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Abstract. We show that the Busemann process indexed by tilts in the super-differential of the
limit shape exists and is unique in the strong sense in the i.i.d. planar corner growth model. This
means that every probability space that supports the field of i.i.d. weights supports a copy of the
process and any two realizations of the process are equal almost surely.
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1. Introduction

The corner growth model, or directed last-passage percolation (LPP), is a cornerstone model
of random growth in the Kardar-Parisi-Zhang universality class which can profitably be thought
of as a directed version of first-passage percolation (FPP), a prototypical example of a random
(psuedo-)metric on the lattice.

FPP is constructed by assigning non-negative weights to the edges of the lattice and then defining
the distance between sites to be the infimum over the weights collected along all self-avoiding paths
between those sites. As usual, the optimizing paths are known as geodesics. In FPP, substantial
recent attention [1, 8, 9, 19] has focused on the structure of semi-infinite geodesics, which are also
known as geodesic rays.

The planar corner growth model has a similar structure with a few differences. Edge weights
are replaced by vertex weights and the set of admissible paths is restricted to those which either
go up or right in each step. This path restriction allows the vertex weights to take both negative
and positive values. By convention, we also replace the minimum over paths with a maximum
over paths. This model arises naturally in the context of tandem queueing, for example, where
the passage time satisfies the same recursion as the time at which labeled customers are served at
labeled service stations. Once again, we have optimizing paths, which we call geodesics by way of
analogy to first-passage percolation. Similarly, significant recent attention has been focused on the
structure of semi-infinite geodesics.
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In the context of metric geometry, a frequently used tool to understand the structure of geodesic
rays are objects known as Busemann functions, originally introduced in [4]. In lattice growth
models, a slight generalization of this notion, which we call generalized Busemann functions, can
be viewed as the natural coupling of all ergodic and translation invariant stationary distributions
of the model. See the introductions to [18, 22, 23] for a discussion of these connections and a more
thorough review of the related literature.

The last decade has seen several constructions of generalized Busemann functions in various
models. In both first- [8] and last-passage percolation [14, 28], as well as related models like
directed polymers [21] and generalizations like random walks in random potentials [17], most of
this work shows what is known as weak existence in the stochastic analysis literature. This means
that existence statements take the form: “there exists a probability space on which generalized
Busemann functions are defined.”

Throughout the study of random growth models, a quantity known as the limit shape or free
energy plays a central role. In general, the existence results mentioned above show that for each
element of the sub-differential (super-differential in LPP) of the shape, a generalized Busemann
function field exists. In planar last-passage percolation, these can be glued together by monotonicity
to form a Busemann process indexed by the tilts in the sub-gradient. It is known [23] that this
Busemann process encodes geometric properties of geodesics into its analytic behavior.

A line of work originating with Newman [30] shows that Busemann functions are almost sure
attractors in an appropriate sense, which proves both strong existence (meaning that every proba-
bility space supporting the weights supports the Busemann process) and strong uniqueness (any two
generalized Busemann functions associated to the same deterministic tilt are equal almost surely).
These methods require control of the curvature and differentiability properties of the limit shape.
Proving these types of estimates is a long-standing and difficult open problem outside of exactly
solvable models. A collection of results in this vein implying strong existence and uniqueness in
the exactly solvable Exponential LPP originally appear in [5, 7, 12].

About a decade ago, Ahlberg and Hoffman introduced a theory of “random coalescing geodesics”
in FPP in [1]. One of the contributions of that paper is a proof of strong existence of the Busemann
functions without unproven hypotheses on the limit shape: namely, that what we call generalized
Busemann functions previously constructed in the weak sense in planar first-passage percolation
previously constructed by Damron and Hanson in [8] can be pulled back to the original probability
space. In [1], this was phrased in terms of the associated covariant geodesics but we will see in
the sequel, the two perspectives are equivalent. They also introduce a labeling scheme that allows
them to prove a similar strong uniqueness statement to the one we prove below (and much more
besides). There are some technical differences between our treatment and theirs, but our methods
are largely inspired by those of [1]. We do not use the geodesic labeling scheme introduced in [1],
preferring to work directly with the tilt indexing.

As discussed in [22, 23] among other places, one can essentially think of fields of Busemann
functions for percolation models as eternal solutions of a (discrete) stochastic partial differential
equation. From that stochastic analytic point of view, whether or not strong solutions exist and
if they satisfy strong uniqueness are standard topics of intrinsic interest. We refer the reader to
[25, 26] for a higher-level perspective on strong existence and uniqueness of stochastic equations.
Aside from this intrinsic interest, our purpose in writing this paper, and showing strong existence
in particular, is to provide the right setting for future work. Working on an extended probability
space is unnatural and introduces technical issues. For example, weight modification arguments
that control infinite geodesics generated by Busemann functions become delicate because the extra
noise from the extension is not independent of the weight field. This extended space is also in
general only stationary, rather than ergodic, under shifts. This complicates the application of
standard results in the area. See, for example, Remark A.5 in [23], which discusses working around
this technical issue.
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Strong uniqueness is of interest for related reasons. Without control on regularity of the limit
shape, the only uniqueness results that existed concerned the finite-dimensional marginal [6, 11, 31]
distributions of generalized Busemann functions. We include [11] here because the proof of Theorem
5.6 in that work can be made general under the same hypotheses as [6], though it is not phrased
as such. These results were not sufficiently strong to show that any two such processes would have
to be equal, leaving open the possibility of multiple Busemann processes existing. Pre-existing
distributional uniqueness results also require extra hypotheses: applying the results of [6, 11] would
require the weights to be unbounded from above, while applying [31] would require the weights to
be bounded from below.

Our results, like those of [1], are limited to the planar setting. The reason why both strong
existence and uniqueness are accessible in a planar setting but remain open in non-planar settings
is geodesic coalescence and a path ordering coming from the nearest-neighbor paths and planarity.
In both first- and last-passage percolation, this coalescence comes from the Licea-Newman argument
[27].

We rely on a seminal result of Martin [29] concerning the curvature of the limit shape of the
i.i.d. corner growth model near the boundary. That result requires i.i.d. weights, while [1] are able
to work somewhat more generally in their more abstract Condition A2. We have made no attempt
to prove Martin’s result in a setting comparable to that condition in order to generalize beyond
the i.i.d. setting.

As a consequence of strong existence, we also obtain a significant extension of the previously-
known ergodicity properties of the Busemann process in the i.i.d. corner growth model. Prior to
this work, it was known that Busemann functions which correspond to extremal tilt vectors in
the subdifferential were separately ergodic under the e1 and e2 shifts [6]. Because the Busemann
process can be realized as a function of an i.i.d. field, this can now be upgraded to strong mixing
under all non-trivial lattice shifts.

1.1. Outline. In Section 2, we state the assumptions of the model, define terms, recall basic
facts from the previous literature, and then state our main results. The proofs of the two main
results concerning strong existence and uniqueness appear in Section 3. Section 4 then shows an
equivalence between two ways of setting up the problems we consider. Appendix A collects some
technical lemmas. Finally, Appendix B proves that every non-trivial geodesic generates a finite
Busemann function.

1.2. Notation and conventions. Z are the integers, Z` the nonnegative and Z´ the nonpositive
integers. N “ t1, 2, 3, . . . u. Q are the rational numbers, and R are the real numbers. Ząa are
integers ą a. Similarly for Zăa, Zěa, and Zďa. Ja, bK “ ra, bs X Z.

When a symbol is needed, L denotes the Lebesgue measure on r0, 1s. We write integrals with

respect to this measure using the standard notation
ş1
0 fpsq ds.

The end of a non-proof structured environment ends with a △ to help delineate these from the
rest of the text.

2. Setting and main results

2.1. Probability space. ppΩ, pS, pPq denotes a generic Polish probability space equipped with a

group of continuous bijections pT “ t pTx : x P Z2u from pΩ onto itself. In particular, pT0 is the identity

map and pTx
pTy “ pTx`y for all x, y P Z2. Let pE denote expectation relative to pP. Suppose

pP is invariant under pTx for each x P Z2.

Let pI be the σ-algebra of events that are invariant under the group of shifts pT . A generic element

of pΩ is denoted by pω. As usual, the pω can be dropped from the arguments of random variables.
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We are given random variables ωx : pΩ Ñ R, x P Z2, which satisfy the shift-covariance property

ωxp pTzpωq “ ωx`zppωq(2.1)

almost surely under pP. We assume also that

tωx : x P Z2u are i.i.d. under pP and satisfy pEr|ω0|2`ϵs ă 8 for some ϵ ą 0.(2.2)

To dispense with trivialities we assume

pErω2
0s ą pErω0s2.(2.3)

Let S denote the σ-algebra on pΩ generated by ω “ tωx : x P Z2u. For x P Z2 let S`
x Ă S denote

the σ-algebra on pΩ generated by tωy : y ´ x P Z2
`u.

Ω denotes the product space RZ2
and F “ BpRZ2

q its Borel σ-algebra. We slightly abuse notation

and use the symbol ω “ pωxqxPZ2 to denote both the pΩ Ñ Ω mapping pω ÞÑ ωppωq “ pωxppωqqxPZ2

and a generic element of Ω. The shifts T “ tTx : x P Z2u on Ω are defined by

pTzωqx “ ωx`z.(2.4)

The shifts on the two spaces are related via the following identity, valid for x, z P Z2 and pP-almost

all pω P pΩ:

pTzrωppωqsqx
(2.4)
“ rωppωqsz`x

pdef.q
“ ωz`xppωq

(2.1)
“ ωxp pTzpωq.(2.5)

For x P Z2 let F`
x Ă F denote the σ-algebra on Ω generated by tωy : y ´ x P Z2

`u. We denote

by Pp¨q “ pPtpω : ωppωq P ¨u the probability measure induced by pushing forward pP by the map
pω ÞÑ ωppωq. By (2.2), P is an i.i.d. product measure on Ω.

2.2. Path spaces and order relations. A path πm:n “ pπiq
n
i“m of points in Z2 is called up-right

if it only takes steps in te1, e2u, meaning πi`1 ´ πi P te1, e2u for all integers i P Jm,n ´ 1K. This
definition extends naturally to semi-infinite and bi-infinite up-right paths. Paths are indexed by
antidiagonal levels, that is, πi ¨ pe1 ` e2q “ i for all i in the relevant range.

The symbol o denotes the index of the point of origin of a path: γo is the first point of γ,
regardless of the actual index. When u ď v are points on a path γ, γu:v is the segment of γ from
u to v, including the endpoints u and v. Then γγm:γn is abbreviated by γm:n. If m is an index and
u P γ, then mixtures γm:u and γu:m are also entirely unambiguous.

For ℓ P Z and u P Z2 with u ¨ pe1 ` e2q “ ℓ, Xu denotes the space of semi-infinite up-right paths
on Z2 that start at u. This path space is compact in the product-discrete topology, which can
be metrized by dpγ, πq “

ř8
i“ℓ 2

´pi´ℓ`1q1tγi‰πiu
. X “

Ť

uPZ2 Xu is the space of all up-right lattice
paths.

We use ĺ to denote southeast type partial order relations on various spaces. Our convention is
then that b ľ a means a ĺ b, a ň b means a ĺ b but a ‰ b, and b ŋ a means a ň b.

For h, h1 P R2, h ĺ h1 means h ¨ e1 ď h1 ¨ e1 and h ¨ e2 ě h1 ¨ e2. In particular, the simplex
re2, e1s “ tpt, 1 ´ tq P R2 : 0 ď t ď 1u of direction vectors is ordered so that ζ ĺ η if and only if
ζ ¨ e1 ď η ¨ e1.

An asymptotic version of southeast ordering is defined for semi-infinite up-right paths π, γ P X
as follows: γk:8 ĺa πℓ:8 means that πℓ:8 is eventually weakly to the right of γk:8. Equivalently,
there exists an integer m ě k_ ℓ such that γn ĺ πn for all integers n ě m. If there exists an integer
m ě k _ ℓ such that γn “ πn for all n ě m, then these paths coalesce, abbreviated by γk:8 & πℓ:8.
Equivalently, γk:8 ĺa πℓ:8 and γk:8 ĺa πℓ:8.

For B,B1 P RZ2
, B ĺ B1 means Bpx, x` e1q ě B1px, x` e1q and Bpx, x` e2q ď B1px, x` e2q for

all x P Z2.
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These partial order relations turn out to be total order relations and will happen to be all
consistent with each other when we use them on the spaces we study (the super-differential of the
shape function, semi-infinite geodesic trees, and recovering cocycles).

2.3. Last-passage percolation. Given weights ω “ pωxqxPZ2 P RZ2
and two distinct points u ď v

(coordinatewise) in Z2, let

Lu,v “ max
!

ÿ

xPπztvu

ωx : π is up-right from u to v
)

.

A maximizing path in the above is called a point-to-point geodesic (from u to v). The rightmost
geodesic π from u to v is the unique geodesic between the two points that is to the right of any
other geodesic from u to v: if γ is another geodesic, then γ ĺ π.

A semi-infinite geodesic, starting at u P Z2 with m “ u ¨ pe1 ` e2q, is a path π with πm “ u,
πi`1 ´ πi P te1, e2u for all integers i ě m, and such that πk:ℓ is a geodesic from πk to πℓ, for any
pair of integers ℓ ą k ě m. The semi-infinite geodesic is said to be locally-rightmost if each finite
segment is the rightmost geodesic between its endpoints.

When π and γ are both locally-rightmost geodesics that start at the same point πo “ γo, π ĺa γ
is equivalent to π ĺ γ.

For u P Z2 and m P Z with m ě k “ u ¨ pe1 ` e2q let Gω
u,m denote the set of rightmost geodesics

that start at u and end at some x P u ` Z2
` with m “ x ¨ pe1 ` e2q ě k. The set of semi-infinite

up-right paths πk:8 that start at πk “ u and satisfy πk:m P Gω
u,m for all m P Zěk is denoted by

Gω
u . This is the set of all locally-rightmost semi-infinite geodesics started at u. A discussion of

measurability of Gω
u appears in Appendix A. It is immediate from the definition that

(2.6) u ` GTuω
0 “ Gω

u for all u P Z2 and ω P Ω.

The (deterministic) uniqueness of finite rightmost geodesics implies that Gω
u is a tree. Therefore,

we will hereafter refer to a locally-rightmost semi-infinite geodesic as a geodesic ray. There are two
trivial geodesic rays in Gω

u given by u ` Z`e1 and u ` Z`e2. That these are always geodesic rays
follows from the path structure.

The uniqueness of rightmost point-to-point geodesics implies that ĺ is a total order on Gω
u .

Precisely, the following three facts hold for each pair of geodesics π and γ in Gω
u :

π ĺ γ ĺ π is equivalent to π “ γ.(2.7)

If π ň γ then π and γ separate at some point and never intersect again.(2.8)

Exactly one of π ň γ, π ŋ γ and π “ γ holds.(2.9)

2.4. Limit shape. By the shape theorem [29], there exists a shape function g : R2
` Ñ R such that

with P-probability one

(2.10) lim
nÑ8

max
x PZ2

`: |x|1“n

|L0,x ´ gpxq|

n
“ 0.

g is symmetric, concave, and positively homogeneous of degree one. Homogeneity implies g is
determined by its restriction to U “ re2, e1s.

The super-differential of g at ξ P R2
` is

(2.11) Bgpξq “ th P R2 : gpζq ´ gpξq ď h ¨ pζ ´ ξq for all ζ P R2
`u.

By homogeneity, Bgpξq “ Bgpcξq for any c ą 0. Thus Bgp‚q is also determined by points on U .
Concavity implies the existence of one-sided derivatives at relative interior points ξ P riU :

∇gpξ˘q ¨ e1 “ lim
εŒ0

gpξ ˘ εe1q ´ gpξq

˘ε
and ∇gpξ˘q ¨ e2 “ lim

εŒ0

gpξ ¯ εe2q ´ gpξq

¯ε
.
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By [20, Lemma 4.7(c)] differentiability of g at ξ P riU is the same as ∇gpξ`q “ ∇gpξ´q. More
generally, these values are the extreme points of the convex set Bgpξq.

In addition to the shape theorem mentioned above, a contribution of Martin [29] shows a certain
universal behavior of the limit shape in planar last-passage percolation with i.i.d. weights near
the coordinate axis boundaries. In particular, this result implies that the limit shape must have
infinitely many faces and that Bgpe1q “ Bgpe2q “ H. These facts are often critically important
in non-triviality arguments and this is the primary reason why we must assume the weights are
i.i.d. in (2.2).

Remark 2.1. The result of [29] mentioned above has a slightly weaker moment assumption than
in (2.2). The existence result in [21] recorded below as Theorem 2.7 also relies on a variational
characterization of the limit shape from [14], which requires this stronger moment hypothesis. △

An important index set for Busemann functions is the total superdifferential of the shape func-
tion, denoted by

BgpUq “ th P R2 : there exists ξ P U with h P Bgpξqu.(2.12)

In the sequel, we will call elements of this set tilts.

2.5. Recovering cocycles and Busemann functions.

Definition 2.2. A function A : Z2 ˆ Z2 Ñ R is a cocycle if

△(2.13) Apx, yq ` Apy, zq “ Apy, zq for all x, y, z P Z2.

Definition 2.3. Given real weights ω “ pωxqxPZ2 P RZ2
, a function A : Z2 Ñ R is said to recover

the weights ω if it satisfies the following recovery property:

△(2.14) Apx, x ` e1q ^ Apx, x ` e2q “ ωx for all x P Z2.

Given a recovering cocycle A, a semi-infinite up-right path π is called an A-geodesic in weights
ω if it satisfies

Apu, vq “ Lu,vpωq.(2.15)

for all u ď v on π. Such a path is always a geodesic in weights ω because for any other up-right
path pxiq

n
i“m from u to v,

n´1
ÿ

i“m

ωxi ď

n´1
ÿ

i“m

Aπpxi, xi`1q “ Aπpu, vq “ Lu,vpωq.

By Theorem B.1 in Appendix B, under (2.2), there exists an event Ω0 P S of full P-probability
on which, for every non-trivial geodesic ray π, the limits

(2.16) Aπpω, x, yq “ lim
nÑ8

pLx,πnpωq ´ Ly,πnpωqq

define a recovering cocycle. This is the definition originally introduced by Busemann [4] in metric
geometry. Thus, Aπ is called the Busemann function generated by π.

The definition of Aπ implies that (2.15) holds for any v ě u on π. Therefore, π is always an
Aπ-geodesic.

The fact that Lx`z,y`zpωq “ Lx,ypTzωq gives that if π is a semi-infinite geodesic in the weights
Tzω then z ` π “ pz ` u : u P πq is a semi-infinite geodesic in the weights ω and

Az`πpω, x ` z, y ` zq “ AπpTzω, x, yq.(2.17)

Lemma B.3 states that, P-almost surely, for any nontrivial γ ĺ π in Gω, Aγ ĺ Aπ. Consequently,
if γ & π, then Aγ “ Aπ.
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2.6. Generalized Busemann functions and the Busemann process. The last observation
motivates restricting attention to objects which are shift covariant.

Definition 2.4. A measurable function pB : pΩ ˆ Z2 Ñ R is shift-covariant if for pP-almost every pω,

pBppω, x ` z, y ` zq “ pBp pTzpω, x, yq for all x, y, z P Z2.(2.18)

It is said to be L1ppΩ, pS, pPq if

△(2.19) pEr| pBpx, yq|s ă 8 for all x, y P Z2.

The main objects that we consider in this work are shift covariant, recovering, L1 cocycles, which
we call generalized Busemann functions.

Definition 2.5. A shift-covariant L1ppΩ, pS, pPq recovering cocycle is an L1ppΩ, pS, pPq shift-covariant

measurable function pB : pΩ ˆ Z2 Ñ R that is pP-almost surely a recovering cocycle. The space of

shift-covariant L1ppΩ, pS, pPq recovering cocycles is denoted by pK. Such objects are called generalized
Busemann functions. △

For pB P pK define the random 2-vector hp pBq “ hp pB, pωq P R2 via

hp pBq ¨ ei “ ´pEr pBp0, eiq | pIs, i P t1, 2u.(2.20)

By [21, Theorem 4.4] (see [20, Theorem B.3] for the details), for pP-a.e. pω,

lim
nÑ8

n´1 max
|x|1ďn

| pBppω, 0, xq ` hp pB, pωq ¨ x| “ 0.(2.21)

We have the following lemma connecting generalized Busemann functions to the superdifferential
of the shape function. Recall the set BgpUq defined in (2.12).

Lemma 2.6. [21, Lemma 4.5] A generalized Busemann function pB P pK has the following properties:

(a) ´hp pBq takes values in BgpUq, pP-almost surely.

(b) If ´pErhp pBqs P Bgpξq for some ξ P U , then ´hp pBq P Bgpξq pP-almost surely.

(c) If ´pErhp pBqs P t∇gpξ`q,∇gpξ´qu for some ξ P U , then hp pBq “ pErhp pBqs pP-almost surely.
△

As mentioned in the introduction, under some additional hypotheses on the weights, it is known
from the results of [6, 31] that for each h P ´BgpUq, there is at most one distribution of a generalized

Busemann function with the property that pPthp pBq “ hu “ 1.
Existence of stationary queueing fixed points for the tandem queueing model connected to the

general i.i.d. weight corner growth model was originally established by Mairesse and Prabhakar [28]
under the assumption that the weights are bounded from below with ą 2 moments, but phrased
in queueing language. These were used to generate generalized Busemann functions for the corner
growth model in [16]. Connections to geodesics were explored in [15]. [21] subsequently removed
the boundedness below requirement for existence. By monotonicity, these constructions also build a
Busemann process on the extended space. This is a covariant, recovering cocycle-valued stochastic
process indexed by ´BgpUq ˆ t`,´u as described by the next theorem.

Theorem 2.7. [21, Theorem 4.7] There exists a probability space ppΩ, pS, pPq, equipped with an addi-

tive group of continuous bijections pT “ t pTx : x P Z2u and satisfying the hypotheses of Section 2.1,
on which there exists a stochastic process

p pBh�px, yq : x, y P Z2, h P ´BgpUq, � P t`,´uq(2.22)

with the following properties:



8 C. JANJIGIAN, F. RASSOUL-AGHA, AND T. SEPPÄLÄINEN

(a) (No ˘ distinction at fixed h) For each h P ´BgpUq,

pPp pBh´px, yq “ pBh`px, yqq “ 1.

When pBh´ppω, x, yq “ pBh`ppω, x, yq, call the common value pBhppω, x, yq.

(b) (Generalized Busemann function) For each h P ´BgpUq, pBh P pK.

(c) (Mean ´h) For each h P ´BgpUq, pEr pBp0, eiqs “ ´h ¨ ei.

(d) (Monotonicity) For h, h1 P ´BgpUq with h ¨ e1 ď h1 ¨ e1, all x P Z2, and pP almost every pω

pBh´px, x ` e1q ě pBh`px, x ` e1q ě pBh1´px, x ` e1q ě pBh1´px, x ` e1q

and

pBh´px, x ` e2q ď pBh`px, x ` e2q ď pBh1´px, x ` e2q ď pBh1´px, x ` fe2q.

(e) (Left-/right-continuity) For pP almost all pω, for all h P ´BgpUq,

pBh´px, yq “ lim
´BgpUqQh1Ñh
h1¨e1Õh¨e1

pBh˘px, yq and pBh´px, yq “ lim
´BgpUqQh1Ñh
h1¨e1Œh¨e1

pBh˘px, yq.

(f) (Backward independence) For any I Ď Z2, the random variables tωx, pB
h˘px, yq : y ě

x, x P I, h P ´BgpUqu are independent from the set of weights behind I, tωx : x is not ě

z, for all z P Iu. △

Remark 2.8. The Busemann process is also often indexed by directions. This indexing corresponds
to restricting the process to the subset of BgpUq given by the extreme points of each super-differential
interval, ´h P t∇gpξ�q, : ξ P U ,� P t`,´uu. In principle, it is possible that tilt-indexing gives a
richer process if there exist directions of non-differentiability. If the shape is differentiable, as is
widely believed to be true in the setting of this work, then the two are equivalent. △

2.7. Shift-covariant systems of geodesic rays.

Definition 2.9. A random geodesic out of u P Z2 is a measurable mapping pπ : pΩ Ñ Xu such that

pPtpω : pπppωq P Gωppωq
u u “ 1. △

Definition 2.10. A system of random geodesics is a family of random geodesics tpπuppωq : u P Z2u

such that for each u P Z2, pπu is a random geodesic out of u.
The system is coalescing if

pP
␣

@u, v P Z2 : pπuppωq & pπvppωq
(

“ 1.

The system is said to be shift-covariant if, pP-almost surely,

pπuppωq “ u ` pπ0p pTupωq for u P Z2.

pΠc denotes the set of shift-covariant coalescing systems of random geodesics. △

Remark 2.11. [1] refers to what we call a shift-covariant system of coalescing geodesics as random
coalescing geodesics. We use this slightly different terminology because in last-passage percola-
tion, it has been proven that there exist random systems of coalescing geodesics which are not
shift-covariant. For example, the system of rightmost geodesics in the exponential last-passage per-
colation going in the direction of the competition interface rooted at the origin. See [23, Theorem
3.11]. A similar statement can be expected to hold in first-passage percolation as well. △

Any shift-covariant system of random geodesics can be generated by the member emanating
from 0. Conversely, every random geodesic pπ out of 0 generates a shift-covariant system of random
geodesics pπu, u P Z2, defined by

(2.23) pπuppωq “ u ` pπp pTupωq P Gωppωq
u for u P Z2.
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With this notation, pπ0 “ pπ. We will abbreviate tpπu : u P Z2u by writing pπ ‚ .

For pB P pK and x P Z2 let pS
pB
x : pΩ Ñ te1, e2u be the pS-measurable random variable defined by

pS
pB
x ppωq “

#

e1 if pBppω, x, x ` e1q ď pBppω, x, x ` e2q,

e2 if pBppω, x, x ` e1q ą pBppω, x, x ` e2q.

Think of pS
pB “ tpS

pB
x : x P Z2u as placing arrows at the lattice sites so that x points to x ` pS

pB
x ppωq.

For u P Z2 let ϕ
pB,uppωq denote the path that starts at u and follows the arrows given by pS

pBppωq.

For pP-almost every pω, these paths satisfy (2.15) for A “ pBppωq. Therefore, these are semi-infinite
geodesics in the LPP model with weights ωppωq. We know from [15, Lemma 4.1] that these are

also, pP-almost surely, locally-rightmost semi-infinite geodesics, that is, ϕ
pB,uppωq P Gωppωq

u . Therefore,

we refer to ϕ
pB,uppωq as the pB-geodesic (ray) out of u. pS

pB is a measurable way to encode all the

(locally-rightmost) semi-infinite pB-geodesics.

The shift-covariance of pB gives, pP-almost surely, pS
pB
x p pTzpωq “ pS

pB
x`zppωq for all x, z P Z2, and hence

ϕ
pB,u`zppωq “ z ` ϕ

pB,up pTzpωq.(2.24)

Lemma A.4 in the appendix says that

(2.25) pP
␣

pω : ϕ
pB,uppωq R tu ` Z`e1, u ` Z`e2u

(

“ 1.

Definition 2.12. Given a shift-covariant L1ppΩ, pS, pPq recovering cocycle pB we say that it has

coalescing geodesic rays if ϕ
pB,uppωq & ϕ

pB,vppωq for all u, v P Z2 and pP-almost all pω. Denote the space

of shift-covariant L1ppΩ, pS, pPq recovering cocycles with coalescing geodesic rays by pKc. △

We introduce analogous notation on the canonical space pΩ,F ,Pq.

Definition 2.13. Let K be the space of T -covariant L1pΩ,F ,Pq recovering cocycles. Let Kc Ă K
be the subspace of cocycles that have coalescing geodesics. A cocycle B P K is said to be forward
measurable, if for any u P Z2 and any x, y P u`Z2

`, Bpx, yq is F`
u -measurable. Let K` Ă K be the

subspace of cocycles that are forward measurable and let K`
c “ Kc X K`. △

2.8. Main results. Our first result is strong existence of Busemann functions.

Theorem 2.14. Let pB P pKc and h “ pErhp pBqs. Assume that pPthp pBq “ hu “ 1. Then there exists

a forward measurable cocycle B P K`
c such that pBppωq “ Bpωppωqq, pP-almost surely. △

The second result is strong uniqueness.

Theorem 2.15. Let B1, B2 P Kc. Assume hpB1q “ hpB2q. Then B1 “ B2, P-almost surely. △

With those in mind, we are now ready to construct the tilt-indexed Busemann process on the
canonical space Ω. Let

H “ thpBq : B P Kcu.(2.26)

denote the collection of tilts associated to covariant recovering cocycles with coalescing geodesics
which are defined on Ω. Because P is ergodic, hpBq is non-random for each B P Kc. Recall from

Lemma 2.6 that ´pErhp pBqs P t∇gpξ`q,∇gpξ´qu for some ξ P U is also sufficient for a non-random

tilt: hp pBq “ pErhp pBqs pP-almost surely. Applying Theorem 2.14 to the cocycles from Theorem 2.7
and recalling part (i) of Lemma 2.6, we see that

t´∇gpξ�q : ξ P U ,� P t`,´uu Ă H Ă ´BgpUq(2.27)
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Remark 2.16. If g is differentiable, as is widely expected under assumption (2.2), both inclusions in
(2.27) are equalities. As mentioned in Remark 2.8, if directions of non-differentiability exist, then
the associated super-differential is a line segment. If an interior tilt exists which is associated to

an ergodic cocycle (i.e. an element of pS with hp pBq deterministic), then the first inclusion is strict.
The second inclusion is an equality if and only if every tilt is associated to an ergodic cocycle, i.e.,
if there are no gaps in H. Brito and Hoffman [3] give an example of an ergodic FPP model where
there are only four semi-infinite geodesics on the entire lattice, which provides an example where
gaps in the associated H exist. △

The index set of the tilt-indexed Busemann process on Ω will be H ˆ t´,`u. The process is
obtained by taking left and right limits of an appropriate countable set of elements in Kc.

Theorem 2.17. There exists a stochastic process

pBh�px, yq : x, y P Z2, h P H, � P t`,´uq(2.28)

on pΩ,F ,Pq with the following properties:

(a) (No ˘ distinction at fixed h) For each h P H,

PpBh´px, yq “ Bh`px, yqq “ 1.

When Bh´pω, x, yq “ Bh`pω, x, yq, call the common value Bhpω, x, yq.

(b) (Forward measurable Busemann function) For each h P H, Bh P K`
c .

(c) (Mean ´h) For each h P H, ErBhp0, eiqs “ ´h ¨ ei.

(d) (Monotonicity) For h, h1 P H with h ¨ e1 ď h1 ¨ e1, all x P Z2, and P almost every ω

Bh´px, x ` e1q ě Bh`px, x ` e1q ě Bh1´px, x ` e1q ě Bh1´px, x ` e1q

and

Bh´px, x ` e2q ď Bh`px, x ` e2q ď Bh1´px, x ` e2q ď Bh1´px, x ` e2q.

(e) (Left-/right-continuity) For P almost all ω, for all h P H,

Bh´px, yq “ lim
HQh1Ñh

h1¨e1Õh¨e1

Bh˘px, yq and Bh´px, yq “ lim
HQh1Ñh

h1¨e1Œh¨e1

Bh˘px, yq.

Moreover, this process is unique in the sense that any two processes satisfying the above conditions
are equal almost surely. △

Remark 2.18. If one instead wishes to work with the (potentially) smaller direction-indexed Buse-
mann process coming from restricting to t´∇gpξ˘q : ξ P Uu Ă H, strong uniqueness of the process
still holds. △

Remark 2.19. The shift-covariance implicitly contained in part (b) of Theorem 2.17 is inherited by
the full process. In particular, we have that

pB
‚
px, yq : x, y P Z2q ˝ Tz “ pB

‚
pz ` x, z ` yq : x, y P Z2q

P almost surely. △

As a consequence of the above observation and the fact that P is an i.i.d. measure on Ω “ RZ2
,

we have strong mixing of the process.

Corollary 2.20. Call B ‚
“ pB ‚

px, yq : x, y P Z2q and let T P tTz : z ‰ 0u. Then B ‚ is strongly
mixing under T . Explicitly, this means that for all events A P F and Borel C,

lim
nÑ8

PpA,B
‚

˝ Tn P Cq “ PpAqPpB
‚

P Cq. △
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3. Strong existence and uniqueness of generalized Busemann functions

The main aim of the first part of this section is to start with a given generalized Busemann

function on pΩ with coalescing geodesics, pB P pKc, construct anS-measurable version of its coalescing

geodesics, and subsequently use this to obtain an S-measurable version of pB itself. While one
could try to rely on general measure-theoretic techniques (e.g., sections) to produce a system
of coalescing geodesics—similar to the approach used in [21, Theorem 3.2] to establish the P-a.s.
existence of directed geodesics after proving their pP-a.s. existence—the challenge lies in maintaining
shift-covariance across all Txω.

The basic idea, following a similar construction in [1], is to apply a variant of the classical inverse

CDF sampling method to the conditional distribution on the path space of a pB-geodesic ray rooted
at u, given S. Because the path space is totally ordered, we can define quantile functions and this
method works essentially the same way for real random variables. The outcome is a process of
random geodesics which is shift-covariant by construction. We then show that under appropriate

hypotheses on pB, this process is essentially constant and defines a family of coalescing geodesics,

which then generate a Busemann function that is equal to pB almost surely. Strong uniqueness
comes from showing that there is a total ordering on such objects indexed by the tilt vector and so
in particular any two generalized Busemann functions with the same deterministic tilt vector must
be equal. Extending these properties to the full process is essentially immediate from monotonicity.

We begin with left- and right-isolated geodesics. These play a central role in the argument.

3.1. Isolated geodesics. Since Gω
u is totally ordered and compact, it has the greatest lower bound

and least upper bound properties. For u P Z2, let m “ u ¨ pe1 ` e2q and define these collections of
semi-infinite geodesics rooted at u:

(3.1)

LIωu “
ď

σm:n up-right, nPZěm

DπPGω
u :πm:n“σm:n

␣

inftπ P Gω
u : πm:n “ σm:nu

(

and

RIωu “
ď

σm:n up-right,nPZěm

DπPGω
u :πm:n“σm:n

␣

suptπ P Gω
u : πm:n “ σm:nu

(

.

Note that the conditions in the unions above and the geodesic rays appearing in (3.1) (e.g. suptπ P

Gω
u : πm:n “ σm:nu for some finite up-right path σm:n with σm “ u) are S`

u -measurable, because
they can be constructed inductively from the arrows Si

u,xpωq described at the beginning of Appendix
A.

A non-trivial geodesic ray λ P Gω
u is left-isolated if it is not a limit of members of Gω

u from the
left, equivalently, λ ŋ suptγ P Gω

u : γ ň λu. Analogously, a non-trivial ρ P Gω
u is right-isolated if

ρ ň inftγ P Gω
u : γ ŋ ρu. A non-trivial ray is right-isolated if and only if it is in RIωu and it is

left-isolated if and only if it is in LIωu . To see this, take a non-trivial left-isolated ray λ and consider
the first index n at which λ differs from the supremum of rays strictly less than it. Then λ is the
infimum of all geodesic rays which contain the segment λu:n. The right-isolated case is similar.
Note also that RIωu is right-dense in Gω

u and LIωu is left-dense in Gω
u .

Let

Gω “
ď

uPZ2

Gω
u

be the collection of all geodesic rays from all starting points.
On the union Gω, π ĺa γ and γ ĺa π happen together if and only if π & γ. In this situation,

after their first meeting the two remain together, again by virtue of the uniqueness of rightmost
point-to-point geodesics.
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3.2. Strong existence. Let νω denote the conditional distribution on ppΩ, pSq given S. Recall the
countable right-dense set of S`

u -measurable right-isolated geodesics RIωu Ă Gω
u , defined in (3.1), and

note that by definition RITzω
u “ RIωu`z for all u, z P Z2.

For u P Z2 and s P Q X r0, 1s, define an S-measurable geodesic ray π
pB,u,s P Gω

u via

π
pB,u,sppωq “ inf

␣

ρ P RIωppωq
u : νωppωqpϕ

pB,u ĺ ρq ě s
(

.(3.2)

The set in (3.2) is not empty because it contains the trivial geodesic u`Z`e1. We took the infimum

in (3.2) over the countable set RI
ωppωq
u to ensure measurability. We verify that this expression is

measurable in Corollary A.2 below.
Extend this definition to s P r0, 1s by setting

π
pB,u,sppωq “ sup

␣

π
pB,u,rppωq : r P Q X r0, 1s, r ă s

(

.(3.3)

In Lemma 3.1(a), we show that (3.2) and (3.3) agree on rational s. In Lemma 3.1(c), we show that

the infimum can be taken over the uncountable tree Gωppωq
u for any s P r0, 1s.

Denote by π
pB,u,‚ the process

`

π
pB,u,s : s P r0, 1s

˘

, defined through (3.3). Since Gω
u is closed, we

have, for pP-almost every pω, π
pB,u,sppωq P Gωppωq

u for all s P r0, 1s. In the statement of the next result,
DLCRLpr0, 1s,Xuq and DLCRLpr0, 1s,Gω

u q are Skorokhod spaces of left-continuous paths with right
limits (see [10, Section 3.5] for a definition of the Skorokhod topology) taking values in the compact
metric spaces Xu and Gω

u , respectively.

In what follows, the phrase “for pP-almost every pω” means the existence of an pS-measurable

event of full pP-measure such that the stated property holds for each pω in this event. By taking

intersections with all shifts by t pTx : x P Z2u, this event can without loss of generality be assumed
to be shift invariant.

Lemma 3.1. For each pB P pK, the process π
pB,u,‚ satisfies the following properties:

(a) For pP-almost every pω, the definition in (3.3) agrees with (3.2) for rational s, so π
pB,u,‚

ppωq

is well-defined.

(b) pω ÞÑ π
pB,u,‚

ppωq is an S-measurable, DLCRLpr0, 1s,Xuq-valued random variable which almost

surely takes values in DLCRLpr0, 1s,Gωppωq
u q.

(c) For pP-almost every pω and all s P r0, 1s,

π
pB,u,sppωq “ inf

␣

γ P Gωppωq
u : νωppωqpϕ

pB,u ĺ γq ě s
(

.(3.4)

Consequently, π
pB,u,rppωq ĺ π

pB,u,sppωq for r ď s in r0, 1s.

(d) For pP-almost every pω and all γ P Gωppωq
u ,

␣

s P r0, 1s : π
pB,u,sppωq ĺ γ

(

“
“

0, νωppωqpϕ
pB,u ĺ γq

‰

.(3.5)

(e) For pP-almost every pω, all u, z P Z2, and all s P r0, 1s,

△(3.6) π
pB,u`z,sppωq “ z ` π

pB,u,sp pTzpωq.

Proof. First note that if r ă s and both are rational, then using definition (3.2), we have π
pB,u,r ĺ

π
pB,u,s. Monotonicity and the fact that Gω

u has the least upper bound and greatest lower bound
properties imply the existence of left and right limits of these paths, which lie in Gω

u Ă Xu.
We check that (3.4) holds for rational s, with the definition in (3.2). For such s, we have

π
pB,u,s “ inf

␣

ρ P RIωu : νωpϕ
pB,u ĺ ρq ě su ľ inf

␣

γ P Gω
u : νωpϕ

pB,u ĺ γq ě s
(

“ rπs,



STRONG EXISTENCE AND UNIQUENESS OF THE BUSEMANN PROCESS IN CGM 13

because the set in the infimum on the left is a subset of the one on the right. Continuity of
probability implies that

νωpϕ
pB,u ĺ rπsq ě s.(3.7)

Either rπs P RIωu , in which case we have rπs “ π
pB,u,s, or there exists a sequence ρn P RIωu with

ρn Œ rπs. But then we must have νωpϕ
pB,u ĺ ρnq ě s by monotonicity, which implies that π

pB,u,s ĺ

inftρn : n P Nu “ rπs and again rπs “ π
pB,u,s.

Next, observe that if s is any number in r0, 1s for which (3.4) holds, then for all γ P Gω
u

π
pB,u,s ĺ γ ðñ s ď νωpϕ

pB,u ĺ γq.(3.8)

ð comes from (3.4) and ñ comes from (3.7) and that rπs “ π
pB,u,s
0:8 . In particular, since we showed

above that (3.4) holds for all rational s P r0, 1s, we now know that (3.8) holds for all such s.

With this observation in mind, we check that the process π
pB,u,‚ is well-defined, i.e., that with

the definition in (3.2), we have left-continuity over the rational s P r0, 1s. For s P r0, 1s, call

πs “ sup
␣

π
pB,u,r : r ă s, r P Q X r0, 1s

(

.

The monotonicity observed at the beginning of the proof implies that if s P r0, 1s is rational, then

πs ĺ π
pB,u,s. On the other hand, from νωpϕ

pB,u ĺ πsq ě νωpϕ
pB,u ĺ π

pB,u,rq ě r for all rational

r with r ă s, we see that νωpϕ
pB,u ĺ πsq ě s, which implies π

pB,u,s ĺ πs by (3.8). This is
left-continuity on the rationals and part (a) follows.

The definition (3.3) is left-continuous with right limits by construction and monotonicity on the

rationals. S-measurability then follows from the fact that the path π
pB,u,‚ is determined by the

values of π
pB,u,s defined according to (3.2) for s P Q X r0, 1s, the S`

u -measurability of the paths in
RIωu , and the S-measurability of νω. Part (b) is proved.

Next, we show that (3.4) holds also for irrational s. For s irrational, we denote the infimum
in (3.4) by rπs, similarly to what was done above. Arguing exactly as above, by continuity of

probability, we have νωpϕ
pB,u ĺ rπsq ě s. Since we already proved (3.4) for rationals, we get that

for all r rational with r ă s, π
pB,u,r ĺ rπs. Then by (3.3), π

pB,u,s ĺ rπs.

On the other hand, we already showed that νωpϕ
pB,u ĺ π

pB,u,rq ě r holds for all rational r P r0, 1s.

Hence, νωpϕ
pB,u ĺ π

pB,u,sq ě νωpϕ
pB,u ĺ π

pB,u,rq ě r for all rational r ă s, which implies that

νωpϕ
pB,u ĺ π

pB,u,sq ě s and so the reverse inequality π
pB,u,s ľ rπs also holds. Part (c) is proved,

which in turn implies that (3.8) holds for all s P r0, 1s and proves part (d).
We verify (e) using (3.4) for each s. First, we note that by definition, γ P Gω

u if and only if

z ` γ P GT´zω
u`z , where the addition is understood as the translation pz ` γqi “ z ` γi. Similarly, for

γ P Xu`z, the shift covariance of pB in (2.18) implies that pT´ztpω : ϕ
pB,u`zppωq ĺ γu “ tpω : ϕ

pB,uppωq ĺ

γ ´ zu. Changing variables by γ1 “ γ ´ z, we deduce part (e):

π
pB,u`z,sp pT´zpωq “ inf

␣

γ P Gωp pT´zpωq

u`z : νωp pT´zpωqpϕ
pB,u`z ĺ γq ě s

(

“ z ` inf
␣

γ1 P Gωppωq
u : νωppωqpϕ

pB,u ĺ γ1q ě s
(

“ z ` π
pB,u,sppωq. □

Note that there is no dependence in π
pB,u,s on pω through the superscript pB. The pB in the

superscript is just to remind us that if we use a different cocycle we get a different path. Due to

the S-measurability in Lemma 3.1(b), instead of π
pB,u,s
0:8 ppωq we write π

pB,u,spωppωqq and frequently

simplify it further to π
pB,u,spωq because now these paths can be regarded as functions of either

pω P pΩ or ω P Ω.
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Example 3.2. Suppose that the conditional distribution νωtpxu,
pB

0:8 P ¨u is supported on finitely many

distinct geodesics π1 ň π2 ň ¨ ¨ ¨ ň πm with ak “ νωtϕ
pB,u “ πku, b0 “ 0, and bk “ a1 ` ¨ ¨ ¨ ` ak, for

k P t1, . . . ,mu. Then

νωtϕ
pB,u ĺ γu “

$

’

&

’

%

0, if γ ň π1,

bk, if πk ĺ γ ň πk`1 for 1 ď k ă m, and

1, if γ ľ πm
0:8.

Thus, for s P r0, 1s,

π
pB,u,s “ inf

␣

γ P Gω
u : νωpϕ

pB,u ĺ γq ě s
(

“

#

u ` Z`e2 if s “ 0 and

πk if bk´1 ă s ď bk for k P t1, . . . ,mu.
△

Recall that L is the Lebesgue measure on r0, 1s, but we write integrals with respect to this

measure using the standard notation
ş1
0 fpsq ds.

Lemma 3.3. Fix pB P pK and u P Z2 and define π
pB,u,‚ as in Lemma 3.1. Equip Ω ˆ Xu with the

product Borel σ-algebra. The distribution on Ω ˆ Xu of pωppωq, ϕ
pB,uppωqq under pPpdpωq is the same

as the distribution of pω,π
pB,u,spωqq under Ppdωq b Lpdsq. △

Proof. To prove the lemma, it suffices to show that for all A P BpXuq and V P F ,

pPpω P V, ϕ
pB,u P Aq “

ż 1

0
Ppπ

pB,u,s P A, V q ds.

For this to hold, it is sufficient to consider A of the form A “ tγ P Xu : γ ĺ πu for fixed π P Xu

because the collection of sets of this form is closed under intersections and generates BpXuq. See
Lemma A.3.

Fix π P Xu. We then have

pPpω P V, ϕ
pB,u ĺ πq “ pE

“

νωpϕ
pB,u ĺ πq1V pωq

‰

“ E
“

νωpϕ
pB,u ĺ πq1V pωq

‰

.

Call γω “ suptλ P LIωu : λ ĺ πu P Gω
u . Then γω is S`

u -measurable and the set inside the supremum
is non-empty (as it always contains u ` Z`e2). Moreover, for any ρ P Gω

u , ρ ĺ γω if and only if
ρ ĺ π.

Working on the P-almost sure event where νωpϕ
pB,u P Gω

u q “ 1, we may write

νωpϕ
pB,u ĺ πq “ νωpϕ

pB,u ĺ γωq.

By Lemma 3.1(d) and the Fubini-Tonelli theorem, we have

E
“

νωpϕ
pB,u ĺ πq1V pωq

‰

“ E
“

νωpϕ
pB,u ĺ γωq1V pωq

‰

“ E
”

ż 1

0
1V pωq1tπ

pB,u,s ĺ γωu ds
ı

“

ż 1

0
Ppπ

pB,u,s ĺ γω, V q ds.

For each s, restricting to the P-almost sure event on which π
pB,u,s P Gω

u , this last expression is equal
to

ż 1

0
Ppπ

pB,u,s ĺ π, V q ds.

The result now follows. □

Next we narrow the assumptions to include coalescence of pB-geodesics. In the statement of the
next result, for u, v P Z2, we say that pπ, γq P Gω

u ˆ Gω
v is a coalescing pair if π & γ.
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Lemma 3.4. Fix pB P pKc. Then with π
pB,u,‚ and π

pB,v,‚ defined as in Lemma 3.1, for P-almost
every ω, for any u, v P Z2, and for all coalescing pairs pπ, γq P Gω

u ˆ Gω
v ,

␣

s P r0, 1s : π
pB,u,spωq ĺ π

(

“
␣

s P r0, 1s : π
pB,v,spωq ĺ γ

(

.(3.9)

△

Proof. By pB P pKc and Fubini’s theorem, the event pΩ1 “ tpω : νωpϕ
pB,u & ϕ

pB,vq “ 1u has pP-
probability one. Let pΩ2 be the intersection of pΩ1 with the full pP-probability event in Lemma

3.1(d). Take ω P pΩ2. Then for any u, v P Z2, pπ, γq P Gω
u such that π & γ, we have

νωpϕ
pB,v ĺ γq ´ νωpϕ

pB,u ĺ πq ď νωpϕ
pB,u ŋ π, ϕ

pB,v ĺ γq ď 1 ´ νωpϕ
pB,u & ϕ

pB,vq “ 0

and

νωpϕ
pB,u ĺ πq ´ νωpϕ

pB,v ĺ γq ď νωpϕ
pB,u ĺ π, ϕ

pB,v ŋ γq ď 1 ´ νωpϕ
pB,u & ϕ

pB,vq “ 0.

Thus, νωpϕ
pB,u ĺ πq “ νωpϕ

pB,v ĺ γq. Lemma 3.1(d) then gives (3.9) for all pω P pΩ2 and coalescing
π P Gω

u and γ P Gω
v . □

Lemma 3.5. Fix pB P pKc. For all u, v P Z2, with π
pB,u,‚ and π

pB,v,‚ defined as in Lemma 3.1,
ż 1

0
Ppπ

pB,u,s & π
pB,v,sq ds “ 1. △

Proof. Fix u, v P Z2. Using Lemma 3.3,

1 “ pPtϕ
pB,u & ϕ

pB,v u ď pP
␣

pω : Dπ P Gωppωq
v s.t. π & ϕ

pB,u
(

“

ż 1

0
P
␣

ω : Dπ P Gω
v s.t. π & π

pB,u,s
(

ds.

By symmetry, switching the roles of u and v,

1 “

ż 1

0
P
␣

ω : Dπ P Gω
u s.t. π & π

pB,v,s
(

ds.

Thus there exists a measurable set D0 Ă Ω ˆ p0, 1s such that P b LpD0q “ 1 and @ps, ωq P D0:

(3.10) Dγ P Gω
v s.t. γ & π

pB,u,s and Dγ1 P Gω
u s.t. γ1 & π

pB,v,s.

By Lemma 3.4, there exists an event Ω0 P S with PpΩ0q “ 1 and on which (3.9) holds for all

coalescing pairs pπ, γq P Gω
u ˆGω

v . We claim that for ps, ωq P D0XpΩ0ˆp0, 1sq, π
pB,u,spωq & π

pB,v,spωq.

By (3.10) there is a coalescing pair pπ
pB,u,s, γq P Gω

u ˆ Gω
v . Then by (3.9), π

pB,v,s ĺ γ. Thus

π
pB,v,s ĺa π

pB,u,s. A symmetric argument gives π
pB,u,s ĺa π

pB,v,s. Hence, the two paths coalesce. □

Because geodesics proceed up-right in directed last-passage percolation, it is natural to expect
that a shift-covariant family of coalescing geodesics will be measurable with respect to the weights
ahead of the root. The next result records this fact if the weights are i.i.d. We phrase this result

on Ω, but an analogous statement holds on pΩ with F`
u replaced by S`

u if the geodesics are S
measurable.

Lemma 3.6. Let tπu : u P Z2u be a shift-covariant system of coalescing geodesics on Ω. Then for
each u P Z2, πu is F`

u -measurable up to sets of measure zero. △

Proof. Recall that we assumed the weights are i.i.d. in (2.2). Let Ppdω, drωq be the probability
measure on Ω2 that couples two copies of P as follows: rωx “ ωx if x P Z2

` and prωx : x R Z2
`q is

independent of pωx : x R Z2
`q with the same distribution.
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For every pω, rωq, Gω
0 “ Grω

0 and therefore π0pωq ĺ π0prωq or π0pωq ľ π0prωq. We claim that both
hold almost surely. To derive a contradiction, assume that Ptπ0pωq ‰ π0pω̃qu ą 0. By symmetry

Ptπ0pωq ň π0prωqu “ Ptπ0pωq ŋ π0prωqu ą 0.

Denote the two events in the above display by A and A1. By the ergodic theorem, for P-almost
every pω, rωq, Tke1pω, rωq P A occurs for infinitely many integers k and Tℓe1pω, rωq P A1 occurs for
infinitely many integers ℓ. Thus, for P-almost every pω, rωq, there exist integers k ă ℓ such that
Tke1pω, rωq P A and Tℓe1pω, rωq P A1. This implies that

πke1pωq ň πke1prωq & πℓe1prωq ň πℓe1pωq.

These inequalities prevent the coalescence πke1pωq & πℓe1pωq, thereby contradicting the assumption
that tπu : u P Z2u is a coalescing system of geodesics. Thus π0pωq “ π0prωq almost surely. It follows
from a standard measure theoretic fact (see e.g. Lemma A.2 in [25]) that this implies that there
exists a σpωx : x P Z2

`q measurable function F : Ω Ñ X0 so that π0pωq “ F pωq P-almost surely. □

Recall the definition (2.16). For s P p0, 1s define

Aspω, x, yq “ A
π pB,0,spωq

pω, x, yq.(3.11)

Lemma 3.7. Fix pB P pK. Suppose s P p0, 1s satisfies

P
`

@u, v P Z2 : π
pB,u,s & π

pB,v,s
˘

“ 1.(3.12)

Then As, defined by (3.11), is a shift-covariant recovering cocycle. For any u P Z2 and any
x, y P u ` Z2

`, A
spx, yq is F`

u -measurable, up to sets of P measure zero. △

Proof. That As is a recovering cocycle comes from Theorem B.1. The shift-covariance (3.6) and the

coalescence (3.12) imply that tπ
pB,u,s : u P Z2u is a shift-covariant system of coalescing geodesics.

By Lemma 3.6, π
pB,u,s is S`

u -measurable. Take u P Z2 and x, y P u ` Z2
`. Then L

x,π
pB,u,s
n

and

L
y,π

pB,u,s
n

are both S`
u -measurable (for n ě u ¨ pe1 ` e2q) and, consequently, so is A

π pB,u,spωq
pω, x, yq.

Lemma B.3 and the coalescence π
pB,u,s & π

pB,0,s implies

Aspω, x, yq “ A
π pB,u,spωq

pω, x, yq,(3.13)

for all x, y, u P Z2. Thus, we see that Aspω, x, yq is F`
u -measurable, for all x, y P u ` Z2

`.
(3.13) also implies the shift-covariance:

Aspω, x ` z, y ` zq “ A
π pB,z,spωq

pω, x ` z, y ` zq “ A
z`π pB,0,spTzωq

pω, x ` z, y ` zq

“ A
π pB,0,spTzωq

pTzω, x, yq “ AspTzω, x, yq,

where the first equality used (3.13) with u “ z, the second equality used the shift-covariance (3.6),
and the third equality used the shift-covariance (2.17). □

Lemma 3.8. Take pB P pKc. Then for pP-almost every pω and all u, x, y P Z2

△(3.14) A
ϕ pB,uppωq

pωppωq, x, yq “ pBppω, x, yq.

Proof. Since ϕ
pB,uppωq, ϕ

pB,xppωq, and ϕ
pB,yppωq all coalesce, there exists a z P Z2 that is on all three

geodesics. The recovery property gives that pBppω, x, zq “ Lx,zpωppωqq “ A
ϕ pB,xppωq

pωppωq, x, zq and

the coalescence of the geodesics gives A
ϕ pB,xppωq

pωppωq, x, zq “ A
ϕ pB,upωppωqq

pωppωq, x, zq. Similarly, we

have pBppω, y, zq “ A
ϕ pB,yppωq

pωppωq, y, zq “ A
ϕ pB,uppωq

pωppωq, y, zq. (3.14) now follows from the cocycle

property. □
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Lemma 3.9. Fix pB P pKc. The distribution of pωppωq, pBppωqq under pPpdpωq is the same as the
distribution of pω,Aspωqq under Ppdωq b Lpdsq. △

Proof. Apply Lemma 3.3 to the measurable mapping pω, γq ÞÑ pω,Aγpωqq to get that the distri-
bution of pω,A

π pB,u,spωqq under Ppdωq b Lpdsq is the same as that of pωppωq, A
ϕ pB,uppωq

pωppωqqq under

pPpdpωq . The claim then follows from (3.13) and (3.14). □

Given a shift-covariant L1ppΩ, pS, pPq recovering cocycle pB, recall the random vector hp pB, pωq defined
in (2.20). Note that if B P K, from the assumption that P is i.i.d., hpBq is a deterministic vector,
i.e. hpBq “ ErhpBqs, P-almost surely.

Lemma 3.10. Fix pB P pKc. Let h “ pErhp pBqs. Assume that pPtpω : hp pB, pωq “ hu “ 1. Then for
every s P p0, 1s, As P K`

c and hpAsq “ h, P-almost surely. Furthermore, Pt@s, t P p0, 1s : As “

Atu “ 1. △

Proof. By Lemmas 3.5 and 3.7 there exists a Borel set D1 Ă p0, 1s such that LpD1q “ 1 and for each
s P D1, A

s is a forward measurable shift-covariant recovering cocycle with coalescing geodesics.

The assumption hp pB, pωq “ h, identity (3.14), and the cocycle shape theorem (2.21) give for
pP-almost every pω

lim
|x|1Ñ8

|A
ϕ pB,0ppωq

pωppωq, 0, xq ` h ¨ x|

|x|1
“ 0.

Then Lemma 3.3 says that there exists a Borel set D2 Ă p0, 1s with LpD2q “ 1 and such that for
each s P D2,

P
!

lim
|x|1Ñ8

|A
π pB,0,spωq

pω, 0, xq ` h ¨ x|

|x|1
“ 0

)

“ 1.

Thus, for each s P D1 X D2, A
s is a forward-measurable shift-covariant recovering cocycle (on Ω)

that satisfies

lim
|x|1Ñ8

|Asp0, xq ` h ¨ x|

|x|1
“ 0, P-almost surely.

Then n´1Asp0, ne1q Ñ h ¨e1 and n´1Asp0, ne2q Ñ h ¨e2. The shift-covariance, the cocycle property,

the inequalities Aspω, x, x`eiq ě ωx P L1ppPq, and Birkhoff’s ergodic theorem give integrability and
hpAsq “ h, so in particular As P K`

c .
So far, we proved that for L-almost every s P p0, 1s, As P K`

c and hpAsq “ h. This implies that
there exists a countable dense set D3 Ă p0, 1s such that for every s P D3, A

s P K`
c and hpAsq “ h.

The monotonicity of π
pB,0,s in s implies the monotonicity of As by Lemma B.3. This monotonicity

and the equal expectations imply that P-almost surely, for any s, t P D3, A
s “ At. Using the

monotonicity one more time extends this to all s, t P p0, 1s. □

From Lemmas 3.9 and 3.10 we can now establish the strong existence claimed in Theorem 2.14.

Proof of Theorem 2.14. We set Bpx, yq =
ş1
0 A

spx, yqds so that B is a Borel-measurable random
field on Ω. By Lemma 3.10, P-almost surely, As “ B for all s P p0, 1s and so B P K`

c . Lemma 3.9

now implies that the joint distribution of pωppωq, pBppωqq under pP is the same as that of pω,Bpωqq

under P. It follows that pP-almost surely, pBppωq “ Bpωppωqq. This last claim is essentially Lemma
2.2 in [25], but we include the proof. We can uniquely (up to sets of P-measure zero) factorize the

joint distribution of pωppωq, pBppωqq under pP as the distribution Ppdωq of ω together with a transition

kernel ηpdb|ωq that represents the conditional distribution of pB given ω. Do the same on the
other side of the equality in distribution to see that ηpdb|ωq “ δBpωqpdbq P-almost surely. Thus
pPtpω : pBppωq “ Bpωppωqqu “ pErpPp pB “ B |Sqs “ 1. □
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3.3. Strong uniqueness. Recall the order relation on cocycles: for B,B1 P RZ2
, B ĺ B1 means

Bpx, x ` e1q ě B1px, x ` e1q and Bpx, x ` e2q ď B1px, x ` e2q for all x P Z2. Extend this order
relation to an order relation ĺas on K by defining

B1 ĺas B2 if PtB1 ĺ B2u “ 1.

Clearly, if B1 ĺas B2 and B2 ĺas B1, then B1 “ B2 as random variables, i.e. with P-probability
one. The next lemma shows that ĺas is a total order on Kc.

Lemma 3.11. Let B1, B2 P Kc. Then either PpB1 ĺ B2q “ 1 or PpB2 ĺ B1q “ 1. △

Proof. On the full P-probability event where ϕB1,u & ϕB1,v and ϕB2,u & ϕB2,v for all u, v P Z2, we
have that ϕB1,0 ĺ ϕB2,0 implies ϕB1,u ĺ ϕB2,u for all u P Z2. Thus the event tϕB1,0 ĺ ϕB2,0u is
shift-invariant and thereby has P-probability of 0 or 1 by the ergodicity of P. The same holds for
the event tϕB1,0 ľ ϕB2,0u.

Since the ĺ is a total order on Gω
0 , we have that P-almost surely, either ϕB1,0 ĺ ϕB2,0 or ϕB1,0 ľ

ϕB2,0. Since we just showed that these two events are trivial, we get that either ϕB1,0 ĺ ϕB2,0,
P-almost surely, or ϕB1,0 ľ ϕB2,0, P-almost surely. Lemmas 3.8 and B.4 imply then that either
B1 ĺ B2, P-almost surely, or B1 ľ B2, P-almost surely. □

Strong uniqueness follows.

Proof of Theorem 2.15. By the total order in Lemma 3.11, equality hpB1q “ hpB2q of the means
is sufficient for almost sure equality. □

The following is an immediate corollary of Theorem 2.14.

Corollary 3.12. Kc “ K` “ K`
c . △

Proof. By an adaptation of the Licea-Newman [27] coalescence argument given in Theorem A.1
in [13], K` Ă Kc. Forward measurability gives the finite energy condition used in the coalescence
proof. The previous inclusion then gives K` Ă K`

c , so we have K`
c “ K`. Theorem 2.14 implies

that also Kc Ă K`
c and hence Kc “ K` “ K`

c . □

Recall Theorem 2.7 and the consequence that H contains t´∇gpξ�q : ξ P U ,� P t`,´uu. By
Theorem 2.15, for each h P H there exists a unique Bh P K`

c such that hpBhq “ h. The following
is a direct consequence of Lemma 3.11 and the fact that if B1 ĺ B2 in K, then hpB1q ĺ hpB2q.

Lemma 3.13. For any h, h1 P H, either we have h ĺ h1 and Bh ĺ Bh1

or we have h1 ĺ h and
Bh1

ĺ Bh. In particular, ĺ is a total order on H and H Q h ÞÑ Bh is nondecreasing. △

Let H0 be a countable dense subset of H. Using the monotonicity in Lemma 3.13 and the cocycle
property (2.13) that Bh, h P H0, satisfy, define the process

B
h´

px, yq “ lim
H0Qh1Õh

Bh1

px, yq and B
h`

px, yq “ lim
H0Qh1Œh

Bh1

px, yq,

for x, y P Z2 and h P H. Then for P-almost every ω, for any h P H and � P t´,`u, B
h�

is a
recovering cocycle.

The following lemma says that for a fixed h P H, the above definitions recover Bh.

Lemma 3.14. Fix h P H. Then P-almost surely, for any x, y P Z2, B
h´

px, yq “ B
h`

px, yq “

Bhpx, yq. In particular, this holds for P-almost every ω, simultaneously for all h P H0. △

Proof. We have that B
h´

P K, B
h´

ĺ Bh, and by monotone convergence, hpB
h´

q “ hpBhq. This

implies that B
h´

“ Bh, P-almost surely. The case of B
h`

is similar. □
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Proof of Theorem 2.17. In view of the above lemma, we will drop the overline from B
h�

and just
write Bh�. Furthermore, when Bh´ “ Bh`, we drop the sign distinction and write Bh. In
particular, for each h P H, P-almost surely, Bh´ “ Bh` “ Bh. The claimed monotonicity follows
from Lemma 3.13. Using dominated convergence, this implies that the mean ´h condition holds.
The cocycle, recovery, and covariance properties are closed under limits. By almost sure left- and
right- continuity, uniqueness for fixed h implies uniqueness of the process. □

We close this section with the observation that Theorem 2.14 and Corollary 3.12 imply that

H “ thpBq : B P Kcu “ thpBq : B P K`u “
␣

h P R2 : pB P pKc, pPphp pBq “ hq “ 1
(

.(3.15)

4. Shift-covariant coalescing systems of random geodesics and cocycles

In [1], the authors start from a shift-covariant coalescing system of geodesics and use these to
construct Busemann functions. We instead started with a field of generalized Busemann functions
and then used those to build a system of coalescing geodesics. We show in this section that these
two approaches are equivalent.

We say that a shift-covariant system of geodesics is non-crossing if

pP
␣

@u, v P Z2 : pπuppωq & pπvppωq or pπuppωq X pπvppωq “ ∅
(

“ 1.

The recovering cocycle A
pπu generated by the random geodesic pπu is a function on pΩ defined in

terms of (2.16) by

(4.1) A
pπuppω, x, yq “ A

pπuppωqpωppωq, x, yq.

Recall the space of shift-covariant systems of coalescing geodesics, pΠc.

Lemma 4.1. If pπ ‚
P pΠc, then A

pπ0 is shift-covariant. △

Proof. If pπ ‚
P pΠc, then using (2.17) in the second equality and the coalescence pπ0 & pπz with Lemma

B.3 in the last equality,

A
pπ0p pTzpω, x, yq “ A

pπ0p pTzpωq
pTzωppωq, x, yq “ A

z`pπ0p pTzpωq
pωppωq, x ` z, y ` zq

“ A
pπzppωqpωppωq, x ` z, y ` zq “ A

pπzppωqpωppωq, x ` z, y ` zq

“ A
pπ0ppωqpωppωq, x ` z, y ` zq. □

Let pK
xΠc

denote the set of shift-covariant L1ppS, pPq recovering cocycles generated by systems of

shift-covariant coalescing geodesics.

Lemma 4.2. Let pπ ‚ and pγ ‚ be two covariant non-crossing systems of geodesics such that pPtpπ0 ĺ

pγ0u “ 1. Assume that either pπ ‚
P pΠc or pγ ‚

P pΠc. Assume also that there exists a cocycle pB P pK
such that both pπu and pγu are pB-geodesics, for all u P Z2. That is,

pP
␣

pω : @u P Z2,@n ě u ¨ pe1 ` e2q : pBppω, pπu
nppωq, pπu

n`1ppωqq “ ω
pπu
nppωqppωq

(

“ 1(4.2)

and

pP
␣

pω : @u P Z2,@n ě u ¨ pe1 ` e2q : pBppω, pγunppωq, pγun`1ppωqq “ ω
pγu
nppωqppωq

(

“ 1.(4.3)

Then pPt@u P Z2 : pπu “ pγuu “ 1. △

Proof. The two cases are proved similarly. We work out the case pπ ‚
P pΠc. By (2.23), applied to

both pπu and pγu, it is enough to prove pPtpπ0 “ pγ0u “ 1. We show that E8 “ tpω : pπ0ppωq ň pγ0ppωqu is

a zero pP-probability event. To arrive at a contradiction, suppose pPpE8q ą 0.
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The events Em “ tpπ0
0:m ‰ pγ00:mu increase up to E8 as m Õ 8. Hence we can pick m P N so

that pPpEmq ą 0. By Poincaré recurrence, P-almost surely Em Ă
Ť

ℓěN
pT´ℓe1Em for each N P N [24,

Section 1.3]. Then

(4.4)

pP
´

ď

kě1

ď

ℓěk`m

pT´ke1Em X pT´ℓe1Em
¯

“ pP
´

ď

kě1

pT´ke1

”

Em X
ď

jěm

pT´je1Em
ı¯

“ pP
´

ď

kě1

pT´ke1Em
¯

ą 0.

Let pΩ0 be the full pP-probability event on which the geodesics tpπuppωquuPZ2 coalesce, tpγuppωquuPZ2

are non-crossing, pπ0ppωq ĺ pγ0ppωq, and both events in (4.2) and (4.3) hold. The proof is concluded
by showing that

(4.5) pP
`

pΩ0 X pT´ke1Em X pT´ℓe1Em
˘

“ 0 @ ℓ ě k ` m, k ě 1.

Since pPppΩ0q “ 1, this contradicts (4.4), which in turn forces pPpE8q “ 0.

Let pω P pΩ0 X pT´ke1Em X pT´ℓe1Em with ℓ ě k ` m ą m. Then the non-crossing of the geodesics
pγ0ppωq, pγke1ppωq, and pγℓe1ppωq implies pγ0ppωq ĺ pγke1ppωq ĺ pγℓe1ppωq. This, pπ0ppωq ň pγ0ppωq, and the
coalescence of tpπuppωquuPZ2 , together imply

(4.6) pπuppωq ň pγvppωq for u, v P tke1, ℓe1u.

Next, pω P pT´ke1Em X pT´ℓe1Em says that pπuppωq and pγuppωq separate in the first m steps, for both
u P tke1, ℓe1u. Once separated, rightmost geodesics from u cannot meet again, and so

(4.7) pπu
o`m:8ppωq X pγuo`m:8ppωq “ ∅ for both u P tke1, ℓe1u.

We draw the conclusions from the observations above. Since pπℓe1ppωq starts strictly to the right
of pγke1ppωq but by (4.6) ends up strictly to its left, pγke1ppωq and pπℓe1ppωq must intersect. Denote their
first intersection point by z “ pγke1n ppωq “ pπℓe1

n ppωq. Since z P pπℓe1ppωq we have z ě ℓe1. This implies
n ´ k “ pz ´ ke1q ¨ pe1 ` e2q ě ℓ ´ k ě m. Since z P pγke1ppωq, (4.7) implies z R pπke1ppωq.

Let x denote the coalescence point of pπke1ppωq and pπℓe1ppωq. Since z R pπke1ppωq, z must lie on
pπℓe1ppωq before x. Thus in Z2 ordering

ke1 ď x and ℓe1 ď z ď x.

Since pω is in the event in (4.2) and since x is on pπke1ppωq and z ď x are both on pπℓe1ppωq, we have

Lke1,xpωppωqq “ pBppω, ke1, xq and Lz,xpωppωqq “ pBppω, z, xq. Similarly, since z is on pγke1ppωq and pω is

in the event in (4.3) we have Lke1,zpωppωqq “ pBppω, ke1, zq. By the cocycle property,

Lke1,xpωppωqq ´ Lke1,zpωppωqq ´ Lz,xpωppωqq

“ pBppω, ke1, xq ´ pBppω, ke1, zq ´ pBppω, z, xq “ 0.

This implies that z is on some geodesic from ke1 to x. But since z R pπke1ppωq, z lies strictly to the
right of pπke1ppωq because z P pπℓe1ppωq. We have a contradiction because by definition pπke1ppωq gives
the rightmost geodesic from ke1 to x. This contradiction verifies (4.5). □

Lemma 4.3.

(a) Let pπ ‚
P pΠc and let pB “ A

pπ0. Then pPt@u P Z2 : ϕ
pB,u “ pπuu “ 1.

(b) We have the equality of the cocycle spaces pK
xΠc

“ pKc. △

Proof. Part (a). The system tϕ
pB,uu generated by pB is noncrossing because if ϕ

pB,u and ϕ
pB,v ever

intersect, their subsequent steps are determined by pB and hence identical. Furthermore, ϕ
pB,0 is by

definition the geodesic of pB that takes e1 steps when there are ties pBpx, x` e1q “ pBpx, x` e2q, and
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hence pπ0 ĺ ϕ
pB,0 by Lemma B.5. Both (4.2) and (4.3) are satisfied. The claim ϕ

pB,u “ pπu follows
from Lemma 4.2.

Part (b). The assumption pπ ‚
P pΠc and the conclusion ϕ

pB,u “ pπu, for all u P Z2, imply in particular

that the geodesics tϕ
pB,uuuPZ2 form almost surely a coalescing family. This implies pK

xΠc
Ă pKc.

It remains to show the opposite inclusion pKc Ă pK
xΠc
. Let pB P pKc. This means that the geodesics

ϕ
pB,u coalesce, that is, ϕ

pB,‚
P pΠc. By Lemma B.4, pB equals the cocycle A

ϕ pB,0 generated by ϕ
pB,0,

which says that pB P pK
xΠc
. □

Appendix A. Technical lemmas

A.1. Measurability of the geodesic tree. We begin with measurability of Gω
u . For u, x P Z2

with x ě u and i P t1, 2u define the S`
u -measurable random variables

Si
u,xpωq “

#

1 if @m ě x ¨ pe1 ` e2q ` 1 Dσ P Gω
u,m : x, x ` ei P σ,

0 otherwise.

Think of Si
u,x “ 1 as opening the edge px, x ` eiq. Note that if Si

u,x “ 1 then Sj
u,x`ei “ 1 for some

(or both) j P t1, 2u. Starting at u and following open edges gives a geodesic ray and, conversely, the
edges of any geodesic ray started at u are all open. Hence Su “

␣

Si
u,x : x P u`Z2

`, i P t1, 2u
(

gives

a S`
u -measurable way to encode the random tree Gω

u . It is not hard to see that Gω
u is also a closed

set in the product-discrete topology on paths. Since the space of paths rooted at u is compact in
this topology, this implies that Gω

u is compact.

A.2. Measurability on Xu. Without loss of generality, we consider u “ 0 for notational simplicity.
We begin with some preliminary observations about the path space X0. Recall that for γ, π P X0,
the metric distance between γ and π is dpγ, πq “

ř8
i“0 2

´pi`1q1tγi‰πiu
.

We prove measurability of the expression in (3.2).

Lemma A.1. If νω is a regular conditional distribution on ppΩ, pSq given S, then the function

ppω, ρq P pΩ ˆ X0 ÞÑ νωppωqpϕ
pB,u ĺ ρq P r0, 1s

is jointly pS,BpX0qq-measurable. △

Proof. Denote by F ppω, ρq the function in the statement. It suffices to show that F is the limit of

jointly measurable functions. We begin with the observation that for each n P N and pω P pΩ

ρ ÞÑ Fnppω, ρq “ νωppωqpϕ
pB,u
0:n ĺ ρ0:nq

is continuous. To see this, note that if ρk Ñ ρ, then for all sufficiently large k, ρk0:n “ ρ0:n. X0 is

separable, being compact, so it follows from S measurability of νωppωq that Fn is pS,BpX0qq-jointly
measurable. See, e.g., Lemma 4.51 in [2].

We have that

tϕ
pB,u ĺ ρu “

č

n

tϕ
pB,u
0:n ĺ ρ0:nu.

From continuity of measure, F ppω, ρq “ limn Fnppω, ρq. Therefore F is measurable. □

Corollary A.2. For s P r0, 1s, the Xu-valued random variable π
pB,u,s in (3.2) is S-measurable. △
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Proof. Again, we take u to be the origin for simplicity. Fix a deterministic finite admissible path

σ0:n rooted at the origin. Then the path defined by ρσ0:npωppωqq “ suptπ P Gωppωq

0 : π0:n “ σ0:nu

if such a π exists and ρσ0:npωppωqq “ Z`e1 otherwise is measurable by the results of the previous
sub-section. Moreover, this collection enumerates RIω0 . It then follows from the previous result that

pω ÞÑ νωppωqpϕ
pB,0 ĺ ρσ0:npωppωqqq P r0, 1s

is S-measurable. Then for each s P p0, 1q and each finite admissible path σ0:n, the event

tνωppωqpϕ
pB,0 ĺ ρσ0:npωppωqqq ě su

is S-measurable. Fix some finite path π0:m. The event

(A.1) tpω : π
pB,u,s
0:m ppωq “ π0:mu

is measurable because it is equal to the intersection of two events: (i) there exists a path σ0:n which

is on Gωppωq

0 , n ě m, where π0:m Ď σ0:n for which νωppωqpϕ
pB,u ĺ ρσ0:npωppωqqq ě s,

ď

něm

ď

σ0:n up-right:
σ0:m“π0:m

tσ0:n is on Gωppωq

0 , νωppωqpϕ
pB,u ĺ ρσ0:npωppωqqq ě su;

and (ii) for any n ě m and any finite path σ0:n which lies on the tree Gωppωq

0 with the property that

σ0:m ň π0:m, we have νωppωqpϕ
pB,u ĺ ρσ0:npωppωqqq ă s:

č

něm

č

σ0:n up-right:
σ0:mňπ0:m

`

tσ0:n is on Gωppωq

0 , νωppωqpϕ
pB,0 ĺ ρσ0:npωppωqqq ă su Y tσ0:n is not on Gωppωq

0 u
˘

.

Events of the type (A.1) generate BpX0q, so the claim follows. □

We also have the following Lemma concerning generation of BpX0q.

Lemma A.3. The family of events tρ0:8 P X0 : ρ0:8 ĺ π0:8u, π0:8 P X0 generates BpX0q. △

Proof. Cylinder events of the form tρ0:8 P X0 : ρ0:n “ γ0:nu are intersections of events of the form
tρ0:8 P Xu : ρn “ xu, x P Z2

`. For a given x P Z2
`, let γx0:8 be the up-right path that starts with

x ¨ e1 e1-steps, then takes x ¨ e2 e2-steps, getting to x, then from there only takes e1 steps. Then,
for x ‰ ne2, we have

tρ0:8 P X0 : ρn “ xu “ tρ0:8 P X0 : ρ0:8 ĺ γx0:8uztρ0:8 P X0 : ρ0:8 ĺ γx`e2´e1
0:8 u.

For x “ ne2 we have

tρ0:8 P X0 : ρn “ xu “ tρ0:8 P X0 : ρ0:8 ĺ γx0:8u. □

A.3. Non-existence of trivial Busemann geodesics.

Lemma A.4. Assume (2.3), (2.2), and pErω2
0s ă 8. Let pB P pK. Then (2.25) holds. △

Proof. By the shift invariance of pP and shift covariance of pB, it is enough to consider u “ 0. On

the event ϕ
pB,0 “ Z`e2 we have, by the cocycle and the recovery properties,

n´1
ÿ

k“0

ωke2 ` pBpne2, e1 ` ne2q “

n´1
ÿ

k“0

pBpke2, pk ` 1qe2q ` pBpne2, e1 ` ne2q

“ pBp0, e1q `

n´1
ÿ

k“0

pBpe1 ` ke2, e1 ` pk ` 1qe2q ě pBp0, e1q `

n´1
ÿ

k“0

ωe1`ke2
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from which

pBpne2, e1 ` ne2q
?
n

ě
1

?
n

n´1
ÿ

k“0

pωe1`ke2 ´ ωke2q `
pBp0, e1q

?
n

.

Now the left-hand side goes to 0 in probability and hence almost surely along some subsequence of
any given subsequence, while the limsup of the right-hand side is infinite almost surely. □

Appendix B. Busemann functions generated by geodesics

First we prove that in almost every environment ω, each nontrivial semi-infinite geodesic gener-
ates a recovering cocycle, then we explore some basic properties of these cocycles.

Theorem B.1. Assume weights are i.i.d. with p ą 2 moments. Then there exists an event Ω0

of full probability on which the following holds. For each ω P Ω0 and every semi-infinite geodesic
πk:8 in the environment ω such that πn ¨ ei Ñ 8 for both i P t1, 2u, there exists a finite Busemann
function

(B.1) Apω, x, yq “ lim
nÑ8

rLx,πnpωq ´ Ly,πnpωqs @x, y P Z2

that recovers the weights ω:

ωx “ Apω, x, x ` e1q ^ Apω, x, x ` e2q. △

Proof. Recovery at x follows once the limits in (B.1) are proved for x and y P tx ` e1, x ` e2u: for
large enough n,

Lx,πn “ ωx ` Lx`e1,πn _ Lx`e2,πn

ùñ ωx “ pLx,πn ´ Lx`e1,πnq ^ pLx,πn ´ Lx`e2,πnq ÝÑ
nÑ8

Apx, x ` e1q ^ Apx, x ` e2q.

We begin with a purely deterministic lemma that gives the limit (B.1) in a northeast quadrant.

Lemma B.2. Consider a fixed weight configuration ω P RZ2
and k P Z. Suppose πk:8 is a semi-

infinite geodesic such that πn ¨ei Ñ 8 for i P t1, 2u. Then for all x P Z2 the monotone nondecreasing
limit

(B.2) Apx, πkq “ lim
nÑ8

pLx,πn ´ Lπk,πnq

exists in p´8,8s. On the quadrant πk ` Z2
` we have a finite Busemann function

△(B.3) Apx, yq “ lim
nÑ8

pLx,πn ´ Ly,πnq.

Proof. Given x, let N be any index such that πN ě x. Then for n ě N ,

Lx,πn`1 ´ LπN ,πn`1 ě pLx,πn ` Lπn,πn`1q ´ pLπN ,πn ` Lπn,πn`1q “ Lx,πn ´ LπN ,πn .

Thus this monotone nondecreasing limit exists:

(B.4) lim
nÑ8

pLx,πn ´ LπN ,πnq P rLx,πN ,8s.

Furthermore, since Lπk,πn “ Lπk,πN `LπN ,πn for k ď N ď n, we have this monotone nondecreasing
limit:

(B.5) Apx, πkq “ lim
nÑ8

pLx,πn ´ Lπk,πnq P rLx,πN ´ Lπk,πN ,8s.

Now let x P πk ` Z2
`. For n such that πk ď x ď πn,

Lπk,πn ě Lπk,x ` Lx,πn ùñ Lx,πn ´ Lπk,πn ď ´Lπk,x.

Thus for any x ě πk we have the finite limit

(B.6) Apx, πkq “ lim
nÑ8

pLx,πn ´ Lπk,πnq P rLx,πN ´ Lπk,πN , ´Lπk,xs @N such that πN ě x.
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This defines a finite Busemann function

(B.7) Apx, yq “ Apx, πkq ´ Apy, πkq “ lim
nÑ8

pAx,πn ´ Ay,πnq

in the quadrant πk ` Z2
`. □

Returning to the proof of Theorem B.1, it remains to verify that when weights are i.i.d. with
p ą 2 moments, we can construct a full-probability event Ω0 on which Apx, πkq in (B.2) is finite for
each x P Z2 and for every semi-infinite geodesic πk:8 such that πn ¨ ei Ñ 8 for both i P t1, 2u. This
can be achieved by combining known properties of geodesics and Busemann functions in the corner
growth model. Namely, there exists a full-probability event Ω0 on which the following properties
hold.

(a) Each semi-infinite geodesic πk:8 is directed into some Uξ for some ξ P re2, e1s, meaning that,
as n Ñ 8, all the limit points of πn{n lie in Uξ (Theorem 2.1(i) in [15]).

(b) The only geodesics directed towards ei are the trivial ones of the form x ` Z`ei (Lemma
5.1 in [18]).

(c) For any sequence tunu Ă Z2 such that, as n Ñ 8, un ¨ ei Ñ 8 for both i P t1, 2u and the
set of limit points of tun{nu is bounded away from te2, e1u,

(B.8) lim
nÑ8

|Lx,un ´ Ly,un | ă 8 P-almost surely @x, y P Z2.

This comes from the zero-temperature version of Theorem 4.14 in [21], or by taking the
intersection of the full probability events in Theorem 6.1 of [16] over a countable dense
collection of exposed points and maximal linear segments in se2, e1r .

Since we know from Lemma B.2 that Apx, πkq ą ´8 for all x and Apx, πkq ă 8 for x in a
northeast quadrant, it is enough to prove the following statement on the event Ω0:

(B.9) if Apx, πkq ă 8, then Apx ´ e1, πkq ă 8 and Apx ´ e2, πkq ă 8.

We prove the case Apx ´ e1, πkq ă 8, the other one being entirely analogous.
We can now assume that for some ξ P se2, e1r , as n Ñ 8, all the limit points of πn{n lie in

Uξ. Uξ is a compact segment (possibly a singleton) contained in the open segment se2, e1r . By
the curvature of the shape function close to the extreme direction e2 implied by Theorem 2.4 of
[29], we can pick a direction ζ P se2, ξr so that the segment Uζ lies strictly to the northwest of
the segment Uξ. As in equation (2.12) in [23] or in Section 4 of [15], the Busemann function

Bζ` defines the Busemann geodesic ϕζ`,πk started at vertex πk, which takes the horizontal step

ϕζ`,πk
n`1 “ ϕζ`,πk

n ` e1 whenever there is a tie Bζ`pϕζ`,πk
n , ϕζ`,πk

n ` e1q “ Bζ`pϕζ`,πk
n , ϕζ`,πk

n ` e2q in
the Busemann increments.

Recall that ϕζ`,πk is indexed so that ϕζ`,πk
n ¨pe1`e2q “ πn ¨pe1`e2q for all n ě k. By Theorem 4.3

in [15], ϕζ`,πk is directed into the segment Uζ`. Thus the two geodesics must separate eventually,

and so for large enough n, ϕζ`,πk
n ň πn. The monotonicity of planar LPP increments implies that

(B.10) Lx´e1,πn ´ Lx,πn ď L
x´e1,ϕ

ζ`,πk
n

´ L
x,ϕ

ζ`,πk
n

for any x P Z2 such that the LPP values are defined. This so-called “path crossing trick” can
be found for example in Lemma B.3 below. Now on Ω0 we have this upper bound, assuming
Apx, πkq ă 8:

Apx ´ e1, πkq “ lim
nÑ8

rLx´e1,πn ´ Lπk,πns “ lim
nÑ8

rLx´e1,πn ´ Lx,πn ` Lx,πn ´ Lπk,πns

(B.10)
ď lim

nÑ8

ˇ

ˇL
x´e1,ϕ

ζ`,πk
n

´ Lx,ϕnζ`,πk

ˇ

ˇ ` Apx, πkq
(B.8)
ă 8.

This completes the proof of Theorem B.1. □
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When ω lies in the event Ω0 constructed in Theorem B.1 and γ is a nontrivial semi-infinite
geodesic in the environment ω, let Aγpωq denote the recovering cocycle constructed in Theorem
B.1. Nontrivial geodesics are those whose limiting directions do not include e2 or e1. Equivalently,
a nontrivial geodesic is directed into some compact segment Uξ inside the open segment se2, e1r .

Lemma B.3. Let γ ĺ π be two nontrivial semi-infinite geodesics in an environment ω P Ω0. Then,
Aγ ĺ Aπ. Consequently, if γ & π, then Aγ “ Aπ. △

Proof. Take x P Z2. Take n large enough so that x ` e1 ď γn, x ` e1 ď πn, and γn ň πn. Since x
is to the right of σx`e1,γn and πn is to its left, σx`e1,γn must intersect σx,πn . Let z denote the first
intersection point. Then

Lx,z ` Lz,γn ď Lx,γn and Lx`e1,z ` Lz,πn ď Lx`e1,πn .

Add the two inequalities, use Lx,z ` Lz,πn “ Lx,πn and Lx`e1,z ` Lz,γn “ Lx`e1,γn , and rearrange
to get

Lx,πn ´ Lx`e1,πn ď Lx,γn ` Lx`e1,γn .

Take n Ñ 8 to get Aπpx, x ` e1q ď Aγpx, x ` e1q. The inequality Aπpx, x ` e2q ě Aγpx, x ` e2q is
proved similarly. □

Given a recovering cocycle B in an environment ω P Ω, a B-geodesic is an up-right path π, finite
or infinite, whose steps obey minimal B-increments: Bpπi, πi`1q “ Bpπi, πi ` e1q ^ Bpπi, πi ` e2q.
Such a path is a geodesic. The e1 tiebreaker geodesic ϕB,u,` is the semi-infinite geodesic that starts
at vertex u, follows minimal increments of B, and takes an e1 step at a tie. It is the rightmost
geodesic between any two its vertices [15, Lemma 4.1]. Analogously, ϕB,u,´ is the semi-infinite
B-geodesic from u that takes an e2 step at a tie.

Lemma B.4. Let B be a recovering cocycle in an environment ω P Ω0. Suppose there exists
a coalescing family tπuuuPZ2 of semi-infinite B-geodesics from all initial vertices u P Z2. Then
Aπupωq “ B for every geodesic πu from this family. △

Proof. Given x and u, let πu
N be the point where πx and πu first coalesce. Then for n ě N , since

we can follow B-geodesics,

Lx,πu
n

´ Lu,πu
n

“ Bpx, πu
nq ´ Bpu, πu

nq “ Bpx, uq.

Letting n Ñ 8 gives Aπupx, uq “ Bpx, uq. This and the cocycle property give Aπu “ B. □

In particular, Lemma B.4 implies that if a recovering cocycle B generates a coalescing family of
cocycle geodesics, then any one of these geodesics is enough to identify B.

Lemma B.5. Let πk:8 be a nontrivial semi-infinite geodesic in a fixed environment ω P Ω0 and
Aπpωq the recovering cocycle constructed in Theorem B.1. The geodesic π is an Aπ-geodesic. It lies
between ϕπk,Aπ ,´ and ϕπk,Aπ ,`, the two geodesics generated by Aπ, which resolve ties by taking e2
and e1 steps, respectively:

△(B.11) ϕπk,Aπ ,´ ĺ ρ ĺ ϕπk,Aπ ,`.

Proof. Since πm:n is a geodesic between πm and πn and goes through πm`1, and then by recovery,

Aπpπm, πm`1q “ lim
nÑ8

rLπm,πn ´ Lπm`1,πns “ lim
nÑ8

rωπm ` Lπm`1,πn ´ Lπm`1,πns

“ ωπm “ Aπpπm, πm ` e1q ^ Aπpπm, πm ` e2q.

This implies also (B.11). □
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