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Abstract
We show that two semi-infinite positive temperature
polymers coalesce on the scale predicted by KPZ
(Kardar–Parisi–Zhang) universality. The two polymer
paths have the same asymptotic direction and evolve
in the same environment, independently until coales-
cence. If they start at distance 𝑘 apart, their coalescence
occurs on the scale 𝑘3∕2. It follows that the total variation
distance of two semi-infinite polymer measures decays
on this same scale. Our results are upper and lower
bounds on probabilities and expectations that match, up
to constant factors and occasional logarithmic correc-
tions. Our proofs are done in the context of the solvable
inverse-gamma polymer model, but without appeal to
integrable probability. With minor modifications, our
proofs give also bounds on transversal fluctuations of
the polymer path. As the free energy of a directed poly-
mer is a discretization of a stochastically forced viscous
Hamilton–Jacobi equation, our results suggest that the
hyperbolicity phenomenon of such equations obeys the
KPZ exponent.
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1 INTRODUCTION

This paper focuses on a probability model for nearest-neighbor up-right random walk paths on
the two-dimensional square lattice. The lattice vertices are assigned independent and identically
distributed random variables called weights, and the energy of a path is defined as the sum of
the weights along the path. The point-to-point quenched polymer measures are probability mea-
sures on admissible paths connecting pairs of sites. The probability of a path is proportional to the
exponential of its energy.
This model is known as the two-dimensional directed lattice polymer with bulk disorder and was

introduced in the statistical physics literature by Huse and Henley [22] in 1985 to represent the
domain wall in the ferromagnetic Ising model with random impurities. This model is expected
to be a member of the Kardar–Parisi–Zhang (KPZ) universality class and has been extensively
studied over the past three decades, becoming a paradigmaticmodel in the field of nonequilibrium
statistical mechanics. See the surveys [11–14, 20, 21, 30, 31, 37].
The directed last-passage percolation (LPP) model on the square lattice is a zero-temperature

version of the randompolymermodel. In LPP,we consider the ground states, which are admissible
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COALESCENCE OF SEMI-INFINITE POLYMERS 3 of 58

paths that maximize the energy, and are referred to as geodesics. This particular LPP model with
up-right nearest-neighbor lattice paths is also called the corner growth model.
In LPP, a path that starts from a given lattice vertex and only moves up or right is called a

semi-infinite geodesic if each finite piece of the path is a geodesic between its endpoints. The
existence, directedness, and uniqueness or nonuniqueness of semi-infinite geodesics have been
well-studied and understood (see [16, 17, 38] for details). Notably, it has been demonstrated in [16]
that these semi-infinite geodesics can be obtained as limits of finite geodesics, as the endpoint
moves off toward infinity in a particular direction. Furthermore, it has been shown in the same
paper that semi-infinite geodesics starting at different vertices but having the same asymptotic
direction eventually coalesce, that is, they intersect and then move together.
The study of semi-infinite polymer measures in the case of random directed lattice polymers

was carried out in [18, 25]. Similar to LPP, [25] established that semi-infinite polymer measures
that start from different vertices and share the same asymptotic velocity can be coupled in such
a way that their paths coalesce with probability one. As a consequence, the marginals of any two
semi-infinite polymer measures that correspond to the same asymptotic velocity are asymptotic
to each other. This phenomenon, known as hyperbolicity, has been found to be linked to various
phenomena such as stochastic synchronization and the one force–one solution principle (see, e.g., [1,
26]). In this work, our focus is on providing precise quantitative bounds on the convergence rates,
showcasing how this hyperbolicity obeys the KPZ exponents. Currently, such sharp estimates are
only available in the so-called solvable cases, where the weight distribution is chosen in a specific
way, allowing for explicit analytic computations.
With nearest-neighbor up-right paths and independent and identically distributed vertex

weights, the only known solvable LPP models are the ones with either exponential or geometric
weight distribution. In the only known solvable directed polymer model, the weights have a neg-
ative log-gamma distribution. This solvable directed polymer model was first introduced by the
second author in [32] and has since been referred to as the inverse-gamma or log-gamma polymer.
Our main contributions in this paper are sharp quantitative bounds on the rates of coalescence

of the coupled paths and convergence of themarginals in the inverse-gamma polymermodel. The
corresponding estimates for LPP with exponential weights were obtained in [5] using integrable
probabilitymethods, and in [34] using couplingwith stationary versions of themodel, which relies
less on the solvability of themodel. In this paper, we adopt the latter approach and further develop
it to handle the additional layer of randomness that arises in the case of semi-infinite polymer
measures, where the random environment only determines the path measures. Along the way,
we provide various new estimates on the exit point of stationary polymers and we improve one
existing estimate, namely the last inequality in (4.1).

Organization of the paper

In Section 2, we present the setting and our main results concerning the coalescence point, total
variation distance, and transversal fluctuations. The connection to hyperbolicity in stochastic
Hamilton–Jacobi equations is addressed briefly in Remark 2.10. Exit time estimates in the station-
ary inverse-gamma polymer are a crucial tool in our proofs. We introduce the stationary polymer
in Section 3 and provide the exit time estimates in Section 4. The proofs of the coalescence results
are presented in Section 5, while the proofs of the total variation distance estimates can be found
in Section 6. The proofs of the transversal fluctuations results are provided in Section 7. Various
auxiliary results are gathered in the Appendix.
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4 of 58 RASSOUL-AGHA et al.

Notation and conventions

Subscripts indicate restricted subsets of the reals and integers: for example, ℤ>0 = {1, 2, 3, … } and
ℤ2
>0
= (ℤ>0)

2 is the strictly positive first quadrant of the planar integer lattice.
On ℝ2 we have the following conventions for points 𝑥 = (𝑥1, 𝑥2) and 𝑦 = (𝑦1, 𝑦2). Coordinate-

wise order: 𝑥 ⩽ 𝑦 if and only if 𝑥1 ⩽ 𝑦1 and 𝑥2 ⩽ 𝑦2. The 𝓁1 norm is |𝑥|1 = |𝑥1| + |𝑥2|. The origin
ofℝ2 is denoted by both 0 and (0,0). The two standard basis vectors are 𝑒1 = (1, 0) and 𝑒2 = (0, 1).
For integers 𝑚 ⩽ 𝑛, the integer interval is denoted by ⟦𝑚, 𝑛⟧ = {𝑚,𝑚 + 1,… , 𝑛}. For planar

points 𝑎 ⩽ 𝑏 in ℤ2, ⟦𝑎, 𝑏⟧ = {𝑥 ∈ ℤ2 ∶ 𝑎 ⩽ 𝑥 ⩽ 𝑏} is the rectangle in ℤ2 with corners 𝑎 and 𝑏. The
northeast boundary of a rectangle [[𝑎, 𝑏]], denoted by 𝜕NE[[𝑎, 𝑏]], is the set of vertices 𝑣 ∈ [[𝑎, 𝑏]]

such that 𝑣 ⋅ 𝑒1 = 𝑏 ⋅ 𝑒1 or 𝑣 ⋅ 𝑒2 = 𝑏 ⋅ 𝑒2. The notation ⟦𝑎, 𝑏⟧ is an integer line segment in ℤ2 if 𝑎
and 𝑏 are on the same horizontal or vertical line. In particular, ⟦𝑎 − 𝑒1, 𝑎⟧ and ⟦𝑎 − 𝑒2, 𝑎⟧ denote
unit edges.
The total variation distance between two probability measures 𝜇 and 𝜈 on a measurable

space (Ω,) is 𝑑TV(𝜇, 𝜈) = sup𝐴∈ |𝜇(𝐴) − 𝜈(𝐴)|. For a probability measure 𝜇, 𝑋 ∼ 𝜇 means the
random variable 𝑋 has distribution 𝜇.

2 MAIN RESULTS

2.1 Directed polymer model

Let {𝑌𝑧}𝑧∈ℤ2 be a collection of positive weights on the sites of the planar integer square lattice.
For vertices 𝑢 ⩽ 𝑣 in ℤ2, 𝕏𝑢,𝑣 denotes the collection of up-right paths 𝑥∙ = {𝑥𝑖}0⩽𝑖⩽𝑛 where 𝑛 =|𝑢 − 𝑣|1, 𝑥0 = 𝑢, 𝑥𝑛 = 𝑣 and 𝑥𝑖+1 − 𝑥𝑖 ∈ {𝑒1, 𝑒2} for all 𝑖 ∈ ⟦0, 𝑛 − 1⟧. Define the point-to-point
polymer partition function between the two vertices 𝑢 ⩽ 𝑣 by

𝑍𝑢,𝑣 =
∑

𝑥∙∈𝕏𝑢,𝑣

|𝑢−𝑣|1∏
𝑖=0

𝑌𝑥𝑖 .

We use the convention 𝑍𝑢,𝑣 = 0 if 𝑢 ⩽ 𝑣 fails. The quenched polymer measure is a probability
measure on the set 𝕏𝑢,𝑣 and is defined by

𝑄𝑢,𝑣{𝑥∙} =
1

𝑍𝑢,𝑣

|𝑢−𝑣|1∏
𝑖=0

𝑌𝑥𝑖 .

In general, the positive weights {𝑌𝑧}𝑧∈ℤ2 can be seen as a random environment if they are chosen
as independent and identically distributed positive random variables defined on some probability
space (Ω, , ℙ). Under the moment assumption

𝔼[| log𝑌𝑥|𝑝] < ∞ for some 𝑝 > 2,

there exists a concave, positively homogeneous, nonrandom continuous function Λ ∶ ℝ2
⩾0
→ ℝ

that satisfies the shape theorem (see [25, section 2.3]):

lim
𝑛→∞

sup
𝑧∈ℤ2

⩾0
∶|𝑧|1⩾𝑛

| log 𝑍0,𝑧 − Λ(𝑧)||𝑧|1 = 0 ℙ-almost surely. (2.1)
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COALESCENCE OF SEMI-INFINITE POLYMERS 5 of 58

Λ is called the (limiting) free energy density or, by analogywith stochastic growthmodels, the shape
function. Regularity properties of Λ such as strict convexity or differentiability are not known
in general.
Fix a base point 𝑣 ∈ ℤ2 and let 𝑥𝑁 ⩾ 𝑣 in ℤ2 be a sequence of lattice points going to infinity in

a deterministic direction 𝜉, that is, 𝑥𝑁∕|𝑥𝑁|1 44444→
𝑁→∞

𝜉∕|𝜉|1. The 𝜉-directed semi-infinite polymer
measure is obtained as the weak limit

𝑄𝑣,𝑥𝑁 ⇀ Π
𝜉
𝑣 as 𝑁 → ∞, (2.2)

provided this weak limit exists ℙ-almost surely. The probability measureΠ𝜉
𝑣 is the quenched path

measure of a random walk in a random environment (RWRE) on ℤ2 started at 𝑣. An RWRE is
Markov chainwhose transition probability depends on the environment in a translation-covariant
way. In the polymer case, these transition probabilities are given by limiting ratios of partition
functions. If the shape function Λ (as a function of directions) has sufficient local regularity
around the direction 𝜉, then the limiting measure Π𝜉

𝑣 exists [25, Theorem 3.8].

2.2 Inverse-gamma polymer

This paper focuses exclusively on the inverse-gamma polymer. A real random variable 𝑋 has
the inverse-gamma distribution with shape parameter 𝜇 ∈ (0,∞), abbreviated as 𝑋 ∼ Ga−1(𝜇),
if its reciprocal 𝑋−1 has the gamma distribution with shape parameter 𝜇. Equivalently, 𝑋 has
probability density function

𝑓𝑋(𝑥) =
1

Γ(𝜇)
𝑥−1−𝜇𝑒−𝑥

−1
𝟙(0,∞)(𝑥)

where Γ(𝑎) = ∫ ∞
0 𝑠𝑎−1𝑒−𝑠𝑑𝑠 is the gamma function. The inverse-gamma polymer is defined by

letting {𝑌𝑧}𝑧∈ℤ2 be independent and identically distributed inverse-gamma distributed random
variables. We will fix the shape parameter 𝜇 in the rest of the paper. While many of the constants
in the proofs depend on 𝜇, we will not explicitly mention this fact.
In the current state of the subject, Λ in (2.1) can be written down explicitly only in the

inverse-gamma case. Then the regularity of Λ required for (2.2) can be verified explicitly.
Hence, for each given direction 𝜉 in the open first quadrant and each initial vertex 𝑣 ∈ ℤ2,
the measure Π𝜉

𝑣 exists almost surely [18, Theorem 7.1]. Its transition probability is given in
Equation (5.2).
Let Ψ0 and Ψ1 be the digamma and trigamma functions, defined by Ψ0(𝑧) =

𝑑

𝑑𝑧
log Γ(𝑧) and

Ψ1(𝑧) = Ψ′
0
(𝑧) = 𝑑2

𝑑𝑧2
log Γ(𝑧). In the study of the inverse-gamma polymer, it is convenient to index

the spatial directions 𝜉 by the parameter 𝜌 ∈ (0, 𝜇) through

𝜉[𝜌] =
(

Ψ1(𝜌)

Ψ1(𝜌)+Ψ1(𝜇−𝜌)
,

Ψ1(𝜇−𝜌)

Ψ1(𝜌)+Ψ1(𝜇−𝜌)

)
. (2.3)

We call 𝜉[𝜌] the characteristic direction associated to the parameter 𝜌. This notion acquires its full
meaning when we discuss the stationary inverse-gamma polymer in Section 3. The formula for
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6 of 58 RASSOUL-AGHA et al.

F IGURE 1 These pictures illustrate the likely events which are the complements of the rare events bounded
in Theorems 2.1 and 2.3. The open circle marks the coalescence point of two 𝜉[𝜌]-directed semi-infinite polymer
paths. On the left 𝑟 is large and the initial points are far apart on the scale 𝑁2∕3. Consequently the two paths are
unlikely to coalesce before exiting the rectangle. On the right 𝛿 is small and coalescence inside the rectangle is
likely.

the shape function Λ is cleanest in terms of the characteristic direction: from [32, (2.16)]

Λ(𝜉[𝜌]) = −
Ψ1(𝜌)

Ψ1(𝜌)+Ψ1(𝜇−𝜌)
⋅ Ψ0(𝜇 − 𝜌) −

Ψ1(𝜇−𝜌)

Ψ1(𝜌)+Ψ1(𝜇−𝜌)
Ψ0(𝜌).

Throughout the paper, 𝑁 is a scaling parameter that goes to infinity. We define the particular
sequence of lattice points

𝑣𝑁 = (⌊𝑁𝜉[𝜌] ⋅ 𝑒1⌋, ⌊𝑁𝜉[𝜌] ⋅ 𝑒2⌋) ∈ ℤ2
⩾0 (2.4)

that go to infinity in the characteristic direction 𝜉[𝜌].We simplify the notation for the semi-infinite
polymer distribution to Π𝜌

𝑣 = Π
𝜉[𝜌]
𝑣 .

2.3 Coalescence bounds

For two initial vertices 𝑎, 𝑏 ∈ ℤ2, let 𝜌

𝑎,𝑏
denote the classical coupling measure of the Markov

chains Π𝜌
𝑎 and Π

𝜌

𝑏
, as defined by Thorisson [35, chapter 2]. Under the distribution 𝜌

𝑎,𝑏
, the two

paths evolve jointly as a Markov chain on ℤ2 × ℤ2 with marginal distributions Π𝜌
𝑎 and Π

𝜌

𝑏
. The

joint transition probability is defined on ℤ2 × ℤ2 so that the two paths move independently until
they meet, after which they move together. When this meeting happens we say that the two paths
coalesced. By [25, TheoremA.1], for a given 𝜌, coalescence happens𝜌

𝑎,𝑏
-almost surely, for almost

every environment.
We quantify the speed of coalescence by specifying the lattice subset in which the coalescence

first happens. For𝐴 ⊂ ℤ2, let Γ𝐴 denote the collection of pairs of semi-infinite up-right paths inℤ2
that first meet at a vertex inside the set𝐴. Then,𝜌

𝑎,𝑏

(
Γ[[0,𝑣𝑁]]

)
is the quenched probability that the

coalescence of the paths from 𝑎 and 𝑏 happens inside the set [[0, 𝑣𝑁]]. Similarly,𝜌

𝑎,𝑏

(
Γℤ

2⧵[[0,𝑣𝑁]]
)
is

the quenched probability that the coalescence happens outside [[0, 𝑣𝑁]]. The two theorems below
give upper and lower bounds on the expectations of these quenched probabilities in two distinct
cases: when the initial points are close together and when they are far apart on the scale 𝑁2∕3.
These two scenarios are illustrated in Figure 1.
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COALESCENCE OF SEMI-INFINITE POLYMERS 7 of 58

Theorem 2.1. Let 𝜀 ∈ (0, 𝜇∕2). There exist positive constants 𝐶1, 𝐶2,𝑁0, 𝛿0 depending only on 𝜀
such that for each 𝜌 ∈ [𝜀, 𝜇 − 𝜀],𝑁 ⩾ 𝑁0 and𝑁−2∕3 ⩽ 𝛿 ⩽ 𝛿0, we have

𝐶1𝛿 ⩽ 𝔼
[𝜌⌊𝛿𝑁2∕3⌋𝑒1,⌊𝛿𝑁2∕3⌋𝑒2

(
Γℤ

2⧵[[0,𝑣𝑁]]
)]

⩽ 𝐶2| log 𝛿|10𝛿.
Remark 2.2. The restriction 𝛿 ⩾ 𝑁−2∕3 is needed only for the lower bound of the theorem and only
for the trivial reason that the expectation vanishes when 𝛿 < 𝑁−2∕3 because then the two paths
start together at the origin.

Theorem 2.3. Let 𝜀 ∈ (0, 𝜇∕2). There exist positive constants 𝐶1, 𝐶2, 𝑟0, 𝑐0, 𝑁0 that depend only on
𝜀 such that for each 𝜌 ∈ [𝜀, 𝜇 − 𝜀],𝑁 ⩾ 𝑁0 and 𝑟0 ⩽ 𝑟 ⩽ 𝑐0𝑁

1∕3, we have

𝑒−𝐶1𝑟
3
⩽ 𝔼
[𝜌⌊𝑟𝑁2∕3⌋𝑒1,⌊𝑟𝑁2∕3⌋𝑒2

(
Γ[[0,𝑣𝑁]]

)]
⩽ 𝑒−𝐶2𝑟

3
.

Remark 2.4. Again, the upper bound 𝑟 ⩽ 𝑐0𝑁
1∕3 is only needed for the lower bound in the

theorem.

The estimates above do not depend on starting the paths on an antidiagonal. The following
corollary gives two of the four additional estimates. The other two follow from the theorems. Also,
𝑒1 and 𝑒2 are interchangeable by symmetry.

Corollary 2.5. Let 𝜀 ∈ (0, 𝜇∕2). There exist positive constants 𝐶,𝑁0, 𝛿0, 𝑟0 that depend only on 𝜀
such that for each 𝜌 ∈ [𝜀, 𝜇 − 𝜀],𝑁 ⩾ 𝑁0, 𝑟 ⩾ 𝑟0 and𝑁−2∕3 ⩽ 𝛿 ⩽ 𝛿0, we have

𝔼
[𝜌

0,⌊𝑟𝑁2∕3⌋𝑒1
(
Γ[[0,𝑣𝑁]]

)]
⩽ 𝑒−𝐶𝑟

3 and 𝔼
[𝜌

0,⌊𝛿𝑁2∕3⌋𝑒1
(
Γℤ

2⧵[[0,𝑣𝑁]]
)]

⩾ 𝐶𝛿.

By planar monotonicity and a change of variable, our estimates can also be stated for two
semi-infinite polymer paths that start at fixed locations. If the initial points are of order 𝑘 apart,
then their meeting takes place on the scale 𝑘3∕2, as captured in the corollary below. We shift the
rectangle with the initial points so that the constants do not depend at all on the initial points.
The coordinate-wise minimum of two lattice points 𝑎 = (𝑎1, 𝑎2) and 𝑏 = (𝑏1, 𝑏2) is denoted by
𝑎 ∧ 𝑏 = (𝑎1 ∧ 𝑏1, 𝑎2 ∧ 𝑏2).

Corollary 2.6. Let 𝜀 ∈ (0, 𝜇∕2) and 𝑎 ≠ 𝑏 inℤ2. Let 𝑘 = |𝑎 − 𝑏|1 ⩾ 1. There exist positive constants
𝐶1, 𝐶2, 𝑟0, 𝑐0 that depend only on 𝜀 such that for each 𝜌 ∈ [𝜀, 𝜇 − 𝜀], 𝑘 ⩾ 1, 𝑟 ⩾ 𝑟0 and 𝛿 ⩾ 𝑐0𝑘

−1∕2

we have

𝐶1𝑟
−2∕3 ⩽ 𝔼

[𝜌

𝑎,𝑏

(
Γ
ℤ2⧵{𝑎∧𝑏 + [[0,𝑣

𝑟𝑘3∕2
]]}
)]

⩽ 𝐶2(log 𝑟)
10𝑟−2∕3 and

𝑒−𝐶2𝛿
−2
⩽ 𝔼
[𝜌

𝑎,𝑏

(
Γ
𝑎∧𝑏+ [[0,𝑣

𝛿𝑘3∕2
]]
)]

⩽ 𝑒−𝐶1𝛿
−2
.

The next result gives tail bounds for the quenched probability of fast coalescence, of optimal
exponential order.
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8 of 58 RASSOUL-AGHA et al.

Theorem 2.7. Fix 𝜀 ∈ (0, 𝜇∕2). There exist positive constants 𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝑟0, 𝑐0, 𝑁0 that depend
only on 𝜀 such that for each 𝜌 ∈ [𝜀, 𝜇 − 𝜀],𝑁 ⩾ 𝑁0 and 𝑟0 ⩽ 𝑟 ⩽ 𝑐0𝑁

1∕3, we have

𝑒−𝐶1𝑟
3
⩽ ℙ
(𝜌⌊𝑟𝑁2∕3⌋𝑒1,⌊𝑟𝑁2∕3⌋𝑒2

(
Γ[[0,𝑣𝑁]]

)
⩾ 1 − 𝑒−𝐶2𝑟

2𝑁1∕3
)

⩽ ℙ
(𝜌⌊𝑟𝑁2∕3⌋𝑒1,⌊𝑟𝑁2∕3⌋𝑒2

(
Γ[[0,𝑣𝑁]]

)
⩾ 𝑒−𝐶3𝑟

2𝑁1∕3
)
⩽ 𝑒−𝐶4𝑟

3
.

2.4 Coupling and total variation distance

As the quenched noncoalescence probability 𝜌

𝑎,𝑏
(Γ

ℤ2⧵(𝑎∧𝑏 + [[0, 𝑣
𝑟𝑘3∕2

]])
) is nonincreasing in 𝑟,

Corollary 2.6 implies the almost sure convergence𝜌

𝑎,𝑏
(Γ

ℤ2⧵(𝑎∧𝑏 + [[0, 𝑣
𝑟𝑘3∕2

]])
) → 0 as 𝑟 → ∞. This

says that the polymer distributions Π𝜌
𝑎 and Π

𝜌

𝑏
couple almost surely. To state this precisely, let

𝜒
𝑁 = 𝜒

𝑁(𝛾) denote the vertex where a semi-infinite up-right path 𝛾 started inside [[0, 𝑣𝑁]] first
meets the northeast boundary 𝜕NE[[0, 𝑣𝑁]]. If (𝛾𝑎, 𝛾𝑏) denote the paths under 𝜌

𝑎,𝑏
, then for

𝑎, 𝑏 ∈ ℤ2
⩾0
we have

𝜌

𝑎,𝑏
{𝜒𝑁(𝛾

𝑎) = 𝜒
𝑁(𝛾

𝑏) for large enough 𝑁} = 1. (2.5)

The standard coupling inequality (stated in (6.1) in Section 6) implies that the total variation
distance between the distributions induced on 𝜕NE[[0, 𝑣𝑁]] converges to zero almost surely:

lim
𝑁→∞

𝑑TV

(
Π
𝜌
𝑎{𝜒𝑁 ∈ ∙} , Π

𝜌

𝑏
{𝜒𝑁 ∈ ∙}

)
= 0 ℙ-almost surely. (2.6)

The next two theorems establish bounds on this convergence. In the same spirit as in the earlier
results, when the initial points are close on the scale 𝑁2∕3, the total variation distance on the
northeast boundary of a rectangle of size 𝑁 is small. In the opposite case the starting points are
far apart on the scale 𝑁2∕3 and the total variation distance is close to 1.

Theorem 2.8. Let 𝜀 ∈ (0, 𝜇∕2). There exist finite strictly positive constants 𝛿0,𝑁0, 𝐶 that depend on
𝜀 such that, whenever 0 < 𝛿 ⩽ 𝛿0,𝑁 ⩾ 𝑁0 and 𝜌 ∈ [𝜀, 𝜇 − 𝜀],

𝔼
[
𝑑TV

(
Π
𝜌⌊𝛿𝑁2∕3⌋𝑒1 (𝜒𝑁 ∈ ∙), Π

𝜌⌊𝛿𝑁2∕3⌋𝑒2 (𝜒𝑁 ∈ ∙)
)]

⩽ 𝐶| log 𝛿|10𝛿.
Theorem 2.9. Let 𝜀 ∈ (0, 𝜇∕2). There exist finite positive constants 𝑟0, 𝑁0, 𝐶 depending on 𝜀 such
that whenever𝑁 ⩾ 𝑁0, 𝑟0 ⩽ 𝑟 ⩽ 𝑁1∕3 and 𝜌 ∈ [𝜀, 𝜇 − 𝜀], we have

𝔼
[
𝑑TV

(
Π
𝜌⌊𝑟𝑁2∕3⌋𝑒1 (𝜒𝑁 ∈ ∙), Π

𝜌⌊𝑟𝑁2∕3⌋𝑒2 (𝜒𝑁 ∈ ∙)
)]

⩾ 1 − 𝑒−𝐶𝑟
3
.

The proofs of the two theorems are given in Section 6.

Remark 2.10 (Hyperbolicity in stochastic equations). The free energy of a directed polymer can
be viewed as a discretization of a stochastically forced viscous Hamilton–Jacobi equation. This
connection goes back to [23, 24]. In this vein, semi-infinite polymer measures can be used to
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COALESCENCE OF SEMI-INFINITE POLYMERS 9 of 58

construct stationary eternal solutions to such equations. Article [1] treats a semidiscrete case and
[26] the KPZ equation. In particular, the limit (2.6) is a version of hyperbolicity that appears in
stochastic synchronization (also called the one force–one solution principle) of such equations. This
is the positive temperature analogue of the inviscid phenomenon whereby action minimizers are
asymptotic to each other in the infinite past. See, for example, [1, Theorem 4.4]. Our results above
show that, in the case at hand, this form of hyperbolicity obeys the KPZ wandering exponent. On
universality grounds one can predict that this is true in some generality in one space dimension
for stochastically forced viscous Hamilton–Jacobi equations with nonlinear Hamiltonians.

2.5 Transversal fluctuations

Finally, we present a result concerning the transversal fluctuation of the finite independent and
identically distributed polymer. This result is derived bymaking a slight modification to the proof
of the upper bound for fast coalescence, as stated in Theorem 2.1. It is expected for the midpoint
of polymer from (0,0) to (𝑁,𝑁) to fluctuate around the diagonal on the scale 𝑁2∕3. The upper
bound on the transversal fluctuation was first proved in the work [32], and we provide here the
lower bound, that is, we show that it is rare for the midpoint of the polymer to be too close to
the diagonal.
To state the result, let us introduce somenotation. Let {mid ⩽ 𝑘}denote the collection of directed

paths between −𝑣𝑁 and 𝑣𝑁 that intersect the 𝓁∞ ball of radius 𝑘, centered at the origin.

Theorem 2.11. Let 𝜀 ∈ (0, 𝜇∕2). There exist finite strictly positive constants 𝛿0,𝑁0, 𝐶 that depend
on 𝜀 such that, whenever 0 < 𝛿 ⩽ 𝛿0,𝑁 ⩾ 𝑁0 and 𝜌 ∈ [𝜀, 𝜇 − 𝜀],

𝔼
[
𝑄−𝑣𝑁,𝑣𝑁 {mid ⩽ 𝛿𝑁2∕3}

]
⩽ 𝐶| log 𝛿|10𝛿.

Remark 2.12. Themidpoint transversal fluctuation can be generalized to other positions along the
path, as long as they are order 𝑁 away from −𝑣𝑁 and 𝑣𝑁 .

Remark 2.13. Our proof technique also yields the following lower bound on the fluctuation of the
endpoint of the point-to-line polymer. Let 𝑄p2l

0,𝑁
denote the point-to-line quenched path measure

on the collection of directed paths from (0,0) to the anti-diagonal line 𝑥 + 𝑦 = 2𝑁. And let {end ⩽
𝑘} denote the sub-collection of these paths that intersect the𝓁∞ ball of radius 𝑘, centered at (𝑁,𝑁).
It holds that

𝔼
[
𝑄
p2l
0,𝑁
{end ⩽ 𝛿𝑁2∕3}

]
⩽ 𝐶| log 𝛿|10√𝛿. (2.7)

We get the weaker
√
𝛿 instead of 𝛿 because the antidiagonal version of the independence property

of Busemann increments on horizontal or vertical lines for two different directions is not known.

3 STATIONARY INVERSE-GAMMA POLYMER

One of the main tools we use in our proofs is a stationary version of the polymer model, which
we now describe.
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10 of 58 RASSOUL-AGHA et al.

The stationary inverse-gamma polymer with southwest boundary is defined on a quadrant
instead of the entire ℤ2. It requires a parameter parameter 𝜌 ∈ (0, 𝜇) and a base vertex 𝑣 ∈ ℤ2.
To each 𝑧 ∈ 𝑣 + ℤ2

>0
we attach a weight 𝑌𝑧 ∼ Ga−1(𝜇). On the 𝑒1- and 𝑒2-boundary of 𝑣 + ℤ2

⩾0
,

we place (edge) weights

𝐼
𝜌

𝑣+𝑘𝑒1
∼ Ga−1(𝜇 − 𝜌) and 𝐽

𝜌

𝑣+𝑘𝑒2
∼ Ga−1(𝜌), 𝑘 ⩾ 1. (3.1)

All these weights in the quadrant are independent. We refer to the 𝑌 weights as the bulk weights
and to the 𝐼𝜌 and 𝐽𝜌 weights as the 𝜌-boundary weights. Subsection 5.1 explains the reason behind
thinking of 𝐼𝜌 and 𝐽𝜌 as edge weights instead of vertex weights.
We use the same ℙ to denote the joint distribution of the weights (𝑌, 𝐼𝜌, 𝐽𝜌). For 𝑤 ∈ 𝑣 + ℤ2

⩾0
,

we define the partition function of the stationary polymer by

𝑍
𝜌
𝑣,𝑤 =

∑
𝑥∙∈𝕏𝑣,𝑤

|𝑤−𝑣|1∏
𝑖=0

𝑌𝑥𝑖 , where for 𝑥 ∈ 𝑣 + ℤ2
⩾0
, 𝑌𝑥 =

⎧⎪⎪⎨⎪⎪⎩

1 if 𝑥 = 𝑣,
𝐼
𝜌
𝑥−𝑒1,𝑥

if 𝑥 ∈ 𝑣 + ℤ>0𝑒1,
𝐽
𝜌
𝑥−𝑒2,𝑥

if 𝑥 ∈ 𝑣 + ℤ>0𝑒2,
𝑌𝑥 for 𝑥 ∈ 𝑣 + ℤ2

>0
.

The corresponding quenched polymer measure is defined as

𝑄
𝜌
𝑣,𝑤(𝑥∙) =

1

𝑍
𝜌
𝑣,𝑤

|𝑤−𝑣|1∏
𝑖=0

𝑌𝑥𝑖 , 𝑥∙ ∈ 𝕏𝑣,𝑤.

Next we state the theorem that explains why the process 𝑍𝜌 is called ratio-stationary, or simply
stationary. For a subset 𝐴 ⊂ ℤ2, let 𝐴< = ∪𝑥∈𝐴(𝑥 + ℤ2

<0
).

Theorem 3.1 [32, Theorem 3.3] and [18, eq. (3.6)]. Fix 𝜌 ∈ (0, 𝜇). For each 𝑢 ∈ 𝑣 + (ℤ>0 × ℤ⩾0),
𝑤 ∈ 𝑣 + (ℤ⩾0 × ℤ>0), and 𝑥 ∈ 𝑣 + ℤ2

⩾0
we have

𝑍
𝜌
𝑣,𝑢

𝑍
𝜌
𝑣,𝑢−𝑒1

∼ Ga−1(𝜇 − 𝜌),
𝑍
𝜌
𝑣,𝑤

𝑍
𝜌
𝑣,𝑤−𝑒2

∼ Ga−1(𝜌), and 1

𝑍
𝜌
𝑣,𝑥+𝑒1

∕𝑍
𝜌
𝑣,𝑥 + 𝑍

𝜌
𝑣,𝑥+𝑒2

∕𝑍
𝜌
𝑣,𝑥

∼ Ga−1(𝜇).

Translation invariance: The distribution of the process

{ 𝑍
𝜌
𝑣,𝑧+𝑢

𝑍
𝜌
𝑣,𝑧+𝑢−𝑒1

,
𝑍
𝜌
𝑣,𝑧+𝑤

𝑍
𝜌
𝑣,𝑧+𝑤−𝑒2

∶ 𝑢 ∈ ℤ>0 × ℤ⩾0, 𝑤 ∈ ℤ⩾0 × ℤ>0

}

does not depend on the translation 𝑧 ∈ 𝑣 + ℤ2
⩾0
. Furthermore, let𝐴 = {𝑦𝑖}𝑖∈ be any finite or infinite

down-right path in 𝑣 + ℤ2
⩾0
, indexed by an interval  ⊂ ℤ. (This means that each increment satis-

fies 𝑦𝑖+1 − 𝑦𝑖 ∈ {𝑒1, −𝑒2}.) Then, the nearest-neighbor ratios {𝑍
𝜌
𝑣,𝑦𝑖+1

∕𝑍
𝜌
𝑣,𝑦𝑖

} along the path and the
weights

{(
𝑍
𝜌
𝑣,𝑥+𝑒1

∕𝑍
𝜌
𝑣,𝑥 + 𝑍

𝜌
𝑣,𝑥+𝑒2

∕𝑍
𝜌
𝑣,𝑥

)−1
∶ 𝑥 ∈ 𝐴< ∩ (𝑣 + ℤ2)

}
are mutually independent.

A key quantity in the coupling approach to polymers and LPP models is the exit time. For an
up-right path 𝛾, we define 𝜏(𝛾) ∈ ℤ ⧵ {0} as the signed number of steps taken before the first turn,
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COALESCENCE OF SEMI-INFINITE POLYMERS 11 of 58

where the plus sign corresponds to 𝑒1 steps and theminus sign to 𝑒2 steps. For example, 𝜏(𝛾) = −3

means that the first four steps of 𝛾 consist of three consecutive 𝑒2 steps followed by an 𝑒1 step. For
𝑣, 𝑤 ∈ ℤ, when additional clarity is needed, we use the notation 𝜏𝑣,𝑤 to denote the restriction of
the function 𝜏 to the domain 𝕏𝑣,𝑤. When the path 𝛾 starts at the base vertex 𝑣 of the stationary
polymer process, |𝜏| equals the number of boundary weights seen by the path before it exits the
boundary. This justifies the term exit time for 𝜏(𝛾).
With the function 𝜏, we define the restricted partition function 𝑍𝑣,𝑤(𝑎 ⩽ 𝜏 ⩽ 𝑏) similarly to

𝑍𝑣,𝑤, except that we sum only over the subset of paths {𝑥∙ ∈ 𝕏𝑣,𝑤 ∶ 𝑎 ⩽ 𝜏𝑣,𝑤(𝑥∙) ⩽ 𝑏}.
Because the weights on the boundary are stochastically larger than the bulk weights, the path

prefers to stay on the boundary. For each 𝜌 ∈ (0, 𝜇) the characteristic direction 𝜉[𝜌] is the unique
direction in which the pulls of the 𝑒1- and 𝑒2-boundaries balance out. The sampled path between
the origin and 𝑣𝑁 tends to take order 𝑁2∕3 steps on the boundary. Precise exit time estimates are
stated in in Section 4.
The stationary inverse-gamma polymer with northeast boundary is analogous to the previously

definedmodel, except that it is defined on a third quadrant and uses boundary edgeweights placed
on the northeast boundary. Thus, it also requires a parameter 𝜌 ∈ (0, 𝜇) and a base vertex 𝑣 ∈ ℤ2,
but it is defined on the quadrant 𝑣 − ℤ2

⩾0
. To each 𝑧 ∈ 𝑣 + ℤ2

<0
we attach a bulk (vertex) weight

𝑌𝑧 ∼ Ga−1(𝜇). On the 𝑒1- and 𝑒2-boundary of 𝑣 − ℤ2
⩾0
, we place edge weights

𝐼
𝜌

[[𝑣+(𝑘−1)𝑘𝑒1,𝑣+𝑘𝑒1]]
= 𝐼

𝜌

𝑣+(𝑘−1)𝑘𝑒1,𝑣+𝑘𝑒1
∼ Ga−1(𝜇 − 𝜌),

𝐽
𝜌

[[𝑣+(𝑘−1)𝑘𝑒2,𝑣+𝑘𝑒2]]
= 𝐽

𝜌

𝑣+(𝑘−1)𝑘𝑒2,𝑣+𝑘𝑒2
∼ Ga−1(𝜌), 𝑘 ⩽ 0.

(3.2)

All these weights in the quadrant are independent. Here too, we use ℙ to denote the joint distribu-
tion of (𝑌, 𝐼𝜌, 𝐽𝜌) and write 𝑍𝜌,NE𝑢,𝑣 and𝑄𝜌,NE𝑢,𝑣 for, respectively, the partition function and quenched
measure for the polymer with northeast boundary. Precisely, for 𝑢 ∈ 𝑣 − ℤ2

⩾0
, define

𝑍
𝜌,NE
𝑢,𝑣 =

∑
𝑥∙∈𝕏𝑢,𝑣

|𝑣−𝑢|1∏
𝑖=0

𝑌𝑥𝑖 , where for 𝑥 ∈ 𝑣 − ℤ2
⩾0
, 𝑌𝑥 =

⎧⎪⎪⎨⎪⎪⎩

1 if 𝑥 = 𝑣,
𝐼
𝜌
𝑥,𝑥+𝑒1

if 𝑥 ∈ 𝑣 − ℤ>0𝑒1,
𝐽
𝜌
𝑥,𝑥+𝑒2

if 𝑥 ∈ 𝑣 − ℤ>0𝑒2,
𝑌𝑥 for 𝑥 ∈ 𝑣 − ℤ2

>0
.

The quenched polymer measure is defined by

𝑄
𝜌,NE
𝑢,𝑣 (𝑥∙) =

1

𝑍
𝜌,NE
𝑢,𝑣

|𝑣−𝑢|1∏
𝑖=0

𝑌𝑥𝑖 .

Remark 3.2. We work mostly with the stationary model with southwest boundary and, therefore,
we only flesh out the location of the boundarywhen it is the northeast boundary that is being used.

By symmetry, the analogous version of Theorem 3.1 holds for the stationary polymer with
northeast boundary.
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12 of 58 RASSOUL-AGHA et al.

4 EXIT TIME ESTIMATES

In this section, we prove exit time estimates for the stationary polymer model with southwest
boundary, introduced in Section 3. These results will be used to derive the coalescence estimate
in Section 5 and the total variation bounds in Section 6.
The first theorem below concerns the case when the polymer paths have an unusually large exit

time. The upper bound for the annealed measure is proved in [15, 28]. We improve this estimate
into a bound for the quenched tail. The related upper bound in the zero-temperature model is [8,
Theorem 2.4]. The proof in [8] uses a technical result from [7, Theorem 10.5]. We will present a
simpler proof in this paper.

Theorem 4.1. Fix 𝜀 ∈ (0, 𝜇∕2). There exist positive constants 𝑟0, 𝑁0, 𝑐0, and 𝐶𝑖 , 𝑖 ∈ [[1, 6]], that
depend only on 𝜀 such that for all 𝜌 ∈ [𝜀, 𝜇 − 𝜀],𝑁 ⩾ 𝑁0 and 𝑟0 ⩽ 𝑟 ⩽ 𝑐0𝑁

1∕3, we have

𝑒−𝐶1𝑟
3
⩽ ℙ

(
min

𝑥∉[[0,𝑣𝑁]]
𝑄
𝜌
0,𝑥
{|𝜏| > 𝑟𝑁2∕3} ⩾ 1 − 𝑒−𝐶2𝑟

2𝑁1∕3

)
⩽ ℙ
(
𝑄
𝜌

0,𝑣𝑁+(1,1)
{|𝜏| > 𝑟𝑁2∕3} ⩾ 𝑒−𝐶3𝑟

2𝑁1∕3
)
⩽ 𝑒−𝐶4𝑟

3 (4.1)

and

𝑒−𝐶5𝑟
3
⩽ 𝔼

[
min

𝑥∉[[0,𝑣𝑁]]
𝑄
𝜌
0,𝑣𝑁

{|𝜏| > 𝑟𝑁2∕3}

]
⩽ 𝔼
[
𝑄
𝜌

0,𝑣𝑁+(1,1)
{|𝜏| > 𝑟𝑁2∕3}

]
⩽ 𝑒−𝐶6𝑟

3
.

The next theorem is about the polymer paths having unusually small exit times. The esti-
mate improves upon the result from [9] where these types of estimates were used to rule out the
existence of nontrivial bi-infinite polymer measures. This technique was first developed for the
nonexistence of bi-infinite geodesics in the corner growth model [2] and subsequently applied to
coalescence estimates for semi-infinite geodesics in [34].

Theorem 4.2. Fix 𝜀 ∈ (0, 𝜇∕2). There exist positive constants 𝐶1, 𝐶2,𝑁0, 𝛿0 that depend only on 𝜀
such that for all 𝜌 ∈ [𝜀, 𝜇 − 𝜀],𝑁 ⩾ 𝑁0,𝑁−2∕3 < 𝛿 ⩽ 𝛿0, we have

ℙ

(
max

𝑥∉[[0,𝑣𝑁]]
𝑄
𝜌
0,𝑥
{|𝜏| ⩽ 𝛿𝑁2∕3} ⩾ 𝑒−| log 𝛿|2√𝛿𝑁1∕3

)
⩽ 𝐶1| log 𝛿|10𝛿 (4.2)

and

𝐶1𝛿 ⩽ 𝔼

[
max

𝑥∉[[0,𝑣𝑁]]
𝑄
𝜌
0,𝑥
{|𝜏| ⩽ 𝛿𝑁2∕3}

]
⩽ 𝐶2| log 𝛿|10𝛿. (4.3)

We close this section by extending the above estimates to any coupling of stationary polymer
measures. Let 𝑄𝜌

0,𝐴
be any coupling of the measures {𝑄𝜌

0,𝑥
∶ 𝑥 ∈ 𝐴}. This is then a probability

measure on the product space
∏

𝑦∈𝐴 𝕏0,𝑦 . We view the elements of this product space as vectors
and then for𝑥 ∈ 𝐴, the𝑥th coordinate of such a vectorwould be the path that ends at𝑥. For𝑥 ∈ 𝐴,
define the map 𝜏̃0,𝑥 ∶

∏
𝑦∈𝐴 𝕏0,𝑦 → ℤ that records the exit time of the path in the 𝑥th coordinate

of any vector in
∏

𝑦∈𝐴 𝕏0,𝑦 .
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COALESCENCE OF SEMI-INFINITE POLYMERS 13 of 58

Theorem 4.3. Fix 𝜀 ∈ (0, 𝜇∕2). There exist positive constants 𝐶1, 𝐶2, 𝑟0, 𝑐0, 𝑁0 that depend only on
𝜀 such that for each 𝜌 ∈ [𝜀, 𝜇 − 𝜀],𝑁 ⩾ 𝑁0 and 𝑟0 ⩽ 𝑟 ⩽ 𝑐0𝑁

1∕3, we have

ℙ

⎛⎜⎜⎝𝑄𝜌0,𝜕NE[[0,𝑣𝑁]]
⎛⎜⎜⎝
⋂

𝑥∈𝜕NE[[0,𝑣𝑁]]

{|𝜏̃0,𝑥| ⩾ 𝑟𝑁2∕3}
⎞⎟⎟⎠ ⩾ 1 − 𝑒−𝐶1𝑟

2𝑁1∕3
⎞⎟⎟⎠ ⩾ 𝑒−𝐶2𝑟

3

and

𝔼

⎡⎢⎢⎣𝑄𝜌0,𝜕NE[[0,𝑣𝑁]]
⎛⎜⎜⎝
⋂

𝑥∈𝜕NE[[0,𝑣𝑁]]

{|𝜏̃0,𝑥| ⩾ 𝑟𝑁2∕3}
⎞⎟⎟⎠
⎤⎥⎥⎦ ⩾ 𝑒−𝐶𝑟

3
.

Theorem 4.4. Fix 𝜀 ∈ (0, 𝜇∕2). There exist positive constants 𝐶,𝑁0, 𝛿0 that depend only on 𝜀 such
that for each 𝜌 ∈ [𝜀, 𝜇 − 𝜀],𝑁 ⩾ 𝑁0, 𝐾 ⩾ 1 and 0 < 𝛿 ⩽ 𝛿0, we have

𝔼

⎡⎢⎢⎣𝑄𝜌0,𝜕NE[[0,𝑣𝑁]]
⎛⎜⎜⎝
⋃

𝑥∈𝜕NE[[0,𝑣𝑁]]

{|𝜏̃0,𝑥| ⩽ 𝛿𝑁2∕3}
⎞⎟⎟⎠
⎤⎥⎥⎦ ⩽ 𝐶| log 𝛿|10𝛿.

4.1 Proof of Theorem 4.1

The expectation bounds in Theorem 4.1 follow directly from the tail bounds. We split the proof of
the tail bounds into the following two lemmas.

Lemma 4.5. Fix 𝜀 ∈ (0, 𝜇∕2). There exist positive constants 𝐶1, 𝐶2, 𝑟0,𝑁0 depending only on 𝜀 such
that for all 𝜌 ∈ [𝜀, 𝜇 − 𝜀],𝑁 ⩾ 𝑁0 and 𝑟 ⩾ 𝑟0, we have

ℙ
(
𝑄
𝜌
0,𝑣𝑁

{|𝜏| > 𝑟𝑁2∕3} ⩾ 𝑒−𝐶1𝑟
2𝑁1∕3
)
⩽ 𝑒−𝐶2𝑟

3
.

Lemma 4.6. Fix 𝜀 ∈ (0, 𝜇∕2). There exist positive constants 𝐶1, 𝐶2, 𝑟0, 𝑁0, 𝑐0 depending only on 𝜀
such that for all 𝜌 ∈ [𝜀, 𝜇 − 𝜀],𝑁 ⩾ 𝑁0 and 𝑟0 ⩽ 𝑟 ⩽ 𝑐0𝑁

1∕3, we have

ℙ

(
min

𝑥∉[[0,𝑣𝑁]]
𝑄
𝜌
0,𝑥
{|𝜏| > 𝑟𝑁2∕3} ⩾ 1 − 𝑒−𝐶1𝑟

2𝑁1∕3

)
⩾ 𝑒−𝐶2𝑟

3

4.1.1 Proof of Lemma 4.5

We start with two calculations for the shape function Λ. Their proofs use Taylor expansions and
are thus postponed to Appendix A.2.
The first proposition below captures the loss of free energy due to curvature.

Proposition 4.7. Fix 𝜀 ∈ (0, 𝜇∕2). There exist positive constants𝐶1,𝑁0, 𝑐0 depending only on 𝜀 such
that for each 𝜌 ∈ [𝜀, 𝜇 − 𝜀],𝑁 ⩾ 𝑁0, 1 ⩽ 𝑠 ⩽ 𝑐0𝑁

1∕3, we have

Λ
(
𝑣𝑁 − ⌊𝑠𝑁2∕3⌋𝑒1 + ⌊𝑠𝑁2∕3⌋𝑒2) − ⌊𝑠𝑁2∕3⌋Ψ0(𝜇 − 𝜌) + ⌊𝑠𝑁2∕3⌋Ψ0(𝜌) − Λ(𝑣𝑁) ⩽ −𝐶1𝑠

2𝑁1∕3.
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14 of 58 RASSOUL-AGHA et al.

F IGURE 2 Sketch of Corollary 4.10. On the left is a path in the event 𝜏0,𝑣𝑁−⌊𝑟𝑁2∕3⌋𝑒1 ⩾ 1. On the right, a
second base point is placed at −⌊𝑟𝑁2∕3⌋𝑒1 and the edge weights on the 𝑒2-axis based at 0 are determined by the
ratio variables of the polymer based at −⌊𝑟𝑁2∕3⌋𝑒1. By Lemma A.7,
𝑄0,𝑣𝑁−⌊𝑟𝑁2∕3⌋𝑒1 {𝜏 ⩾ 1} = 𝑄−⌊𝑟𝑁2∕3⌋𝑒1,𝑣𝑁−⌊𝑟𝑁2∕3⌋𝑒1 {𝜏 ⩾ ⌊𝑟𝑁2∕3⌋ + 1}, and Theorem 4.9 can be applied.

The second proposition is essentially a bound on the nonrandom fluctuationwhen the endpoint
varies around 𝑣𝑁 .

Proposition 4.8. Fix 𝜀 ∈ (0, 𝜇∕2). There exist positive constants𝐶1,𝑁0, 𝑐0 depending only on 𝜀 such
that for each 𝜌 ∈ [𝜀, 𝜇 − 𝜀],𝑁 ⩾ 𝑁0, 0 ⩽ 𝑠 ⩽ 3, we have

||||Λ(𝑣𝑁 − ⌊𝑠𝑁2∕3⌋𝑒1 + ⌊𝑠𝑁2∕3⌋𝑒2) − ⌊𝑠𝑁2∕3⌋Ψ0(𝜇 − 𝜌) + ⌊𝑠𝑁2∕3⌋Ψ0(𝜌) − Λ(𝑣𝑁)
|||| ⩽ 𝐶1𝑁

1∕3.

Next, we recall the established annealed version of the exit time estimate, which, through the
Markov inequality, yields the expression (4.4). This equation represents a nonoptimal variant of
the upper bound presented in Lemma4.5, as it has 𝑒−𝐶𝑟3 instead of 𝑒−𝐶𝑟2𝑁1∕3 within the probability
measure. It is important to note that this nonoptimal version alone is not enough to prove the
coalescence estimate later on. Consequently, Lemma 4.5 assumes a pivotal role in advancing the
arguments laid out in the paper.

Theorem 4.9 [15, 28]. Fix 𝜀 ∈ (0, 𝜇∕2). There exist positive constants 𝐶1, 𝐶2, 𝐶3, 𝑟0, 𝑁0 that depend
only on 𝜀 such that for for all 𝜌 ∈ [𝜀, 𝜇 − 𝜀],𝑁 ⩾ 𝑁0 and 𝑟 ⩾ 𝑟0, we have

𝔼
[
𝑄
𝜌
0,𝑣𝑁

{|𝜏| > 𝑟𝑁2∕3}
]
⩽ 𝑒−𝐶1𝑟

3
.

And by Markov inequality,

ℙ
(
𝑄
𝜌
0,𝑣𝑁

{|𝜏| > 𝑟𝑁2∕3} ⩾ 𝑒−𝐶2𝑟
3
)
⩽ 𝑒−𝐶3𝑟

3 (4.4)

Lemma A.7 allows us to obtain the following corollary from Theorem 4.9. The proof of
Corollary 4.10 is by now standard and is summarized in Figure 2 and its caption.

Corollary 4.10. Fix 𝜀 ∈ (0, 𝜇∕2). There exist positive constants 𝐶1, 𝐶2, 𝐶3, 𝑟0, 𝑁0 that depend only
on 𝜀 such that for for all 𝜌 ∈ [𝜀, 𝜇 − 𝜀],𝑁 ⩾ 𝑁0 and 𝑟 ⩾ 𝑟0, we have

ℙ
(
𝑄
𝜌

0,𝑣𝑁−𝑟𝑁
2∕3𝑒1

{𝜏 ⩾ 1} ⩾ 𝑒−𝐶1𝑟
3
)
⩽ 𝑒−𝐶2𝑟

3
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COALESCENCE OF SEMI-INFINITE POLYMERS 15 of 58

and

𝔼
[
𝑄
𝜌

0,𝑣𝑁−𝑟𝑁
2∕3𝑒1

{𝜏 ⩾ 1}
]
⩽ 𝑒−𝐶3𝑟

3
.

The same result holds when 𝑣𝑁 − 𝑟𝑁2∕3𝑒1 is replaced by 𝑣𝑁 + 𝑟𝑁2∕3𝑒2.

With these results, we obtain the following estimate for the maximum free energy.

Proposition 4.11. For each 𝜀 ∈ (0, 𝜇∕2), there exist positive constants 𝐶1, 𝐶2,𝑁0, 𝑐0 depending on
𝜀 such that for each𝑁 ⩾ 𝑁0 and 1 ⩽ 𝑟 ⩽ 𝑐0𝑁

2∕3, we have

ℙ

(
max

𝑘∈[[0,3⌊𝑁2∕3⌋]]
{
log 𝑍0,𝑣𝑁+(−𝑘,𝑘) − Λ(𝑣𝑁 + (−𝑘, 𝑘))

}
⩾ 𝐶1𝑟𝑁

1∕3

)
⩽ 𝑒−𝐶2𝑟

3∕2
.

Proof. To start, let us separate the probability that we are trying to bound into two parts.

ℙ

(
max

𝑘∈[[0,3⌊𝑁2∕3⌋]]
{
log 𝑍0,𝑣𝑁+(−𝑘,𝑘) − Λ(𝑣𝑁 + (−𝑘, 𝑘))

}
⩾ 𝐶′𝑟𝑁1∕3

)
⩽ ℙ

(
max

𝑘∈[[0,3⌊𝑁2∕3⌋]]
{
log 𝑍0,𝑣𝑁+(−𝑘,𝑘) − log 𝑍0,𝑣𝑁 − [Λ(𝑣𝑁 + (−𝑘, 𝑘)) − Λ(𝑣𝑁)]

}
⩾

𝐶′

2
𝑟𝑁1∕3

)
(4.5)

+ ℙ
(
log 𝑍0,𝑣𝑁 − Λ(𝑣𝑁) ⩾

𝐶′

2
𝑟𝑁1∕3
)

(4.6)

Using Proposition A.1, (4.6) ⩽ 𝑒−𝐶𝑟
3∕2 . To bound (4.5), we reformulate the problem into a bound

for running maxima of random walks. First, by Proposition 4.8, if 𝐶′ ⩾ 4𝐶1 and 𝑟 ⩾ 1, then

(4.5) ⩽ ℙ

(
max

𝑘∈[[0,3⌊𝑁2∕3⌋]]
{
log 𝑍0,𝑣𝑁+(−𝑘,𝑘) − log 𝑍0,𝑣𝑁 − [𝑘Ψ0(𝜇 − 𝜌) − 𝑘Ψ0(𝜌)]

}
⩾

𝐶′

4
𝑟𝑁1∕3

)
.

(4.7)
Next, we will show that the quantity log 𝑍0,𝑣𝑁+(−𝑘,𝑘) − log 𝑍0,𝑣𝑁 can be compared to a ran-

dom walk with independent and identically distributed steps. To do this, we will place boundary
weights on the south-west boundary of (−1, −1) + ℤ2

⩾0
with parameters 𝜆 = 𝜌 − 𝑞0

√
𝑟𝑁−1∕3 and

𝜇 − 𝜆. Here, 𝑞0 will be fixed sufficiently large so that the situation from Figure 3 happens: if
we trace the −𝜉[𝜆]-directed ray from 𝑣𝑁 , it crosses the vertical line 𝑥 = −1 above the point
(−1, 𝑟𝑁2∕3). Then the 𝑐0 from the statement of our proposition can be now fixed sufficiently small
so that 𝜆 stays between (0, 𝜇). These choices depend only on 𝜀.
Because (−1, 𝑟𝑁2∕3) is far away from (−1, −1) on the scale 𝑁2∕3, by a similar argument to

Corollary 4.10, we have

ℙ
(
𝑄𝜆
(−1,−1),𝑣𝑁

{𝜏 ⩾ 1} ⩾ 1∕10
)
⩽ 𝑒−𝐶𝑟

3
. (4.8)

Let us denote the complement of the event above as

𝐴 =
{
𝑄𝜆
(−1,−1),𝑣𝑁

{𝜏 ⩽ −1}>9∕10
}
.
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16 of 58 RASSOUL-AGHA et al.

F IGURE 3 The random walk set up in Proposition 4.11.

In the calculation below, let 𝑍𝜆,W
(−1,0),𝑥

denote the partition function for up-right paths from (−1, 0)

to 𝑥, which uses the same weights as 𝑍𝜆
(−1,−1),𝑥

does on the west boundary but uses the original
(bulk) weights on ℤ2

⩾0
. For each 𝑖 = 0, 1, … , 3⌊𝑁2∕3⌋ − 1, we have

𝑍0,𝑣𝑁+(−𝑖−1,𝑖+1)

𝑍0,𝑣𝑁+(−𝑖,𝑖)

⩽
𝑍𝜆,W
(−1,0),𝑣𝑁+(−𝑖−1,𝑖+1)

𝑍𝜆,west
(−1,0),𝑣𝑁+(−𝑖,𝑖)

=
𝑍𝜆,W
(−1,0),𝑣𝑁+(−𝑖−1,𝑖+1)

𝑍𝜆,W
(−1,0),𝑣𝑁+(−𝑖,𝑖)

⋅
𝐼𝜆
[[(−1,−1),(−1,0)]]

𝐼𝜆
[[(−1,−1),(−1,0)]]

by Proposition A.3

=
𝑍𝜆
(−1,−1),𝑣𝑁+(−𝑖−1,𝑖+1)

(𝜏 ⩽ −1)

𝑍𝜆
(−1,−1),𝑣𝑁+(−𝑖,𝑖)

(𝜏 ⩽ −1)
=
𝑄𝜆
(−1,−1),𝑣𝑁+(−𝑖−1,𝑖+1)

(𝜏 ⩽ −1)

𝑄𝜆
(−1,−1),𝑣𝑁+(−𝑖,𝑖)

(𝜏 ⩽ −1)
⋅
𝑍𝜆
(−1,−1),𝑣𝑁+(−𝑖−1,𝑖+1)

𝑍𝜆
(−1,−1),𝑣𝑁+(−𝑖,𝑖)

⩽
10

9

𝑍𝜆
(−1,−1),𝑣𝑁+(−𝑖−1,𝑖+1)

𝑍𝜆
(−1,−1),𝑣𝑁+(−𝑖,𝑖)

on the event 𝐴 .

By Theorem 3.1, we can define

𝑆𝜆
𝑘
=

𝑘−1∑
𝑖=0

log
𝑍𝜆
(−1,−1),𝑣𝑁+(−𝑖−1,𝑖+1)

𝑍𝜆
(−1,−1),𝑣𝑁+(−𝑖,𝑖)

which is an independent and identically distributed random walk whose step has the same dis-
tribution as log𝐺1 − log𝐺2, where 𝐺1 and 𝐺2 are independent, respectively, Ga(𝜇 − 𝜆) and Ga(𝜆)
random variables. Consequently, we have

(4.7) ⩽ ℙ

(
max

𝑘∈[[0,3⌊𝑁2∕3⌋]]
{
𝑆𝜆
𝑘
− [𝑘Ψ0(𝜇 − 𝜌) − 𝑘Ψ0(𝜌)]

}
⩾

𝐶′

8
𝑟𝑁1∕3

)
+ ℙ(𝐴𝑐), (4.9)
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COALESCENCE OF SEMI-INFINITE POLYMERS 17 of 58

whereℙ(𝐴𝑐) ⩽ 𝑒−𝐶𝑟
3 . Note𝔼[𝑆𝜆

𝑘
] = 𝑘Ψ0(𝜇 − 𝜆) − 𝑘Ψ0(𝜆), and using Taylor expansion and the fact

that 𝑘 ⩽ 3𝑁2∕3, we have |||𝔼[𝑆𝜆𝑘] − [𝑘Ψ0(𝜇 − 𝜌) − 𝑘Ψ0(𝜌)]
||| ⩽ 𝐶
√
𝑟𝑁1∕3.

Finally, taking 𝐶′ ⩾ 16𝐶, the probability in (4.9) is bounded as follows

ℙ

(
max

𝑘∈[[0,3⌊𝑁2∕3⌋]]
{
𝑆𝜆
𝑘
− [𝑘Ψ0(𝜇 − 𝜌) − 𝑘Ψ0(𝜌)]

}
⩾

𝐶′

8
𝑟𝑁1∕3

)
⩽ ℙ

(
max

𝑘∈[[0,3⌊𝑁2∕3⌋]]
{
𝑆𝜆
𝑘
− 𝔼[𝑆𝜆

𝑘
]
}
⩾

𝐶′

16
𝑟𝑁1∕3

)
⩽ 𝑒−𝐶

′′𝑟3∕2

where the last inequality follows from Theorem A.11. □

With this result, we are ready to prove Lemma 4.5. The proof uses arguments for a stationary
polymer with an antidiagonal boundary instead of a southwest boundary, which we will now
define. Let (0,0) be the bi-infinite staircase paths (with alternating 𝑒1 and −𝑒2 steps) through
(0,0)

(0,0) = {… , (−1, 1), (−1, 0), (0, 0), (0, −1), (1, −1), … }. (4.10)

Next, we attach boundary weights along (0,0), which are all independent. For each horizontal
edge to the left and right of (0,0), we attach Ga(𝜇 − 𝜌) and Ga−1(𝜇 − 𝜌)weights. For each vertical
edge to the left and right of (0,0), we attach Ga−1(𝜌) and Ga(𝜌) weights. For 𝑘 ∈ ℤ, let𝐻𝑘 denote
the product of the edge weights from (0,0) between (0,0) and (𝑘, −𝑘).
The partition function for this polymer with antidiagonal boundary is defined by

𝑍
𝜌,dia
0,𝑥

=
∑
𝑘∈ℤ

𝐻𝑘 ⋅ 𝑍(𝑘,−𝑘),𝑥,

where 𝑍 is the point-to-point partition but without using the weight at its starting point. The
corresponding polymer measure 𝑄𝜌,dia

0,𝑥
is a probability measure on paths that start at 0, move

along the antidiagonal, taking either only 𝑒1 − 𝑒2 steps or only 𝑒2 − 𝑒1 steps, and then enter the
bulk by taking an 𝑒1 or 𝑒2 step, after which they only take steps in {𝑒𝑖, 𝑖 = 1, 2}. For such a path 𝛾,
we define 𝜏dia(𝛾) ∈ ℤ ⧵ {0} as the signed number of steps taken before entering the bulk, where
the plus sign corresponds to 𝑒1 − 𝑒2 steps and the minus sign to 𝑒2 − 𝑒1 steps. For 𝑘 ∈ ℤ, let us
define the partition function over paths with exit point 𝑘 as

𝑍
𝜌,dia
0,𝑥

(𝜏dia = 𝑘) = 𝐻𝑘 ⋅ 𝑍(𝑘,−𝑘),𝑥. (4.11)

Proof of Lemma 4.5. First, by Lemma A.9, it suffices to prove our estimate for the stationary poly-
mer with the antidiagonal boundary defined above. By a slight abuse of notation, let us denote
𝑍𝜌 = 𝑍𝜌,dia, and 𝑄𝜌 = 𝑄𝜌,dia. There is no confusion because we will only be working with the
antidiagonal boundary in the remainder of this proof (instead of southwest boundary).
By a union bound, it suffices to prove that there exist positive constants 𝐶1, 𝐶2, 𝑠0, 𝑐0 such that

for each 𝑁 ⩾ 𝑁0 and 𝑠0 ⩽ 𝑠 ⩽ 𝑐0𝑁
1∕3, we have

ℙ

(
max

𝑘𝑁−2∕3∈(𝑠,𝑠+1]
𝑄
𝜌
0,𝑣𝑁

{𝜏dia = 𝑘} ⩾ 𝑒−𝐶1𝑠
2𝑁1∕3

)
⩽ 𝑒−𝐶2𝑠

3
.
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18 of 58 RASSOUL-AGHA et al.

To show this, we rewrite the quenched probability above in terms of the free energies,

ℙ

(
log 𝑍

𝜌
0,𝑣𝑁

− max
𝑘𝑁−2∕3∈(𝑠,𝑠+1]

log 𝑍
𝜌
0,𝑣𝑁

{𝜏dia = 𝑘} ⩽ 𝐶′𝑠2𝑁1∕3

)
⩽ ℙ
([
log 𝑍

𝜌
0,𝑣𝑁

− Λ(𝑣𝑁)
]

(4.12)

− max
𝑘𝑁−2∕3∈(𝑠,𝑠+1]

[
log 𝑍

𝜌
0,𝑣𝑁

{𝜏dia = 𝑘} − (Λ(𝑣𝑁 + (−𝑘, 𝑘)) − 𝑘Ψ0(𝜇 − 𝜌) + 𝑘Ψ0(𝜌))
]

⩽ 𝐶′𝑠2𝑁1∕3 + max
𝑘𝑁−2∕3∈(𝑠,𝑠+1]

(Λ(𝑣𝑁 + (−𝑘, 𝑘)) − 𝑘Ψ0(𝜇 − 𝜌) + 𝑘Ψ0(𝜌) − Λ(𝑣𝑁))

)
.

Applying Proposition 4.7, if we fix 𝐶′ in (4.12) sufficiently small, then, we may replace the right
side of the inequality in (4.12) by −𝑐′𝑠2𝑁1∕3 for some small positive constant 𝑐′.
Let {𝑍𝑖}∞𝑖=1 denote a sequence of independent and identically distributed random variables with

the same distribution given by − log𝐺1 + log𝐺2, where 𝐺1 and 𝐺2 are independent, respectively,
Ga(𝜇 − 𝜌) andGa(𝜌) randomvariables. The𝑍𝑖 ’s will play the role of the boundaryweight at (𝑖, −𝑖),
𝑖 ⩾ 1. Now continuing with a union bond, we have

(4.12) ⩽ ℙ
(
log 𝑍

𝜌
0,𝑣𝑁

− Λ(𝑣𝑁) ⩽ −1

5
𝑐′𝑠2𝑁1∕3

)
(4.13)

+ ℙ

(
max

𝑘𝑁−2∕3∈(𝑠,𝑠+1]

(
𝑘∑
𝑖=1

𝑍𝑖 + 𝑘Ψ0(𝜇 − 𝜌) − 𝑘Ψ0(𝜌)

)
⩾

1

5
𝑐′𝑠2𝑁1∕3

)
(4.14)

+ ℙ

(
max

𝑘𝑁−2∕3∈(𝑠,𝑠+1]

(
log 𝑍(−𝑘,𝑘),𝑣𝑁 − Λ(𝑣𝑁 + (−𝑘, 𝑘)

)
⩾

1

5
𝑐′𝑠2𝑁1∕3

)
, (4.15)

and (4.13) ⩽ 𝑒−𝐶𝑠
3 by Proposition A.2, (4.14) ⩽ 𝑒−𝐶𝑠

3 by Proposition A.12 and Theorem A.11,
(4.15) ⩽ 𝑒−𝐶𝑠

3 by Proposition 4.11. Finally, we note that even the𝑍 free energy does not use the first
weight, but Proposition 4.11 (which was originally stated for 𝑍 instead of 𝑍) still applies because
using a union bound we can get

ℙ

(
max

0⩽𝑘⩽3𝑁2∕3
log𝑌(−𝑘,𝑘) ⩾ 𝜀𝑠2𝑁1∕3

)
⩽ 𝑁2∕3𝑒−𝑐𝑠

2𝑁1∕3
⩽ 𝐶𝑒−𝑠

2𝑁1∕3
⩽ 𝐶′𝑒−𝑐

′𝑠3 .

Also, we are applying Proposition 4.11 by first shifting the picture to move the 𝑣𝑁 in (4.7) to the
origin, flipping it about the antidiagonal, and thenusing, in the proposition, a 𝑣𝑁 that is not exactly
the 𝑣𝑁 in the lemma, but rather 𝑣𝑁 − 𝑠𝑁2∕3(1, −1). This is allowed because the proposition is
stated uniformly for a whole interval of characteristic directions. □

4.1.2 Proof of Lemma 4.6

To prove Lemma 4.6, we tilt the probability measure to make the event likely and pay for this
with a bound on the Radon–Nikodym derivative. This argument was introduced in [3] in the con-
text of the asymmetric simple exclusion process and later adapted to lower bound proofs of the
longitudinal fluctuation exponent [33] and large exit time probability [34] in the stationary last-
passage percolation process. The key idea here is to perturb the parameter 𝜌 of the stationary
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COALESCENCE OF SEMI-INFINITE POLYMERS 19 of 58

polymer model to 𝜌 ± 𝑟𝑁−1∕3. This allows us to control the exit point on the scale𝑁2∕3. The gen-
eral idea of utilizing perturbations of order 𝑁−1∕3 goes back to the seminal paper [10]. We now
give the details.
For 𝑣 ∈ ℤ2

⩾0
let 𝜕NE[[0, 𝑣]] denote the north-east boundary of the rectangle [[0, 𝑣]], that is, the

sites 𝑢 ∈ [[0, 𝑣]] with 𝑢 ⋅ 𝑒1 = 𝑣 ⋅ 𝑒1 or 𝑢 ⋅ 𝑒2 = 𝑣 ⋅ 𝑒2.
Note that it is enough to prove the claimed bound withmin𝑥∉[[0,𝑣𝑁]] 𝑄

𝜌
0,𝑥
{|𝜏| > 𝑟𝑁1∕3} replaced

by

min
𝑥∈𝜕NE[[0,𝑣𝑁]]

𝑄
𝜌
0,𝑥
{|𝜏| > 𝑟𝑁2∕3},

as

min
𝑥∉[[0,𝑣𝑁]]

𝑄
𝜌
0,𝑥
{|𝜏| > 𝑟𝑁2∕3}

= min
𝑥∉[[0,𝑣𝑁]]

∑
𝑧∈𝜕NE⟦0,𝑣𝑁⟧𝑄

𝜌
0,𝑥
{|𝜏| > 𝑟𝑁2∕3 and the path passes through z}

= min
𝑥∉[[0,𝑣𝑁]]

∑
𝑧∈𝜕NE[[0,𝑣𝑁]]

𝑄
𝜌
0,𝑧
{|𝜏| > 𝑟𝑁2∕3}𝑄

𝜌
0,𝑥
{path passes through 𝑧}

⩾ min
𝑥∉[[0,𝑣𝑁]]

∑
𝑧∈𝜕NE[[0,𝑣𝑁]]

(
min

𝑧′∈𝜕NE⟦0,𝑣𝑁⟧𝑄𝜌0,𝑧′ {|𝜏| > 𝑟𝑁2∕3}

)
𝑄
𝜌
0,𝑥
{passes through 𝑧}

= min
𝑧′∈𝜕NE[[0,𝑣𝑁]]

𝑄
𝜌

0,𝑧′
{|𝜏| > 𝑟𝑁2∕3}.

Take 𝑐 ∈ (0, 𝜀

4𝜇2
∧ 1

2
], with 𝜀 as in the statement of the lemma. Below, we will choose an exact

value for 𝑐, which will still only depend on 𝜀 (and 𝜇).
Given positive 𝑟 and 𝑁, define the perturbed parameters 𝜆 = 𝜌 + 𝑟𝑁−1∕3 and 𝜂 = 𝜌 − 𝑟𝑁−1∕3.

The choice of 𝑐 guarantees that if

𝑟 ⩽ 𝑐((𝜇 − 𝜌)2 ∧ 𝜌2)𝑁1∕3, (4.16)

then 𝜂 < 𝜌 < 𝜆 are all contained in [𝜀∕2, 𝜇 − 𝜀∕2].
Given positive constants 𝑎 < 𝑏, define a new environment ℙ̃ by changing the original boundary

weights (whose distribution we will denote by ℙ𝜌) on parts of the axes. Precisely, ℙ̃ is the joint
distribution, under ℙ𝜌 of

𝜔̃𝑘𝑒1 ∼ Ga−1(𝜇 − 𝜆) for𝑘 ∈ [[⌊ar𝑁2∕3⌋ + 1, ⌊br𝑁2∕3⌋]]
𝜔̃𝑘𝑒2 ∼ Ga−1(𝜂) for𝑘 ∈ [[⌊ar𝑁2∕3⌋ + 1, ⌊br𝑁2∕3⌋]]
𝜔̃𝑧 ∼ 𝜔𝑧 for all other 𝑧 ∈ ℤ2

⩾0
.

The 𝜔 weights in the first two lines are all independent and independent of the 𝜔 weights. The
exact values of 𝑎 and 𝑏 will be determined further down and will only depend on 𝜀 > 0 (and
𝑐). Essentially, they will be chosen so that, in the picture in the left panel of Figure 4, the two
thick dotted lines passing through 𝑣𝑁 and having slopes 𝜉[𝜆] and 𝜉[𝜂] rest inside the highlighted
regions on the axes. Then, under the new random environment ℙ̃, we will show that there exists
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20 of 58 RASSOUL-AGHA et al.

F IGURE 4 Left: Two dotted lines have slopes 𝜉[𝜆] and 𝜉[𝜂]. Right: Decomposition of the north and east
boundaries of ⟦0, 𝑣𝑁⟧ into regions  (light gray) and (dark gray). A small perturbation of 𝑣𝑁 to 𝑤𝑁 keeps the
endpoint of the −𝜉[𝜆] ray from 𝑤𝑁 in the interval [𝑎𝑟𝑁2∕3, 𝑏𝑟𝑁2∕3].

some constant 𝐶1 such that for 𝑁 and 𝑟 large,

ℙ̃

(
min

𝑥∈𝜕NE[[0,𝑣𝑁]]
𝑄0,𝑥{|𝜏| > 𝑎𝑟𝑁2∕3} ⩾ 1 − 𝑒−𝐶1𝑟

2𝑁1∕3

)
⩾ 1∕2. (4.17)

We finish the proof of the theorem, assuming this inequality. Denote the event inside (4.17) by 𝑆
and let 𝑓 = 𝑑ℙ̃

𝑑ℙ𝜌
, where ℙ𝜌 is the marginal of ℙ, that is, the probability measure with independent

𝜌-boundary weights and bulk weights. By the Cauchy–Schwarz inequality, we have

1∕2 ⩽ ℙ̃(𝑆) = 𝔼𝜌[𝟙𝑆𝑓] ⩽ ℙ𝜌(𝑆)1∕2𝔼𝜌[𝑓2]1∕2 ⩽ ℙ𝜌(𝑆)1∕2𝑒𝐶𝑟
3
,

where the last bound for the second moment of 𝑓 follows from Proposition A.10. This implies

ℙ

(
min

𝑥∈𝜕NE[[0,𝑣𝑁]]
𝑄
𝜌
0,𝑥
{|𝜏| > 𝑎𝑟𝑁2∕3} ⩾ 1 − 𝑒−𝐶1𝑟

2𝑁1∕3

)
⩾ 𝑒−𝐶2𝑟

3
. (4.18)

To recover the statement of our lemma without the constant 𝑎 in (4.18), just modify 𝐶1 and 𝐶2.
Next, we will show (4.17) that will finish the proof of the theorem. To do this, we will show that

for 𝑟 and 𝑁 large, we have

ℙ̃

(
max

𝑥∈𝜕NE[[0,𝑣𝑁]]
𝑄0,𝑥{1 ⩽ 𝜏 ⩽ 𝑎𝑟𝑁2∕3} < 𝑒−𝐶

′𝑟2𝑁1∕3

)
⩾ 1 − 𝐶𝑟−3. (4.19)

This and the similar estimate for the event {−1 ⩾ 𝜏0,𝑥 ⩾ −𝑎𝑟𝑁2∕3} imply (4.17) when 𝑟 is taken
large. Note that here we will pick the values of 𝑎 < 𝑏 and 𝑐 ∈ (0, 𝜀

4𝜇2
∧ 1

2
] only for the bound

(4.19). When applying the same argument to the other case, we obtain another set of constants
𝑎′ < 𝑏′ and 𝑐′ ∈ (0, 𝜀

4𝜇2
∧ 1

2
] that are possibly different. Then, we replace 𝑎 and 𝑎′ by 𝑎 ∧ 𝑎′, 𝑏 and

𝑏′ by 𝑏 ∨ 𝑏′, and 𝑐 and 𝑐′ by 𝑐 ∧ 𝑐′.
Recall the perturbed parameter 𝜆 = 𝜌 + 𝑟𝑁−1∕3. If 𝑐 ∈ (0, 𝜀

4𝜇2
∧ 1

2
] and 𝑟 and𝑁 satisfy condition

(4.16), then 𝜆 satisfies

𝜀∕2 < 𝜌 < 𝜆 ⩽ 𝜌 + 𝑐((𝜇 − 𝜌)2 ∧ 𝜌2) ⩽ 𝜇 − 𝜀∕2. (4.20)
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COALESCENCE OF SEMI-INFINITE POLYMERS 21 of 58

F IGURE 5 Left: The dotted lines have characteristic slope 𝜉[𝜆]. Consequently, with high probability, the
sampled 𝜆 polymer from 0 to 𝑤𝑁 exits through the interval [[𝑎𝑟𝑁2∕3𝑒1, 𝑏𝑟𝑁

2∕3𝑒1]]. Right: Illustration of estimate
(4.25).

We estimate the difference of the reciprocal slopes (i.e., change of 𝑥change of 𝑦 ) of the vectors 𝜉[𝜆] and 𝜉[𝜌]. By
definition

𝜉[𝜆] ⋅ 𝑒1
𝜉[𝜆] ⋅ 𝑒2

−
𝜉[𝜌] ⋅ 𝑒1
𝜉[𝜌] ⋅ 𝑒2

=
Ψ1(𝜌 + 𝑟𝑁−1∕3)

Ψ1(𝜇 − 𝜌 − 𝑟𝑁−1∕3)
−

Ψ1(𝜌)

Ψ1(𝜇 − 𝜌)
.

AsΨ1 is smooth and takes positive values on compact intervals strictly contained inside (0, 𝜇), we
can Taylor expand the quotient g(𝑧) = Ψ1(𝜌+𝑧)

Ψ1(𝜇−𝜌−𝑧)
around 𝑧 = 0. This gives

|||||
(
𝜉[𝜆] ⋅ 𝑒1
𝜉[𝜆] ⋅ 𝑒2

−
𝜉[𝜌] ⋅ 𝑒1
𝜉[𝜌] ⋅ 𝑒2

)
− (−𝑘1𝑟𝑁

−1∕3)
||||| ⩽ 𝑘2𝑟

2𝑁−2∕3, (4.21)

for all 𝜌 and 𝜆 such that 𝜀∕2 < 𝜌 < 𝜆 < 𝜇 − 𝜀∕2. Here, 𝑘1 and 𝑘2 are positives constant depending
only on 𝜌, 𝜇, and 𝜀. Take 𝑐 ∈ (0, 𝜀

4𝜇2
∧ 1

2
] to satisfy

𝑐 ⩽
1

100

𝑘1
𝑘2

. (4.22)

Then, for 𝑟 and 𝑁 satisfying (4.16),

𝑘2𝑟
2𝑁−2∕3 <

1

10
𝑘1𝑟𝑁

−1∕3. (4.23)

And from (4.21) and (4.23) above, we obtain

−2𝑘1𝑟𝑁
−1∕3 ⩽

𝜉[𝜆] ⋅ 𝑒1
𝜉[𝜆] ⋅ 𝑒2

−
𝜉[𝜌] ⋅ 𝑒1
𝜉[𝜌] ⋅ 𝑒2

⩽ −1

2
𝑘1𝑟𝑁

−1∕3. (4.24)

Now, start two rays at (0,0) in the directions 𝜉[𝜌] and 𝜉[𝜆] and let 𝑢𝑁 be the lattice point closest
to the 𝜉[𝜆]-directed ray such that 𝑢𝑁 ⋅ 𝑒2 = 𝑣𝑁 ⋅ 𝑒2. (See the right panel of Figure 5.) Then (4.24)
implies that there exist two fixed positive constants 𝑙1, 𝑙2 depending only on 𝜌, 𝜇, and 𝜀 such that

𝑙1𝑟𝑁
2∕3 ⩽ 𝑣𝑁 ⋅ 𝑒1 − 𝑢𝑁 ⋅ 𝑒1 ⩽ 𝑙2𝑟𝑁

2∕3. (4.25)
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22 of 58 RASSOUL-AGHA et al.

For now, we define
𝑎 = 1

10
𝑙1 and 𝑏 = 10𝑙2,

and note that the above value of 𝑎 will be lowered if necessary, later in the argument.
Fix a positive constant 𝑞 ⩽ 1

10
𝑙1, let us define

𝑤𝑁 = 𝑣𝑁 − ⌊𝑞𝑟𝑁2∕3⌋𝑒1. (4.26)

As shown on the right of Figure 4, the point 𝑤𝑁 splits 𝜕NE[[0, 𝑣𝑁]] into the dark region and the
light region . We will first work with the dark region and show

ℙ̃

(
max
𝑥∈ 𝑄0,𝑥{1 ⩽ 𝜏 ⩽ 𝑎𝑟𝑁2∕3} ⩽ 𝑒−𝐶

′𝑟2𝑁1∕3

)
⩾ 1 − 𝐶𝑟−3. (4.27)

Let us look at another polymer measure 𝑅0,𝑥 that is restricted to paths that start with an 𝑒1 step
from the origin, then

𝑅0,𝑥{1 ⩽ 𝜏 ⩽ 𝑎𝑟𝑁2∕3} =
𝑍0,𝑥(1 ⩽ 𝜏 ⩽ ⌊𝑎𝑟𝑁2∕3⌋)

𝑍0,𝑥(1 ⩽ 𝜏)
.

From the following three facts,

∙ 𝑄0,𝑥{1 ⩽ 𝜏 ⩽ 𝑎𝑟𝑁2∕3} ⩽ 𝑅0,𝑥{1 ⩽ 𝜏 ⩽ 𝑎𝑟𝑁2∕3},
∙ 𝑅0,𝑥{1 ⩽ 𝜏 ⩽ 𝑎𝑟𝑁2∕3} + 𝑅0,𝑥{𝜏 > 𝑎𝑟𝑁2∕3} = 1, and
∙ by Lemma A.4, 𝑅0,𝑤𝑁 {𝜏 > 𝑎𝑟𝑁2∕3} ⩽ 𝑅0,𝑥{𝜏 > 𝑎𝑟𝑁2∕3} for each 𝑥 ∈ ,
we have

𝑄0,𝑥

{
1 ⩽ 𝜏 ⩽ 𝑎𝑟𝑁2∕3

}
⩽ 𝑅0,𝑤𝑁

{
1 ⩽ 𝜏 ⩽ 𝑎𝑟𝑁2∕3

}
for each 𝑥 ∈ .

Thus, in order to show (4.27), it suffices to show

ℙ̃
(
𝑅0,𝑤𝑁 {1 ⩽ 𝜏 ⩽ 𝑎𝑟𝑁2∕3} ⩽ 𝑒−𝐶

′𝑟2𝑁1∕3
)
⩾ 1 − 𝐶𝑟−3. (4.28)

To show (4.28), we will find a high probability event

𝐴 = 𝐴1 ∩ 𝐴2 ∩ 𝐴3 ∩ 𝐴4

with ℙ̃(𝐴) ⩾ 1 − 𝐶𝑟−3 such that on 𝐴,

𝑍0,𝑤𝑁 (⌊𝑎𝑟𝑁2∕3⌋ + 1 ⩽ 𝜏 ⩽ ⌊𝑏𝑟𝑁2∕3⌋) ⩾ 𝑒𝐶
′𝑟2𝑁1∕3

𝑍0,𝑤𝑁 (1 ⩽ 𝜏 ⩽ ⌊𝑎𝑟𝑁2∕3⌋), (4.29)

as this implies

𝑅0,𝑤𝑁 {𝜏 > 𝑎𝑟𝑁2∕3} ⩾
𝑍0,𝑤𝑁 (⌊𝑎𝑟𝑁2∕3⌋ + 1 ⩽ 𝜏 ⩽ ⌊𝑏𝑟𝑁2∕3⌋)

𝑍0,𝑤𝑁 (1 ⩽ 𝜏)

⩾ 𝑒𝐶
′𝑟2𝑁1∕3 𝑍0,𝑤𝑁 (1 ⩽ 𝜏 ⩽ ⌊𝑎𝑟𝑁2∕3⌋)

𝑍0,𝑤𝑁 (1 ⩽ 𝜏)

= 𝑒𝐶
′𝑟2𝑁1∕3

𝑅0,𝑤𝑁 {1 ⩽ 𝜏 ⩽ 𝑎𝑟𝑁2∕3},
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COALESCENCE OF SEMI-INFINITE POLYMERS 23 of 58

which together with

𝑅0,𝑤𝑁 {1 ⩽ 𝜏 ⩽ 𝑎𝑟𝑁2∕3} + 𝑅0,𝑤𝑁 {𝜏 > 𝑎𝑟𝑁2∕3} = 1

gives

𝑅0,𝑤𝑁 {1 ⩽ 𝜏 ⩽ 𝑎𝑟𝑁2∕3} ⩽
1

1 + 𝑒𝐶′𝑟2𝑁1∕3
⩽ 𝑒−𝐶

′𝑟2𝑁1∕3 on 𝐴.

Next, we define 𝐴1,𝐴2, 𝐴3 and 𝐴4 and their intersection gives 𝐴. Let 𝑍𝜆 and 𝑍𝜌 denote the
partition functions with the 𝜆- and 𝜌-boundaryweights, andwhere all boundaryweights are inde-
pendent. Then, the 𝑒1-boundaryweights from ℙ̃ can be seen as amixture of these 𝜆- and𝜌-weights.
The desired inequality (4.29) (under ℙ̃) can be rewritten as

⎛⎜⎜⎝
𝑍𝜆
0,𝑤𝑁

𝑍
𝜌
0,𝑤𝑁

⌊𝑎𝑟𝑁2∕3⌋∏
𝑖=1

𝐼
𝜌

(𝑖,0)

𝐼𝜆
(𝑖,0)

⎞⎟⎟⎠
𝑍𝜆
0,𝑤𝑁

(⌊𝑎𝑟𝑁2∕3⌋ + 1 ⩽ 𝜏 ⩽ ⌊𝑏𝑟𝑁2∕3⌋)
𝑍𝜆
0,𝑤𝑁

⩾ 𝑒𝐶
′𝑟2𝑁1∕3

𝑍
𝜌
0,𝑤𝑁

(1 ⩽ 𝜏 ⩽ ⌊𝑎𝑟𝑁2∕3⌋)
𝑍
𝜌
0,𝑤𝑁

,

which is implied by the inequality

⎛⎜⎜⎝
𝑍𝜆
0,𝑤𝑁

𝑍
𝜌
0,𝑤𝑁

⌊𝑎𝑟𝑁2∕3⌋∏
𝑖=1

𝐼
𝜌

(𝑖,0)

𝐼𝜆
(𝑖,0)

⎞⎟⎟⎠
𝑍𝜆
0,𝑤𝑁

(⌊𝑎𝑟𝑁2∕3⌋ + 1 ⩽ 𝜏 ⩽ ⌊𝑏𝑟𝑁2∕3⌋)
𝑍𝜆
0,𝑤𝑁

⩾ 𝑒𝐶
′𝑟2𝑁1∕3

.

Because 𝑤𝑁 is a point of order 𝑟𝑁2∕3 units away from 𝑢𝑁 (recall 𝑢𝑁 is along the 𝜉[𝜆]-
characteristic ray defined above (4.25)), there is an event𝐴1 with ℙ(𝐴1) ⩾ 1 − 𝑒−𝐶𝑟

3 such that the
𝜆 quenched probability appearing above (i.e., the last ratio of partition functions on the left-hand
side) satisfies

𝑍𝜆
0,𝑤𝑁

(⌊𝑎𝑟𝑁2∕3⌋ + 1 ⩽ 𝜏 ⩽ ⌊𝑏𝑟𝑁2∕3⌋)
𝑍𝜆
0,𝑤𝑁

⩾ 1∕2 on the event 𝐴1.

This is proved as Lemma 4.12 at the end of this section, and the idea is illustrated on the right of
Figure 5.
Once on the event 𝐴1, (4.29) would follow from having

𝑍𝜆
0,𝑤𝑁

𝑍
𝜌
0,𝑤𝑁

𝑎𝑟𝑁2∕3∏
𝑖=1

𝐼
𝜌

(𝑖,0)

𝐼𝜆
(𝑖,0)

⩾ 𝑒𝐶
′𝑟2𝑁1∕3

, (4.30)

with possibly a different 𝐶′. This inequality should hold with a high probability if 𝑎 > 0 is taken
sufficiently small. We will work with the logarithmic version of (4.30)

log 𝑍𝜆0,𝑤𝑁
− log 𝑍

𝜌
0,𝑤𝑁

−
⎛⎜⎜⎝
𝑎𝑟𝑁2∕3∑
𝑖=1

log(𝐼𝜆
(𝑖,0)

) − log(𝐼
𝜌

(𝑖,0)
)
⎞⎟⎟⎠.
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24 of 58 RASSOUL-AGHA et al.

We start by showing that

𝔼
[
log 𝑍𝜆0,𝑤𝑁

]
− 𝔼
[
log 𝑍

𝜌
0,𝑤𝑁

]
⩾ 𝑐1𝑟

2𝑁1∕3 (4.31)

for some 𝜀-dependent constant 𝑐1, and this constant 𝑐1 will be used for the rest of the proof. First,
note the exact values of the expectations are

𝔼
[
log 𝑍𝜆0,𝑤𝑁

]
= Ψ0(𝜇 − 𝜆)(⌊Ψ1(𝜌)𝑁⌋ − ⌊𝑞𝑟𝑁2∕3⌋) + Ψ0(𝜆)⌊Ψ1(𝜇 − 𝜌)𝑁⌋

𝔼
[
log 𝑍

𝜌
0,𝑤𝑁

]
= Ψ0(𝜇 − 𝜌)(⌊Ψ1(𝜌)𝑁⌋ − ⌊𝑞𝑟𝑁2∕3⌋) + Ψ0(𝜌)⌊Ψ1(𝜇 − 𝜌)𝑁⌋.

Using a Taylor expansion,

Ψ0(𝜇 − 𝜆) = Ψ0(𝜇 − 𝜌) + Ψ1(𝜇 − 𝜌)(−𝑟𝑁−1∕3) + 1

2
Ψ′1(𝜇 − 𝜌)(−𝑟𝑁−1∕3)2 + 𝑅1,

Ψ0(𝜆) = Ψ0(𝜌) + Ψ1(𝜌)(𝑟𝑁
−1∕3) + 1

2
Ψ′1(𝜌)(𝑟𝑁

−1∕3)2 + 𝑅2.

Due to condition (4.20), we have |𝑅𝑖| ⩽ 𝐶(𝑟𝑁−1∕3)3 for both 𝑖 ∈ {1, 2} and with an 𝜀-dependent
constant 𝐶 > 0. Plugging these two formulae back into the right side of (4.31), the linear terms
from the expansions cancel out. By further lowering the value of 𝑐 from (4.16) if necessary, 𝑅1 and
𝑅2 can be absorbed into the (𝑟𝑁−1∕3)2 terms, and there exist two positive constants 𝐷1 and 𝐷2
depending only on 𝜀, 𝜇 and 𝑐 such that

𝔼
[
log 𝑍𝜆0,𝑤𝑁

]
− 𝔼
[
log 𝑍

𝜌
0,𝑤𝑁

]
⩾ 𝐷1𝑟

2𝑁1∕3 − 𝐷2𝑞𝑟
2𝑁1∕3,

where the parameter 𝑞 is from (4.26). By fixing 𝑞 sufficiently small, we obtain the desired estimate
(4.31).
Next, with the constant 𝑐1 from (4.31), we define the two events

𝐴2 =
{
log 𝑍𝜆0,𝑤𝑁

⩾ 𝔼
[
log 𝑍

𝜌
0,𝑤𝑁

]
+
𝑐1
2
𝑟2𝑁1∕3

}
,

𝐴3 =
{
log 𝑍

𝜌
0,𝑤𝑁

⩽ 𝔼
[
log 𝑍

𝜌
0,𝑤𝑁

]
+
𝑐1
10
𝑟2𝑁1∕3

}
,

and we will show ℙ(𝐴2) ∧ ℙ(𝐴3) ⩾ 1 − 𝐶𝑟−3.
First, we work with ℙ(𝐴2). For 𝜃, 𝑥 > 0, let us define 𝐿(𝜃, 𝑥) as in [32, (3.17)],

𝐿(𝜃, 𝑥) = ∫
𝑥

0
(Ψ0(𝜃) − log 𝑦)𝑥−𝜃𝑦𝜃−1𝑒𝑥−𝑦𝑑𝑦.

In the next calculation, the first equality is the statement in [32, Theorem 3.7],

𝕍ar[log 𝑍𝜌
0,𝑤𝑁

] = 𝑤𝑁 ⋅ 𝑒2Ψ1(𝜌) − 𝑤𝑁 ⋅ 𝑒1Ψ1 (𝜇 − 𝜌) + 2𝔼

[
𝐸
𝑄
𝜌
0,𝑤𝑁

[
0∨𝜏∑
𝑖=1

𝐿(𝜇 − 𝜌, 𝐼
𝜌
𝑖𝑒1
)

]]

⩽ 𝐶

(
𝑟𝑁2∕3 + 𝔼

[
𝐸
𝑄
𝜌
0,𝑤𝑁
[
𝜏𝟙{𝜏⩾1}

]]
+ 1

)
(by Lemma 4.2 of [32])

⩽ 𝐶

(
𝑟𝑁2∕3 + 𝔼

[
𝐸
𝑄
𝜌
0,𝑣𝑁
[
𝜏𝟙{𝜏⩾1}

]]
+ 1

)
(by Lemma A.5)

⩽ 𝐶𝑟𝑁2∕3 + 𝐶′𝑁2∕3 (by (4.32) of [32]). (4.32)
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COALESCENCE OF SEMI-INFINITE POLYMERS 25 of 58

Now, we upper bound the compliment

ℙ(𝐴𝑐
2) = ℙ

{
log 𝑍𝜆0,𝑤𝑁

< 𝔼
[
log 𝑍

𝜌
0,𝑤𝑁

]
+
𝑐1
2
𝑟2𝑁1∕3

}
⩽ ℙ
{
log 𝑍𝜆0,𝑤𝑁

< 𝔼
[
log 𝑍𝜆0,𝑤𝑁

]
−
𝑐1
2
𝑟2𝑁1∕3

}
(by (4.31))

⩽
4

𝑐2
1
𝑟4𝑁2∕3

𝕍ar
[
log 𝑍𝜆0,𝑤𝑁

]
⩽

4

𝑐2
1
𝑟4𝑁2∕3

(𝕍ar
[
log 𝑍

𝜌
0,𝑤𝑁

]
+ 𝑐3𝑟𝑁

2∕3) (by Lemma 4.1 of [32])

⩽ 𝐶𝑟−3 (by (4.32)).

The fact ℙ(𝐴3) ⩾ 1 − 𝐶𝑟−3 comes from the Markov inequality

ℙ(𝐴𝑐
3) = ℙ

{
log 𝑍

𝜌
0,𝑤𝑁

> 𝔼[log 𝑍
𝜌
0,𝑤𝑁

] +
𝑐1
10
𝑟2𝑁1∕3

}
⩽

100

𝑐2
1
𝑟4𝑁2∕3

𝕍ar[log 𝑍𝜌
0,𝑤𝑁

] ⩽ 𝐶𝑟−3.

Next, we define another high probability event 𝐴4 by

𝐴4 =

⎧⎪⎨⎪⎩
𝑎𝑟𝑁2∕3∑
𝑖=1

(
log 𝐼𝜆

(𝑖,0)
− log 𝐼

𝜌

(𝑖,0)

)
⩽
𝑐1
10
𝑟2𝑁1∕3

⎫⎪⎬⎪⎭ .
If 𝑎 is chosen sufficiently small compared to 𝑐1, then by Proposition A.12 and Theorem A.11,

ℙ(𝐴4) ⩾ 1 − 𝑒−𝐶𝑟
3
.

Finally, on the event

𝐴1 ∩ 𝐴2 ∩ 𝐴3 ∩ 𝐴4,

our desired estimate (4.30) (after taking logarithm) will hold

log 𝑍𝜆0,𝑤𝑁
− log 𝑍

𝜌
0,𝑤𝑁

−
⎛⎜⎜⎝
𝑎𝑟𝑁2∕3∑
𝑖=1

log 𝐼𝜆
(𝑖,0)

− log 𝐼
𝜌

(𝑖,0)

⎞⎟⎟⎠ ⩾
𝑐1
10
𝑟2𝑁1∕3 ⩾ 𝐶′𝑟2𝑁1∕3.

This finishes the argument for the dark region and (4.27).
For the light region,

ℙ̃

(
max
𝑥∈ 𝑄0,𝑥{1 ⩽ 𝜏 ⩽ 𝑎𝑟𝑁2∕3} ⩽ 𝑒−𝐶

′𝑟2𝑁1∕3

)
⩾ ℙ

(
max
𝑥∈ 𝑄

𝜌
0,𝑥
{1 ⩽ 𝜏 ⩽ 𝑎𝑟𝑁2∕3} ⩽ 𝑒−𝐶

′𝑟2𝑁1∕3

)
⩾ ℙ

(
max
𝑥∈ 𝑄

𝜌
0,𝑥
{1 ⩽ 𝜏} ⩽ 𝑒−𝐶

′𝑟2𝑁1∕3

)
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26 of 58 RASSOUL-AGHA et al.

= ℙ
(
𝑄
𝜌
0,𝑤𝑁

{1 ⩽ 𝜏} ⩽ 𝑒−𝐶
′𝑟2𝑁1∕3

)
(by Lemma A.5)

= 1 − ℙ
(
𝑄
𝜌
0,𝑤𝑁

{1 ⩽ 𝜏} > 𝑒−𝐶
′𝑟2𝑁1∕3

)
⩾ 1 − 𝑒−𝐶𝑟

3
(by Corollary 4.10).

The proof of Lemma 4.6 is complete.
Lemma 4.12 is an auxiliary estimate for the proof of Lemma 4.6. Recall that 𝜆 = 𝜌 + 𝑟𝑁−1∕3 and

satisfies the condition (4.20). As shown on the right of Figure 4, 𝑢𝑁 and 𝑣𝑁 on the north boundary
satisfies (4.25). Using the parameters 𝑙1 and 𝑙2 in (4.25), we fix

𝑎 ⩽ 1

10
𝑙1, 𝑏 ⩾ 10𝑙2, 𝑞 ⩽ 1

10
𝑙1. (4.33)

Recall 𝑤𝑁 = 𝑣𝑁 − 𝑞𝑟𝑁2∕3𝑒1 is a point on the north boundary of [[0, 𝑣𝑁]]. Lemma 4.12 shows that
for small enough 𝑎 > 0 and large enough 𝑏 > 0, the sampled polymer path between the origin
and 𝑤𝑁 exits the 𝑒1-axis through the interval [[𝑎𝑟𝑁2∕3𝑒1, 𝑏𝑟𝑁

2∕3𝑒1]] with high probability under
ℙ𝜆. This is illustrated on the left of Figure 5.

Lemma 4.12. Let 𝜀 ∈ (0, 𝜇∕2), and fix 𝜌 ∈ [𝜀, 𝜇 − 𝜀] and constants 𝑎, 𝑏, 𝑞 as in (4.33). There exist
positive constants𝐶1, 𝐶2, 𝐶3, 𝑟0, and𝑁0 that depend only on 𝜀 such that, for any 𝑟 > 𝑟0,𝑁 ⩾ 𝑁0 with
𝜆 = 𝜌 + 𝑟𝑁−1∕3 satisfying (4.20), we have

ℙ
(
𝑄𝜆0,𝑤𝑁

{
𝑎𝑟𝑁2∕3 ⩽ 𝜏 ⩽ 𝑏𝑟𝑁2∕3

}
⩽ 1 − 𝑒−𝐶1𝑟

2𝑁1∕3
)
⩽ 𝑒−𝐶2𝑟

3

and

𝔼
[
𝑄𝜆0,𝑤𝑁

{
𝑎𝑟𝑁2∕3 ⩽ 𝜏 ⩽ 𝑏𝑟𝑁2∕3

}]
⩾ 1 − 𝑒−𝐶3𝑟

3
.

Proof. First, note we have the following horizontal distance bound between 𝑤𝑁 and 𝑢𝑁 , where
𝑢𝑁 is defined previously above (4.25)

1

2
𝑙1𝑟𝑁

2∕3 ⩽ 𝑤𝑁 ⋅ 𝑒1 − 𝑢𝑁 ⋅ 𝑒1 ⩽ 𝑙2𝑟𝑁
2∕3.

Let 𝑧𝑁 be the integer point closest to where the −𝜉[𝜆]-directed ray starting at 𝑤𝑁 crosses the 𝑒1-
axis (illustrated as the white dot in Figure 5), then the distance between the origin and 𝑧𝑁 satisfies
the same bound

1

2
𝑙1𝑟𝑁

2∕3 ⩽ 𝑧𝑁 ⋅ 𝑒1 ⩽ 𝑙2𝑟𝑁
2∕3. (4.34)

In the next part, we will show that sampled polymer path between the origin and 𝑤𝑁 will exist
on the 𝑒1-axis near 𝑧𝑁 . More precisely, we show for 𝑟 > 𝑟0 and𝑁 ⩾ 𝑁0 such that (4.20) holds, then

ℙ
(
𝑄𝜆0,𝑤𝑁

{𝜏 < 𝑎𝑟𝑁2∕3
)
⩾ 𝑒−𝐶𝑟

2𝑁1∕3)
⩽ 𝑒−𝐶

′𝑟3 , (4.35)

ℙ
(
𝑄𝜆0,𝑤𝑁

{𝜏 > 𝑏𝑟𝑁2∕3
)
⩾ 𝑒−𝐶𝑟

2𝑁1∕3)
⩽ 𝑒−𝐶

′𝑟3 . (4.36)

First, we show (4.36). In the estimate below, the first inequality follows from Lemma A.5; the
next equality comes from moving the base from the origin to 𝑧𝑁 as a nested polymer; the final
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COALESCENCE OF SEMI-INFINITE POLYMERS 27 of 58

F IGURE 6 The vertex 𝑧𝑁 is shown as the white dot. Applying Lemma A.8 in the proof of Lemma 4.12 to
assert that 𝑄𝜆

0,𝑤𝑁
{𝜏 ⩽ 𝑎𝑟𝑁2∕3} = 𝑄𝜆

(⌊𝑎𝑟𝑁2∕3⌋,−ℎ),𝑤𝑁

{𝜏 < −ℎ}, which is small.

inequality comes from applying Lemma 4.6 to the nested polymer where the starting and end
points are in the 𝜉[𝜆] direction,

ℙ
(
𝑄𝜆0,𝑤𝑁

{𝜏 > 𝑏𝑟𝑁2∕3} ⩾ 𝑒−𝐶1𝑟
2𝑁1∕3
)

⩽ ℙ
(
𝑄𝜆0,𝑣𝑁

{𝜏 > 𝑏𝑟𝑁2∕3} ⩾ 𝑒−𝐶1𝑟
2𝑁1∕3
)

= ℙ
(
𝑄𝜆𝑧𝑁,𝑣𝑁

{𝜏 > 𝑏𝑟𝑁2∕3 − 𝑧𝑁 ⋅ 𝑒1} ⩾ 𝑒−𝐶1𝑟
2𝑁1∕3
)

= ℙ
(
𝑄𝜆𝑧𝑁,𝑣𝑁

{𝜏 > 𝑏

2
𝑟𝑁2∕3} ⩾ 𝑒−𝐶1𝑟

2𝑁1∕3
)

⩽ 𝑒−𝐶2𝑟
3
.

This proves (4.36).
To prove (4.35) choose ℎ so that (⌊𝑎𝑟𝑁2∕3⌋, −ℎ) is the closest integer point to the (−𝜉[𝜆])-

directed ray starting at 𝑤𝑁 (see the right of Figure 6). Lemma A.8 gives

ℙ
(
𝑄𝜆0,𝑤𝑁

{𝜏 ⩽ 𝑎𝑟𝑁2∕3} ⩾ 𝑒−𝐶1𝑟
2𝑁1∕3
)

= ℙ
(
𝑄𝜆⌊𝑎𝑟𝑁2∕3⌋,−ℎ),𝑤𝑁 {𝜏 < −ℎ} ⩾ 𝑒−𝐶1𝑟

2𝑁1∕3
)
.

Lemma 4.6 states that it is unlikely for the sampled polymer paths from 𝑄(⌊𝑎𝑟𝑁2∕3⌋,−ℎ),𝑤𝑁 to exit
late in the scale 𝑁2∕3 from the 𝑦-axis because the direction is the characteristic one 𝜉[𝜆]. Thus, it
suffices to show ℎ is bounded below by some 𝑘(𝜌)𝑟𝑁2∕3.
Using the lower bound from (4.34), the distance between 𝑧𝑁 and ⌊𝑎𝑟𝑁2∕3⌋𝑒1 is bounded below

by 4𝑎𝑟𝑁2∕3. The slope of the line going through 𝑤𝑁 and 𝑧𝑁 is roughly 𝜉[𝜆], because recall 𝑧𝑁 is
defined to be the closes integer point to the crossing point between the −𝜉[𝜆]-directed ray from
𝑤𝑁 and the 𝑒1-axis. Thus, its slope is contained inside a compact interval strictly inside (0, 𝜇).
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28 of 58 RASSOUL-AGHA et al.

F IGURE 7 The north and east boundaries of ⟦0, 𝑣𝑁⟧ are decomposed into ± (light gray) and (dark gray).
The parameter 𝑞 is less than some small constant that depends only on 𝜌.

Thus, we have

ℎ ⩾ 𝑘(𝜌)𝑟𝑁2∕3 (4.37)

which finishes the proof. □

4.2 Proof of Theorem 4.2

First, note that instead of

max
𝑥∉[[0,𝑣𝑁]]

𝑄
𝜌
0,𝑥
{|𝜏| ⩽ 𝛿𝑁2∕3},

it suffices to work with

max
𝑥∈𝜕NE[[0,𝑣𝑁]]

𝑄
𝜌
0,𝑥
{|𝜏| ⩽ 𝛿𝑁2∕3}

as

max
𝑥∉[[0,𝑣𝑁]]

𝑄
𝜌
0,𝑥
{|𝜏| ⩽ 𝛿𝑁2∕3}

= max
𝑥∉[[0,𝑣𝑁]]

∑
𝑧∈𝜕NE⟦0,𝑣𝑁⟧𝑄

𝜌
0,𝑥
{|𝜏| ⩽ 𝛿𝑁2∕3 and passes through z}

= max
𝑥∉[[0,𝑣𝑁]]

∑
𝑧∈𝜕NE[[0,𝑣𝑁]]

𝑄
𝜌
0,𝑧
{|𝜏| ⩽ 𝛿𝑁2∕3}𝑄

𝜌
0,𝑥
{passes through 𝑧}

⩽ max
𝑥∉[[0,𝑣𝑁]]

∑
𝑧∈𝜕NE[[0,𝑣𝑁]]

(
max

𝑧′∈𝜕NE⟦0,𝑣𝑁⟧𝑄𝜌0,𝑧′ {|𝜏| ⩽ 𝛿𝑁2∕3}

)
𝑄
𝜌
0,𝑥
{passes through 𝑧}

= max
𝑧′∈𝜕NE[[0,𝑣𝑁]]

𝑄
𝜌

0,𝑧′
{|𝜏| ⩽ 𝛿𝑁2∕3}.

(4.38)

Decompose the northeast boundary 𝜕NE⟦0, 𝑣𝑁⟧ into three parts and ± as in Figure 7, with
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COALESCENCE OF SEMI-INFINITE POLYMERS 29 of 58

𝑤+
𝑁
= 𝑣𝑁 − ⌊𝑞𝑟𝑁2∕3⌋𝑒1 and 𝑤−

𝑁 = 𝑣𝑁 − ⌊𝑞𝑟𝑁2∕3⌋𝑒2
where 𝑞 ⩽ 1 is a small positive constant to be chosen later above (4.42), and

𝑟 = | log 𝛿|.
The dark gray set  comprises the vertices between 𝑤+

𝑁
and 𝑤−

𝑁
on the northeast corner of the

boundary of the rectangle ⟦0, 𝑣𝑁⟧. Recall that we assume in the theorem that

𝑁 > 𝛿−3∕2. (4.39)

This is natural because otherwise the probability in the statement of the theorem would be zero.
Introduce the perturbed parameters

𝜆 = 𝜌 + 𝑟𝑁−1∕3 and 𝜂 = 𝜌 − 𝑟𝑁−1∕3. (4.40)

We require the following bounds to hold for these two parameters

𝜌 < 𝜆 ⩽ 𝜌 +
𝜌 ∧ (𝜇 − 𝜌)

2
< 𝜇 and 0 < 𝜌 −

𝜌 ∧ (𝜇 − 𝜌)

2
⩽ 𝜂 < 𝜌. (4.41)

The point of the choice 𝜌 ± 𝜌∧(𝜇−𝜌)

2
is only to bound 𝜆 and 𝜂 from above and below by two con-

stants strictly inside (0, 𝜇) and only depending on 𝜀. The above two requirements can be rewritten
as

𝑁 ⩾

(
2𝑟

𝜌 ∧ (𝜇 − 𝜌)

)3
.

With (4.39), this bound on 𝑁 is automatically satisfied as soon as 𝛿−3∕2 ⩾
(

2𝑟

𝜌∧(𝜇−𝜌)

)3
. As 𝑟 =| log 𝛿|, we can ensure this by lowering the value of 𝛿0.

Now we show that if one takes 𝑞 and 𝛼 small enough, then the 𝜉[𝜂]- and 𝜉[𝜆]-directed rays
started at the points±⌊𝛼𝑟𝑁2∕3⌋𝑒1will avoid as shown inFigure 8. To this end, recall 𝜉[𝜌]defined
in 2.3. Let 𝑢𝑁 be the point where the 𝜉[𝜆]-ray starting from ⌊𝛼𝑟𝑁2∕3⌋𝑒1 crosses the north boundary
of [[0, 𝑣𝑁]]. Then the 𝑒1-coordinates of 𝑤+

𝑁
and 𝑢𝑁 can be lower bounded by(

Ψ1(𝜆)

Ψ1(𝜇 − 𝜆)
⋅

Ψ1(𝜇 − 𝜌)

Ψ1(𝜌) + Ψ1(𝜇 − 𝜌)
−

Ψ1(𝜌)

Ψ1(𝜌) + Ψ1(𝜇 − 𝜌)

)
𝑁 − 𝛼𝑟𝑁2∕3 − 𝑞𝑟𝑁2∕3 − 5

=
Ψ1(𝜇 − 𝜌)

Ψ1(𝜌) + Ψ1(𝜇 − 𝜌)
⋅
(

Ψ1(𝜆)

Ψ1(𝜇 − 𝜆)
−

Ψ1(𝜌)

Ψ1(𝜇 − 𝜌)

)
𝑁 − 𝛼𝑟𝑁2∕3 − 𝑞𝑟𝑁2∕3 − 5

⩾ 𝐶1(𝜀)𝑟𝑁
2∕3 − 𝛼𝑟𝑁2∕3 − 𝑞𝑟𝑁2∕3 − 5, (4.42)

where the inequality comes from Taylor’s theorem becauseΨ1 is a smooth function on a compact
interval inside (0, 𝜇) depending on 𝜀. Here, 𝐶1(𝜀) is a finite positive constant that only depends on
𝜀. The inequality holds provided 𝑟𝑁−1∕3 ⩽ 𝑐(𝜀) for some positive 𝑐(𝜀) that only depends on 𝜀 and
this can be guaranteed to hold by lowering the threshold 𝛿0 because

𝑟𝑁−1∕3 ⩽ | log 𝛿|𝛿1∕2 ⩽ 𝛿
1∕3
0
.
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30 of 58 RASSOUL-AGHA et al.

F IGURE 8 Illustration of the set, the nested polymer, and three characteristic directions. The parameters
𝑞 = 𝛼 are less than some small constant that depends only on 𝜌, 𝛿 is a small positive constant in (0, 𝛿0), and 𝑟 is a
large constant with 𝑟 = | log 𝛿|.
Now choosing

𝑞 = 𝛼 = 𝐶1(𝜀)∕10, (4.43)

we obtain

(4.42) ⩾ 𝐶2(𝜀)𝑟𝑁
2∕3, (4.44)

and this gives us the desired picture for 𝜉[𝜆] shown in Figure 8. The argument for the 𝜉[𝜂]-directed
ray is similar. For what followswe alsowant to guarantee that 𝛿 < 𝛼𝑟 = 𝛼| log 𝛿|. This can be done
by decreasing the value of 𝛿0 after having fixed 𝛼. This completes the setup described in Figure 8.
Consider the set  shown in Figure 7 in dark gray and also in Figure 8. Place the station-

ary polymer model on 0 + ℤ2
⩾0

as a nested polymer inside a larger stationary polymer model
on the quadrant −⌊𝑟𝑁2∕3⌋𝑒1 + ℤ2

⩾0
. From the relation between two nested polymers given by

Lemma A.7, we have

ℙ

(
max
𝑧∈ 𝑄

𝜌
0,𝑧
{1 ⩽ 𝜏 ⩽ 𝛿𝑁2∕3} ⩾ 𝑒−| log 𝛿|2√𝛿𝑁1∕3

)
(4.45)

=ℙ

(
max
𝑧∈ 𝑄

𝜌

−⌊𝑟𝑁2∕3⌋𝑒1,𝑧{⌊𝑟𝑁2∕3⌋ + 1 ⩽ 𝜏 ⩽ ⌊𝑟𝑁2∕3⌋ + 𝛿𝑁2∕3} ⩾ 𝑒−| log 𝛿|2√𝛿𝑁1∕3

)

⩽ ℙ

⎛⎜⎜⎝max𝑧∈
𝑍
𝜌

−⌊𝑟𝑁2∕3⌋𝑒1,𝑧(⌊𝑟𝑁2∕3⌋ + 1 ⩽ 𝜏 ⩽ ⌊𝑟𝑁2∕3⌋ + 𝛿𝑁2∕3)

𝑍
𝜌

−⌊𝑟𝑁2∕3⌋𝑒1,𝑧(⌊𝑟𝑁2∕3⌋ − 𝛼𝑟𝑁2∕3 + 1 ⩽ 𝜏 ⩽ ⌊𝑟𝑁2∕3⌋ + 𝛼𝑟𝑁2∕3)
⩾ 𝑒−| log 𝛿|2√𝛿𝑁1∕3

⎞⎟⎟⎠
= ℙ
(
min
𝑧∈
{
log 𝑍

𝜌

−⌊𝑟𝑁2∕3⌋𝑒1,𝑧(⌊𝑟𝑁2∕3⌋ − 𝛼𝑁2∕3 + 1 ⩽ 𝜏 ⩽ ⌊𝑟𝑁2∕3⌋ + 𝛼𝑁2∕3)

− log 𝑍
𝜌

−⌊𝑟𝑁2∕3⌋𝑒1,𝑧(⌊𝑟𝑁2∕3⌋ + 1 ⩽ 𝜏 ⩽ ⌊𝑟𝑁2∕3⌋ + 𝛿𝑁2∕3)
}
⩽ | log 𝛿|2√𝛿𝑁1∕3

)
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COALESCENCE OF SEMI-INFINITE POLYMERS 31 of 58

⩽ ℙ

(
min
𝑧∈
{

max
𝑖∈[[−𝛼𝑁2∕3+1,𝛼𝑁2∕3]]

log 𝑍
𝜌

−⌊𝑟𝑁2∕3⌋𝑒1,𝑧(𝜏 = ⌊𝑟𝑁2∕3⌋ + 𝑖)

− log 𝑍
𝜌

−⌊𝑟𝑁2∕3⌋𝑒1,𝑧(𝜏 = ⌊𝑟𝑁2∕3⌋) + log 𝑍
𝜌

−⌊𝑟𝑁2∕3⌋𝑒1,𝑧(𝜏 = ⌊𝑟𝑁2∕3⌋)
− max
𝑘∈[[1,𝛿𝑁2∕3]]

log 𝑍
𝜌

−⌊𝑟𝑁2∕3⌋𝑒1,𝑧(𝜏 = ⌊𝑟𝑁2∕3⌋ + 𝑘)
}
⩽ 2| log 𝛿|2√𝛿𝑁1∕3

)
,

and by a union bound, the last probability above can be upper bounded as follows

⩽ ℙ

(
min
𝑧∈
{

max
𝑖∈[[−𝛼𝑁2∕3+1,𝛼𝑁2∕3]]

log 𝑍
𝜌

−⌊𝑟𝑁2∕3⌋𝑒1,𝑧(𝜏 = ⌊𝑟𝑁2∕3⌋ + 𝑖)

− log 𝑍
𝜌

−⌊𝑟𝑁2∕3⌋𝑒1,𝑧(𝜏 = ⌊𝑟𝑁2∕3⌋)} ⩽ 3| log 𝛿|2√𝛿𝑁1∕3
)

(4.46)

+ ℙ

(
max
𝑧∈
{

max
𝑘∈[[1,𝛿𝑁2∕3]]

log 𝑍
𝜌

−⌊𝑟𝑁2∕3⌋𝑒1,𝑧(𝜏 = ⌊𝑟𝑁2∕3⌋ + 𝑘)

− log 𝑍
𝜌

−⌊𝑟𝑁2∕3⌋𝑒1,𝑧(𝜏 = ⌊𝑟𝑁2∕3⌋)} ⩾ | log 𝛿|2√𝛿𝑁1∕3
)
.

Before we continue our bound, let us simplify our notation. For 𝑧 ∈  and 𝑖 ∈ [[−⌊𝛼𝑟𝑁2∕3⌋ +
1, ⌊𝛼𝑟𝑁2∕3⌋]], define horizontal increments

𝐼̃𝑧
(𝑖,1)

=
𝑍(𝑖−1,1),𝑧

𝑍(𝑖,1),𝑧

which live on the horizontal line 𝑦 = 1. With these increments, define a two-sided multiplicative
walk {𝑀𝑧

𝑛}𝑛∈[[−⌊𝛼𝑟𝑁2∕3⌋+1,⌊𝛼𝑟𝑁2∕3⌋]] by setting𝑀𝑧
0
= 1 and

𝑀𝑧
𝑛∕𝑀

𝑧
𝑛−1 = 𝐼

𝜌

(𝑛,0)
∕𝐼̃𝑧

(𝑛,1)
(4.47)

where 𝐼𝜌
(𝑛,0)

are the boundary weights from the stationary polymer in the quadrant −⌊𝑟𝑁2∕3⌋𝑒1 +
ℤ2
⩾0
. Note that 𝑛 = 0 corresponds to 𝜏 = ⌊𝑟𝑁2∕3⌋, which is exit at the origin.
Then, (4.46) can be upper bounded as

(4.46) = ℙ

(
min
𝑧∈ max

𝑛∈[[−𝛼𝑟𝑁2∕3+1,𝛼𝑟𝑁2∕3]]
log𝑀𝑧

𝑛 ⩽ 3| log 𝛿|2√𝛿𝑁1∕3

)
(4.48)

+ ℙ

(
max
𝑧∈ max

𝑛∈[[1,𝛿𝑁2∕3]]
log𝑀𝑧

𝑛 ⩾ | log 𝛿|2√𝛿𝑁1∕3

)
(4.49)

⩽ ℙ

({
min
𝑧∈ max

𝑛∈[[1,⌊ 1
2
𝛼𝑟𝑁2∕3⌋]] log𝑀𝑧

𝑛 ⩽ 3| log 𝛿|2√𝛿𝑁1∕3

}
⋂{

min
𝑧∈ max

𝑛∈[[−⌊ 1
2
𝛼𝑟𝑁2∕3⌋,0]] log𝑀𝑧

𝑛 ⩽ 3| log 𝛿|2√𝛿𝑁1∕3

})
(4.50)

+ ℙ

(
max
𝑧∈ max

𝑛∈[[1,⌊𝛿𝑁2∕3⌋]] log𝑀𝑧
𝑛 ⩾ | log 𝛿|2√𝛿𝑁1∕3

)
. (4.51)
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32 of 58 RASSOUL-AGHA et al.

F IGURE 9 Setup for the stationary polymer with ratios of partition functions.

For any 𝑧 ∈ , Lemma A.3 gives

𝑀𝑧
𝑛 ⩾ 𝑀

𝑤+
𝑁

𝑛 for 𝑛 ⩾ 1 and 𝑀𝑧
𝑛 ⩾ 𝑀

𝑤−
𝑁

𝑛 for 𝑛 ⩽ 0.

Therefore, we may bound (4.50) and (4.51) by

(4.50) + (4.51) ⩽ ℙ

({
max

𝑛∈[[1,⌊ 1
2
𝛼𝑟𝑁2∕3⌋]] log𝑀

𝑤+
𝑁

𝑛 ⩽ 3| log 𝛿|2√𝛿𝑁1∕3

}
(4.52)

⋂{
max

𝑛∈[[−⌊ 1
2
𝛼𝑟𝑁2∕3⌋,0]] log𝑀

𝑤−
𝑁

𝑛 ⩽ 3| log 𝛿|2√𝛿𝑁1∕3

})

+ ℙ

(
max

𝑛∈[[1,⌊𝛿𝑁2∕3⌋]] log𝑀
𝑤−
𝑁

𝑛 ⩾ | log 𝛿|2√𝛿𝑁1∕3

)
(4.53)

Next, to each edge on the north and east sides of the rectangle [[−⌊𝑟𝑁2∕3⌋𝑒1, 𝑣𝑁 + 𝑒1 + 𝑒2⟧,
we attach both 𝜆- and 𝜂-edge weights, coupled as in [9, Theorem B.4]. We denote these weights
by 𝐼𝜆,NE

𝑣𝑛+𝑘𝑒1+𝑒2
, 𝐽𝜆,NE

𝑣𝑛+𝑒1+𝑘𝑒2
, 𝐼𝜂,NE

𝑣𝑛+𝑘𝑒1+𝑒2
, and 𝐽

𝜂,NE
𝑣𝑛+𝑒1+𝑘𝑒2

, 𝑘 ⩽ 1. Together with the bulk weights in
[[−⌊𝑟𝑁2∕3⌋𝑒1 + 𝑒2, 𝑣𝑁⟧, these define stationary polymers with northeast boundary. Let us denote
their partition functions by 𝑍𝜆,NE𝑥,𝑣𝑁+𝑒1+𝑒2

and 𝑍𝜂,NE𝑥,𝑣𝑁+𝑒1+𝑒2
for 𝑥 ∈ ⟦(−⌊𝑟𝑁2∕3⌋, 1), 𝑣𝑁⟧. The corre-

sponding polymer measures are denoted by 𝑄𝜆,NE𝑥,𝑣𝑁+𝑒1+𝑒2
and 𝑄

𝜂,NE
𝑥,𝑣𝑁+𝑒1+𝑒2

, respectively. This is
depicted in Figure 9.
On the horizontal line 𝑦 = 1, let us also define for 𝑖 ∈ [[−⌊𝛼𝑟𝑁2∕3⌋ + 1, ⌊𝛼𝑟𝑁2∕3⌋]]

𝐼𝜆,NE
(𝑖,1)

=
𝑍𝜆,NE
(𝑖−1,1),𝑣𝑁+𝑒1+𝑒2

𝑍𝜆,NE
(𝑖,1),𝑣𝑁+𝑒1+𝑒2

and 𝐼
𝜂,NE
(𝑖,1)

=
𝑍
𝜂,NE
(𝑖−1,1),𝑣𝑁+𝑒1+𝑒2

𝑍
𝜂,NE
(𝑖,1),𝑣𝑁+𝑒1+𝑒2

. (4.54)
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COALESCENCE OF SEMI-INFINITE POLYMERS 33 of 58

Lemma 4.13. There exists a positive constant𝐶, depending only on 𝜀, such that for 𝛼, 𝑟,𝑁 as chosen
above, and for any integers 𝑎, 𝑏 ∈ [[−⌊𝛼𝑟𝑁2∕3⌋ + 1, ⌊𝛼𝑟𝑁2∕3⌋]], the event

𝐴 =

{
1

2

𝑏∏
𝑖=𝑎

𝐼
𝜂,NE
(𝑖,1)

⩽

𝑏∏
𝑖=𝑎

𝐼̃
𝑤−
𝑁

(𝑖,1)
⩽

𝑏∏
𝑖=𝑎

𝐼̃
𝑤+
𝑁

(𝑖,1)
⩽ 2

𝑏∏
𝑖=𝑎

𝐼𝜆,NE
(𝑖,1)

}
(4.55)

satisfies ℙ(𝐴𝑐) ⩽ 𝑒−𝐶𝑟
3 .

Proof. Due to the relative positions of 𝑤±
𝑁
, Lemma A.3 implies the middle inequality in the

definition of 𝐴. We will prove the desired bound for the inequality on the right, that is,

ℙ

(
𝑏∏
𝑖=𝑎

𝐼̃
𝑤+
𝑁

𝑖
⩽ 2

𝑏∏
𝑖=𝑎

𝐼𝜆,NE
𝑖

)
⩾ 1 − 𝑒−𝐶𝑟

3
. (4.56)

The argument for the inequality on the left is similar and will be omitted.
Let 𝜏NE be defined similarly to 𝜏, but acting on down-left paths. Namely, it gives the number of

steps the path takes before making its first corner. We will again use the convention that 𝜏NE > 0

if the first step of the path is −𝑒1 and 𝜏NE < 0 if the first step is −𝑒2.
Our estimate essentially follows from the following two facts. The first fact is that the random

variable

𝑄𝜆,NE⌊𝛼𝑟𝑁2∕3⌋𝑒1+𝑒2,𝑣𝑁+𝑒1+𝑒2 {𝜏NE ⩾ 𝑞𝑟𝑁2∕3}

is, almost surely, less than or equal to

𝑄𝜆,NE
(𝑎,1),𝑣𝑁+𝑒1+𝑒2

{𝜏NE ⩾ 𝑞𝑟𝑁2∕3} ∀𝑎 ∈ [[−⌊𝛼𝑟𝑁2∕3⌋ + 1, ⌊𝛼𝑟𝑁2∕3⌋]].
This follows directly from Lemma A.5, although note that here we exit from the NE boundary
instead of the SW boundary. The second fact is that there exist positive constants 𝐶1 and 𝐶2 such
that

ℙ
(
𝑄𝜆,NE⌊𝛼𝑟𝑁2∕3⌋𝑒1+𝑒2,𝑣𝑁+𝑒1+𝑒2 {𝜏NE ⩾ 𝑞𝑟𝑁2∕3} ⩾ 1 − 𝑒−𝐶1𝑟

2𝑁1∕3
)
⩾ 1 − 𝑒−𝐶2𝑟

3
. (4.57)

To see this, observe that

ℙ
(
𝑄𝜆,NE⌊𝛼𝑟𝑁2∕3⌋𝑒1+𝑒2,𝑣𝑁+𝑒1+𝑒2 {𝜏NE ⩽ 𝑞𝑟𝑁2∕3} ⩾ 𝑒−𝐶1𝑟

2𝑁1∕3
)
⩽ 𝑒−𝐶2𝑟

3

is the same as (4.35), except here we rotate the picture by 180◦. The key idea is illustrated
in Figure 10. Note the similarities between Figures 6 and 10. From Figure 10, the calculation
𝑧𝑁 ⋅ 𝑒2 − 𝑣𝑁 ⋅ 𝑒2 − 1 ⩾ 𝐶𝑟𝑁2∕3 is omitted because it is similar to (4.37).
Let 𝑍𝜆,N

(𝑏,1),𝑤+
𝑁
+𝑒2

denote the partition function for up-right paths from (𝑏, 1) to 𝑤+
𝑁
+ 𝑒2, which

uses the same weights as 𝑍𝜆,NE
(𝑏,1),𝑤+

𝑁
+𝑒2

does on the north boundary but uses the original (bulk)

weights on 𝑤+
𝑁
+ ℤ2

⩽0
.

On the high probability event{
𝑄𝜆,NE⌊𝛼𝑟𝑁2∕3⌋𝑒1+𝑒2,𝑣𝑁+𝑒1+𝑒2 {𝜏NE ⩾ 𝑞𝑟𝑁2∕3} ⩾ 1 − 𝑒−𝐶1𝑟

2𝑁1∕3
}
, (4.58)
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34 of 58 RASSOUL-AGHA et al.

F IGURE 10 Illustration of (4.57). By Lemma A.8,
𝑄𝜆,NE
𝑎𝑁,𝑏𝑁

(𝜏NE ⩽ 𝑞𝑟𝑁2∕3) = 𝑄𝜆,NE
𝑎𝑁,𝑧𝑁

(𝜏NE < −(𝑧𝑁 ⋅ 𝑒2 − 𝑣𝑁 ⋅ 𝑒2 − 1)), and this is unlikely because
𝑧𝑁 ⋅ 𝑒2 − 𝑣𝑁 ⋅ 𝑒2 − 1 ⩾ 𝐶𝑟𝑁2∕3.

we have

𝑏∏
𝑖=𝑎+1

𝐼̃
𝑤+
𝑁

(𝑖,1)
=
𝑍(𝑎,1),𝑤+

𝑁

𝑍(𝑏,1),𝑤+
𝑁

⩽

𝑍𝑁
(𝑎,1),𝑤+

𝑁
+𝑒2

𝑍𝑁
(𝑏,1),𝑤+

𝑁
+𝑒2

(By Lemma A.3)

=

𝑍𝑁
(𝑎,1),𝑤+

𝑁
+𝑒2

∏⌊𝑞𝑟𝑁2∕3⌋+1
𝑖=1

𝐼𝜆,NE
𝑣𝑁+𝑒1+𝑒2−𝑖𝑒1

𝑍𝑁
(𝑏,1),𝑤+

𝑁
+𝑒2

∏⌊𝑞𝑟𝑁2∕3⌋+1
𝑖=1

𝐼𝜆,NE
𝑣𝑁+𝑒1+𝑒2−𝑖𝑒1

=
𝑍NE
(𝑎,1),𝑣𝑁+𝑒1+𝑒2

(𝜏NE ⩾ ⌊𝑞𝑟𝑁2∕3⌋)
𝑍NE
(𝑏,1),𝑣𝑁+𝑒1+𝑒2

(𝜏NE ⩾ ⌊𝑞𝑟𝑁2∕3⌋)
=
𝑄NE
(𝑎,1),𝑣𝑁+𝑒1+𝑒2

(𝜏NE ⩾ ⌊𝑞𝑟𝑁2∕3⌋)
𝑄NE
(𝑏,1),𝑣𝑁+𝑒1+𝑒2

(𝜏NE ⩾ ⌊𝑞𝑟𝑁2∕3⌋)
𝑏∏

𝑖=𝑎+1

𝐼𝜆,NE
(𝑖,1)

⩽
1

1 − 𝑒−𝐶1𝑟
2𝑁1∕3

𝑏∏
𝑖=𝑎+1

𝐼𝜆,NE
(𝑖,1)

(on the event (4.58)).
□

With the new horizontal increments 𝐼𝜆,NE and 𝐼𝜂,NE, define two more two-sided multiplicative
random walks𝑀𝜆

𝑛 and𝑀
𝜂
𝑛 with𝑀𝜆

0
= 𝑀

𝜂
0
= 1,

𝑀𝜆
𝑛∕𝑀

𝜆
𝑛−1 = 𝐼

𝜌

(𝑛,0)
∕𝐼𝜆,NE

(𝑛,1)
, and 𝑀

𝜂
𝑛∕𝑀

𝜂
𝑛−1

= 𝐼
𝜌

(𝑛,0)
∕𝐼

𝜂,NE
(𝑛,1)

.
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COALESCENCE OF SEMI-INFINITE POLYMERS 35 of 58

On the event 𝐴 from (4.55), we get

1

2
𝑀𝜆
𝑛 ⩽ 𝑀

𝑤+
𝑁

𝑛 ⩽ 2𝑀
𝜂
𝑛 for 𝑛 ⩾ 1 and 1

2
𝑀

𝜂
𝑛 ⩽ 𝑀

𝑤−
𝑁

𝑛 ⩽ 2𝑀𝜆
𝑛 for 𝑛 ⩽ 0. (4.59)

Now we can bound

ℙ(event in (4.52) ∩ 𝐴) ⩽ ℙ

⎛⎜⎜⎜⎝
⎧⎪⎨⎪⎩ max
𝑛∈[[1,⌊ 1

2
𝛼𝑟𝑁2∕3⌋]] log𝑀

𝜆
𝑛 ⩽ 6| log 𝛿|2√𝛿𝑁1∕3

⎫⎪⎬⎪⎭
⋂⎧⎪⎨⎪⎩ max

𝑛∈[[−⌊ 1
2
𝛼𝑟𝑁2∕3⌋,0]] log𝑀

𝜂
𝑛 ⩽ 6| log 𝛿|2√𝛿𝑁1∕3

⎫⎪⎬⎪⎭
⎞⎟⎟⎟⎠,

(4.60)

ℙ(event in (4.53) ∩ 𝐴) ⩽ ℙ

(
max

𝑛∈[[1,⌊𝛿𝑁2∕3⌋]] log𝑀𝜂
𝑛 ⩾

1

2
| log 𝛿|2√𝛿𝑁1∕3

)
. (4.61)

[9, Theorem B.4] states that the increment variables {𝐼𝜆,NE
(𝑖,1)

}𝑖⩾1 ∪ {𝐼
𝜂,NE
(𝑖,1)

}𝑖⩽0 are independent, and
these are independent of the boundary weights {𝐼𝜌

(𝑖,0)
} by construction. Thus, we get

(4.60) ⩽ ℙ

⎛⎜⎜⎝ max
𝑛∈[[1,⌊ 1

2
𝛼𝑟𝑁2∕3⌋]] log𝑀

𝜆
𝑛 ⩽ 6| log 𝛿|2√𝛿𝑁1∕3

⎞⎟⎟⎠
× ℙ

⎛⎜⎜⎝ max
𝑛∈[[−⌊ 1

2
𝛼𝑟𝑁2∕3⌋,0]] log𝑀

𝜂
𝑛 ⩽ 6| log 𝛿|2√𝛿𝑁1∕3

⎞⎟⎟⎠.
(4.62)

The next step is a randomwalk estimate because the steps of thewalks log𝑀𝜆
𝑛 and log𝑀

𝜂
𝑛 are given

by the difference of two independent log-gamma random variables, which are sub-exponential
random variables. Using Proposition A.13, we see that (4.62) ⩽ 𝐶| log 𝛿|6𝛿. Using Theorem A.11,
we also have (4.61) ⩽ 𝐶𝛿.
To summarize, we have shown

ℙ(event in (4.45)) ⩽ 2ℙ(𝐴𝑐) + ℙ(event in (4.52) ∩ 𝐴) + ℙ(event in (4.53) ∩ 𝐴)

⩽ 2𝑒−𝐶| log 𝛿|3 + 𝐶| log 𝛿|6𝛿
⩽ | log 𝛿|10𝛿.

(4.63)

This completes the proof of the desired bound (4.2) with themaximum taken over the dark region
 ⊂ 𝜕NE⟦0, 𝑣𝑁⟧ in Figure 7.
For the endpoints in +, we have the following estimate,

ℙ

(
max
𝑧∈+ 𝑄

𝜌
0,𝑧
{1 ⩽ 𝜏 ⩽ 𝛿𝑁2∕3} ⩾ 𝑒−| log 𝛿|2√𝛿𝑁1∕3

)
⩽ ℙ

(
max
𝑧∈+ 𝑄

𝜌
0,𝑧
{1 ⩽ 𝜏} ⩾ 𝑒−| log 𝛿|2√𝛿𝑁1∕3

)
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36 of 58 RASSOUL-AGHA et al.

F IGURE 11 We have 𝑄0,𝑤−
𝑁
{𝜏 ⩽ 𝛿𝑁2∕3} = 𝑄(⌊𝛿𝑁2∕3⌋,−ℎ),𝑤−

𝑁
{𝜏 < −ℎ} which is rare because ℎ is lower bounded

by 𝐶𝑟𝑁2∕3. The lower bound on ℎ follows from the fact the vertical distance between 𝑣𝑁 and 𝑤−
𝑁
is of order 𝑟𝑁2∕3.

⩽ ℙ

(
𝑄
𝜌

0,𝑤+
𝑁

{1 ⩽ 𝜏} ⩾ 𝑒−| log 𝛿|2√𝛿𝑁1∕3

)
(by Lemma A.5)

⩽ 𝑒−𝐶| log 𝛿|3 (by Corollary 4.10).

Similarly, for the − region, we have

ℙ

(
max
𝑧∈− 𝑄

𝜌
0,𝑧
{1 ⩽ 𝜏 ⩽ 𝛿𝑁2∕3} ⩾ 𝑒−| log 𝛿|2√𝛿𝑁1∕3

)
⩽ ℙ

(
max
𝑧∈− 𝑄

𝜌
0,𝑧
{𝜏 ⩽ 𝛿𝑁2∕3} ⩾ 𝑒−| log 𝛿|2√𝛿𝑁1∕3

)
⩽ ℙ
(
𝑄
𝜌
0,𝑤−

𝑁
{𝜏 ⩽ 𝛿𝑁2∕3} ⩾ 𝑒−| log 𝛿|2√𝛿𝑁1∕3

)
⩽ 𝑒−𝐶| log 𝛿|3 .

The idea for the last inequality is illustrated in Figure 11, essentially again following from
Lemma A.5 and Corollary 4.10. This finishes the argument for the − region. The bound (4.2)
is thus proved.
The probability bound implies the upper bound in (4.3):

𝔼

[
max

𝑧∈𝜕NE[[0,𝑣𝑁]]
𝑄
𝜌
0,𝑧
{|𝜏| ⩽ 𝛿𝑁2∕3}

]
⩽ 𝛿 + ℙ

(
max

𝑧∈𝜕NE[[0,𝑣𝑁]]
𝑄
𝜌
0,𝑧
{|𝜏| ⩽ 𝛿𝑁2∕3} ⩾ 𝛿

)
⩽ 𝐶| log 𝛿|10𝛿.

We turn to the lower bound in (4.3). By Lemma 4.6, there exist two constants 𝑟0 and 𝑁0

(depending on 𝜀) such that, for 𝑁 ⩾ 𝑁0,

𝔼
[
𝑄
𝜌
0,𝑣𝑁+𝑒1+𝑒2

{|𝜏| ⩽ 𝑟0𝑁
2∕3}
]
⩾
1

2
. (4.64)
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COALESCENCE OF SEMI-INFINITE POLYMERS 37 of 58

F IGURE 1 2 Left: Partition for the collection of paths in (4.64). The origin is not necessarily a partition
point. Right: An illustration for (4.68). The nested polymer with its quenched measure 𝑄(0)

𝑧,𝑣′
𝑁

is shown in black.

Abbreviate 𝑣′
𝑁
= 𝑣𝑁 + 𝑒1 + 𝑒2. Given 𝛿 ⩾ 𝑁−2∕3, partition [−𝑟0, 𝑟0] as

−𝑟0 = 𝑝0 < 𝑝1 <⋯ < 𝑝⌊ 2𝑟0
𝛿
⌋ < 𝑝⌊ 2𝑟0

𝛿
⌋+1 = 𝑟0

with mesh size 𝑝𝑖+1 − 𝑝𝑖 ⩽ 𝛿. See the left side of Figure 12. By (4.64), there exists an integer 𝑖⋆ ∈
[0, ⌊ 2𝑟0

𝛿
⌋] such that

𝔼

[
𝑄
𝜌

0,𝑣′
𝑁

{𝑝𝑖⋆𝑁
2∕3 ⩽ 𝜏 ⩽ 𝑝𝑖⋆+1𝑁

2∕3}

]
⩾

1

2
𝛿

2𝑟0
= 𝐶(𝜀)𝛿. (4.65)

As we cannot control the exact location of 𝑖⋆, we compensate by varying the endpoint around
𝑣′
𝑁
. Let

𝐴𝑁 = ⟦𝑣′𝑁 − 𝑟0𝑁
2∕3𝑒1, 𝑣

′
𝑁⟧ ∪ ⟦𝑣′𝑁 − 𝑟0𝑁

2∕3𝑒2, 𝑣
′
𝑁⟧

denote the set of lattice points on the boundary of the rectangle ⟦0, 𝑣′
𝑁
⟧within distance 𝑟0𝑁2∕3 of

the upper right corner 𝑣′
𝑁
. We claim that for any integer 𝑖 ∈ [0, ⌊ 2𝑟0

𝛿
⌋],

𝔼

[
max
𝑧∈𝐴𝑁

𝑄
𝜌
0,𝑧
{|𝜏| ⩽ 𝛿𝑁2∕3}

]
⩾ 𝔼

[
𝑄
𝜌

0,𝑣′
𝑁

{𝑝𝑖⋆𝑁
2∕3 ⩽ 𝜏 ⩽ 𝑝𝑖⋆+1𝑁

2∕3}

]
. (4.66)

Then bounds (4.65) and (4.66) imply

𝔼

[
max
𝑧∈𝐴𝑁

𝑄
𝜌
0,𝑧
{|𝜏| ⩽ 𝛿𝑁2∕3}

]
⩾ 𝐶(𝜌)𝛿, (4.67)

and the lower bound in (4.3) follows directly from (4.67).
It remains to prove claim (4.66). If 𝑝𝑖⋆ ⩽ 0 ⩽ 𝑝𝑖⋆+1, (4.66) is immediate. We argue the case

𝑝𝑖⋆+1 > 𝑝𝑖⋆ > 0, the other one being analogous. Set 𝑧 = (⌊𝑝𝑖⋆𝑁2∕3⌋ − 1)𝑒1 and apply Lemma A.7
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38 of 58 RASSOUL-AGHA et al.

to the polymer with the nested quenched measure 𝑄(0)𝑧, ∙. See the right side of Figure 12. Then

𝔼

[
𝑄
𝜌

0,𝑣′
𝑁

{𝑝𝑖⋆𝑁
2∕3 ⩽ 𝜏 ⩽ 𝑝𝑖⋆+1𝑁

2∕3}

]
⩽ 𝔼

[
𝑄(0)
𝑧,𝑣′

𝑁

{1 ⩽ 𝜏 ⩽ 𝛿𝑁2∕3}

]
(4.68)

= 𝔼

[
𝑄
𝜌

0,𝑣′
𝑁
−(⌊𝑝𝑖⋆𝑁2∕3⌋−1)𝑒1 {1 ⩽ 𝜏 ⩽ 𝛿𝑁2∕3}

]
] (by shift-invariance)

⩽ 𝔼

[
max
𝑧∈𝐴𝑁

𝑄
𝜌
0,𝑧
{|𝜏| ⩽ 𝛿𝑁2∕3}

]
.

Theorem 4.2 is proved.

4.3 Coupled polymer measures

Proof of Theorem 4.3. From Theorem 4.1, there exists an event 𝐴 with probability at least 𝑒−𝐶1𝑟3

such that on 𝐴, we have

min
𝑥∈𝜕NE[[0,𝑣𝑁]]

𝑄
𝜌
0,𝑥
{|𝜏| > 𝑟𝑁2∕3} ⩾ 1 − 𝑒−𝐶2𝑟

2𝑁1∕3
.

By a union bound, on the event 𝐴 we have

𝑄
𝜌

0,𝜕NE[[0,𝑣𝑁]]

⎛⎜⎜⎝
⋂

𝑥∈𝜕NE[[0,𝑣𝑁]]

{|𝜏̃0,𝑥| > 𝑟𝑁2∕3}
⎞⎟⎟⎠ ⩾ 1 − 𝑁𝑒−𝐶2𝑟

2𝑁1∕3
⩾ 1 − 𝑒−𝐶3𝑟

2𝑁1∕3

provided that 𝑟0, 𝑁0 are sufficiently large. With this, we have finished the proof of this
theorem. □

Proof of Theorem 4.4. By Theorem 4.2, on the high probability event 𝐵 with probability at least
1 − 𝐶1𝛿| log 𝛿|10, we have

max
𝑥∈𝜕NE[[0,𝑣𝑁]]

𝑄
𝜌
0,𝑥
{|𝜏| ⩽ 𝛿𝑁2∕3} ⩽ 𝑒−| log 𝛿|2√𝛿𝑁1∕3

.

With the assumption that
√
𝛿𝑁1∕3 ⩾ 1, a union bound implies that on 𝐵,

𝑄0,𝜕NE[[0,𝑣𝑁]]

⎛⎜⎜⎝
⋃

𝑥∈𝜕NE[[0,𝑣𝑁]]

{𝜏̃0,𝑥 ⩽ 𝛿𝑁2∕3}
⎞⎟⎟⎠ ⩽ 𝑁𝑒−| log 𝛿|2√𝛿𝑁1∕3

⩽ 𝛿.

The claim of the theorem follows. □
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COALESCENCE OF SEMI-INFINITE POLYMERS 39 of 58

5 COALESCENCE OF SEMI-INFINITE POLYMERS

In this section, we will define the semi-infinite polymer measures and prove Theorems 2.1 and
2.3 about their coalescence. The proof will use a duality between forward and backward polymer
measures, which we describe in Subsection 5.2.

5.1 Busemann functions and semi-infinite polymers

Following [18, Theorem 4.1], for any fixed 𝜌 ∈ (0, 𝜇), ℙ-almost surely, the limits

𝐵𝜌(𝑥, 𝑦) = lim
𝑁→∞

(
log 𝑍𝑥,𝑣𝑁 − log 𝑍𝑦,𝑣𝑁

)
, (5.1)

exist for any 𝑥, 𝑦 ∈ ℤ2 and satisfy

𝑌−1𝑧 = 𝑒−𝐵
𝜌(𝑧,𝑧+𝑒1) + 𝑒−𝐵

𝜌(𝑧,𝑧+𝑒2)

and

𝐵𝜌(𝑥, 𝑦) + 𝐵𝜌(𝑦, 𝑧) = 𝐵𝜌(𝑥, 𝑧),

for all 𝑥, 𝑦, 𝑧 ∈ ℤ2. Furthermore, for any 𝑧 ∈ ℤ2, 𝐼𝜌𝑧 = 𝑒𝐵
𝜌(𝑧−𝑒1,𝑧) ∼ Ga−1(𝜇 − 𝜌), 𝐽𝜌𝑧 = 𝑒𝐵

𝜌(𝑧−𝑒2,𝑧) ∼

Ga−1(𝜌), and ifwe fix any vertex 𝑣 ∈ ℤ2, then theweights𝑌𝑧, 𝐼
𝜌

𝑣−𝑘𝑒1
, 𝐽
𝜌

𝑣−𝑘𝑒2
, 𝑧 ∈ 𝑣 − ℤ2

>0
,𝑘 ⩾ 0, are

mutually independent and thus define a stationary polymer with northeast boundary on 𝑣 − ℤ2
⩾0
.

The partition function and quenched polymermeasure will be denoted by 𝑍𝜌,NE∙,𝑣 , 𝑄
𝜌,NE
∙,𝑣 . Similarly,

if we define

�𝑌
𝜌
𝑧 =

1

𝑒−𝐵
𝜌(𝑧−𝑒1,𝑧) + 𝑒−𝐵

𝜌(𝑧−𝑒2,𝑧)
, 𝑧 ∈ ℤ2 ,

then �𝑌
𝜌
𝑧 ∼ Ga−1(𝜇) for all 𝑧 ∈ ℤ2, and for any vertex 𝑣 ∈ ℤ2 the weights �𝑌𝜌𝑧 , 𝐼

𝜌

𝑣+𝑘𝑒1
, 𝐽
𝜌

𝑣+𝑘𝑒2
, 𝑧 ∈

𝑣 + ℤ2
>0
, 𝑘 ⩾ 1, are mutually independent and defined a stationary polymer with southwest

boundary on 𝑣 + ℤ2
⩾0
. The partition function and quenched polymer measure will be denoted

by �𝑍𝜌,𝑆𝑊𝑣,∙ , �𝑄
𝜌,𝑆𝑊
𝑣,∙ . Thus, for any 𝑣 ∈ ℤ2, �𝑄𝜌,𝑆𝑊𝑣,∙ has the same distribution as the generic 𝑄𝜌𝑣,∙ we

introduced in Section 3 and used in Section 4. (This distributional equality is a special feature of
the inverse-gamma polymer.)
The 𝜉[𝜌]-directed (forward) semi-infinite polymer measure starting at 𝑧, denoted by Π𝜌

𝑧 , is a
Markov chain on ℤ2 with transition probabilities

𝜋𝜌(𝑥, 𝑥 + 𝑒1) =
𝐽
𝜌
𝑥+𝑒2

𝐼
𝜌
𝑥+𝑒1

+ 𝐽
𝜌
𝑥+𝑒2

= 𝑌𝑥 𝑒
−𝐵𝜌(𝑥,𝑥+𝑒1),

𝜋𝜌(𝑥, 𝑥 + 𝑒2) =
𝐼
𝜌
𝑥+𝑒1

𝐼
𝜌
𝑥+𝑒1

+ 𝐽
𝜌
𝑥+𝑒2

= 𝑌𝑥 𝑒
−𝐵𝜌(𝑥,𝑥+𝑒2) .

(5.2)
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40 of 58 RASSOUL-AGHA et al.

The 𝜉[𝜌]-directed backward semi-infinite polymer measure starting at 𝑧, denoted by �Π𝜌
𝑧 , is a

Markov chain on ℤ2 with transition probabilities

�𝜋𝜌(𝑥, 𝑥 − 𝑒1) =
𝐽
𝜌
𝑥

𝐼
𝜌
𝑥 + 𝐽

𝜌
𝑥

= �𝑌
𝜌
𝑥 𝑒

−𝐵𝜌(𝑥−𝑒1,𝑥) and �𝜋𝜌(𝑥, 𝑥 − 𝑒2) =
𝐼
𝜌
𝑥

𝐼
𝜌
𝑥 + 𝐽

𝜌
𝑥

= �𝑌
𝜌
𝑥 𝑒

−𝐵𝜌(𝑥−𝑒2,𝑥) .

(5.3)
The next proposition relates the semi-infinite polymers to the stationary ones. For 𝑢 ∈ ℤ2 and

𝑣 ∈ 𝑢 + ℤ2
>0
let Π𝜌

𝑢,𝑣 be the distribution of the Markov chain that starts at 𝑢, has transition prob-
abilities 𝜋𝜌(𝑥, 𝑥 + 𝑒𝑖), 𝑖 ∈ {1, 2}, if 𝑥 ∈ [[𝑢, 𝑣 − 𝑒1 − 𝑒2]], and when it gets to 𝑣 − ℤ>0𝑒𝑖 , 𝑖 ∈ {1, 2},
it takes 𝑒𝑖 steps to get to 𝑣 and end there. Similarly, let �Π

𝜌
𝑣,𝑢 be the distribution of the Markov

chain that starts at 𝑣, has transition probabilities �𝜋𝜌(𝑥, 𝑥 − 𝑒𝑖), 𝑖 ∈ {1, 2}, if 𝑥 ∈ [[𝑢 + 𝑒1 + 𝑒2, 𝑣]],
and when it gets to 𝑢 + ℤ>0𝑒𝑖 , 𝑖 ∈ {1, 2}, it takes −𝑒𝑖 steps to get to 𝑢 and end there.
Define, similarly to 𝕏𝑢,𝑣, the set 𝕏𝑣,𝑢 of down-left paths starting at 𝑣 and ending at 𝑢. For 𝑥∙ ∈

𝕏𝑢,𝑣, respectively, ∈ 𝕏𝑣,𝑢, let 𝑥̄∙ ∈ 𝕏𝑣,𝑢, respectively, ∈ 𝕏𝑢,𝑣, be the path that traverses 𝑥∙ in the
reverse direction.

Proposition 5.1. We have ℙ-almost surely, for any 𝑢 ∈ ℤ2 and 𝑣 ∈ 𝑢 + ℤ2
>0
, for any 𝑥∙ ∈ 𝕏𝑢,𝑣 ,

Π
𝜌
𝑢,𝑣(𝑥∙) = 𝑄

𝜌,NE
𝑢,𝑣 (𝑥∙) and �Π

𝜌
𝑣,𝑢(𝑥̄∙) = �𝑄

𝜌,SW
𝑢,𝑣 (𝑥∙).

Proof. We prove the second claim, the first one being similar. Let 𝓁 = |𝑣 − 𝑢|1 and index the path
𝑥∙ so that 𝑥0 = 𝑢 and 𝑥𝓁 = 𝑣. We will consider the case where 𝑥1 = 𝑒1 and the proof in the other
case is identical. Let 𝑘 ⩾ 1 be such that 𝑥𝑘 = 𝑢 + 𝑘𝑒1 and 𝑥𝑘+1 = 𝑢 + 𝑘𝑒1 + 𝑒2. Then

�Π
𝜌
𝑣,𝑢(𝑥̄∙) =

𝓁−1∏
𝑖=𝑘

�𝜋𝜌(𝑥𝑖+1, 𝑥𝑖) =

𝓁−1∏
𝑖=𝑘

�𝑌
𝜌
𝑥𝑖+1

𝑒−𝐵
𝜌(𝑥𝑖 ,𝑥𝑖+1)

= 𝑒−𝐵
𝜌(𝑥𝑘,𝑣)

𝓁−1∏
𝑖=𝑘

�𝑌
𝜌
𝑥𝑖+1

= 𝑒−𝐵
𝜌(𝑢,𝑣)

𝑘∏
𝑖=1

𝐼
𝜌
𝑢+𝑖𝑒1

𝓁−1∏
𝑖=𝑘

�𝑌
𝜌
𝑥𝑖+1

.

Adding the above over all paths 𝑥∙ ∈ 𝕏𝑢,𝑣 gives

1 = 𝑒−𝐵
𝜌(𝑢,𝑣) �𝑍

𝜌,SW
𝑢,𝑣 .

Consequently,

�Π
𝜌
𝑣,𝑢(𝑥̄∙) =

∏𝑘
𝑖=1 𝐼

𝜌
𝑢+𝑖𝑒1

∏𝓁−1
𝑖=𝑘

�𝑌
𝜌
𝑥𝑖+1

�𝑍
𝜌,SW
𝑢,𝑣

= �𝑄
𝜌,SW
𝑢,𝑣 (𝑥∙).

□

5.2 Coupling the forward and backward semi-infinite polymers

We now couple the polymer measures {Π
𝜌
𝑧 ∶ 𝑧 ∈ ℤ2} following the construction in [25,

appendix A]. To this end, introduce a collection of independent and identically distributed
Uniform[0, 1] random variables {𝜃𝑧}𝑧∈ℤ2 that are also independent of the random environment
{𝑌𝑧 ∶ 𝑧 ∈ ℤ2}. Let 𝐏 denote the distribution of 𝜃.
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COALESCENCE OF SEMI-INFINITE POLYMERS 41 of 58

Define a directed random graph g𝜌 on ℤ2, according to the following rule

g𝜌(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
𝑒1 if 𝜃𝑥 ⩽

𝐽
𝜌
𝑥+𝑒2

𝐼
𝜌
𝑥+𝑒1

+𝐽
𝜌
𝑥+𝑒2

,

𝑒2 if 𝜃𝑥 >
𝐼
𝜌
𝑥+𝑒1

𝐼
𝜌
𝑥+𝑒1

+𝐽
𝜌
𝑥+𝑒2

.

From g𝜌, we can construct a semi-infinite path 𝑋𝜌,𝑧
∙ defined by

𝑋
𝜌,𝑧
0

= 𝑧 and 𝑋
𝜌,𝑧
𝑛+1

= 𝑋
𝜌,𝑧
𝑛 + g𝜌(𝑋

𝜌,𝑧
𝑛 ). (5.4)

It is clear from the construction that for ℙ-almost every 𝑌∙, the distribution of 𝑋𝜌,𝑧
∙ under 𝐏

is exactly Π𝜌
𝑧 . Namely, we have ℙ-almost surely, for any 𝑧 ∈ ℤ2 and any finite up-right path 𝑥∙

starting at 𝑧,

𝐏{𝑋𝜌,𝑧
∙ = 𝑥∙} = Π

𝜌
𝑧{𝑥∙}. (5.5)

We next couple the backward semi-infinite polymer measures together with the forward ones.
To this end, define another (dual) random graph �g𝜌 by

�g𝜌(𝑥) =

{
−𝑒1 if g𝜌(𝑥 − 𝑒1 − 𝑒2) = 𝑒1,

−𝑒2 if g𝜌(𝑥 − 𝑒1 − 𝑒2) = 𝑒2.

Define the down-left semi-infinite paths �𝑋𝜌,𝑧 according to

�𝑋
𝜌,𝑧
0

= 𝑧 and �𝑋
𝜌,𝑧
𝑛+1

= �𝑋
𝜌,𝑧
𝑛 + �g𝜌( �𝑋

𝜌,𝑧
𝑛 ). (5.6)

By construction, for ℙ-almost every 𝑌∙, the distribution of �𝑋
𝜌,𝑧
∙ under 𝐏 is that of a Markov chain

on ℤ2 with steps in {−𝑒1, −𝑒2} and transition probabilities

𝐽
𝜌
𝑥−𝑒1

𝐼
𝜌
𝑥−𝑒2

+ 𝐽
𝜌
𝑥−𝑒2

=
𝑒𝐵

𝜌(𝑥−𝑒1−𝑒2,𝑥−𝑒1)

𝑒𝐵
𝜌(𝑥−𝑒1−𝑒2,𝑥−𝑒2) + 𝑒𝐵

𝜌(𝑥−𝑒1−𝑒2,𝑥−𝑒1)
=

𝑒−𝐵
𝜌(𝑥−𝑒1,𝑥)

𝑒−𝐵
𝜌(𝑥−𝑒2,𝑥) + 𝑒−𝐵

𝜌(𝑥−𝑒1,𝑥)

=
𝑒𝐵

𝜌(𝑥−𝑒2,𝑥)

𝑒𝐵
𝜌(𝑥−𝑒1,𝑥) + 𝑒𝐵

𝜌(𝑥−𝑒2,𝑥)
= �𝜋𝜌(𝑥, 𝑥 − 𝑒1)

to go from 𝑥 to 𝑥 − 𝑒1 and, similarly,

𝐼
𝜌
𝑥−𝑒2

𝐼
𝜌
𝑥−𝑒2

+ 𝐽
𝜌
𝑥−𝑒2

= �𝜋𝜌(𝑥, 𝑥 − 𝑒2)

to go from 𝑥 to 𝑥 − 𝑒2.

Remark 5.2. Note that the graph g𝜌 and its coupled paths {𝑋𝜌,𝑧
∙ ∶ 𝑧 ∈ ℤ2} are constructed to form

a forest that covers all of ℤ2. By [25, Theorem A.2], this forest is in fact a spanning tree, with
probability 1 under ℙ. The paths { �𝑋𝜌,𝑧

∙ − (𝑒1 + 𝑒2)∕2 ∶ 𝑧 ∈ ℤ2} form the dual forest that spans the
dual latticeℤ2 − (𝑒1 + 𝑒2)∕2. Again, by [25, TheoremA.2], this dual forest is also a spanning forest
ℙ-almost surely.
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42 of 58 RASSOUL-AGHA et al.

F IGURE 13 The sampled polymers starting (⌊𝛿𝑁2∕3⌋, 0) and (0, ⌊𝛿𝑁2∕3⌋) (gray dotted lines) coalesce
outside ⟦0, 𝑣𝑁⟧. Equivalently, some dual point 𝑥∗ = 𝑥 − (1∕2, 1∕2) outside of ⟦0, 𝑣𝑁⟧ − (1∕2, 1∕2) sends a dual
polymer �𝑋𝜌,𝑥

∙ − (1∕2, 1∕2) (black dotted line) into the rectangle ⟦(0, 0), (⌊𝛿𝑁2∕3⌋, ⌊𝛿𝑁2∕3⌋)⟧.
For 𝑧 ∈ ℤ2

>0
let 𝑋𝜌,𝑧

∙ ∈ 𝕏𝑧,0 be the random path that follows �𝑋𝜌,𝑧
∙ from 𝑧 until the first time it

hits the axesℤ>0𝑒𝑖 , 𝑖 ∈ {1, 2}, and then goes to 0 taking only−𝑒1 or only−𝑒2 steps. For𝐴 ⊂ ℤ2
>0
let

𝑄
𝜌
0,𝐴

be the distribution under𝐏 of the paths {𝑋𝜌,𝑧
∙ ∶ 𝑧 ∈ 𝐴}. By Proposition 5.1, this is a coupling of

the measures { �𝑄𝜌,SW
0,𝑣

∶ 𝑣 ∈ 𝐴} and by their construction, the paths {𝑋𝜌,𝑧
∙ ∶ 𝑧 ∈ 𝐴} are𝑄𝜌

0,𝐴
-almost

surely ordered.

5.3 Proofs of Theorems 2.1, 2.3, and 2.7, and Corollary 2.5

We note that the probability𝜌

𝑎,𝑏

(
Γ𝐴
)
is the same as the probability under 𝐏 that the coalescence

point of the coupled paths 𝑋𝜌,𝑎
∙ and 𝑋𝜌,𝑏

∙ belongs to 𝐴.

Proof of Theorem 2.1. As shown in Figure 13, the duality mentioned in Remark 5.2 implies that the
sampled polymer paths coalesce outside of the rectangle [[0, 𝑣𝑁]] if and only if there exists some 𝑥
on the northeast boundary of [[0, 𝑣𝑁]] such that the polymer 𝑋

𝜌,𝑥
∙ satisfies |𝜏0,𝑥| ⩽ 𝛿𝑁2∕3.

By this equivalence, the expectation in Theorem 2.1 is equal to the expectation in Theorem 4.4,

𝔼
[𝜌⌊𝛿𝑁2∕3⌋𝑒1,⌊𝛿𝑁2∕3⌋𝑒2

(
Γℤ

2⧵[[0,𝑣𝑁]]
)]

= 𝔼

⎡⎢⎢⎣𝑄𝜌0,𝜕NE[[0,𝑣𝑁]]
⎛⎜⎜⎝
⋃

𝑥∈𝜕NE[[0,𝑣𝑁]]

{|𝜏̃0,𝑥| ⩽ 𝛿𝑁2∕3}
⎞⎟⎟⎠
⎤⎥⎥⎦.

Finally, for the exit time expectation on the right-hand side, the upper bound follows from The-
orem 4.4. The lower bound follows from (4.38) and (4.3) in Theorem 4.2 because the probability
of a union of events is bounded below by the maximum of the probabilities of the individual
events. □

Proof of Theorems 2.3 and 2.7. As shown in Figure 14, if the two sampled forward polymers starting
at (⌊𝑟𝑁2∕3⌋, 0) and (0, ⌊𝑟𝑁2∕3⌋) coalesce inside [[0, 𝑣𝑁]], then by duality, this happens if and only
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COALESCENCE OF SEMI-INFINITE POLYMERS 43 of 58

F IGURE 14 None of the backward polymers (black dotted lines) will enter the gray square because they are
shielded away from it by the coalescing forward polymers (gray dotted lines).

for each 𝑥 ∈ 𝜕NE[[0, 𝑣𝑁]] the polymer 𝑋
𝜌,𝑥
∙ satisfies |𝜏0,𝑥| ⩾ 𝑟𝑁2∕3. Then, we have

𝜌⌊𝑟𝑁2∕3⌋𝑒1,⌊𝑟𝑁2∕3⌋𝑒2
(
Γ[[0,𝑣𝑁]]

)
𝑑
= 𝑄

𝜌

0,𝜕NE[[0,𝑣𝑁]]

⎛⎜⎜⎝
⋂

𝑥∈𝜕NE[[0,𝑣𝑁]]

{|𝜏̃0,𝑥| ⩾ 𝑟𝑁2∕3}
⎞⎟⎟⎠. (5.7)

The expectation and the tail probabilities of the right-hand side can be lower bounded using The-
orem 4.3. And they are upper bounded by Theorem 4.1 because the probability of an intersection
of events is bounded above by the minimum of the probabilities of the individual events. □

Proof of Corollary 2.5. To prove the first inequalitywewill lower bound its complement. By duality,
it suffices to show that for some small 𝑞 depending only on 𝜀,

𝔼
[𝜌

0,⌊𝑟𝑁2∕3⌋𝑒1
(
Γℤ

2⧵[[0,𝑣𝑁]]
)]

= 𝔼

⎡⎢⎢⎣𝑄𝜌0,𝜕NE[[0,𝑣𝑁]]
⎛⎜⎜⎝
⋃

𝑥∈𝜕NE[[0,𝑣𝑁]]

{1 ⩽ 𝜏̃0,𝑥 ⩽ 𝑟𝑁2∕3}
⎞⎟⎟⎠
⎤⎥⎥⎦

⩾ 𝔼
[
𝑄
𝜌

0,𝑣𝑁−𝑞𝑟𝑁
2∕3𝑒2

{1 ⩽ 𝜏 ⩽ 𝑟𝑁2∕3}
]

⩾ 1 − 𝑒−𝐶𝑟
3
. (5.8)

The last inequality (5.8) follows from an argument similar to the proof of Lemma 4.12. Here,
instead of perturbing the directional parameter, we simply perturb our end point from 𝑣𝑁 to
𝑣𝑁 − 𝑞𝑟𝑁2∕3𝑒2. Then, as shown in Figure 15, if we fix 𝑞 sufficiently small, then the−𝜉[𝜌] directed
ray starting at 𝑣𝑁 − 𝑞𝑟𝑁2∕3𝑒2will hit the 𝑒1-axiswithin [[𝑎𝑟𝑁2∕3, 𝑏𝑟𝑁2∕3]], for some 0 < 𝑎 < 𝑏 < 1.
This again just follows from Taylor’s theorem and we omit the details. Then the rest of the
argument is exactly the same as in Lemma 4.12.
To prove the second inequality in the claim of the corollary we start with the following calcu-

lation, where the first equality comes from duality and the same calculation from (4.38) gives us
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44 of 58 RASSOUL-AGHA et al.

F IGURE 15 An illustration for the inequality (5.8). Starting from the point 𝑣𝑁 − 𝑞𝑟𝑁2∕3𝑒2, the
−𝜉[𝜌]-directed ray will hit the 𝑒1-axis between [[𝑎𝑟𝑁2∕3, 𝑏𝑟𝑁2∕3]] for some 0 < 𝑎 < 𝑏 < 1, provided that 𝑞 is fixed
sufficiently small.

the inequality when we switch from }}max𝑥∈𝜕NE[[0,𝑣𝑁]] …
′′ to }}max𝑥∉[[0,𝑣𝑁]] …

′′

𝔼
[𝜌

0,⌊𝛿𝑁2∕3⌋𝑒1
(
Γℤ

2⧵[[0,𝑣𝑁]]
)]

= 𝔼

⎡⎢⎢⎣𝑄𝜌0,𝜕NE[[0,𝑣𝑁]]
⎛⎜⎜⎝
⋃

𝑥∈𝜕NE[[0,𝑣𝑁]]

{1 ⩽ 𝜏̃0,𝑥 ⩽ 𝛿𝑁2∕3}
⎞⎟⎟⎠
⎤⎥⎥⎦

⩾ 𝔼

[
max

𝑥∈𝜕NE[[0,𝑣𝑁]]
𝑄
𝜌
0,𝑥
{1 ⩽ 𝜏 ⩽ 𝛿𝑁2∕3}

]
⩾ 𝔼

[
max

𝑥∉[[0,𝑣𝑁]]
𝑄
𝜌
0,𝑥
{1 ⩽ 𝜏 ⩽ 𝛿𝑁2∕3}

]
.

The last expectation can be lower bounded by 𝐶𝛿. The proof is very similar to that of the lower
bound in (4.3). More precisely, by (5.8), we can fix two constants 𝑟0 and𝑁0 (depending on 𝜀) such
that, for 𝑁 ⩾ 𝑁0,

𝔼
[
𝑄
𝜌

0,𝑣𝑁−𝑞𝑟0𝑁
2∕3𝑒2+𝑒1

{1 ⩽ 𝜏 ⩽ 𝑟0𝑁
2∕3}
]
⩾
1

2
. (5.9)

Note that using the endpoint 𝑣𝑁 − 𝑞𝑟0𝑁
2∕3𝑒2 + 𝑒1 instead of 𝑣𝑁 − 𝑞𝑟0𝑁

2∕3𝑒2 does not change the
proof of this lower bound.
Now, (5.9) replaces the input (4.64), and we form our partition {𝑝𝑖} in the range [1, 𝑟0] instead

of [−𝑟0, 𝑟0]. Then, the rest of the proof is the same as the lower bound proof in (4.3). □

6 TOTAL VARIATION DISTANCE BOUNDS

Proof of Theorem 2.8. The claim follows from the fact that if 𝑈 and 𝑉 are two random variables
with distributions 𝜇 and 𝜈, respectively, and if 𝐏 is any coupling of the two random variables, then

𝑑TV(𝜇, 𝜈) ⩽ 𝐏(𝑈 ≠ 𝑉). (6.1)
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COALESCENCE OF SEMI-INFINITE POLYMERS 45 of 58

Consider the paths 𝑋𝜌,𝛿𝑁2∕3𝑒𝑖
∙ , 𝑖 ∈ {1, 2}, defined in Subsection 5.2. Then, 𝜒𝑁(𝑋

𝜌,𝛿𝑁2∕3𝑒1
∙ ) ≠

𝜒
𝑁(𝑋

𝜌,𝛿𝑁2∕3𝑒2
∙ ) implies the two paths did not coalesce inside [[0, 𝑣𝑁]]. Hence, if 𝐏 is the probability

measure from Subsection 5.2, then

𝐏
{
𝜒
𝑁

(
𝑋
𝜌,𝛿𝑁2∕3𝑒1
∙

) ≠ 𝜒
𝑁

(
𝑋
𝜌,𝛿𝑁2∕3𝑒2
∙

)}
⩽ 𝜌⌊𝛿𝑁2∕3⌋𝑒1,⌊𝛿𝑁2∕3⌋𝑒2

(
Γℤ

2⧵[[0,𝑣𝑁]]
)
.

Now the upper bound claimed in the theorem follows directly from Theorem 2.1. □

Proof of Theorem 2.9. We will first look at 𝑢 only in the north boundary of [[0, 𝑣𝑁]], which we
denote as 𝜕N[[0, 𝑣𝑁]], and we will show that∑

𝑢∈𝜕N[[0,𝑣𝑁]]

|Π𝜌⌊𝑟𝑁2∕3⌋𝑒1 (𝜒𝑁 = 𝑢) − Π
𝜌⌊𝑟𝑁2∕3⌋𝑒2 (𝜒𝑁 = 𝑢)| is close to 1.

A similar argument can be applied to the east boundary to show that sum is also close to 1. And
combining the two calculations for the north and east boundaries would finish the proof.
From Proposition 5.1 and Theorem 4.1,

ℙ
(
Π
𝜌⌊𝑟𝑁2∕3⌋𝑒2 (𝜒𝑁 ∈ 𝜕𝑁[[0, 𝑣𝑁]]) ⩾ 1 − 𝑒−𝑐𝑟

2𝑁1∕3
)
⩾ 1 − 𝑒−𝐶𝑟

3
,

ℙ
(
Π
𝜌⌊𝑟𝑁2∕3⌋𝑒1 (𝜒𝑁 ∈ 𝜕𝑁[[0, 𝑣𝑁]]) ⩽ 𝑒−𝑐𝑟

2𝑁1∕3
)
⩾ 1 − 𝑒−𝐶𝑟

3
.

To finish the proof, on the intersection of the two events above, we have∑
𝑢∈𝜕N[[0,𝑣𝑁]]

|Π𝜌⌊𝑟𝑁2∕3⌋𝑒1 (𝜒𝑁 = 𝑢) − Π
𝜌⌊𝑟𝑁2∕3⌋𝑒2 (𝜒𝑁 = 𝑢)|

⩾
∑

𝑢∈𝜕N[[0,𝑣𝑁]]

(
Π
𝜌⌊𝑟𝑁2∕3⌋𝑒1 (𝜒𝑁 = 𝑢) − Π

𝜌⌊𝑟𝑁2∕3⌋𝑒2 (𝜒𝑁 = 𝑢)
)

= Π
𝜌⌊𝑟𝑁2∕3⌋𝑒2 (𝜒𝑁 ∈ 𝜕𝑁[[0, 𝑣𝑁]]) − Π

𝜌⌊𝑟𝑁2∕3⌋𝑒1 (𝜒𝑁 ∈ 𝜕𝑁[[0, 𝑣𝑁]])

⩾ 1 − 2𝑒−𝑐𝑟
2𝑁1∕3

. □

7 TRANSVERSAL FLUCTUATION LOWER BOUND

In this section, we prove Theorem 2.11, but omit some of the details because the whole proof is
similar to the proof of the upper bound in Theorem 4.2.
First, for 𝑖 ∈ {1, 2}, let us define {mid𝑖 ⩽ 𝛿𝑁2∕3} to be the collection of paths between −𝑣𝑁 and

𝑣𝑁 that crosses the segment between −𝛿𝑁2∕3𝑒𝑖 and 𝛿𝑁2∕3𝑒𝑖 . As

{mid ⩽ 𝛿𝑁2∕3} ⊂ {mid1 ⩽ 𝛿𝑁2∕3} ∪ {mid2 ⩽ 𝛿𝑁2∕3},

by a union bound and the symmetry between 𝑖 = 1 and 2 it suffices to prove that

𝔼
[
𝑄−𝑣𝑁,𝑣𝑁 {mid1 ⩽ 𝛿𝑁2∕3}

]
⩽ 𝐶| log 𝛿|10𝛿.
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46 of 58 RASSOUL-AGHA et al.

We prove this by showing that

ℙ
(
𝑄−𝑣𝑁,𝑣𝑁 {mid1 ⩽ 𝛿𝑁2∕3} ⩾ 𝑒−| log 𝛿|2√𝛿𝑁1∕3

)
⩽ 𝐶| log 𝛿|10𝛿. (7.1)

Let 𝑟 = | log 𝛿| and fix 𝛼 sufficiently small (now depending only on 𝜇) as in the proof of Theo-
rem 4.2. The next calculation follows the same steps as (4.45), except that we now set 𝜌 = 𝜇∕2 and
consider the dark region as a single point 𝑣𝑁 .

left side of (7.1)

= ℙ
(
log 𝑍−𝑣𝑁,𝑣𝑁 − log 𝑍−𝑣𝑁,𝑣𝑁 {mid1 ⩽ 𝛿𝑁2∕3} ⩽ | log 𝛿|2√𝛿𝑁1∕3

)
⩽ ℙ
(
log 𝑍−𝑣𝑁,𝑣𝑁 {mid1 ⩽ 𝑟𝑁2∕3} − log 𝑍−𝑣𝑁,𝑣𝑁 {mid1 ⩽ 𝛿𝑁2∕3} ⩽ | log 𝛿|2√𝛿𝑁1∕3

)
⩽ ℙ

(
max|𝑘|⩽⌊𝑟𝑁2∕3⌋

[
log 𝑍−𝑣𝑁,𝑘𝑒1 + log 𝑍(𝑘,1),𝑣𝑁

]
− max|𝑗|⩽⌊𝛿𝑁2∕3⌋

[
log 𝑍−𝑣𝑁,𝑘𝑒1 + log 𝑍(𝑘,1),𝑣𝑁

]
⩽ 2| log 𝛿|2√𝛿𝑁1∕3

)

= ℙ

(
max|𝑘|⩽⌊𝑟𝑁2∕3⌋

[
log

𝑍−𝑣𝑁,𝑘𝑒1
𝑍−𝑣𝑁,(0,0)

+ log
𝑍(𝑘,1),𝑣𝑁
𝑍𝑒2,𝑣𝑁

]

− max
1⩽𝑗⩽⌊𝛿𝑁2∕3⌋

[
log

𝑍−𝑣𝑁,𝑗𝑒1
𝑍−𝑣𝑁,(0,0)

+ log
𝑍(𝑗,1),𝑣𝑁
𝑍𝑒2,𝑣𝑁

]
⩽ 2| log 𝛿|2√𝛿𝑁1∕3

)

⩽ ℙ

(
max|𝑘|⩽⌊𝑟𝑁2∕3⌋

[
log

𝑍−𝑣𝑁,𝑘𝑒1
𝑍−𝑣𝑁,(0,0)

+ log
𝑍(𝑘,1),𝑣𝑁
𝑍𝑒2,𝑣𝑁

]
⩽ 3| log 𝛿|2√𝛿𝑁1∕3

)
(7.2)

+ ℙ

(
max

1⩽𝑗⩽⌊𝛿𝑁2∕3⌋
[
log

𝑍−𝑣𝑁,𝑗𝑒1
𝑍−𝑣𝑁,(0,0)

+ log
𝑍(𝑗,1),𝑣𝑁
𝑍𝑒2,𝑣𝑁

]
⩾ | log 𝛿|2√𝛿𝑁1∕3

)
. (7.3)

Next, let us define

𝐼̃
𝑣𝑁
(𝑖,1)

=
𝑍(𝑖−1,1),𝑣𝑁
𝑍(𝑖,1),𝑣𝑁

, 𝐼̃
−𝑣𝑁
(𝑖,0)

=
𝑍−𝑣𝑁,(𝑖,1)

𝑍−𝑣𝑁,(𝑖−1,1)
,

and a two-sided multiplicative walk {𝑀′
𝑛}𝑛∈[[−⌊𝛼𝑟𝑁2∕3⌋+1,⌊𝛼𝑟𝑁2∕3⌋]] by setting𝑀′

0
= 1 and

𝑀′
𝑛∕𝑀

′
𝑛−1 = 𝐼̃

−𝑣𝑁
(𝑛,0)

∕𝐼̃
𝑣𝑁
(𝑛,1)

.

Then, the two probabilities can be rewritten as

(7.2) + (7.3) = ℙ

(
max

𝑛∈[[−𝛼𝑟𝑁2∕3+1,𝛼𝑟𝑁2∕3]]
log𝑀′

𝑛 ⩽ 3| log 𝛿|2√𝛿𝑁1∕3

)
+ ℙ

(
max

𝑛∈[[1,𝛿𝑁2∕3]]
log𝑀′

𝑛 ⩾ | log 𝛿|2√𝛿𝑁1∕3

)
.

(7.4)
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COALESCENCE OF SEMI-INFINITE POLYMERS 47 of 58

Note how the right-hand side is similar to (4.48) + (4.49), except for having 𝑀′
𝑛 instead of 𝑀𝑛,

and the region  is reduced to the single vertex 𝑣𝑁 . Next, we give a sketch of how to carry over
the estimate from the proof of Theorem 4.2 to the random walk in this proof. The essential step
is to upper and lower bound the walk 𝑀′

𝑛 by two other walks with independent and identically
distributed steps. This was done for 𝑀𝑛 previously in (4.59). After that, the bound on the two
probabilities above comes from the same estimates as in the proof of Theorem 4.2.
First, let us summarize how the desired random walk bound was obtained in the proof of The-

orem 4.2. Recall 𝜆 and 𝜇, defined in (4.40). Lemma 4.13 showed that with probability at least
1 − 𝑒−𝐶𝑟

3 , for each 𝑎, 𝑏 ∈ [[−⌊𝛼𝑟𝑁2∕3⌋ + 1, ⌊𝛼𝑟𝑁2∕3⌋]],
1

2

𝑏∏
𝑖=𝑎

𝐼
𝜂,NE
(𝑖,1)

⩽

𝑏∏
𝑖=𝑎

𝐼̃
𝑣𝑁
(𝑖,1)

⩽ 2

𝑏∏
𝑖=𝑎

𝐼𝜆,NE
(𝑖,1)

,

where 𝐼 ∙,NE
(𝑖,1)

∼ Ga−1(∙). Furthermore, as stated below (4.61), there is a coupling such that the
random variables {

𝐼
𝜂,NE
(𝑖,1)

, 𝐼𝜆,NE
(𝑗,1)

∶ 𝑖 ⩽ 0, 𝑗 ⩾ 1
}
are independent. (7.5)

By symmetry (or rotating the picture 180◦), the exact same argument can be applied to 𝐼̃−𝑣𝑁
(𝑖,0)

,
where now these edge weights are calculated to the point−𝑣𝑁 − (𝑒1 + 𝑒2) instead of to 𝑣𝑁 + (𝑒1 +

𝑒2). We get that with probability at least 1 − 𝑒−𝐶𝑟
3 , for each 𝑎, 𝑏 ∈ [[−⌊𝛼𝑟𝑁2∕3⌋ + 1, ⌊𝛼𝑟𝑁2∕3⌋]],

1

2

𝑏∏
𝑖=𝑎

𝐼
𝜂,SW
(𝑖,0)

⩽

𝑏∏
𝑖=𝑎

𝐼̃
−𝑣𝑁
(𝑖,0)

⩽ 2

𝑏∏
𝑖=𝑎

𝐼𝜆,SW
(𝑖,0)

,

where 𝐼 ∙,SW
(𝑖,0)

∼ Ga−1(∙) are edge weights that are calculated to−𝑣𝑁 − (𝑒1 + 𝑒2) and with a bound-
ary placed on the south-west edges of the quadrant −𝑣𝑁 − (𝑒1 + 𝑒2) + ℤ2

⩾0
. As above, the random

variables {
𝐼𝜆,SW
(𝑖,0)

, 𝐼
𝜂,SW
(𝑗,0)

∶ 𝑖 ⩽ 0, 𝑗 ⩾ 0
}
are independent. (7.6)

Note how the parameters switched sides, as compared to (7.5).
Next, define two two-sided multiplicative random walks𝑀+

𝑛 ,𝑀
−
𝑛 with𝑀

±
0
= 1 and

𝑀+
𝑛 ∕𝑀

+
𝑛−1

= 𝐼𝜆,SW
(𝑛,0)

∕𝐼
𝜂,NE
(𝑛,1)

𝑀−
𝑛 ∕𝑀

−
𝑛−1 = 𝐼

𝜂,SW
(𝑛,0)

∕𝐼𝜆,NE
(𝑛,1)

We get

1

2
𝑀−
𝑛 ⩽ 𝑀′

𝑛 ⩽ 2𝑀+
𝑛 for 𝑛 ⩾ 1 and 1

2
𝑀+
𝑛 ⩽ 𝑀′

𝑛 ⩽ 2𝑀−
𝑛 for 𝑛 ⩽ 0.

These bounds play the role of (4.59). With this, go back to (7.4) and follow the same argument as
the one we used to bound (4.48)+ (4.49), but with𝑀𝑛,𝑀𝜆

𝑛 , and𝑀
𝜇
𝑛 replaced by𝑀′

𝑛,𝑀
−
𝑛 , and𝑀

+
𝑛 ,

respectively. We should point out that an essential fact that is used in the step analogous to (4.62)
is the independence of the walks {𝑀−

𝑛 ∶ 𝑛 ⩾ 1} and {𝑀+
𝑛 ∶ 𝑛 ⩽ 0}, which follows from (7.5) and

(7.6). We omit the rest of the details.
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48 of 58 RASSOUL-AGHA et al.

APPENDIX A: TECHNICAL COMPLEMENTS

A.1 Moderate deviation of the bulk free energy
We present here two estimates that we use in the proof of (4.1). The first tail bound can be derived
for the inverse-gamma polymer by combining [4, Theorem 1.7], which utilizes integrable proba-
bilitymethods, with [19, Theorem 2.2]. For theO’Connell–Yor polymer, the boundwas established
in [27] as Proposition 2.1 without the use of integrable probability. A proof of the bound for the
inverse-gamma polymer, without the use of integrable probability, will appear in [15]. This result
can be found in Theorem 4.3.1 of the Ph.D. thesis [36].
Proposition A.1. Fix 𝜀 ∈ (0, 𝜇∕2). There exist positive constants 𝐶,𝑁0 depending on 𝜀 such that for
each𝑁 ⩾ 𝑁0, 𝑡 ⩾ 1, and each 𝜌 ∈ [𝜀, 𝜇 − 𝜀], we have

ℙ
(
log 𝑍0,𝑣𝑁 − Λ(𝑣𝑁) ⩾ 𝑡𝑁1∕3

)
⩽ 𝑒−𝐶min{𝑡

3∕2, 𝑡𝑁1∕3}.

The next tail bound is [6, Proposition 3.8]. The analogous bound for the O’Connell–Yor polymer
appears as [27, Proposition 3.4].

Proposition A.2. Let 𝜀 ∈ (0, 𝜇∕2). There exist positive constants 𝐶,𝑁0 depending on 𝜀 such that for
each𝑁 ⩾ 𝑁0, 𝑡 ⩾ 1 and and each 𝜌 ∈ [𝜀, 𝜇 − 𝜀], we have

ℙ
(
log 𝑍0,𝑣𝑁 − Λ(𝑣𝑁) ⩽ −𝑡𝑁1∕3

)
⩽ 𝑒−𝐶min{𝑡

3∕2, 𝑡𝑁1∕3}.

A.2 Proof of Propositions 4.7 and 4.8
Let 𝜀 ∈ (0, 𝜇∕2) and fix 𝜌 ∈ [𝜀, 𝜇 − 𝜀]. We start with a few derivative calculations.

𝑑

𝑑𝑧

Ψ1(𝜌 + 𝑧)

Ψ1(𝜌 + 𝑧) + Ψ1(𝜇 − 𝜌 − 𝑧)

||||𝑧=0 = Ψ2(𝜌)Ψ1(𝜇 − 𝜌) + Ψ1(𝜌)Ψ2(𝜇 − 𝜌)

(Ψ1(𝜌) + Ψ1(𝜇 − 𝜌))2
, (A.1)

𝑑

𝑑𝑧

Ψ1(𝜇 − 𝜌 − 𝑧)

Ψ1(𝜌 + 𝑧) + Ψ1(𝜇 − 𝜌 − 𝑧)

||||𝑧=0 = −
Ψ2(𝜌)Ψ1(𝜇 − 𝜌) + Ψ1(𝜌)Ψ2(𝜇 − 𝜌)

(Ψ1(𝜌) + Ψ1(𝜇 − 𝜌))2
,

𝑑2

𝑑𝑧2
Ψ1(𝜌 + 𝑧)

Ψ1(𝜌 + 𝑧) + Ψ1(𝜇 − 𝜌 − 𝑧)

||||𝑧=0 = −
2Ψ2(𝜌)(Ψ2(𝜌) − Ψ2(𝜇 − 𝜌))

(Ψ1(𝜌) + Ψ1(𝜇 − 𝜌))2
+

Ψ3(𝜌)

Ψ1(𝜌) + Ψ1(𝜇 − 𝜌)

+ Ψ1(𝜌)

(
2(Ψ2(𝜌) − Ψ2(𝜇 − 𝜌))2

(Ψ1(𝜌) + Ψ1(𝜇 − 𝜌))3
−

Ψ3(𝜇 − 𝜌) + Ψ3(𝜌)

(Ψ1(𝜌) + Ψ1(𝜇 − 𝜌))2

)
,

𝑑2

𝑑𝑧2
Ψ1(𝜇 − 𝜌 − 𝑧)

Ψ1(𝜌 + 𝑧) + Ψ1(𝜇 − 𝜌 − 𝑧)

||||𝑧=0 = 2Ψ2(𝜇 − 𝜌)(Ψ2(𝜌) − Ψ2(𝜇 − 𝜌))

(Ψ1(𝜌) + Ψ1(𝜇 − 𝜌))2
+

Ψ3(𝜇 − 𝜌)

Ψ1(𝜌) + Ψ1(𝜇 − 𝜌)

+ Ψ1(𝜇 − 𝜌)

(
2(Ψ2(𝜌) − Ψ2(𝜇 − 𝜌))2

(Ψ1(𝜌) + Ψ1(𝜇 − 𝜌))3
−

Ψ3(𝜇 − 𝜌) + Ψ3(𝜌)

(Ψ1(𝜌) + Ψ1(𝜇 − 𝜌))2

)
,

𝑑

𝑑𝑧

(
Ψ1(𝜌 + 𝑧)

Ψ1(𝜌 + 𝑧) + Ψ1(𝜇 − 𝜌 − 𝑧)
Ψ0(𝜇 − 𝜌 − 𝑧) +

Ψ1(𝜇 − 𝜌 − 𝑧)

Ψ1(𝜌 + 𝑧) + Ψ1(𝜇 − 𝜌 − 𝑧)
Ψ0(𝜌 + 𝑧)

)||||𝑧=0
=
(Ψ0(𝜇 − 𝜌) − Ψ0(𝜌))(Ψ2(𝜌)Ψ1(𝜇 − 𝜌) + Ψ1(𝜌)Ψ2(𝜇 − 𝜌))

(Ψ1(𝜌) + Ψ1(𝜇 − 𝜌))2
, (A.2)

 14697750, 2024, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12955 by Firas R

assoul-A
gha - U

niversity O
f U

tah , W
iley O

nline L
ibrary on [19/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



COALESCENCE OF SEMI-INFINITE POLYMERS 49 of 58

𝑑2

𝑑𝑧2

(
Ψ1(𝜌 + 𝑧)

Ψ1(𝜌 + 𝑧) + Ψ1(𝜇 − 𝜌 − 𝑧)
Ψ0(𝜇 − 𝜌 − 𝑧) +

Ψ1(𝜇 − 𝜌 − 𝑧)

Ψ1(𝜌 + 𝑧) + Ψ1(𝜇 − 𝜌 − 𝑧)
Ψ0(𝜌 + 𝑧)

)||||𝑧=0
=
2(Ψ0(𝜌)Ψ2(𝜇 − 𝜌) − Ψ2(𝜌)Ψ0(𝜇 − 𝜌))(Ψ2(𝜌) − Ψ2(𝜇 − 𝜌))

(Ψ1(𝜌) + Ψ1(𝜇 − 𝜌))2

+
Ψ3(𝜌)Ψ0(𝜇 − 𝜌) + Ψ0(𝜌)Ψ3(𝜇 − 𝜌) − Ψ2(𝜌)Ψ1(𝜇 − 𝜌) − Ψ1(𝜌)Ψ2(𝜇 − 𝜌)

Ψ1(𝜌) + Ψ1(𝜇 − 𝜌)

+ (Ψ1(𝜌)Ψ0(𝜇 − 𝜌) + Ψ0(𝜌)Ψ1(𝜇 − 𝜌))

(
2(Ψ2(𝜌) − Ψ2(𝜇 − 𝜌))2

(Ψ1(𝜌) + Ψ1(𝜇 − 𝜌))3
−

Ψ3(𝜇 − 𝜌) + Ψ3(𝜌)

(Ψ1(𝜌) + Ψ1(𝜇 − 𝜌))2

)
.

Because of the bijection in (2.3), there exists a 𝑧 such that

𝑁𝜉[𝜌 + 𝑧] = 𝑣𝑁 − ⌊𝑠𝑁2∕3⌋𝑒1 + ⌊𝑠𝑁2∕3⌋𝑒2. (A.3)

From (A.1), we see that the derivative of Ψ1(𝜌+𝑧)

Ψ1(𝜌+𝑧)+Ψ1(𝜇−𝜌−𝑧)
at 𝑧 = 0 is strictly negative. By conti-

nuity, it is also strictly negative on a neighborhood of 0. This and the mean value theorem imply
that

𝑧 ∈ [𝑐1𝑠𝑁
−1∕3, 𝑐2𝑠𝑁

−1∕3] (A.4)

for some positive constant 𝑐1, 𝑐2 depending on 𝜀.
The quantity appearing on the left side of Propositions 4.7 and 4.8 is essentially the following

(we ignore the integer floor function),

−𝑁

[
Ψ1(𝜌 + 𝑧)

Ψ1(𝜌 + 𝑧) + Ψ1(𝜇 − 𝜌 − 𝑧)
Ψ0(𝜇 − 𝜌 − 𝑧) +

Ψ1(𝜇 − 𝜌 − 𝑧)

Ψ1(𝜌 + 𝑧) + Ψ1(𝜇 − 𝜌 − 𝑧)
Ψ0(𝜌 + 𝑧)

]
+𝑁

[
Ψ1(𝜌)

Ψ1(𝜌) + Ψ1(𝜇 − 𝜌)
Ψ0(𝜇 − 𝜌) +

Ψ1(𝜇 − 𝜌)

Ψ1(𝜌) + Ψ1(𝜇 − 𝜌)
Ψ0(𝜌)

]
+𝑁Ψ0(𝜇 − 𝜌)

[
(

Ψ1(𝜌 + 𝑧)

Ψ1(𝜌 + 𝑧) + Ψ1(𝜇 − 𝜌 − 𝑧)
−

Ψ1(𝜌)

Ψ1(𝜌) + Ψ1(𝜇 − 𝜌)

]
+𝑁Ψ0(𝜌)

[
Ψ1(𝜇 − 𝜌 − 𝑧)

Ψ1(𝜌 + 𝑧) + Ψ1(𝜇 − 𝜌 − 𝑧)
−

Ψ1(𝜇 − 𝜌)

Ψ1(𝜌) + Ψ1(𝜇 − 𝜌)

]
.

In the above, we used (A.3) to write ⌊𝑠𝑁2∕3⌋ = (𝑣𝑁 − 𝑁𝜉[𝜌 + 𝑧]) ⋅ 𝑒1 = (𝑁𝜉[𝜌 + 𝑧] − 𝑣𝑁) ⋅ 𝑒2.
By performing Taylor expansions in 𝑧 and using the computations presented earlier in this

section, we observe a number of cancellations, ultimately turning the above expression into

𝑁

2
⋅
Ψ1(𝜌)Ψ2(𝜇 − 𝜌) + Ψ2(𝜌)Ψ1(𝜇 − 𝜌)

Ψ1(𝜌) + Ψ1(𝜇 − 𝜌)
𝑧2 + 𝑁 ⋅ (𝑧3).

This and (A.4) imply the claimed bounds in Propositions 4.7 and 4.8, provided that a sufficiently
small value of 𝑐0 is chosen.

A.3 Nonrandom properties
The following monotonicity property of the ratios of partition functions is in [9, Lemma A.2].
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50 of 58 RASSOUL-AGHA et al.

Lemma A.3. Let 𝑥, 𝑦, 𝑧 ∈ ℤ2 be such that 𝑥 ⋅ 𝑒1 ⩽ 𝑦 ⋅ 𝑒1, 𝑥 ⋅ 𝑒2 ⩾ 𝑦 ⋅ 𝑒2, and 𝑥, 𝑦 ⩽ 𝑧, then

𝑍𝑥,𝑧

𝑍𝑥,𝑧−𝑒1
⩽

𝑍𝑦,𝑧

𝑍𝑦,𝑧−𝑒1
and

𝑍𝑥,𝑧

𝑍𝑥,𝑧−𝑒2
⩾

𝑍𝑦,𝑧

𝑍𝑦,𝑧−𝑒2
. (A.5)

The above lemma implies the following results about the monotonicity between the ratio of
partition functions and exit times.

Lemma A.4. Let 𝑧 ∈ ℤ2
⩾0
and let 𝑘, 𝑙 ∈ ℤ⩾1 be such that 𝑙 ⩽ 𝑘. Then

𝑍0,𝑧(𝜏 ⩾ 𝑙)

𝑍0,𝑧−𝑒1(𝜏 ⩾ 𝑙)
⩽

𝑍0,𝑧(𝜏 ⩾ 𝑘)

𝑍0,𝑧−𝑒1(𝜏 ⩾ 𝑘)
and

𝑍0,𝑧(𝜏 ⩾ 𝑙)

𝑍0,𝑧−𝑒2(𝜏 ⩾ 𝑙)
⩾

𝑍0,𝑧(𝜏 ⩾ 𝑘)

𝑍0,𝑧−𝑒2(𝜏 ⩾ 𝑘)
.

Proof. Note that 𝑍0,𝑧(𝜏⩾𝑙)

𝑍0,𝑧−𝑒1 (𝜏⩾𝑙)
=

𝑍𝑙𝑒1,𝑧

𝑍𝑙𝑒1,𝑧−𝑒1
and 𝑍0,𝑧(𝜏⩾𝑘)

𝑍0,𝑧−𝑒1 (𝜏⩾𝑘)
=

𝑍𝑘𝑒1,𝑧

𝑍𝑘𝑒1,𝑧−𝑒1
. Then Lemma A.3 gives us the

inequality

𝑍𝑙𝑒1,𝑧

𝑍𝑙𝑒1,𝑧−𝑒1
⩽

𝑍𝑘𝑒1,𝑧

𝑍𝑘𝑒1,𝑧−𝑒1
.

The other inequality with 𝑒2 follows from a similar argument. □

The next lemma is an immediate consequence of Lemma A.4. It suggests that shifting the end-
point to the right or down increases the likelihood of the polymer taking more 𝑒1 steps at the
beginning.

Lemma A.5. For any 𝑘, 𝑙,𝑚 ∈ ℤ⩾0 and 𝑥 ∈ ℤ2
⩾0
such that 𝑥 + 𝑙𝑒1 − 𝑚𝑒2 ∈ ℤ2

⩾0
,

𝑄0,𝑥{𝜏 ⩾ 𝑘} ⩽ 𝑄0,𝑥+𝑙𝑒1−𝑚𝑒2{𝜏 ⩾ 𝑘}.

Proof. Note that the proof of Lemma A.4 also gives

𝑍0,𝑥

𝑍0,𝑥−𝑒1
⩽

𝑍0,𝑧(𝜏 ⩾ 𝑘)

𝑍0,𝑥−𝑒1(𝜏 ⩾ 𝑘)
and

𝑍0,𝑥

𝑍0,𝑥−𝑒2
⩾

𝑍0,𝑥(𝜏 ⩾ 𝑘)

𝑍0,𝑥−𝑒2(𝜏0,𝑥 ⩾ 𝑘)
.

Rearrange to get

𝑄0,𝑥{𝜏 ⩾ 𝑘} =
𝑍0,𝑥(𝜏 ⩾ 𝑘)

𝑍0,𝑥
⩽
𝑍0,𝑥+𝑒1(𝜏 ⩾ 𝑘)

𝑍0,𝑥+𝑒1
= 𝑄0,𝑥+𝑒1 {𝜏 ⩾ 𝑘} (A.6)

and

𝑄0,𝑥{𝜏 ⩾ 𝑘} ⩾ 𝑄0,𝑥+𝑒2 {𝜏 ⩾ 𝑘}. (A.7)

Applying the two inequalities (A.6) and (A.7) repeatedly gives us the statement of our lemma. □

Fix 𝑢 ∈ ℤ2, wewill define a polymerwith a general down-right boundarywith the base at 𝑢. Let
𝑢 = {𝑦𝑖}𝑖∈ℤ be a bi-infinite downright path going through 𝑢. We use the convention that 𝑦0 = 𝑢

and 𝑦𝑖 ⋅ 𝑒1 ⩽ 𝑦𝑗 ⋅ 𝑒1 if 𝑖 ⩽ 𝑗.
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COALESCENCE OF SEMI-INFINITE POLYMERS 51 of 58

Next, let us place positive edge weights {𝑆𝑦𝑖−1,𝑦𝑖 } along 𝑢, and we will define the following
function𝐻. Let𝐻𝑢,𝑢 = 1. For each 𝑥0 = 𝑦𝑚 for some𝑚 > 0, define

𝐻𝑢,𝑥0
=

𝑚∏
𝑛=1

𝑌𝑦𝑛−1,𝑦𝑛 where 𝑌𝑦𝑛−1,𝑦𝑛 =

{
𝑆𝑦𝑛−1,𝑦𝑛 if 𝑦𝑛 − 𝑦𝑛−1 = 𝑒1,
1∕𝑆𝑦𝑛−1,𝑦𝑛 if 𝑦𝑛 − 𝑦𝑛−1 = −𝑒2.

For each 𝑥0 = 𝑦−𝑚 for some𝑚 > 0, define

𝐻𝑢,𝑥0
=

−𝑚+1∏
𝑛=0

𝑌𝑦𝑛,𝑦𝑛−1 where 𝑌𝑦𝑛,𝑦𝑛−1 =

{
1∕𝑆𝑦𝑛,𝑦𝑛−1 if 𝑦𝑛 − 𝑦𝑛−1 = 𝑒1,
𝑆𝑦𝑛,𝑦𝑛−1 if 𝑦𝑛 − 𝑦𝑛−1 = −𝑒2.

Recall ⩾
𝑢 = ∪𝑛(𝑦𝑛 + ℤ2

⩾0
) and >

𝑢 = ∪𝑛(𝑦𝑛 + ℤ2
>0
). For each 𝑦 ∈ 𝑢 and 𝑣 ∈ >

𝑢 , define the
set of paths

𝕏
𝑢
𝑦,𝑣 = {𝑥∙ ∈ 𝕏𝑦,𝑣 ∶ 𝑥1 ∈ >

𝑢 }.

This set is empty if both 𝑦 + 𝑒𝑖 , 𝑖 ∈ {1, 2}, are on 𝑢. For 𝑣 ∈ >
𝑢 , define the partition function

𝑍
𝑢
𝑢,𝑣 =

∑
𝑦∈𝑢

∑
𝑥∙∈𝕏

𝑢
𝑦,𝑣

𝐻𝑢,𝑦

|𝑦−𝑣|1∏
𝑖=1

𝑌𝑥𝑖 ,

where {𝑌𝑧} are the bulk weights for 𝑧 ∈ >
𝑢 . For 𝑣 ∈ 𝑢 let 𝑍𝑢

𝑢,𝑣 = 𝐻𝑢,𝑣. The corresponding
quenched path measure will be denoted as 𝑄𝑢

𝑢,𝑣. Note that these partition functions satisfy the
following induction: for 𝑤 ∈ >

𝑢 ,

𝑍
𝑢
𝑢,𝑤 = (𝑍

𝑢
𝑢,𝑤−𝑒1

+ 𝑍
𝑢
𝑢,𝑤−𝑒2

)𝑌𝑤. (A.8)

Given a polymer model defined on ⩾
𝑢 . We fix another bi-infinite down-right path 𝑣 ⊂ ⩾

𝑢

and define the following nested polymer model rooted at 𝑣. It has the same bulk weights, and on
the new boundary 𝑣 = {𝑧𝑛}, the weights are given by

𝑆𝑧𝑛−1,𝑧𝑛 =

⎧⎪⎪⎨⎪⎪⎩

𝑍
𝑢
𝑢,𝑧𝑛

𝑍
𝑢
𝑢,𝑧𝑛−1

if 𝑧𝑛 − 𝑧𝑛−1 = 𝑒1,

𝑍
𝑢
𝑢,𝑧𝑛−1

𝑍
𝑢
𝑢,𝑧𝑛

if 𝑧𝑛 − 𝑧𝑛−1 = −𝑒2.

We will denote this nested polymer measure by 𝑄𝑣,(𝑢)
𝑣,∙ .

Lemma A.6. Fix 𝑢, 𝑣 ∈ ℤ2 and two down-right bi-infinite paths 𝑢 and 𝑣 with 𝑣 ⊂ ⩾
𝑢 . Then

for 𝑤 ∈ ⩾0
𝑣 ,

𝑍
𝑣,(𝑢)
𝑣,𝑤 =

𝑍
𝑢
𝑢,𝑤

𝑍
𝑢
𝑢,𝑣

. (A.9)
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52 of 58 RASSOUL-AGHA et al.

Consequently, for each 𝑤 ∈ ⩾0
𝑣 and 𝑖 ∈ {1, 2},

𝑍
𝑢
𝑢,𝑤+𝑒𝑖

𝑍
𝑢
𝑢,𝑤

=
𝑍
𝑣,(𝑢)
𝑣,𝑤+𝑒𝑖

𝑍
𝑣,(𝑢)
𝑣,𝑤

. (A.10)

Proof. When 𝑤 ∈ 𝑣 the equality (A.9) comes straight from the definitions. Then it follows for
𝑤 ∈ >

𝑣 because the two sides satisfy the same induction (A.8). □

Lemma A.7. Fix 𝑢, 𝑣 ∈ ℤ2 and two down-right bi-infinite paths 𝑢 and 𝑣 with 𝑣 ⊂ ⩾
𝑢 . Let

𝑖 ∈ {1, 2} and 𝑧 ∈ 𝑣 be such that 𝑧 + 𝑒𝑖 is inside>0
𝑣 . Then, for each 𝑤 ∈ >0

𝑣 .

𝑄
𝑢
𝑢,𝑤{path goes through [[𝑧, 𝑧 + 𝑒𝑖]]} = 𝑄

𝑣,(𝑢)
𝑣,𝑤 {path goes through [[𝑧, 𝑧 + 𝑒𝑖]]}.

Proof. We prove the case with 𝑖 = 2, the other case being symmetric. Then

𝑄
𝑢
𝑢,𝑤{path goes through the edge [[𝑧, 𝑧 + 𝑒2]]} =

𝑍
𝑢
𝑢,𝑧 ⋅ 𝑍𝑧+𝑒2,𝑤

𝑍
𝑢
𝑢,𝑤

=

𝑍
𝑢
𝑢,𝑧

𝑍
𝑢
𝑢,𝑣

⋅ 𝑍𝑧+𝑒2,𝑧

𝑍
𝑢
𝑢,𝑤

𝑍
𝑢
𝑢,𝑣

=
𝑍
𝑣,(𝑢)
𝑣,𝑧 ⋅ 𝑍𝑧+𝑒2,𝑧

𝑍
𝑣,(𝑢)
𝑣,𝑤

by Lemma A.6

= 𝑄
𝑣,(𝑢)
𝑣,𝑤 {path goes through the edge [[𝑧, 𝑧 + 𝑒2]]}.

See the top panel in Figure A1 for an illustration. □

Next, we restrict attention to stationary polymers with southwest and antidiagonal bound-
aries. To simplify the notation, we will denote the respective partition functions by 𝑍𝑢,∙ and 𝑍dia𝑢,∙ .
The corresponding polymer measures are denoted by 𝑄𝑢,∙ and 𝑄dia𝑢,∙ . For the antidiagonal bound-
aries, the bi-infinite paths are given by 𝑢 = 𝑢 + (0,0), where (0,0) is given in (4.10). For the
nested polymers, we will always assume the outer polymer has an antidiagonal boundary, and the
nested partition functions with antidiagonal and southwest boundaries are denoted, respectively,
by 𝑍(𝑢),dia𝑣,∙ and 𝑍(𝑢)𝑣,∙ . The corresponding polymer measures are denoted by 𝑄

(𝑢)
𝑣,∙ and 𝑄

(𝑢),dia
𝑣,∙ .

The following two lemmas relate the exit times of two polymer processes with different starting
points. They are illustrated on the bottom of Figure A1.

Lemma A.8. Fix two base points (0,0) and (𝑚,−𝑛) with𝑚, 𝑛 > 0. Take 𝑢 with 𝑢 ⩽ (0, 0) and 𝑢 ⩽
(𝑚,−𝑛). Let 𝑍(𝑢)

0, ∙
and 𝑍(𝑢)

(𝑚,−𝑛), ∙
be the partition functions of the polymers with southwest boundaries,

rooted at (0,0) and (𝑚,−𝑛), respectively, nested inside a polymer rooted at𝑢 andhaving antidiagonal
boundary 𝑢. Then for 𝑣 ∈ ((0, 0) + ℤ2

>0
) ∩ ((𝑚,−𝑛) + ℤ2

>0
),

𝑄(𝑢)
0,𝑣
{𝜏 ⩽ 𝑚} = 𝑄(𝑢)

(𝑚,−𝑛),𝑣
{𝜏 < −𝑛}.
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COALESCENCE OF SEMI-INFINITE POLYMERS 53 of 58

F IGURE A1 Top: Illustration of Lemma A.7 in the special case when 𝑢 and 𝑣 are southwest boundaries.
Bottom: Illustration of Lemmas A.8 and A.9. Note that any directed path between 𝑢 and 𝑣 goes through a gray
edge/arrow if and only if it goes through a black edge/arrow.

Proof. This lemma follows from Lemma A.7 as we have the equalities

𝑄(𝑢)
0,𝑣
{𝜏 ⩽ 𝑚}

= 𝑄dia𝑢,𝑣{{path goes through edges {[[𝑎, 𝑎 + 𝑒2]] ∶ 0 < 𝑎 ⋅ 𝑒1 ⩽ 𝑚 and 𝑎 ⋅ 𝑒2 = 0}}∪

{path goes through edges {[[𝑎, 𝑎 + 𝑒1]] ∶ 0 < 𝑎 ⋅ 𝑒2 ⩽ 𝑣 ⋅ 𝑒2 and 𝑎 ⋅ 𝑒1 = 0}}}

= 𝑄dia𝑢,𝑣 {path goes through edges {[[𝑏, 𝑏 + 𝑒1]] ∶ 0 < 𝑏 ⋅ 𝑒2 ⩽ 𝑣 ⋅ 𝑒2 and 𝑏 ⋅ 𝑒1 = 𝑚}}

= 𝑄(𝑢)
(𝑚,−𝑛),𝑣

{𝜏 < −𝑛}.
□

Recall the exit time from the antidiagonal boundary, defined above (4.11).

LemmaA.9. Fix two base points (0,0) and (𝑟, 𝑟)with 𝑟 ∈ ℤ>0. Take 𝑢 ∈ −ℤ2
>0
. Let𝑍(𝑢)

0, ∙
and𝑍(𝑢),dia

(𝑟,𝑟), ∙

be the partition functions of the polymers with southwest and antidiagonal boundaries, rooted at
(0,0) and (𝑟, 𝑟), respectively, nested inside a polymer rooted at 𝑢 and having antidiagonal boundary
𝑢. Then for 𝑣 ∈ (𝑟, 𝑟) + ℤ2

>0
,

𝑄(𝑢)
0,𝑣
{𝜏 ⩾ 2𝑟} = 𝑄(𝑢),dia

(𝑟,𝑟),𝑣
{𝜏dia ⩾ 𝑟}.
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54 of 58 RASSOUL-AGHA et al.

Proof. This lemma again follows from Lemma A.7 as we have the equalities

𝑄(𝑢)
0,𝑣
{𝜏 ≥ 2𝑟}

= 𝑄dia𝑢,𝑧 {path goes through edges {[[𝑎, 𝑎 + 𝑒2]] ∶ 2𝑟 ⩽ 𝑎 ⋅ 𝑒1 ⩽ 𝑣 ⋅ 𝑒1 and 𝑎 ⋅ 𝑒2 = 0}}

= 𝑄dia𝑢,𝑧 {{path goes through edges {[[(𝑏, 2𝑟 − 𝑏), (𝑏, 2𝑟 − 𝑏) + 𝑒1]] ∶ 2𝑟 ⩽ 𝑏 < 𝑣 ⋅ 𝑒1}}∪

{path goes through edges {[[(𝑏, 2𝑟 − 𝑏), (𝑏, 2𝑟 − 𝑏) + 𝑒2]] ∶ 2𝑟 ⩽ 𝑏 ⩽ 𝑣 ⋅ 𝑒1}}}

= 𝑄(𝑢),dia
(𝑟,𝑟),𝑣

{𝜏dia ⩾ 𝑟}. □

A.4 Radon–Nikodym derivative calculation
Given 𝑎 > 0, 𝑁 ∈ ℤ>0, and 𝜌 > 0, let 𝑃𝜌 denote the probability distribution on the product space
Ω = ℝ⌊𝑎𝑁2∕3⌋ underwhich the coordinates𝑋𝑖(𝜔) = 𝜔𝑖 are independent and identically distributed
Ga−1(𝜌) random variables.
Proposition A.10. Fix 𝜇 > 0 and 𝜀 ∈ (0, 𝜇∕2). There exists a positive constant 𝐶 that only depends
on 𝜀 and 𝜇 and such that the following holds. Take any 𝑎 > 0, 𝑏 ∈ ℝ, and 𝑁 ∈ ℤ>0, and any 𝜌 ∈
[𝜀, 𝜇 − 𝜀]. Take |𝑏| ⩽ 1

4
𝜀𝑁1∕3 and let 𝑓 denote the Radon–Nikodym derivative

𝑓 =
𝑑𝑃𝜌+𝑏𝑁

−1∕3

𝑑𝑃𝜌
.

Then

𝐸𝑃
𝜌
[𝑓2] ⩽ 𝑒𝐶𝑎𝑏

2
.

Proof. Let us denote 𝜆 = 𝜌 + 𝑏𝑁−1∕3. From a direct computation, we obtain

𝐸𝑃
𝜌
[𝑓2] = ∫

⎛⎜⎜⎜⎜⎝
⌊𝑎𝑁2∕3⌋∏
𝑖=1

1

Γ(𝜆)

1

𝜔𝜆+1
𝑖

𝑒
− 1
𝜔𝑖

1

Γ(𝜌)

1

𝜔
𝜌+1
𝑖

𝑒
− 1
𝜔𝑖

⎞⎟⎟⎟⎟⎠

2

𝑃(𝑑𝜔)

=

(
Γ(𝜌)2

Γ(𝜆)2
1

Γ(𝜌) ∫
∞

0

1

𝑥2𝜆−𝜌+1
𝑒−

1
𝑥 𝑑𝑥

)⌊𝑎𝑁2∕3⌋

=

(
Γ(𝜌)Γ(2𝜆 − 𝜌)

Γ(𝜆)2

)⌊𝑎𝑁2∕3⌋
. (A.11)

We continue by taking the logarithm of (A.11),

log(𝐴.11) = ⌊𝑎𝑁2∕3⌋(log Γ(𝜌) + log Γ(2𝜆 − 𝜌) − 2 log Γ(𝜆)).

Note that 𝜌 = 𝜆 − 𝑏𝑁−1∕3 and 2𝜆 − 𝜌 = 𝜆 + 𝑏𝑁−1∕3. We can thus assume that 𝑏 > 0, the other
case being symmetric. Next, note that if we Taylor expand

log Γ(𝜌) + log Γ(2𝜆 − 𝜌) − 2 log Γ(𝜆), (A.12)

then both the zeroth and the first derivative terms cancel out.
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The assumption 0 < 𝑏 ⩽ 1

4
𝜀𝑁1∕3 implies that

0 < 𝜀 ⩽ 𝜌 < 𝜆 < 2𝜆 − 𝜌 ⩽ 𝜇 −
𝜀

2
< 𝜇.

In addition, log Γ(∙) is a smooth function onℝ>0. Thus, the second derivative termand the remain-
der from the expansion can be upper bounded using a constant 𝐶′ depending only on 𝜀 and 𝜇 and
we get

(𝐴.12) ⩽ 𝐶′𝑏2𝑁−2∕3 + 𝐶′𝑏3𝑁−1.

Again, by the assumption on 𝑏, 𝐶′𝑏2𝑁−2∕3 + 𝐶′𝑏3𝑁−1 ⩽ (1 + 𝜀∕4)𝐶′𝑏2𝑁−2∕3. The claim follows
with 𝐶 = (1 + 𝜀∕4)𝐶′. □

A.5 Sub-exponential random variables
Let {𝑋𝑖} be a sequence of independent and identically distributed sub-exponential random
variables with parameters 𝐾0 > 0 and 𝜆0 > 0. This means

𝔼[𝑒𝜆(𝑋1−𝔼[𝑋1])] ⩽ 𝑒𝐾0𝜆
2 for all 𝜆 ∈ [0, 𝜆0]. (A.13)

Define 𝑆0 = 0 and 𝑆𝑘 = 𝑋1 +⋯ + 𝑋𝑘 − 𝑘𝔼[𝑋1] for 𝑘 ⩾ 1. The following theorem captures the
right tail behavior of the running maximum.

Theorem A.11. Assume (A.13). Then

ℙ

(
max
0⩽𝑘⩽𝑛

𝑆𝑘 ⩾ 𝑡
√
𝑛

)
⩽

{
𝑒−𝑡

2∕(4𝐾0) if 𝑡 ⩽ 2𝜆0𝐾0
√
𝑛 ,

𝑒−
1
2
𝜆0𝑡
√
𝑛 if 𝑡 ⩾ 2𝜆0𝐾0

√
𝑛 .

Proof. As 𝑆𝑘 is a mean zero random walk, 𝑒𝜆𝑆𝑘 is a nonnegative sub-martingale for 𝜆 ⩾ 0. By
Doob’s maximal inequality,

ℙ

(
max
0⩽𝑘⩽𝑛

𝑆𝑘 ⩾ 𝑡
√
𝑛

)
= ℙ

(
max
0⩽𝑘⩽𝑛

𝑒𝜆𝑆𝑘 ⩾ 𝑒𝜆𝑡
√
𝑛

)
⩽
𝔼[𝑒𝜆𝑆𝑛 ]

𝑒𝜆𝑡
√
𝑛
=
𝔼[𝑒𝜆(𝑋1−𝔼[𝑋1])]𝑛

𝑒𝜆𝑡
√
𝑛

⩽ 𝑒𝑛𝐾0𝜆
2−𝜆𝑡
√
𝑛,

where in the last inequality we applied (A.13), for which we now assume 𝜆 ∈ [0, 𝜆0]. On this
interval, the exponent ℎ(𝜆) = 𝑛𝐾0𝜆

2 − 𝜆𝑡
√
𝑛 is minimized at 𝜆𝑡 = min{𝜆0,

𝑡

2𝐾0
√
𝑛
} and

ℎ(𝜆𝑡) =

{
− 𝑡2

4𝐾0
if 𝑡 ⩽ 2𝜆0𝐾0

√
𝑛 ,

𝑛𝐾0𝜆
2
0
− 𝜆0𝑡
√
𝑛 ⩽ −1

2
𝜆0𝑡
√
𝑛 if 𝑡 ⩾ 2𝜆0𝐾0

√
𝑛 .

The proof is complete. □

Next, we verify that log gamma and log inverse gamma random variables are sub-exponential.
Recall that if 𝑋 ∼ Ga(𝛼), then 𝔼[log𝑋] = Ψ0(𝛼), where Ψ0 is the digamma function, that is,
Ψ0(𝛼) = (log Γ(𝛼))′.
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Proposition A.12. Fix 𝜀 ∈ (0, 𝜇∕2). There exist positive constants 𝐾0, 𝜆0 depending on 𝜀 such that
for each 𝛼 ∈ [𝜀, 𝜇 − 𝜀] and 𝑋 ∼ Ga(𝛼), we have

𝔼[𝑒𝜆(log𝑋−Ψ0(𝛼))] ⩽ 𝑒𝐾0𝜆
2 for all 𝜆 ∈ [−𝜆0, 𝜆0].

Proof. First, note that 𝔼[𝑋𝜆] = Γ(𝛼+𝜆)

Γ(𝛼)
, provided that 𝛼 + 𝜆 > 0. This last condition can be

guaranteed for all 𝛼 > 𝜀 by taking 𝜆0 small enough (depending on 𝜀). Then, by Taylor’s theorem,

log 𝔼[𝑒𝜆(log𝑋−Ψ0(𝛼))] = log(𝔼[𝑋𝜆]𝑒−𝜆Ψ0(𝛼)) = log Γ(𝛼 + 𝜆) − log Γ(𝛼) − 𝜆Ψ0(𝛼)

= Ψ1(𝛼)
𝜆2

2
+ 𝑜(𝜆2) ⩽ 𝐾0𝜆

2,

provided 𝜆0 is taken sufficiently small depending on 𝜀. The constant 𝐾0 can be chosen to not
depend on 𝛼 ∈ [𝜀, 𝜇 − 𝜀] because Ψ1 is a smooth function on ℝ>0. □

A.6 Randomwalk estimates
Let {𝑋𝑖}𝑖∈ℤ>0 be an independent and identically distributed sequence of random variables with

𝔼[𝑋𝑖] = 𝜇, 𝕍ar[𝑋𝑖] = 1 and 𝔼[|𝑋𝑖 − 𝜇|3] = 𝑐3 < ∞.

Define 𝑆𝑘 =
∑𝑘
𝑖=1 𝑋𝑖 for 𝑘 ⩾ 1. We have the following proposition that bounds the probability that

the running maximum of a random walk is small.
Proposition A.13. There exists a positive constant 𝐶 such that for any 𝑙 > 0, we have

ℙ

(
max
1⩽𝑘⩽𝑁

𝑆𝑘 < 𝑙

)
⩽ 𝐶(𝑐3𝑙 + 𝑐23)(|𝜇| + 1∕

√
𝑁). (A.14)

This result follows directly from the following two results from [29].

Lemma A.14 [29] Lemma 5. There exists an absolute constant 𝐶 such that for any 𝑙 > 0

ℙ

(
max
1⩽𝑘⩽𝑁

𝑆𝑘 < 𝑙

)
− ℙ

(
max
1⩽𝑘⩽𝑁

𝑆𝑘 < 0

)
⩽ 𝐶(𝑐3𝑙 + 𝑐23)(|𝜇| + 1∕

√
𝑁). (A.15)

Lemma A.15 [29] Lemma 7. There exists an absolute constant 𝐶 such that

ℙ

(
max
1⩽𝑘⩽𝑁

𝑆𝑘 < 0

)
⩽ 𝐶𝑐23(|𝜇| + 1∕

√
𝑁). (A.16)
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