalescing geodesics, Ac.
Lemma 4.1. If7° € AC, then Ao is shift-covariant. A

Proof. If ©° € AC, then using (2.17) in the second equality and the coalescence 7% A 7% with Lemma
B.3 in the last equality,

A%O(fz@>$ay) A;}O(T w)( Tw(@),r,y) = Az+%0(fza)(w(&\)),x+z,y+z)
= A=) (WD), 2 + 2,y + 2) = Aze0) (WD), + 2,y + 2)
_AAO(OJ)( ( ),m+z,y+z) O

~

Let K~ denote the set of shift-covariant Ll(é,IP’) recovering cocycles generated by systems of
shift-covariant coalescing geodesics.

Lemma 4.2. Let 7° and ¥° be two covariant non-crossing systems of geodesics such that IP{ <
A% = 1. Assume that either 7° € . or A" € .. Assume also that there exists a cocycle B € K

such that both ™ and 3" are B- geodesics, for all u e Z2. That is,

(4.2) ]/I\D{&\) :VYu e ZZ,VTL = U- (61 + 62) . E(@,%z(@),%x_i_l({:})) = cc},?%(@)<@)} =1

and

(4.3) I/[i{&) YueZ?Vn=u-(e; +e): é(@ﬁg(@)ﬁzﬂ(@)) = w:{%(@)(@)} = 1.

Then P{Vuc 72 : 7% = 3%} = 1. A

~

Proof. The two cases are proved similarly We work out the case 7" € .. By (2.23), applied to
both 7% and 4, it is enough to prove P{W =3} = 1. We show that £, = {& : 7%(®) < A°(@)} is
a zero P—probablhty event. To arrive at a contradiction, suppose IP’(SOO) > 0.
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The events &, = {70, # Jo.m} increase up to £, as m " oo. Hence we can pick m € N so
that P(&,,) > 0. By Poincaré recurrence, P-almost surely &y, < (Jys y Tre; Em for each N e N [24,
Section 1.3]. Then

@(U U T—kelg ﬂT—eel ) @< UT k€1[5 n U T_Jel m])

(4‘4) k=14=k+m ) k=1 ) ji=m
- IP( U T_kelé’m> > 0.
k=1

Let € be the full P-probability event on which the geodesics {7T(©) }yeze coalesce, {7"(0)}yez2
are non-crossing, 7°(©) < 4%(®), and both events in (4.2) and (4.3) hold. The proof is concluded
by showing that

(4.5) P(Qo N Toher&mn N ToteEm) =0 YE=k+m, k=1

Since IP’(QO) — 1, this contradicts (4.4), which in turn forces P(E,) = 0.

Let & € QO AT ke1Em N T_eelg with £ = k + m > m. Then the non-crossing of the geodesics
50@), 351 (@), and 3% () implies 3°(@) < 351 (@) < 3%1(@). This, #°(0) < 3%(@), and the
coalescence of {7%(W)},c72, together imply

(4.6) W) £ %) for w,v e {key,lei}.

Next, @ € f_kelé’m N f_gelé’m says that 7%(©) and A"(&w) separate in the first m steps, for both
u € {key,le1}. Once separated, rightmost geodesics from u cannot meet again, and so

(4.7) Tormion (@) N Ygymo(@) = @ for both u e {keq, le1}.

We draw the conclusions from the observations above. Since 71 (&) starts strictly to the right
of 7¥¢1(&) but by (4.6) ends up strictly to its left, 7%¢1 (&) and 71 (&) must intersect. Denote their
first intersection point by z = 31(@) = 7L1(D). Since z € 71 (D) we have z > fe;. This implies
n—k=(z—kep) (e1 +e3) = —k>m. Since z € 71 (D), (4.7) implies z ¢ 751 (D).

Let 2 denote the coalescence point of 7% (@) and 71 (D). Since z ¢ %1 (@), z must lie on

7t (@) before x. Thus in Z? ordering

key <x and fleg <z <z

Since @ is in the event in (4.2) and since z is on 7k (D) and 2z < z are both on 71 (@), we have
Lie, z(w(@)) = B(@, key,x) and L, 5 (w(@)) = ( z,x). Similarly, since z is on 3% (@) and & is

in the event in (4.3) we have Ly, .(w(@)) = B(®, ke1, z). By the cocycle property,
Lige,,o(W(®@)) = Lie, 2 (w(@)) = Lz 2 (w(®))
= B(&, ke, ) — B(®,ke1,2) — B(&, z,2) = 0.
This implies that z is on some geodesic from ke; to . But since z ¢ %1 (%), z lies strictly to the

right of 7%¢1 (@) because z € 71 (&). We have a contradiction because by definition 7% (&) gives
the rightmost geodesic from ke; to . This contradiction verifies (4.5). O

Lemma 4.3.
(a) Let 7" € “cand let B = A~o. Then I/P\){Vu e 7% : ¢Bv =74} = 1.
(b) We have the equality of the cocycle spaces I%A = Ke. A

Proof. Part (a). The system {¢B U} generated by B is noncrossing because if gbB U and gZ)B v ever
intersect, their subsequent steps are determined by B and hence identical. Furthermore, ¢B 0 is by
definition the geodesic of B that takes e; steps when there are ties B(m, r+ep) = B(ac, x +e2), and
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hence 79 < gf)é’o by Lemma B.5. Both (4.2) and (4.3) are satisfied. The claim gbé’“ = 7" follows
from Lemma 4.2.

Part (b). The assumptlon e’ < and the conclusion gZ)B v — 7t forallu € Z2, 1mply in partlcular
that the geodesics {¢®%},cz2 form almost surely a coalescing family. This implies ICA < Ke.

It remains to show the opposite inclusion IC c ICA Let B e IC This means that the geodesics
¢B’“ coalesce, that is, qﬁB AC. By Lemma B.4, B equals the cocycle A $B.0 generated by ¢B 0
which says that Bek~. O

APPENDIX A. TECHNICAL LEMMAS

A.1. Measurability of the geodesic tree. We begin with measurability of G¥. For u,z € Z?
with > u and i € {1,2} define the &;'-measurable random variables

i () = L ifVvm=z-(e1+e)+130€Gy,, 1m0 +e€o,
0 otherwise.

Think of S,fw = 1 as opening the edge (z,x + ¢;). Note that if S’Z, = 1 then 7 = 1 for some

u,r+e;
(or both) 5 € {1,2}. Starting at v and following open edges gives a geodesic ray and conversely, the
edges of any geodesic ray started at w are all open. Hence S, = {Sfm xEU+ Zi,z’ e {1, 2}} gives
a & -measurable way to encode the random tree G¥. It is not hard to see that G¥ is also a closed
set in the product-discrete topology on paths. Since the space of paths rooted at w is compact in

this topology, this implies that G& is compact.

A.2. Measurability on X,,. Without loss of generality, we consider u = 0 for notational simplicity.
We begin with some preliminary observations about the path space Xgy. Recall that for v, 7 € Xq,
the metric distance between y and 7 is d(7y,m) = 2.7, 2_(”1)1{%#%}.

We prove measurability of the expression in (3.2).

Lemma A.1. If v¥ is a regular conditional distribution on (Q, é) given &, then the function

@,p) € Q x Xg — @ (¢F% < p) e [0,1]
is jointly (S, B(Xp))-measurable. A
Proof. Denote by F(&, p) the function in the statement. It suffices to show that F' is the limit of
jointly measurable functions. We begin with the observation that for each n € N and & € Q
p— Fn(&),p) = VW(Q)(¢OB;1U =< pO:n)

is continuous. To see this, note that if p¥ — p, then for all sufficiently large k, p§.. = pon. Xo is
separable, being compact, so it follows from & measurability of 1*®) that F), is (&, B(X))-jointly
measurable. See, e.g., Lemma 4.51 in [2].

We have that

¢Bu <p}= ﬂ{¢0n po:n}-
From continuity of measure, F(&, p) = lim,, F},(@, p). Therefore F is measurable. O

Corollary A.2. For s € [0,1], the Xy -valued random variable mBws i (3.2) is G-measurable. A
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Proof. Again, we take u to be the origin for simplicity. Fix a deterministic finite admissible path
00:n, rooted at the origin. Then the path defined by pg,., (w(@)) = sup{m € QSJ("J) D Mo = 00}
if such a 7 exists and py,., (w(©)) = Zie; otherwise is measurable by the results of the previous
sub-section. Moreover, this collection enumerates RI5. It then follows from the previous result that

& @ (B0 < p (w(@))) € [0,1]

is G-measurable. Then for each s € (0,1) and each finite admissible path og.,, the event

@ (¢B0 < po (@(@))) = s}

is G-measurable. Fix some finite path mg.,,. The event

~  _Bus/~
(A1) {@ 705, (D) = Toum}
is measurable because it is equal to the intersection of two events: (i) there exists a path og., which

(@)

, n = m, where m., S 00, for which *@)(¢B% < p (W(D))) = s,

U U {oenison 5@ 0@ P < 0 (@) = sh:

n=m oq., up-right:
00:m=T0:m

is on QS}

and (ii) for any n > m and any finite path 0., which lies on the tree G ©) with the property that
00:m < To:m, we have @) (pB4 < po (w(D))) < s:

ﬂ ﬂ ({JOZ" is on QS)@), Vw(@)(¢§,o < Pogn (W(D))) < s} U {00 is not on gg’@)}),

NnZm oq., up-right:
00:m XT0:m

Events of the type (A.1) generate B(Xp), so the claim follows. O
We also have the following Lemma concerning generation of B(X).
Lemma A.3. The family of events {po.co € Xo : po:ov < To:0}, To:00 € Xo generates B(Xp). A

Proof. Cylinder events of the form {po..0 € Xo : po.:n = Yon} are intersections of events of the form
{po:co € Xy : pn = x}, z € Z%. For a given z € Z%, let 1%, be the up-right path that starts with
x - e1 er-steps, then takes x - es eo-steps, getting to x, then from there only takes e; steps. Then,
for x # nes, we have

Tr+eg—eq

{po:0 € Xo : pn =z} = {po:oo € Xo : po:oo < V500 \{P0:0 € Xo 1 p0:o0 < Vgig

For x = ney we have
{po:0 € Xo : pn =z} = {p0:0 € Xo 1 po:co < Vi }- O
A.3. Non-existence of trivial Busemann geodesics.

Lemma A.4. Assume (2.3), (2.2), and I@[wg] < . Let Be K. Then (2.25) holds. A

Proof. By the shift invariance of P and shift covariance of é it is enough to consider u = 0. On
the event ¢B 0 = 7. es we have, by the cocycle and the recovery properties,

n—1 —

Z Whey + é(neg,el + neg) Z § (kea, (k + 1)es) + B(neg,el + neg)

k=0 k=0

0 e1) Z (e1 + keg,e1 + (k+ 1)eg) = O e1) Z We, +kes



STRONG EXISTENCE AND UNIQUENESS OF THE BUSEMANN PROCESS IN CGM 23

from which

B(nea, e + neg) n-l E(O, e1)
\/’77/ \/7 Z w€1+k62 wkeg) + T

Now the left-hand side goes to 0 in probability and hence almost surely along some subsequence of
any given subsequence, while the limsup of the right-hand side is infinite almost surely. ([l

APPENDIX B. BUSEMANN FUNCTIONS GENERATED BY GEODESICS

First we prove that in almost every environment w, each nontrivial semi-infinite geodesic gener-
ates a recovering cocycle, then we explore some basic properties of these cocycles.

Theorem B.1. Assume weights are i.i.d. with p > 2 moments. Then there exists an event ()
of full probability on which the following holds. For each w € g and every semi-infinite geodesic
koo 0 the environment w such that m, - e; — o for both i € {1,2}, there exists a finite Busemann
function

(B.1) Alw,z,y) = lim [Lx,ﬁn (W) = Ly, (W)] Vr,yeZ?

n—0o0

that recovers the weights w:
wy = Aw,z,x + e1) A A(w, z,x + €3). A

Proof. Recovery at x follows once the limits in (B.1) are proved for x and y € {z + e1,x + ea}: for
large enough n,
L:r,ﬂ'n = Wy + L:E+61,7Tn \% Lereg,Trn

= Wz = (Lmyﬂ'n - Lx+61,ﬂ’n) A (Lfl‘yﬂ'n - L$+€2:7Tn) 7’:‘:} A($7 T+ 61) A A(:E7 T+ 62)'
We begin with a purely deterministic lemma that gives the limit (B.1) in a northeast quadrant.

Lemma B.2. Consider a fixed weight configuration w € RZ and k € Z. SUppose M. 1S 4 semi-
infinite geodesic such that m,-e; — oo fori e {1,2}. Then for all x € Z? the monotone nondecreasing
limat

(B.2) A(x,m;) = lim (Lyx, — Lz, 7,)
n—ao0

exists in (—o0,00]. On the quadrant my + Z% we have a finite Busemann function
(B.3) Alz,y) = 1 (Lo, — Lys,). A
Proof. Given z, let N be any index such that mx > z. Then for n > N,

Lw,ﬂ'n+1 - LWNyﬂ'nJrl 2 (L-'Eﬂ'rn + Lﬂ'nﬂrnJrl) - (Lﬂ'Nﬂrn 7rn,7rn+1) L$,7Tn - L7TN,7Tn'
Thus this monotone nondecreasing limit exists:
(B'4) lim (Lﬂ?,ﬂ'n - Lﬂ'N,ﬂ'n) € [LerN’ OO]

n—0o0

Furthermore, since Ly, x, = Lz, xx + Lz x, for k < N < n, we have this monotone nondecreasing
limit:

(B'5) A(xvﬂ'k) = lim (Ll‘,ﬂn - LﬂkﬂTn) € [LIJTN - Lﬂ'lmﬂ'N’OO]‘

n—0o0

Now let x € m, + Zi. For n such that 7, < z < 7w,
Lﬂ'kﬂrn = ka,z + L:E,Wn == Lfﬂﬂrn - Lﬂ'kﬂrn < _Lﬂ'kvm'
Thus for any x > 7 we have the finite limit

(B.6) A(x,m) = nli_r)%o(Lx,,,n — Lz, x,) € [Loay — Ly oy =Ly 2] VN such that 7y = =
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This defines a finite Busemann function

(B.7) Az, y) = Az, ) — Ay, m) = lim (Ap 7, — Aym,)

n—0o0

in the quadrant m; + Z%r. O

Returning to the proof of Theorem B.1, it remains to verify that when weights are i.i.d. with
p > 2 moments, we can construct a full-probability event {2y on which A(x, ) in (B.2) is finite for
each x € Z? and for every semi-infinite geodesic .o such that , - e; — o0 for both i € {1,2}. This
can be achieved by combining known properties of geodesics and Busemann functions in the corner
growth model. Namely, there exists a full-probability event €2y on which the following properties
hold.

(a) Each semi-infinite geodesic 7. is directed into some U for some & € [eg, €], meaning that,
as n — o0, all the limit points of 7, /n lie in Ug (Theorem 2.1(i) in [15]).
(b) The only geodesics directed towards e; are the trivial ones of the form = + Ze; (Lemma
5.1 in [18]).
(c) For any sequence {u,} < Z? such that, as n — o, u, - ¢; — o0 for both i € {1,2} and the
set of limit points of {u,/n} is bounded away from {es, €1},
(B.8) lim |Lyu, — Lyu,| <o P-almost surely Va,y e Z2.

n—oo

This comes from the zero-temperature version of Theorem 4.14 in [21], or by taking the
intersection of the full probability events in Theorem 6.1 of [16] over a countable dense
collection of exposed points and maximal linear segments in ]eg, e[ .

Since we know from Lemma B.2 that A(x,m;) > —oo for all z and A(z,7;) < o for z in a
northeast quadrant, it is enough to prove the following statement on the event 2j:

(B.9) if A(x, ) < o0, then A(z — ey, m) < 0 and A(z — eg, ) < 0.

We prove the case A(x — e1, ) < o0, the other one being entirely analogous.

We can now assume that for some £ €Jes, e1[, as n — oo, all the limit points of m,/n lie in
Ue. Ug is a compact segment (possibly a singleton) contained in the open segment ez, ei[. By
the curvature of the shape function close to the extreme direction es implied by Theorem 2.4 of
[29], we can pick a direction ¢ €]es,&[ so that the segment U, lies strictly to the northwest of
the segment Ug. As in equation (2.12) in [23] or in Section 4 of [15], the Busemann function
B¢t defines the Busemann geodesic ¢St started at vertex 7, which takes the horizontal step
qﬁf:rf’“ = qﬁ%Jr’ﬂ’“ + e; whenever there is a tie B<+(¢§z+’m, ¢$z+mk +ep) = B“(qﬁf’”’“, q§%+’7r’“ +e3) in
the Busemann increments.

Recall that ¢S is indexed so that ¢5™™ - (e1 +e3) = mn - (e1+e€2) for all n > k. By Theorem 4.3
in [15], ST is directed into the segment U¢+. Thus the two geodesics must separate eventually,

and so for large enough n, gzﬁff’m < 7. The monotonicity of planar LPP increments implies that

(BlO) Lx—el,ﬂ'n - Lx,ﬂ'n < L

C+,m _L ¢+,
z—e1,Pn k Z,Pn k

for any = € Z? such that the LPP values are defined. This so-called “path crossing trick” can
be found for example in Lemma B.3 below. Now on )y we have this upper bound, assuming
Az, m) < oo:
A("E - 61,7Tk) = lim [foel,ﬂn - Lﬂk,ﬂ'n] = lim [foel,ﬂn - La:,ﬂ'n + Lm,ﬂn - Lﬂ'k,ﬂ‘n]
n—ao0 n—ao0
(B.10) (B.8)
S r}grolo’Lx—el,¢$L+’wk - Lz’(bnc—i_’ﬁk‘ + A(CE, Trk) = %

This completes the proof of Theorem B.1. d
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When w lies in the event )y constructed in Theorem B.1 and ~ is a nontrivial semi-infinite
geodesic in the environment w, let A7(w) denote the recovering cocycle constructed in Theorem
B.1. Nontrivial geodesics are those whose limiting directions do not include es or e;. Equivalently,
a nontrivial geodesic is directed into some compact segment U inside the open segment ]eg, eq] .

Lemma B.3. Let vy < w be two nontrivial semi-infinite geodesics in an environment w € . Then,
A, < A;. Consequently, if y A m, then Ay = Ar. A

Proof. Take x € Z2. Take n large enough so that = + e; < Yy,  + €1 < 7y, and v, < 7,. Since z
is to the right of ™€’ and 7, is to its left, 0*T¢1"7"» must intersect %™ . Let z denote the first
intersection point. Then

Lw,z + Lz,'yn < Lm,wn and Lw+e1,z + Lz,wn < L:E+€1,7Tn'

Add the two inequalities, use Ly, + L. x, = Lgx, and Lyye, > + L., = Lyte, ~,, and rearrange
to get

Lxﬂrn - L$+6177rn < fo)/n + Lx+61,’7n'

Take n — o to get Ar(z,z + e1) < Ay(x,z + e1). The inequality Ar(z,z + e2) = Ay(z,z + e2) is
proved similarly. O

Given a recovering cocycle B in an environment w € €0, a B-geodesic is an up-right path 7, finite
or infinite, whose steps obey minimal B-increments: B(m;, m+1) = B(m, m; + e1) A B(mi, m + e2).
Such a path is a geodesic. The e tiebreaker geodesic ¢** is the semi-infinite geodesic that starts
at vertex u, follows minimal increments of B, and takes an e step at a tie. It is the rightmost
geodesic between any two its vertices [15, Lemma 4.1]. Analogously, %~ is the semi-infinite
B-geodesic from u that takes an eq step at a tie.

Lemma B.4. Let B be a recovering cocycle in an environment w € $y. Suppose there exists
a coalescing family {T%},cz2 of semi-infinite B-geodesics from all initial vertices u € Z?. Then
Aqu(w) = B for every geodesic ™ from this family. A

Proof. Given z and u, let 7%, be the point where 7% and 7" first coalesce. Then for n > N, since
we can follow B-geodesics,

LIEJI’% - Lu,w% = B(z, WZ) — B(u, ﬂz) = B(z,u).
Letting n — oo gives Ayu(x,u) = B(x,u). This and the cocycle property give Az = B. O

In particular, Lemma B.4 implies that if a recovering cocycle B generates a coalescing family of
cocycle geodesics, then any one of these geodesics is enough to identify B.

Lemma B.5. Let wp.oo be a nontrivial semi-infinite geodesic in a fived environment w € gy and
Ar(w) the recovering cocycle constructed in Theorem B.1. The geodesic w is an Ar-geodesic. It lies
between ¢™ A~ and ¢TAT | the two geodesics generated by A, which resolve ties by taking es
and ey steps, respectively:

(B.ll) ¢7rk7A7r7_ <p< ¢7rk7Am+_ A
Proof. Since 7., is a geodesic between m,, and 7, and goes through 7,,+1, and then by recovery,

A (T, Timy1) = JE%O[LWWM - L7rm+1,7rn] = nhjfolo[wﬂm + Ly 1m0 — Lﬂm+1,7rn]

= Wr, = Ar(Tm, ™m + €1) A A" (T, T + €2).

This implies also (B.11). O
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