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We give two variational formulas (qVar1) and (qVar2) for the quenched free energy of a random walk in
random potential (RWRP) when (i) the underlying walk is directed or undirected, (ii) the environment is
stationary and ergodic, and (iii) the potential is allowed to depend on the next step of the walk which covers
random walk in random environment (RWRE). In the directed i.i.d. case, we also give two variational
formulas (aVar1) and (aVar2) for the annealed free energy of RWRP. These four formulas are the same
except that they involve infima over different sets, and the first two are modified versions of a previously
known variational formula (qVar0) for which we provide a short alternative proof. Then, we show that
(qVar0) always has a minimizer, (aVar2) never has any minimizers unless the RWRP is an RWRE, and
(aVar1) has a minimizer if and only if the RWRP is in the weak disorder regime. In the latter case, the
minimizer of (aVar1) is unique and it is also the unique minimizer of (qVar1), but (qVar2) has no minimizers
except for RWRE. In the case of strong disorder, we give a sufficient condition for the nonexistence of
minimizers of (qVar1) and (qVar2) which is satisfied for the log-gamma directed polymer with a sufficiently
small parameter. We end with a conjecture which implies that (qVar1) and (qVar2) have no minimizers under
very strong disorder.

Keywords: directed polymer; KPZ universality; large deviation; quenched free energy; random
environment; random potential; random walk; strong disorder; variational formula; very strong disorder;
weak disorder

1. Introduction

1.1. The model

Random walk in random potential (RWRP) on Z
d , with d ≥ 1, has three ingredients.

(i) The underlying walk: Fix a finite set R ⊂ Z
d with |R| ≥ 2. Define p : Zd → [0,1] by

p(z) = 1/|R| if z ∈ R and p(z) = 0 otherwise. Consider random walk on Z
d with i.i.d. steps

that have p as their common distribution. This walk induces a probability measure Px on paths
starting at x ∈ Z

d . Expectations under Px are denoted by Ex .
(ii) The environment: Let G be the additive subgroup of Zd generated by R. Take a probability

space (�,S,P) equipped with an Abelian group {Tx : x ∈ G} of measurable transformations
such that (i) Tx+y = Tx ◦ Ty and (ii) T0 is the identity. Assume that P is invariant and ergodic
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w.r.t. this group. Expectations under P are denoted by E, and sample points from (�,S,P) are
referred to as environments.

(iii) The potential: Take a measurable function V : �×R→ R. For every ω ∈ �, x ∈ Z
d and

z ∈ R, the quantity V (Txω, z) is referred to as the potential at the ordered pair (x, x + z) in the
environment ω.

Given n ≥ 1 and ω ∈ �, we define the quenched RWRP probability measure

Qω
n,x

(
(Xi)i≥0 ∈ ·) = 1

Zω
n,x

Ex

[
e
∑n−1

i=0 V (TXi
ω,Zi+1)1{(Xi)i≥0∈·}

]
on paths starting at any x ∈ Z

d . Here, (Xi)i≥0 denotes the random path with increments Zi+1 =
Xi+1 − Xi , and

Zω
n,x = Ex

[
e
∑n−1

i=0 V (TXi
ω,Zi+1)

]
is the normalizing factor, called the quenched partition function.

Remark 1.1. We have fixed p to be the uniform distribution on R, but we can easily incorporate
more general cases. Indeed, consider a measurable p̂ : � × Z

d → [0,1] such that, for P-a.e. ω:
(i) p̂(ω, z) > 0 if and only if z ∈ R; and (ii)

∑
z∈R p̂(ω, z) = 1. Then, the discrete-time Markov

chain on Z
d , with transition probabilities πω

x,y := p̂(Txω,y − x) for x, y ∈ Z
d , is a quenched

random walk in random environment (RWRE). Taking the underlying walk to be this RWRE is
equivalent to adding − log p̂(ω, z) − log |R| to the potential V (ω, z).

Remark 1.2. We have given a rather abstract definition of the environment space. The canonical
setting is as follows: there is a Borel set � ⊂ R, and (�,S) is �Z

d
equipped with the product

Borel σ -algebra. In this case, environments are represented as ω = (ωx)x∈Zd , and elements of
the group {Tx : x ∈ G} are translations defined by (Txω)y = ωx+y .

In the initial parts of this paper, we will consider RWRP with the abstract environment formu-
lation. However, in later parts, we will adopt the canonical model and make the following extra
assumptions.

(Dir) Directed nearest-neighbor walk: R = {e1, . . . , ed}, the standard basis for R
d , with

d ≥ 2.
(Ind) Independent environment: The components of ω = (ωx)x∈Zd are i.i.d. under P.
(Loc) Local potential: There exists a Vo : �×R →R such that V (ω, z) = Vo(ω0, z) for every

ω = (ωx)x∈Zd ∈ � = �Z
d

and z ∈R.

These assumptions enable us to use martingale techniques in the analysis of the asymptotic be-
haviour of RWRP, see Section 1.3. If Vo does not depend on z, then RWRP is also referred to as a
directed polymer. However, we prefer to keep the z dependence because, this way, the results on
the quenched free energy of RWRP have implications regarding large deviations, see Remark 1.7.

There is a vast literature on RWRP, RWRE and directed polymers: see the lectures/surveys
[3,9,15,19,33,41] and the references therein. In what follows, we will focus only on the parts of
the literature that are directly relevant to our results.
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1.2. Quenched free energy and large deviations

In a recent paper [29], we prove the P-a.s. existence of the quenched free energy

�q(V ) := lim
n→∞

1

n
logZω

n,0. (1.1)

In order to give the precise statement of this result, we need two definitions.

Definition 1.3. A measurable function F : � × R → R is said to be a centered cocycle if it
satisfies the following conditions.

(i) Centered: E[|F(·, z)|] < ∞ and E[F(·, z)] = 0 for every z ∈R.
(ii) Cocycle:

m−1∑
i=0

F(Txi
ω, zi+1) =

n−1∑
j=0

F
(
Tx′

j
ω, z′

j+1

)

for P-a.e. ω, every m,n ≥ 1, (xi)
m
i=0 and (x′

j )
n
j=0 such that zi+1 := xi+1 − xi ∈ R, z′

j+1 :=
x′
j+1 − x′

j ∈R, x0 = x′
0 and xm = x′

n.

The class of centered cocycles is denoted by K0.

Definition 1.4. A measurable function V : � ×R → R is said to be in class L if E[|V (·, z)|] <

∞ and

lim sup
δ→0

lim sup
n→∞

max
x∈⋃n

j=1 Dj

1

n

∑
0≤i≤δn

∣∣V (Tx+iz′ω,z)
∣∣ = 0

for P-a.e. ω and every z, z′ ∈ R such that z′ 
= 0, where

Dj = {
z1 + · · · + zj ∈ Z

d : zi ∈ R for every i = 1, . . . , j
}

(1.2)

denotes the set of points accessible from the origin in exactly j steps chosen from R.

Theorem 1.5. Assume that S is countably generated and V ∈ L. Then, the limit in (1.1) exists
P-a.s., is deterministic, and satisfies

�q(V ) = inf
F∈K0

P- ess sup
ω

{
log

(∑
z∈R

p(z)eV (ω,z)+F(ω,z)

)}
∈ (−∞,∞]. (1.3)

This result was initially obtained in [39] for bounded potentials under the assumption that
{±e1, . . . ,±ed} ⊂R. The version in Theorem 1.5 is part of [29], Theorem 2.3, which is valid for
potentials of the form V : � × R	 → R with arbitrary 	 ≥ 1. Actually, the latter result contains
two variational formulas for �q(V ), but the second one is not directly relevant for our purposes
in this paper, so we omit it for the sake of brevity.
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The proof of Theorem 1.5 is based on a rather technical approach involving careful appli-
cations of ergodic and minimax theorems, which was developed in [23,24] in the context of
stochastic homogenization of viscous Hamilton–Jacobi equations and was first adapted in [30]
to large deviations for RWRE. However, the existence of the a.s. limit in (1.1) can be shown more
easily (without giving any formulas for �q(V )) by subadditivity arguments and additional esti-
mates such as concentration inequalities or lattice animal bounds. This has been done in [5,8,36]
for directed polymers under various moment assumptions on the potential, and more recently in
[27], Theorem 2.2(b), in the setting of Theorem 1.5. In fact, the latter result drops the assumption
that S is countably generated and only requires V ∈ L. We record it below for future reference.

Theorem 1.6. Assume that V ∈ L. Then, the limit in (1.1) exists P-a.s., is deterministic, and
satisfies �q(V ) ∈ (−∞,∞].

The hypotheses of Theorem 1.5 are satisfied in the commonly studied examples. First of all,
in the canonical setting, the product Borel σ -algebra is countably generated. Second, bounded
potentials are in class L under arbitrary stationary and ergodic P, and so is any V with
E[|V (·, z)|] < ∞ when d = 1. In the multidimensional case under (Ind) and (Loc), it suffices
to have E[|V (·, z)|p] < ∞ for some p > d . In general, there is a tradeoff between the degree of
mixing in P and the moment of V (·, z) required. See [29], Lemma A.4, for further details and
proofs. Note that these assumptions do not rule out �q(V ) = ∞. Indeed, it is easy to see that the
latter holds under (Ind) and (Loc) when R allows multiple visits to points and V is unbounded.

Assume additionally that � is a compact metric space and S is its Borel σ -algebra. (These
assumptions are valid in the canonical setting if � is compact.) Let Ms(� ×R) be the space of
Borel probability measures μ on � ×R such that

∑
z∈R

∫
�

ϕ(ω)μ(dω, z) =
∑
z∈R

∫
�

ϕ(Tzω)μ(dω, z)

for every ϕ ∈ Cb(�), where Cb(·) denotes the space of bounded continuous functions. It is shown
in [29], Theorem 3.1, that, when �q(V ) < ∞, Theorem 1.5 implies a large deviation principle
(LDP) for the quenched distributions Qω

n,0(Rn ∈ ·) on Ms(� ×R) of the empirical measure

Rn = 1

n

n−1∑
i=0

δTXi
ω,Zi+1 .

The rate function of this LDP has the following formula:

Iq(μ) = sup
f ∈Cb(�×R)

{∑
z∈R

∫
�

f (ω, z)μ(dω, z) − �q(f + V )

}
+ �q(V ). (1.4)

As a corollary, we get an LDP for Qω
n,0(Xn/n ∈ ·) with the rate function

Iq(v) = sup
λ∈Rd

{
λ · v − �q(fλ + V )

} + �q(V ). (1.5)
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Here, fλ : � ×R →R is defined by fλ(ω, z) = λ · z.

Remark 1.7. Observe that fλ + V depends on z even if V does not. This is why it is important
to allow potentials that depend on z in Theorem 1.5.

Remark 1.8. Theorem 1.6 also implies the aforementioned LDPs, but does not provide formulas
for �q(V ), �q(f + V ) and �q(fλ + V ) appearing in the rate functions (1.4) and (1.5).

In the theory of large deviations, the former LDP is referred to as level-2, and gives the latter
one (known as level-1) via the so-called contraction principle. See [13,14,16,28,34] for the def-
initions of these concepts as well as general background on large deviations. The highest level
is level-3 (also known as process level) and is established for RWRP in [29], Theorem 3.2. This
last LDP covers and strengthens various previous results on the quenched large deviations for
RWRP and RWRE such as [1,6,7,20,26,30,35,38,39,42,43]. See [29], Section 1.3, for a detailed
account.

1.3. Directed i.i.d. case: Disorder regimes

Assume that the conditions (Dir), (Ind) and (Loc) from Section 1.1 are satisfied. In this case, the
σ -algebras

Sn
0 = σ

(
ωx : x ∈ Z

d+, |x|1 ≤ n − 1
)

and

S∞
0 = σ

(
ωx : x ∈ Z

d+
)

are relevant. Here and throughout, Z+ := N ∪ {0} is the set of nonnegative integers and |x|1 :=
|x1| + · · · + |xd | denotes the 	1-norm. Functions that are measurable w.r.t. S∞

0 are sometimes
referred to as future measurable.

Define the annealed free energy

�a(V ) := log

(∑
z∈R

p(z)E
[
eV (·,z)]) ∈ (−∞,∞]. (1.6)

It is straightforward to check that

Wn(ω) := Zω
n,0

E[Zω
n,0]

= E0
[
e
∑n−1

i=0 V (TXi
ω,Zi+1)−n�a(V )

]
holds and (Wn)n≥1 is a nonnegative martingale w.r.t. the filtration (Sn

0)n≥1. Therefore,

W∞ := lim
n→∞Wn P-a.s. (1.7)

exists. Moreover, the event {W∞ = 0} is measurable w.r.t. the tail σ -algebra⋂
n≥1

σ
(
ωx : x ∈ Z

d+, |x|1 ≥ n
)
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and the Kolmogorov zero-one law implies the following dichotomy:

either P(W∞ = 0) = 0 (the weak disorder regime);
or P(W∞ = 0) = 1 (the strong disorder regime).

This analysis is due to Bolthausen [2] in the case of directed polymers (i.e., for potentials that
do not depend on z) and is easily adapted to our setting, which we leave to the reader. The terms
weak disorder and strong disorder were coined in [8].

It follows from Jensen’s inequality that �q(V ) ≤ �a(V ) always holds. This is known as the
annealing bound. Observe that, in the case of weak disorder, we have �a(V ) < ∞ (since other-
wise Wn = 0) and

0 = lim
n→∞

1

n
logWn(ω) = lim

n→∞
1

n
logZω

n,0 − �a(V ) = �q(V ) − �a(V ) (1.8)

for P-a.e. ω. Therefore,

�q(V ) < �a(V ) (the very strong disorder regime)

is a sufficient condition for strong disorder. However, it is not known whether it is necessary for
strong disorder. We will say more about this and related open problems in Section 2.4.

The following theorem collects the results regarding the dependence of the disorder regimes
of directed polymers on (i) the dimension d and (ii) an inverse temperature parameter β which
is introduced to modify the strength of the potential.

Theorem 1.9. Assume that (Dir), (Ind) and (Loc) are satisfied, V does not depend on z, and
�a(βV ) < ∞ for every β ≥ 0. Then, we have the following results.

(a) There exist 0 ≤ βc = βc(V, d) ≤ β ′
c = β ′

c(V , d) ≤ ∞ such that the RWRP (or directed
polymer) with potential βV is in:

(i) the weak disorder regime if β ∈ {0} ∪ (0, βc),
(ii) the strong disorder regime if β ∈ (βc,∞), and

(iii) the very strong disorder regime if β ∈ (β ′
c,∞).

(b) The critical inverse temperatures βc = βc(V, d) and β ′
c = β ′

c(V , d) satisfy

(i) βc > 0 if d ≥ 4, and
(ii) β ′

c = 0 if d = 2,3.

Part (a) of this theorem is proved in [11], Theorem 3.2; item (i) of part (b) is established in
a series of papers [2,21,32]; and item (ii) of part (b) is shown in [10] for d = 2 and [25] for
d = 3. In fact, [25] covers d = 2,3 and is valid under the weaker assumption of �a(βoV ) < ∞
for some βo > 0. As far as we know, these results have not been adapted to the RWRP model
with potentials that depend on z. However, the analogs of items (i) and (ii) of part (b) have been
established in [38,40] in the context of large deviations for directed RWRE.
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1.4. Organization of the article

In Section 2, we present our results along with remarks and open problems. The subsequent
sections contain the proofs of our results.

2. Results

2.1. Quenched free energy in the general case

In order to abbreviate the variational formula (1.3) given in Theorem 1.5 for the quenched free
energy �q(V ), we define

K(V,F ) := P- ess sup
ω

{
log

(∑
z∈R

p(z)eV (ω,z)+F(ω,z)

)}

for every measurable function F : � ×R →R. Observe that K(V,F ) is equal to

K ′(V ,g) := P- ess sup
ω

{
log

(∑
z∈R

p(z)eV (ω,z)g(Tzω)

g(ω)

)}

when F is of the form

F(ω, z) = (∇∗g
)
(ω, z) := log

(
g(Tzω)

g(ω)

)
(2.1)

for some g ∈ L+(�,S,P). Here and throughout,

L+(
�,S′,P

) := {
g : � →R : g is S′-measurable and 0 < g(ω) < ∞ for P-a.e. ω

}
and

L++(
�,S′,P

) := {
g : � →R : g is S′-measurable and ∃c > 0 s.t. c < g(ω) < ∞ for P-a.e. ω

}
for every σ -algebra S′ ⊂S on �. We start our analysis by showing that the logarithmic gradient
(as in (2.1)) of any g ∈ L+(�,S,P) is in K0 whenever K ′(V ,g) < ∞, see Lemma 3.1. Then,
we give a short alternative proof of (1.3) and provide two modified versions of it.

Theorem 2.1. Assume that V ∈ L. Then, we have the following variational formulas.

�q(V ) = inf
F∈K0

K(V,F ), (qVar0)

�q(V ) = inf
g∈L+ K ′(V ,g), (qVar1)

�q(V ) = inf
g∈L++ K ′(V ,g). (qVar2)

Here, the spaces L+ and L++ stand for (i) L+(�,S,P) and L++(�,S,P) in the general case
and (ii) L+(�,S∞

0 ,P) and L++(�,S∞
0 ,P) under (Dir) and (Loc).
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Remark 2.2. It is shown in [29], Lemma C.3, that K0 is the L1(�,S,P)-closure of{∇∗g : ∃C > 0 s.t. C−1 < g(ω) < C for P-a.e. ω
}
.

Unfortunately, our understanding of K0 does not go much beyond this characterization. Thus,
for applications, (qVar0) is perhaps not very useful. (qVar1) and (qVar2) replace K0 by the much
more concrete class of logarithmic gradients. This way, they simplify (qVar0) and thereby im-
prove our understanding of the large deviation rate functions Iq and Iq via (1.4) and (1.5), re-
spectively.

The proof of Theorem 2.1 does not rely on the rather technical minimax approach taken in [29],
Theorem 2.3. The lower bounds in (qVar0), (qVar1) and (qVar2) follow from a standard spectral
argument, whereas the upper bounds hinge on a certain control on the minima of path integrals of
centered cocycles on large sets which is implied by an ergodic theorem and is trivial in the case
of (qVar2). Moreover, as we have recorded in Theorem 1.6, the existence of the a.s. limit in (1.1)
is shown in [27], Theorem 2.2(b), for V ∈ L (without assuming that S is countably generated)
by subadditivity and elementary estimates. In short, the proof of Theorem 2.1 is completely
independent of Theorem 1.5.

Now that we have three closely related variational formulas for �q(V ), it is natural to ask
whether they possess minimizers, that is, the infima in their definitions are attained. We provide
a positive answer to this question for (qVar0). As its proof in Section 3.2 attests, the technical
significance of this result is due to the lack of weak compactness of the unit ball in L1(�,S,P).

Theorem 2.3. Assume that V ∈ L. Then, (qVar0) always has a minimizer.

It turns out that, unlike (qVar0), the variational formulas (qVar1) and (qVar2) do not always
have minimizers. In fact, this is one of the main results in this paper, see Section 2.3. The possible
lack of minimizers might be seen as a shortcoming of our formulas. However, we will argue that
it is actually an advantage since it carries valuable information about the disorder regime of the
model, at least in the directed i.i.d. case.

2.2. Annealed free energy in the directed i.i.d. case

Assume that (Dir), (Ind) and (Loc) hold. Our analysis of the variational formulas (qVar1) and
(qVar2) for �q(V ) builds on its analog for the annealed free energy �a(V ) defined in (1.6).

Theorem 2.4. Assume (Dir), (Ind), and (Loc). Then, we have the following variational formulas.

�a(V ) = inf
g∈L+∩L1

K ′(V ,g), (aVar1)

�a(V ) = inf
g∈L++∩L1

K ′(V ,g). (aVar2)

Here, L+, L++ and L1 stand for L+(�,S∞
0 ,P), L++(�,S∞

0 ,P) and L1(�,S∞
0 ,P), respec-

tively.
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Remark 2.5. The variational formulas (qVar1) and (aVar1) for �q(V ) and �a(V ) can be equiv-
alently written as the infima of K(V,F ) over{

F ∈K0 : F = ∇∗g for some g ∈ L+}
and

{
F ∈K0 : F = ∇∗g for some g ∈ L+ ∩ L1},

respectively. The presence of these different sets is not merely a technical artifact of our proofs,
as we know that �q(V ) < �a(V ) in the case of very strong disorder, cf. Theorem 1.9. We find
this strict inequality to be particularly interesting because both of these sets are dense in K0 by
[29], Lemma C.3, cf. Remark 2.2. The same comment applies to (qVar2) and (aVar2).

In the light of Theorem 2.3 and the paragraph below it, we ask if/when (aVar1) and (aVar2)
have any minimizers. The answer to this question constitutes our first variational result on the
disorder regimes of RWRP.

Theorem 2.6. Assume (Dir), (Ind), (Loc), and �a(V ) < ∞.

(a) (aVar1) has a minimizer if and only if there is weak disorder. In this case, the minimizer is
unique (up to a multiplicative constant), equal to W∞ defined in (1.7), and there is no need for
taking essential supremum in K ′(V ,W∞), that is,

�a(V ) = K ′(V ,W∞) = log

(∑
z∈R

p(z)eV (ω,z)W∞(Tzω)

W∞(ω)

)
for P-a.e. ω.

(b) (aVar2) has no minimizers unless Zω
1,0 is P-essentially constant, cf. Remark 2.7.

Remark 2.7. Theorem 2.6(a) implies that the only minimizer candidate of (aVar2) is W∞.
However, we will show in Proposition 4.3 that W∞ /∈ L++ unless Zω

1,0 = ∑
z∈R p(z)eV (ω,z)

is P-essentially constant. In the latter case, Zω
n,0 is P-essentially constant for every n ≥ 1, and

P(Wn = 1) = P(W∞ = 1) = 1. By Theorems 2.6(a) and 2.8(a), W∞ is the unique minimizer of
(aVar1), (aVar2), (qVar1) and (qVar2). Observe that, in this case, the RWRP is nothing but an
RWRE with transition kernel p̂(ω, z) = p(z)eV (ω,z)−�a(V ), cf. Remark 1.1.

Other characterizations of weak disorder have been previously given in the literature on di-
rected polymers. First of all, it is shown in [8], Theorem 2.1, that weak disorder is equivalent to
the delocalization of the polymer in an appropriate sense. Precisely, when �a(V ) < ∞ and V is
not P-essentially constant, there is weak disorder if and only if

∞∑
n=1

(
Qω

n,0

)⊗2
(Xn = X̃n) < ∞.

Here, X̃n is an independent copy of Xn under Qω
n,0. Second, [11], Proposition 3.1, collects some

useful characterizations of weak disorder, e.g., the L1(P)-convergence or uniform integrability
of the martingale (Wn)n≥1. As far as we know, part (a) of Theorem 2.6 is the first variational
characterization of weak disorder for RWRP. Its proof builds on an earlier characterization given
as part of [11], Proposition 3.1, for directed polymers, see Section 4.2 for details.
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2.3. Analysis of (qVar1) and (qVar2) in the directed i.i.d. case

We continue working under (Dir), (Ind) and (Loc). In the case of weak disorder, �q(V ) =
�a(V ) < ∞ by (1.8). Therefore, the unique minimizer W∞ of (aVar1) in L+ ∩ L1 is also a
minimizer of (qVar1) in the larger space L+. However, it is not a-priori clear whether W∞ is the
unique minimizer of (qVar1). The following theorem settles this issue.

Theorem 2.8. Assume (Dir), (Ind), (Loc), and weak disorder.

(a) Up to a multiplicative constant, the unique minimizer W∞ of (aVar1) is also the unique
minimizer of (qVar1).

(b) (qVar2) has no minimizers unless Zω
1,0 is P-essentially constant, cf. Remark 2.7.

Note that Theorem 2.8 does not say anything about whether (qVar1) and (qVar2) have any
minimizers in the case of strong disorder. This turns out to be a more difficult question. In order
to address it, we introduce

hλ
n(ω) := E0

[
e
∑n−1

i=0 V (TXi
ω,Zi+1)−nλ

]
(2.2)

for every n ≥ 1, λ ∈ R and ω ∈ �, and consider the future measurable functions

hλ∞(ω) := lim inf
n→∞ hλ

n(ω) and h̄λ∞(ω) := lim sup
n→∞

hλ
n(ω).

With this notation, Wn = hλ
n and W∞ = hλ∞ = h̄λ∞ when λ = �a(V ) < ∞. For general λ ∈ R,

we know that

lim
n→∞

1

n
loghλ

n(ω) = �q(V ) − λ

holds for P-a.e. ω. Therefore,

P
(
hλ∞ = h̄λ∞ = 0

) = 1 if λ > �q(V ) and

P
(
hλ∞ = h̄λ∞ = ∞) = 1 if λ < �q(V ).

Hence, the only nontrivial choice of parameter is λ = �q(V ). In the latter case, each of the events

{
hλ∞ = 0

}
,

{
0 < hλ∞ < ∞}

,
{
hλ∞ = ∞}

,
(2.3){

h̄λ∞ = 0
}
,

{
0 < h̄λ∞ < ∞}

,
{
h̄λ∞ = ∞}

has P-probability zero or one, see Lemmas 5.1 and 5.3. To provide some insight, we make a
slight digression from the variational analysis and use one of these events to give a quenched
characterization of weak disorder.

Theorem 2.9. Assume (Dir), (Ind), (Loc), V ∈ L, and �q(V ) < ∞. Then, there is weak disorder
if and only if P(0 < hλ∞ < ∞) = 1, i.e., hλ∞ ∈ L+, for λ = �q(V ).
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Next, we use another event in (2.3) to conditionally prove that (qVar1) and (qVar2) do not
always have any minimizers under strong disorder.

Theorem 2.10. Assume (Dir), (Ind), (Loc), V ∈ L, and �q(V ) < ∞. If there is strong disorder
and P(h̄λ∞ = 0) = 0 for λ = �q(V ), then (qVar1) and (qVar2) have no minimizers.

Finally, we provide a sufficient condition for the key hypothesis of Theorem 2.10. To this end,
we fix λ = �q(V ) < ∞ and let

Hn(ω) := E0
[
e
∑n−1

i=0 V (TXi
ω,Zi+1)−n�q(V )1{Xn=(n/d,...,n/d)}

]
(2.4)

be the “bridge” analog of hλ
n. (For convenience, we assume that n is divisible by d .) With this

notation, we clearly have hλ
n ≥ Hn.

Proposition 2.11. Assume (Dir), (Ind), (Loc), V ∈ L, and �q(V ) < ∞. If there exists an in-
creasing sequence (a(n))n≥1 such that

lim
n→∞a(n) = ∞, lim

n→∞
a(n − 1)

a(n)
= 1 and lim sup

n→∞
P
(
logHn ≥ a(n)

)
> 0, (2.5)

then

P

(
lim sup
n→∞

logHn

a(n)
≥ 1

)
= 1. (2.6)

In particular, P(h̄λ∞ = ∞) = 1 for λ = �q(V ).

It has been recently shown in [4] that n−1/3 logHn has an FGUE distributional limit for the log-
gamma directed polymer model on Z

2 with parameter γ ∈ (0, γ ∗) for some γ ∗ > 0. In particular,
the conditions in Proposition 2.11 are satisfied with a(n) = n1/3. On the other hand, since d = 2
in this example, it is in the very strong disorder regime by [10,25]. (Technically, [10] assumes
that �a(βV ) < ∞ for every β > 0, and [25] weakens this assumption to �a(βoV ) < ∞ for
some βo > 0. The log-gamma model satisfies only this weaker condition.) We thereby conclude
that (qVar1) and (qVar2) do not always have any minimizers in the case of very strong disorder.
We record this as a remark for future reference.

Remark 2.12. Assume (Dir), (Ind), (Loc), V ∈ L, and �q(V ) < ∞. Then, as explained in the
paragraph above, (qVar1) and (qVar2) do not always have any minimizers in the case of very
strong disorder.

2.4. Additional remarks and open problems

We know from Theorem 1.9 that the critical inverse temperatures βc = βc(V, d) and β ′
c =

β ′
c(V , d) satisfy βc = β ′

c = 0 for d = 2,3, and it is natural to expect that βc = β ′
c for every
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d ≥ 2. However, this is an open problem, see [11], Remark 3.2. Furthermore, it is generally be-
lieved that there is strong disorder at βc for d ≥ 4. The latter claim is supported by the analogous
result in the context of directed polymers on trees which follows from [22].

With this background, here is our conjecture regarding the very strong disorder regime and the
events in (2.3).

Conjecture 2.13. Assume (Dir), (Ind), (Loc), V ∈ L, and �q(V ) < ∞. Then,

P
(
0 = hλ∞ < h̄λ∞ = ∞) = 1

for λ = �q(V ) whenever there is very strong disorder.

If this conjecture is indeed true, it would readily give the following quenched characterization
of the disorder regimes.

(a) If there is weak disorder, then

P
(
0 < hλ∞ = h̄λ∞ < ∞) = 1 for λ = �q(V ) = �a(V ) < ∞.

(b) If there is critically strong disorder, then

P
(
hλ∞ = h̄λ∞ = 0

) = 1 for λ = �q(V ) = �a(V ) < ∞.

(c) If there is very strong disorder, then

P
(
0 = hλ∞ < h̄λ∞ = ∞) = 1 for λ = �q(V ) < �a(V ) ≤ ∞.

This result would constitute a stronger version of Theorem 2.9. Note that parts (a) and (b) are
trivial since hλ∞ = h̄λ∞ = W∞ for λ = �a(V ).

As a second application, if Conjecture 2.13 is true, then very strong disorder would imply the
hypotheses of Theorem 2.10, and (qVar1) and (qVar2) would never have any minimizers in that
case. In other words, we could establish a stronger version of Remark 2.12.

The result of Borodin et al. [4] that we have used to satisfy the conditions of Proposition 2.11
is a form of Kardar–Parisi–Zhang (KPZ) universality and is expected to hold for a large class of
models, see [12] for a survey. However, Proposition 2.11 is much more modest since it does not
require any sharp estimates such as the n1/3 scaling in KPZ universality. Indeed, slowly growing
sequences, for example, a(n) = log log logn, satisfy the first two conditions in (2.5).

Finally, observe that Theorem 2.10 is not applicable in the (hypothetical) case of critically
strong disorder since, then, P(h̄λ∞ = 0) = 1 for λ = �q(V ) = �a(V ). Therefore, we refrain from
making any claims regarding the existence of any minimizers of (qVar1) and (qVar2) in that case.

3. Quenched free energy in the general case

3.1. Variational formulas (qVar0), (qVar1) and (qVar2) for �q(V )

Lemma 3.1. Assume that V (·, z) ∈ L1(�,S,P) for every z ∈ R. If K(V,F ) < ∞ with F =
∇∗g as defined in (2.1) for some g ∈ L+(�,S,P), then F ∈ K0.
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Proof. It follows from the definition of K(V,F ) that

F(·, z) ≤ ∣∣V (·, z)∣∣ + log |R| + K(V,F ) (3.1)

P-a.s. for every z ∈ R. Therefore, F+(·, z) is integrable and E[F(·, z)] is well defined, even
though it might a-priori be −∞. Note that E[F(·, z)] = −∞ is equivalent to E[|F(·, z)|] = ∞.

As a consequence of telescoping, we have

1

n

n−1∑
i=0

F(Tizω, z) = 1

n
log

g(Tnzω)

g(ω)
= 1

n
logg(Tnzω) − 1

n
logg(ω). (3.2)

By Birkhoff’s ergodic theorem, the LHS of (3.2) converges P-a.s. (and hence also in P-pro-
bability) to E[F(·, z)] ∈ [−∞,∞). However, the RHS of (3.2) converges to 0 in P-probability.
Indeed, for every ε > 0,

P

(∣∣∣∣1

n
logg ◦ Tnz

∣∣∣∣ > ε

)
= P

(∣∣∣∣1

n
logg

∣∣∣∣ > ε

)
= P

(| logg| > nε
) → 0 as n → ∞.

We conclude that E[F(·, z)] = 0 and F(·, z) ∈ L1(P). Finally, the cocycle property is obvious
from the definition of F . This finishes the proof. �

Proof of Theorem 2.1 (The upper bounds). We start by considering (qVar0). Take any F ∈
K0 and assume WLOG that K(V,F ) < ∞ since the desired upper bound is otherwise trivial.
Observe that

E0
[
e
∑n−1

i=0 V (TXi
ω,Zi+1)+F(TXi

ω,Zi+1)
]

=
∑

x∈Dn−1

E0
[
e
∑n−2

i=0 V (TXi
ω,Zi+1)+F(TXi

ω,Zi+1)1{Xn−1=x}
] ∑

z∈R
p(z)eV (Txω,z)+F(Txω,z)

≤
∑

x∈Dn−1

E0
[
e
∑n−2

i=0 V (TXi
ω,Zi+1)+F(TXi

ω,Zi+1)1{Xn−1=x}
]
eK(V,F )

= E0
[
e
∑n−2

i=0 V (TXi
ω,Zi+1)+F(TXi

ω,Zi+1)
]
eK(V,F ) ≤ · · · ≤ enK(V,F ),

where Dn−1 is defined in (1.2). Therefore,

�q(V ) = lim
n→∞

1

n
logZω

n,0
(3.3)

≤ lim sup
n→∞

1

n
logE0

[
e
∑n−1

i=0 V (TXi
ω,Zi+1)+F(TXi

ω,Zi+1)
] ≤ K(V,F )

if

lim inf
n→∞ min

x∈Dn

1

n

n−1∑
i=0

F(Txi
ω, zi+1) ≥ 0. (3.4)
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Here, by the cocycle property, (xi)
n
i=0 is allowed to be any path such that zi+1 = xi+1 − xi ∈ R,

x0 = 0 and xn = x.
We see from (3.1) that F is P-a.s. bounded from above by a function in L. Under this assump-

tion, it has been recently shown in [18], Theorem 9.3, that

lim
n→∞ max

x∈Dn

1

n

∣∣∣∣∣
n−1∑
i=0

F(Txi
ω, zi+1)

∣∣∣∣∣ = 0.

This is an ergodic theorem for cocycles. In particular, we have (3.4), and therefore, (3.3). Taking
infimum over all F ∈ K0 gives the upper bound in (qVar0).

The upper bounds in (qVar1) and (qVar2) are now easy. Indeed, take any g ∈ L+(�,S,P)

and assume WLOG that K ′(V ,g) < ∞ since the desired upper bounds are otherwise trivial.
Then, F := ∇∗g ∈ K0 by Lemma 3.1, and �q(V ) ≤ K(V,F ) = K ′(V ,g) by the upper bound
in (qVar0). Taking infimum over all g ∈ L+(�,S,P) gives the upper bound in (qVar1), from
which the upper bound in (qVar2) follows. �

Remark 3.2. Note that, for the logarithmic gradient F = ∇∗g of any g ∈ L+(�,S,P), the con-
dition in (3.4) can be written as

lim inf
n→∞ min

x∈Dn

1

n
log

g(Txω)

g(ω)
≥ 0. (3.5)

Consequently, the upper bound in (qVar2) does not rely on the aforementioned ergodic theorem
for cocycles because (3.5) is obvious for g ∈ L++(�,S,P).

Proof of Theorem 2.1 (The lower bounds). Assume WLOG that �q(V ) < ∞ since the desired
lower bounds are otherwise trivial. For any λ > �q(V ) and n ≥ 1, recall the function hλ

n which
was introduced in (2.2). Set hλ

0 = 1 as a convention and define

gλ :=
∞∑

n=0

hλ
n ≥ 1. (3.6)

Since

lim
n→∞

1

n
loghλ

n(ω) = �q(V ) − λ < 0

for P-a.e. ω, we have gλ ∈ L++(�,S,P). Moreover, under (Dir) and (Loc), gλ is future mea-
surable.

Decompose gλ in the following way: for P-a.e. ω,

gλ(ω) = 1 +
∞∑

n=1

hλ
n(ω) = 1 +

∞∑
n=1

∑
z∈R

p(z)eV (ω,z)−λhλ
n−1(Tzω)

= 1 +
∑
z∈R

p(z)eV (ω,z)−λ
∞∑

n=1

hλ
n−1(Tzω) = 1 +

∑
z∈R

p(z)eV (ω,z)−λgλ(Tzω).
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Rearranging this, we see that

λ = log

(
eλ

gλ(ω)
+

∑
z∈R

p(z)eV (ω,z)gλ(Tzω)

gλ(ω)

)
> log

(∑
z∈R

p(z)eV (ω,z)gλ(Tzω)

gλ(ω)

)
. (3.7)

Therefore, λ ≥ K ′(V ,gλ). First, taking infimum over all g ∈ L++ and then taking infimum over
λ > �q(V ) gives the lower bound in (qVar2), from which the lower bounds in (qVar1) and
(qVar0) follow since ∇∗gλ ∈K0 by Lemma 3.1. �

3.2. Minimizing the variational formula (qVar0) for �q(V )

Proof of Theorem 2.3. If �q(V ) = ∞, then every F ∈ K0 is trivially a minimizer of (qVar0).
Therefore, in the rest of the proof, we will assume that �q(V ) < ∞.

Since (qVar0) involves an infimum, for every i ≥ 1, there exists an Fi ∈K0 such that∑
z∈R

p(z)eV (·,z)+Fi(·,z) ≤ e�q(V )+1/i

holds P-a.s. Note that

Fi(·, z) ≤ ∣∣V (·, z)∣∣ + log |R| + �q(V ) + 1/i

for every z ∈ R. Since V (·, z) is in L1(P), we see that F+
i (·, z) is uniformly integrable. The

Fi are centered by definition, so we have E[F−
i (·, z)] = E[F+

i (·, z)]. Therefore, E[F−
i (·, z)] is

uniformly bounded. By [24], Lemma 4.3, we can write

F−
i (·, z) = F̂−

i (·, z) + Ri(·, z),
where, up to a common subsequence, F̂−

i (·, z) is uniformly integrable and Ri(·, z) ≥ 0 converges
to 0 in P-probability. Extracting a further subsequence, F̃i(·, z) = F+

i (·, z) − F̂−
i (·, z) is weakly

convergent in L1(P) to some F̃ (·, z), and Ri(·, z) converges P-a.s. to 0. By [31], Theorem 3.12,
F̃ (·, z) is in the strong L1(P)-closure of the convex hull of {F̃i(·, z) : i ≥ 1}, that is, there exists
a finite convex combination G̃i(·, z) := ∑∞

j=i αi,j F̃j (·, z) that converges to F̃ (·, z) strongly in

L1(P). Up to a further subsequence, G̃i(·, z) converges P-a.s. to F̃ (·, z). This ensures that F̃ (·, z)
satisfies the cocycle property. Moreover, since Ri(·, z) ≥ 0, we have c(z) := E[F̃ (·, z)] ≥ 0. Let
F(·, z) = F̃ (·, z) − c(z) for every z ∈ R. Then, F ∈ K0. By Jensen’s inequality,∑

z∈R
p(z)e

V (·,z)+G̃i (·,z)−∑∞
j=i αi,j Rj (·,z) ≤ e�q(V )+1/i .

Sending i → ∞, we get ∑
z∈R

p(z)eV (ω,z)+F(ω,z)+c(z) ≤ e�q(V )



420 F. Rassoul-Agha, T. Seppäläinen and A. Yilmaz

for P-a.e. ω and conclude that F is a minimizer of (qVar0). Plus, we deduce that c(z) = 0 for
every z ∈ R since, otherwise, the RHS of (qVar0) would be strictly less than �q(V ). �

4. Annealed free energy in the directed i.i.d. case

In the rest of the paper, L+, L++ and L1 stand for L+(�,S∞
0 ,P), L++(�,S∞

0 ,P) and
L1(�,S∞

0 ,P), respectively.

4.1. Variational formulas (aVar1) and (aVar2) for �a(V )

Proof of Theorem 2.4 (The upper bounds). Take any g ∈ L+ ∩ L1 and assume WLOG that
K ′(V ,g) < ∞ since the desired upper bounds are otherwise trivial. Then, for P-a.e. ω,

K ′(V ,g) ≥ log

(∑
z∈R

p(z)eV (ω,z)g(Tzω)

g(ω)

)
.

Rearranging this, we get

g(ω) ≥
∑
z∈R

p(z)eV (ω,z)−K ′(V ,g)g(Tzω). (4.1)

For every z ∈ R, the random variables V (·, z) and g ◦ Tz are independent by (Dir), (Ind), (Loc)
and the future measurability of g. Taking the expectation of both sides of (4.1), we see that

E[g] ≥
∑
z∈R

p(z)E
[
eV (·,z)−K ′(V ,g)g ◦ Tz

]
(4.2)

=
∑
z∈R

p(z)E
[
eV (·,z)−K ′(V ,g)

]
E[g ◦ Tz] = e�a(V )−K ′(V ,g)

E[g]

by stationarity, which implies �a(V ) ≤ K ′(V ,g). The infimum over all g ∈ L+ ∩ L1 gives the
upper bound in (aVar1), from which the upper bound in (aVar2) follows. �

Proof of Theorem 2.4 (The lower bounds). Assume WLOG that �a(V ) < ∞ since the desired
lower bounds are otherwise trivial. Take any λ > �a(V ) and recall the function gλ ∈ L++ which
is defined in (3.6). Its expected value is easy to compute:

E[gλ] =
∞∑

n=0

E
[
hλ

n

] =
∞∑

n=0

en(�a(V )−λ) = 1

1 − e�a(V )−λ
< ∞.

Therefore, gλ ∈ L++ ∩ L1. We have seen in (3.7) that λ ≥ K ′(V ,gλ). Taking first infimum over
all g ∈ L++ ∩ L1 and then infimum over λ > �a(V ) gives the lower bound in (aVar2), from
which the lower bound in (aVar1) follows. �
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4.2. An annealed variational characterization of weak disorder

Lemma 4.1. Assume (Dir), (Ind), and (Loc). Then, weak disorder is equivalent to the existence
of a function g ∈ L+ ∩ L1 such that

g =
∑
z∈R

p(z)eV (·,z)−λg ◦ Tz (4.3)

P-a.s. for some λ ∈ R. In that case, λ = �a(V ), and g is equal (up to a multiplicative constant)
to W∞ which is defined in (1.7).

Remark 4.2. This result has been previously obtained as part of [11], Proposition 3.1, in the case
of directed polymers, that is, for potentials that do not depend on z. Our proof below is a straight-
forward adaptation, which we include for the sake of completeness as well as for demonstrating
a technique that we will use in the rest of the paper.

Proof of Lemma 4.1. If there is weak disorder, then �a(V ) < ∞ and W∞ ∈ L+ by definition.
Observe that

E[W∞] ≤ lim inf
n→∞ E[Wn] = 1

by Fatou’s lemma, so in fact W∞ ∈ L+ ∩ L1. Decompose Wn with respect to the first step of the
underlying random walk and see that

Wn =
∑
z∈R

p(z)eV (·,z)−�a(V )Wn−1 ◦ Tz. (4.4)

Taking n → ∞ gives (4.3) with g = W∞ and λ = �a(V ).
Conversely, if there exists some g ∈ L+ ∩ L1 and λ ∈ R such that (4.3) is satisfied, then we

take the expectation of both sides of (4.3) and get

E[g] =
∑
z∈R

p(z)E
[
eV (·,z)−λ

]
E[g ◦ Tz] = e�a(V )−λ

E[g]

which implies that �a(V ) = λ < ∞. Here, as in (4.2), we used (Dir), (Ind), (Loc) and the future
measurability of g. Iterating (4.3) for n ≥ 1 times, we get

g = E0

[
exp

(
n−1∑
i=0

V (TXi
·,Zi+1) − n�a(V )

)
g ◦ TXn

]

=
∑
x

hλ
n(·, x)g ◦ Tx

with λ = �a(V ) and

hλ
n(·, x) = E0

[
e
∑n−1

i=0 V (TXi
·,Zi+1)−nλ1{Xn=x}

]
.
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Observe that hλ
n(·, x) is Sn

0-measurable since Xn only takes values x ∈ Z
d+ such that |x|1 = n.

On the other hand, g ◦ Tx is independent of Sn
0 since g is future measurable. Therefore,

E
[
g|Sn

0

] =
∑
x

hλ
n(·, x)E[g ◦ Tx] =

∑
x

hλ
n(·, x)E[g] = WnE[g]. (4.5)

Finally,

W∞ = lim
n→∞Wn = lim

n→∞
E[g|Sn

0]
E[g] = g

E[g] > 0

holds P-a.s. and we conclude that there is weak disorder. �

Proof of Theorem 2.6. If there is weak disorder, then by Lemma 4.1, there exists a g ∈ L+ ∩L1

that satisfies (4.3) with λ = �a(V ) < ∞. Rearranging this equality, we immediately see that g is
a minimizer of (aVar1) and there is no need for taking essential supremum in K ′(V ,g).

Conversely, if �a(V ) < ∞ and (aVar1) has a minimizer g ∈ L+ ∩ L1, then we have

g(ω) ≥
∑
z∈R

p(z)eV (ω,z)−�a(V )g(Tzω) (4.6)

for P-a.e. ω. If taking essential supremum in K ′(V ,g) were indeed necessary, then the inequality
in (4.6) would be strict on a set of positive P-probability. In that case, we would have

E[g] >
∑
z∈R

p(z)E
[
eV (·,z)−�a(V )g ◦ Tz

]

=
∑
z∈R

p(z)E
[
eV (·,z)−�a(V )

]
E[g ◦ Tz] = e�a(V )−�a(V )

E[g] = E[g]

which is a contradiction. Hence, there is no need for taking essential supremum in K ′(V ,g).
Therefore, g satisfies (4.3) with λ = �a(V ). By Lemma 4.1, we have weak disorder and g is
equal (up to a multiplicative constant) to W∞. This concludes the proof of part (a).

For part (b), note that any minimizer of (aVar2) would be a minimizer of (aVar1). Therefore, by
part (a), (aVar2) has no minimizers under strong disorder, and has at most one minimizer under
weak disorder, namely W∞. However, the latter is ruled out by Proposition 4.3 below unless Zω

1,0
is P-essentially constant. �

Proposition 4.3. Assume (Dir), (Ind), (Loc), and weak disorder. Then,

(a) P- ess inf
ω

W∞(ω) = 0 and (b) P- ess sup
ω

W∞(ω) = ∞

unless

Zω
1,0 =

∑
z∈R

p(z)eV (ω,z)

is P-essentially constant, cf. Remark 2.7.
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Proof. Let us prove part (a) by contradiction. Suppose ∃c ∈ (0,1) such that P(W∞ > c) = 1.
Then, we have P(Wn ≤ c) = 0 for every n ≥ 1 because, otherwise,

cP(Wn ≤ c) < E[W∞1{Wn≤c}] = E
[
E

[
W∞1{Wn≤c}|Sn

0

]] = E
[
E

[
W∞|Sn

0

]
1{Wn≤c}

]
= E[Wn1{Wn≤c}] ≤ cP(Wn ≤ c).

On the other hand, if Zω
1,0 is not P-essentially constant, then P(Wn ≤ c) > 0 for large n ≥ 1.

Indeed, E[Zω
1,0] = e�a(V ) and there exists a δ > 0 such that P(Zω

1,0 ≤ e�a(V )−δ) > 0. By the
assumptions (Ind) and (Loc), the event⋂

|x|1≤n−1

{
ω :Zω

1,x ≤ e�a(V )−δ
}

has positive P-probability. On this event,

Wn(ω) =
∑
x

Wn−1(ω, x)
∑
z∈R

p(z)eV (Txω,z)−�a(V ) =
∑
x

Wn−1(ω, x)Zω
1,xe

−�a(V )

≤ Wn−1(ω)e−δ ≤ · · · ≤ e−nδ ≤ c

for n ≥ | log c|/δ. Here, Wn−1(ω, x) := hλ
n−1(ω, x) with λ = �a(V ). The proof of part (b) is

similar. �

5. Analysis of (qVar1) and (qVar2) in the directed i.i.d. case

5.1. Quenched variational analysis of weak disorder

Proof of Theorem 2.8. First, without assuming weak disorder, suppose V ∈ L, �q(V ) < ∞,
and g ∈ L+ is a minimizer of (qVar1). Then, it satisfies

g(ω) ≥
∑
z∈R

p(z)eV (ω,z)−�q(V )g(Tzω) (5.1)

for P-a.e. ω. Iterating this inequality for n ≥ 1 times, we see that

g(ω) ≥
∑
x

hλ
n(ω,x)g(Txω)

holds with λ = �q(V ). Dividing both sides by hλ
n(ω), we get

g(ω)

hλ
n(ω)

≥
∑
x

μn(ω,x)g(Txω),

where

μn(ω,x) := hλ
n(ω,x)

hλ
n(ω)

= Qω
n,0(Xn = x)
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does not depend on λ. For any 0 < M < ∞,

g(ω)

hλ
n(ω)

∧ M ≥
∑
x

μn(ω,x)
(
g(Txω) ∧ M

)
by Jensen’s inequality since u �→ u ∧ M is a concave function. Note that, as in the proof of
Lemma 4.1, for every x ∈ Z

d+ with |x|1 = n, the random variable μn(·, x) (resp., g ◦ Tx ) is
measurable w.r.t. (resp., independent of) the σ -algebra Sn

0. Therefore,

E

[
g

hλ
n

∧ M

∣∣∣Sn
0

]
≥

∑
x

μn(·, x)E
[
(g ◦ Tx) ∧ M

]
(5.2)

=
∑
x

μn(·, x)E[g ∧ M] = E[g ∧ M].

In the case of weak disorder, we know that λ = �q(V ) = �a(V ) by (1.8), hλ
n converges P-a.s.

to W∞ ∈ L+ ∩L1 as n → ∞, and W∞ is a minimizer of (qVar1). By the dominated convergence
theorem for conditional expectations (see [17], Theorem 5.5.9), the LHS of (5.2) converges P-a.s.
to (g/W∞) ∧ M as n → ∞. Therefore,

E[g ∧ M] ≤ g

W∞
∧ M ≤ g

W∞
< ∞

holds P-a.s. Sending M → ∞ and applying the monotone convergence theorem, we see that
E[g] < ∞. So, g ∈ L+ ∩ L1 and it is a minimizer of (aVar1). By Theorem 2.6, g is equal (up to
a multiplicative constant) to W∞. This concludes the proof of part (a). Finally, part (b) follows
from Proposition 4.3 since W∞ /∈ L++ unless Zω

1,0 is P-essentially constant. �

5.2. A quenched characterization of weak disorder

Lemma 5.1. For λ = �q(V ) < ∞, each of the events {hλ∞ = 0}, {0 < hλ∞ < ∞} and {hλ∞ = ∞}
has P-probability zero or one.

Proof. For every m,n ≥ 1 and x ∈ Z
d+ such that |x|1 = m, we have

hλ
m+n =

∑
y

hλ
m(·, y)hλ

n ◦ Ty ≥ hλ
m(·, x)hλ

n ◦ Tx, (5.3)

where the equality follows from decomposing the LHS w.r.t. the possible values of Xm. Taking
liminf of both sides as n → ∞, we get

hλ∞ ≥ hλ
m(·, x)hλ∞ ◦ Tx.

Therefore,

{
ω : hλ∞(ω) = 0

} ⊂
∞⋂

m=1

⋂
|x|1=m

{
ω : hλ∞(Txω) = 0

}
(5.4)
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and

{
ω : hλ∞(ω) = ∞} ⊃

∞⋃
m=1

⋃
|x|1=m

{
ω : hλ∞(Txω) = ∞}

. (5.5)

If P(hλ∞ = 0) < 1, then by ergodicity the RHS of (5.4) is a P-probability zero event and, there-
fore, we in fact have P(hλ∞ = 0) = 0. Similarly, if P(hλ∞ = ∞) > 0, then by ergodicity the RHS
of (5.5) is a P-probability one event and, therefore, we in fact have P(hλ∞ = ∞) = 1. �

Proof of Theorem 2.9. One direction is immediate. Indeed, if there is weak disorder, then

hλ∞ = lim inf
n→∞ hλ

n = lim
n→∞Wn = W∞ ∈ L+

for λ = �q(V ) = �a(V ).
Conversely, assume that hλ∞ ∈ L+ for λ = �q(V ) < ∞. Then, for every n ≥ 1, we have

hλ
n+1 =

∑
z∈R

p(z)eV (·,z)−�q(V )hλ
n ◦ Tz.

Taking liminf of both sides as n → ∞, we get

hλ∞ ≥
∑
z∈R

p(z)eV (·,z)−�q(V )hλ∞ ◦ Tz.

Multiplying both sides of this inequality by e�q(V )/hλ∞ and then taking logarithm, we see that
�q(V ) ≥ K ′(V ,hλ∞), so hλ∞ is a minimizer of (qVar1). The proof of Theorem 2.8 carries over
until (5.2) and we have

E

[
hλ∞
hλ

n

∧ M

∣∣∣Sn
0

]
≥ E

[
hλ∞ ∧ M

]
for every 0 < M < ∞. Observe that

lim sup
n→∞

hλ∞
hλ

n

=
(

lim inf
n→∞

hλ
n

hλ∞

)−1

= 1.

By a simple modification of the dominated convergence theorem for conditional expectations
(see Lemma 5.2 below), we have

E
[
hλ∞ ∧ M

] ≤ lim sup
n→∞

E

[
hλ∞
hλ

n

∧ M

∣∣∣Sn
0

]
≤ 1 ∧ M.

We send M → ∞ and get E[hλ∞] ≤ 1 by the monotone convergence theorem. Therefore, hλ∞ ∈
L+ ∩ L1 and it is a minimizer of (aVar1) since �a(V ) ≤ K ′(V ,hλ∞) = �q(V ) ≤ �a(V ). In
particular, �a(V ) < ∞. Finally, we use Theorem 2.6 to conclude that there is weak disorder. �
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Lemma 5.2. Let Yn,Y and Z be future measurable functions such that Y = lim supn→∞ Yn,
|Yn| ≤ Z for all n ≥ 1, and E[Z] < ∞. Then, lim supn→∞ E[Yn|Sn

0] ≤ Y holds P-a.s.

Proof. Let UN = sup{Yn − Y : n ≥ N} for every N ≥ 1. Then, |UN | ≤ 2Z, so E[|UN |] < ∞.
Now,

lim sup
n→∞

E
[
Yn − Y |Sn

0

] ≤ lim
n→∞E

[
UN |Sn

0

] = UN.

Sending N → ∞, we see that

lim sup
n→∞

E
[
Yn − Y |Sn

0

] ≤ lim
N→∞UN = lim sup

n→∞
Yn − Y = 0.

We conclude that

lim sup
n→∞

E
[
Yn|Sn

0

] ≤ lim
n→∞E

[
Y |Sn

0

] = Y. �

5.3. Quenched variational analysis of strong disorder

Lemma 5.3. For λ = �q(V ) < ∞, each of the events {h̄λ∞ = 0}, {0 < h̄λ∞ < ∞} and {h̄λ∞ = ∞}
has P-probability zero or one.

Proof. Taking limsup as n → ∞ of both sides of the inequality in (5.3), we get

h̄λ∞ ≥ hλ
m(·, x)h̄λ∞ ◦ Tx

for every m ≥ 1 and x ∈ Z
d+ such that |x|1 = m. Therefore, the set relations (5.4) and (5.5) hold

with hλ∞ replaced by h̄λ∞. The rest of the proof is identical to that of Lemma 5.1. �

Proof of Theorem 2.10. Fix λ = �q(V ) and assume that P(0 < h̄λ∞ ≤ ∞) = 1. Take any future
measurable function g satisfying P(0 ≤ g < ∞) = 1 and (5.1). Our strategy will be to show that
g ∈ L1. The proof of Theorem 2.8 carries over until (5.2) and we have

E

[
g

hλ
n

∧ M

∣∣∣Sn
0

]
≥ E[g ∧ M]

for every 0 < M < ∞. Pick a sufficiently small δ > 0 such that P(h̄λ∞ > δ) > 0. Let

n1 = n1(ω) = inf
{
n ≥ 1 : hλ

n(ω) ≥ δ
}

be the first time that hλ
n(ω) ≥ δ (if such a time exists, otherwise it is infinite). Similarly, for every

k ≥ 2, let

nk = nk(ω) = inf
{
n > nk−1 : hλ

n(ω) ≥ δ
}
.

Each nk is an N∪ {∞}-valued stopping time and we can consider the σ -algebras

S
nk

0 := {
A ∈S∞

0 : A ∩ {nk ≤ n} ∈Sn
0 for every n ≥ 1

}
.
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For every k ≥ 1, we have

E

[
g

hλ
nk

∧ M

∣∣∣Snk

0

]
1{nk<∞} =

∞∑
n=1

E

[
g

hλ
n

∧ M

∣∣∣Snk

0

]
1{nk=n}

=
∞∑

n=1

E

[
g

hλ
n

∧ M

∣∣∣Sn
0

]
1{nk=n} (5.6)

≥
∞∑

n=1

E[g ∧ M]1{nk=n} = E[g ∧ M]1{nk<∞}.

Here, (5.6) follows from Lemma 5.5 below. Now, on the set

{
h̄λ∞ > δ

} ⊂
⋂
k≥1

{nk < ∞},

we have hλ
nk

≥ δ for every k ≥ 1, and therefore

E[g ∧ M]1{h̄λ∞>δ} ≤ E

[
g

δ
∧ M

∣∣∣Snk

0

]
1{h̄λ∞>δ}.

Since S
nk

0 ↑S∞
0 as k → ∞, we deduce that

E[g ∧ M] ≤ (g/δ) ∧ M (5.7)

on the set {h̄λ∞ > δ}. Next, send M → ∞ and apply the monotone convergence theorem to get
E[g] ≤ g/δ on the same set. This means that g ∈ L1. On the other hand, if g were in L+∩L1, then
it would be a minimizer of (aVar1) since it would satisfy �a(V ) ≤ K ′(V ,g) ≤ �q(V ) ≤ �a(V )

by rearranging (5.1), and there would be weak disorder by Theorem 2.6. Therefore, g /∈ L+. We
conclude that (qVar1) has no minimizers since every minimizer of (qVar1) must satisfy (5.1) and
be in L+. In particular, (qVar2) also has no minimizers. �

Remark 5.4. We can strengthen the argument at the end of the proof of Theorem 2.10 in the fol-
lowing way. Since g /∈ L+, the set {g = 0} has positive P-probability. We can pick a sufficiently
small δ > 0 such that {g = 0} and {h̄λ∞ > δ} have a nontrivial intersection. Then, E[g ∧ M] = 0
by (5.7) and, sending M → ∞, we see that E[g] = 0, that is, P(g = 0) = 1.

Lemma 5.5. Let τ be an N∪ {∞}-valued stopping time for the filtration (Sn
0)n≥1. Consider the

σ -algebra

Sτ
0 := {

A ∈S∞
0 : A ∩ {τ ≤ n} ∈Sn

0 for every n ≥ 1
}
.

Then, for every Y ∈ L1(�,S∞
0 ,P) and n ≥ 1,

E
[
Y |Sτ

0

]
1{τ=n} = E

[
Y1{τ=n}|Sτ

0

] = E
[
Y |Sn

0

]
1{τ=n}.
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Proof. The first equality is automatic since {τ = n} is Sτ
0-measurable. For the second equality,

start by noting that E[Y |Sn
0]1{τ=n} is Sτ

0-measurable. Indeed, for m ≥ n,

E
[
Y |Sn

0

]
1{τ=n}1{τ≤m} = E

[
Y |Sn

0

]
1{τ=n}

is Sn
0- and hence Sm

0 -measurable. The case m < n is trivial since then

E
[
Y |Sn

0

]
1{τ=n}1{τ≤m} = 0.

Now, for every bounded Sτ
0-measurable test function ϕ,

E[Y1{τ=n}ϕ] = E
[
E

[
Y |Sn

0

]
1{τ=n}ϕ

]
since ϕ1{τ=n} is Sn

0-measurable. This concludes the proof. �

5.4. A sufficient condition for the nonexistence of minimizers of (qVar1)
and (qVar2)

Proof of Proposition 2.11. It is clear from (2.4) that

logHm+n ≥ logHm + logHn ◦ T(m/d,...,m/d)

for every m,n ≥ 1 (and divisible by d). By (Dir), (Ind) and (Loc), the summands on the RHS are
independent. Let

ε = lim sup
n→∞

P
(
logHn ≥ a(n)

)
> 0.

Fix an arbitrary δ ∈ (0,1). There exists an m1 ≥ 1 such that P(logHm1 ≥ a(m1)) > ε/2. Induc-
tively pick m2,m3, . . . as follows. Given m1,m2, . . . ,mk−1, let nk−1 = m1 + · · · + mk−1. For
sufficiently large mk ≥ 1, we have

logHnk−1

a(nk)
≥ −δ/2,

a(mk)

a(nk)
≥ 1 − δ/2 and P

(
logH ′

mk
≥ a(mk)|Snk−1

0

)
> ε/2.

Here, nk = nk−1 + mk and H ′
mk

= Hmk
◦ T(nk−1/d,...,nk−1/d). Note that such an mk always exists,

but depends on nk−1 and logHnk−1 , so it is a S
nk−1
0 -measurable random integer. Now, observe

that

logHnk

a(nk)
≥ logHnk−1

a(nk)
+ logH ′

mk

a(nk)
≥ −δ/2 + (1 − δ/2)

logH ′
mk

a(mk)
≥ 1 − δ

if logH ′
mk

≥ a(mk). Therefore,

P

(
logHnk

a(nk)
≥ 1 − δ

∣∣∣Snk−1
0

)
≥ P

(
logH ′

mk
≥ a(mk)|Snk−1

0

)
> ε/2.
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By Lévy’s extension of the second Borel–Cantelli lemma (see [37], page 124),

P

(
logHnk

a(nk)
≥ 1 − δ i.o.

)
= 1.

Since δ > 0 is arbitrary, this gives (2.6). In particular, for λ = �q(V ),

P
(
h̄λ∞ = ∞) = P

(
lim sup
n→∞

loghλ
n = ∞

)
≥ P

(
lim sup
n→∞

logHn = ∞
)

= 1. �
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