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ERGODICITY AND SYNCHRONIZATION OF
THE KARDAR-PARISI-ZHANG EQUATION

CHRISTOPHER JANJIGIAN, FIRAS RASSOUL-AGHA, AND TIMO SEPPALAINEN

ABSTRACT. The Kardar-Parisi-Zhang (KPZ) equation on the real line is well-known to admit Brow-
nian motion with a linear drift as a stationary distribution (modulo additive constants). We show
that these solutions are attractive, a result known as a one force-one solution (1F1S) principle
or synchronization: the solution to the KPZ equation started in the distant past from an initial
condition with a given slope will converge almost surely to a Brownian motion with that drift,
which shows in particular that these invariant measures are totally ergodic. Our proof constructs
the Busemann process for the equation, which gives the natural jointly stationary coupling of all of
these stationary solutions. Synchronization then holds simultaneously (on a single full probability
event) for all but an at most countable random set of asymptotic slopes. This set of exceptional
slopes of instability for which synchronization fails is either almost surely empty or almost surely
dense. Along the way, we prove a shape theorem which implies almost sure stochastic homogeniza-
tion of the KPZ equation, for which the Busemann process gives the process of correctors. We also
show that the forward and backward point-to-point and point-to-line continuum polymers converge
to semi-infinite continuum polymers whose transitions are Doob transforms via Busemann functions
of the transitions of the finite length polymers.
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1. INTRODUCTION
The Kardar-Parisi-Zhang (KPZ) equation
(1.1) Oth = $0yyh + 3(0yh)* + W,

driven by space-time white noise W, first appeared in the physics literature in 1986 [77] as a
prototypical model of the height interface h = h(t,y) of a growing surface in 141 dimensions. It
was motivated by the expectation that a wide class of such models should exhibit universality,
meaning that certain properly re-scaled statistics converge to model-independent limits. Over the
intervening decades, analysis of the KPZ equation and related growth models has been an important
source of new ideas in mathematics and physics. Through many examples, the expectation of
universality has been borne out, with the class now understood to encompass a wide variety of
strongly interacting systems. See the recent surveys [29, 64, 89, 91].

The analysis of how one should re-scale the solution of (1.1) to see a non-trivial limit predates
the introduction of the model, tracing back at least to Forster, Nelson, and Stephen in 1977 [48]. As
part of a broader study of randomly forced models in fluid dynamics, they undertook a dynamical
renormalization group analysis of the closely related stochastic Burger’s equation

(1.2) O = 30yyu + %6y(u2) + 0y, W.

The connection between (1.1) and (1.2) comes by ignoring the distributional nature of W and
differentiating formally to see that if i solves (1.1), then u = dyh should solve (1.2).

A basic observation in [48] is that one expects space-time white noise to be an invariant measure
for (1.2). This was proved rigorously in [15, Proposition B.2]. Correspondingly, Brownian motion
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(with drift) is invariant for the evolution of (1.1) modulo an additive constant. Viewing (1.1) as
describing the free energy of a directed polymer model, this leads to the prediction of approximate
local Brownianity. As observed in [68], in 1+1 dimensions this suggests the KPZ scaling relation
2y = & for the free energy fluctuation exponent y and the transverse path fluctuation exponent &.
Combined with the KPZ scaling relation y = 2¢—1, this leads to the prediction y = 1/3 and & = 2/3
[77]. Under this scaling models in the class are expected to converge to universal limits described
by the renormalization fixed point of the KPZ universality class. This fixed point was recently
constructed in [41, 84]. The convergence of one-point statistics of the KPZ equation started from
the narrow wedge initial condition to the predicted Tracy-Widom limit was proven over a decade
ago in [4], with process-level convergence of the KPZ equation recently shown in [90, 100].

To reach these universal limits, one typically centers and normalizes the height of the interface
with model-dependent (i.e., non-universal) terms, analogous to the mean and variance in the clas-
sical central limit theorem. The values of these non-universal quantities are predicted by the KPZ
scaling theory [81, 99] which describes the centering and scaling as functions of the spatially-ergodic
and temporally (increment-) stationary and ergodic measures of the model. These predictions un-
derscore the importance of understanding the structure of stationary and ergodic distributions of
growth models in the KPZ class in general and of the KPZ equation itself in particular. These
topics are, in a sense to be described in more detail shortly, the main focus of the present paper.

1.1. Main contributions. With the above context in mind, we briefly summarize our main con-
tributions, before informally explaining their meaning in more detail and connecting our work to
the rest of the literature.

(i) We construct the Busemann process of the KPZ equation, which provides the natural
monotone and jointly stationary coupling of all the previously-known invariant measures
modulo additive constants, given by Brownian motions plus drift. We prove that the finite
dimensional marginals (in the drift parameter) of this coupling give the unique couplings of
Brownian motions with drift that are jointly stationary and ergodic under the KPZ solution
semi-group. In particular, this resolves the conjecture that Brownian motion with drift is
an ergodic (i.e. extremal) stationary distribution for KPZ.

(i) We show that for a fixed value of the conserved quantity A (asymptotic spatial slope at
+00), synchronization by noise and a one force—one solution principle (1F1S) hold almost
surely among all initial conditions with appropriate asymptotic slopes, with the pullback
attractors provided by the Busemann process. We strengthen this to a quenched 1F1S
principle that considers all A simultaneously in a typical realization of the driving white
noise. In this setting we establish that synchronization and 1F1S hold for all values A at
which the Busemann process is continuous. We show that at the exceptional discontinuity
values A, there are at least two pullback attractors. This random set of exceptional values is
either empty or a countable dense subset of R. As far as we are aware, this marks the first
time that such a 1F1S principle has been proven for a stochastic Hamilton-Jacobi equation
in a fully continuous and non-compact setting with rough forcing.

(iii) We prove an almost sure locally uniform free energy density limit, known as a shape theorem.
Almost sure stochastic homogenization of the KPZ equation follows as a corollary, with
effective Hamiltonian H(p) = —1/24 + p?/2. The (centered) Busemann process furnishes
the associated stochastic process of correctors.

(iv) We show that for any ergodic stationary distribution P for the KPZ equation modulo
additive constants, there exists A > 0 so that P is the distribution of Brownian motion with
drift A or else P is supported on equivalence classes of continuous functions such that

(1.3) lim @) =-A and lim J@) = A\

T—>—00 =0 T
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This implies a prediction implicit in the KPZ scaling theory [81] (and more explicit in [99])
that all spatially translation invariant and time ergodic stationary distributions of the KPZ
equation are Brownian motions with drift. It has also been conjectured that these are the
only ergodic stationary distributions of the KPZ equation; see, for example, [49, Remark
1.1]. Settling this conjecture is now reduced to resolving the existence of an exceptional
measure supported by functions of the type in (1.3). This is Open Problem 1 in Section 4.

1.2. Ergodicity, one force—one solution, and pullback attraction. Shortly after the early
breakthroughs on the KPZ class in the physics literature, a group around Ya. Sinai started a
program on the ergodic theory of the forced Burgers equation and related stochastic Hamilton-
Jacobi equations, beginning with the seminal work [97]. That initial paper proved existence and
uniqueness of stationary solutions to the (viscous) stochastic Burgers equation (1.2), where the
forcing 0, W is replaced by a term which is either a regular and periodic function of space and time
or else periodic and regular in space and white in time. It showed that solutions to the equations
started from different initial conditions can be coupled to a process defined for all time which at
each time level has marginal given by the stationary distribution in such a way that this process
serves as a pullback attractor in the sense of Definition 9.3.1 in [5]. The existence of a unique
globally defined stochastic process which is measurable with respect to the history of the noise is
commonly known as a one force—one solution (1F1S) principle (see, e.g., the introduction of [44]).
Some authors (e.g., [10]) include the pullback attractor property mentioned above as part of the
definition.

There have been two main technical obstacles that require significant effort to overcome in the
study of the ergodic theory, 1F1S principles, and pullback attraction in models of this type: working
on non-compact spaces and working with rough noise. Both of these issues are present in our setting.
After [97], many subsequent works, e.g., [6, 9, 42-44, 53, 65, 78, 98], proved similar results for other
viscous and inviscid Hamilton-Jacobi equations, including higher-dimensional ones, in compact or
essentially compact settings and with noise more regular than what we consider.

The first paper to prove 1F1S in a genuinely non-compact setting was [8], which studied the
inviscid Burgers equation with a space-time Poissonian forcing. Several subsequent works [7, 11, 43]
considered viscous and inviscid models in non-compact settings with what is known as kick forcing,
i.e., forcing that has a product form and is Dirac at certain special (typically integer) times. Kick
forcing makes the model essentially semi-discrete, because the evolution between these pre-specified
times is deterministic. In a similar sense, the Poissonian forcing in [8] essentially pushes the model
onto a (random) lattice. In both of these cases, the induced discrete structure brings access to the
many tools developed for lattice and semi-discrete growth models.

Thanks in large part to recent advances in defining solutions to stochastic partial differential
equations forced by rough noise, a handful of recent papers have made progress on models with
rough forcing similar to the one we consider. Notably, [62] proved ergodicity of the Brownian bridge
measure and [93] proved a 1F1S principle for (1.1) on the torus. Recently, [79] proved ergodicity of
the open KPZ equation using the general results of [62]. Ergodicity of a certain martingale problem
formulation of (1.2) on the line was also recently shown in [59], without considering the 1F1S or
attractiveness questions.

One particularly fruitful approach to proving 1F1S principles in some previous works, including
[7, 8, 11], follows the program pioneered by Newman and collaborators [66, 67, 82, 87] in the
context of first-passage percolation, where straightness estimates for geodesics lead to directedness
and coalescence, which essentially leads directly to the 1F1S principle. This same method was also
applied to other 1 + 1 dimensional percolation models [24-26, 47, 102].

1.3. Busemann process. We follow another method, also originally developed in the percolation
and polymer literature [39, 51, 52, 71, 73]. As far as we know, this approach is the first to prove a
1F1S principle in a fully continuous non-compact Hamilton-Jacobi equation like (1.1) with rough
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forcing. Our method centers on (analogues of) quantities known as Busemann functions, which
were originally introduced in the metric geometry literature by Busemann [23].

To describe the broad outlines of the argument, we begin with the observation that if h satisfies
(1.1), then the asymptotic slopes at o0 and —oo,

t
(1.4) lim hit,z) =F and lim

T—00 T T—>—00 T

are conserved by the dynamics of the equation. This is proven to hold for (1.1) in the companion
paper [1] and the existence of such asymptotic conserved quantities is typical for models of this
type. Because of the existence of these conserved quantities, it is natural to expect that for each
value of A = ® = k, there exists a unique stationary distribution with this asymptotic slope. In
the case of the KPZ equation (1.1), this corresponds to the natural prediction that the stationary
distributions modulo additive constants consist precisely of Brownian motions with linear drift; see
also [49, Remark 1.1]. The conjecture that this one-parameter family completely describes spatially
translation invariant stationary measures is one prediction implicit in the KPZ scaling theory, see
[99] and the arguments in [81].
An analogue of a Busemann function in this setting is given by the limit

(1.5) (s,2,t,y) = lim (he(t,y) = he(s,2)),

where h, solves (1.1) on [r,00) x R from the time-r initial condition

(1.6) hy(r,z) = f(2) such that |1|im f2) =\
z|—o 2

That is, the analogues of Busemann functions correspond precisely to the pullback attractors dis-
cussed above. We refer the reader to [73] for some discussion of the analogy to Busemann functions
on the lattice in the setting of directed last-passage percolation, as well as some discussion of the
connection to inviscid Hamilton-Jacobi equations.

Our proof of the limits (1.5) comes via a coupling constructed from the known [15, 49] invariant
measures given by Brownian motion with linear drift. The correct coupling arises as a weak limit
point of Cesaro averages of the joint distribution of stationary solutions to (1.1) coupled to the
environment. This produces a field of candidate Busemann functions on an extended space. These
candidates are then shown to satisfy the limits (1.5) for a countable dense set of values of A, utilizing
the stochastic monotonicity of the associated semi-infinite polymer measures.

A consequence of our proof of 1F1S and attractiveness is a confirmation of the conjecture that
the only ergodic and spatially translation-invariant stationary distributions (modulo constants) for
the KPZ equation are Brownian motions with linear drift. In particular we verify the ergodicity of
these distributions under the KPZ evolution. Our results leave open the possibility of the existence
of only one exceptional class of ergodic measures. These are measures supported on functions for
which % € (0,00) and kK = —F in (1.4). See Open Problem 1.

Most of the previously mentioned works which study the 1F1S principle prove the existence
of analogues of the limit in (1.5) on an event of full probability which depends on the value of
M. Because there are uncountably many such values, this leaves open the existence of excep-
tional values of the conserved quantity for which the 1F1S principle fails. A central observation
in [71, 73] (in the viscous and inviscid cases on the lattice, respectively) is that questions of this
type are encoded into continuity properties of the Busemann process. This is the function-valued
stochastic process obtained by extending the family (b*(s,z,t,) : s,2,t,y € R), initially defined by
(1.5) for a countable dense set of A, to left- or right-continuous processes of continuous functions
(WE(s,z,t,y) : s,z,t,y € R) indexed by A € R. We construct this process and show that 1F1S
holds simultaneously for all values of A for which b** = b*~. We also show that in an appropriate
sense, the 1F1S principle fails off of this set if the complement is non-empty.
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Monotonicity of the Busemann process implies that the discontinuity set of A for which b** % b~
is at most countable. Consequently, the 1F1S principle holds simultaneously for all but at most
countably many values of the conserved quantity A\. We show later that if this set of exceptional
values of A for which the Busemann process is discontinuous is non-empty, then it is dense. We
leave the question of whether or not this set is non-empty to future work. We do, however, note that
a striking feature of all previously studied models in the KPZ class for which exact computation is
possible [12, 22, 46, 95], including both the lattice log-gamma polymer and the KPZ fixed point, is
that the analogue of the Busemann process has in each case exhibited discontinuities. This implies
that in those other settings, the 1F1S principle fails for a random, dense set of slopes.

1.4. Solving the KPZ equation and our coupling. Direct well-posedness of an appropriately
renormalized version of (1.1) was shown only recently, first on the torus [55, 56, 60, 61] and then on
the line [88]. For the case of (1.2) on the torus, see [56, 58]. For existence of solutions to (1.2) on
the line see [14]. Uniqueness of stationary energy solutions of (1.2), as defined by [54], was shown
by [57].

While these methods define what it means to solve (1.1) or (1.2), the physically relevant notion
of a solution to (1.1) or (1.2) has been known for over thirty years and is given by what is called
the Hopf-Cole solution. This solution to (1.1) is defined by starting with the well-posed stochastic
heat equation (SHE) with multiplicative white noise forcing,

(1.7) Oz = 10y, 7 + ZW,

and then defining h(t,y) = log Z(t,y) and u(t,y) = 0ylog Z(t,y). These definitions agree with
formal computations which ignore the distributional structure of W.

The Hopf-Cole solution arises as a limit of lattice and continuum models which lie in the KPZ
class [3, 15, 63] and is the standard notion of solution to (1.1) in both the physics and mathematics
literature. See the surveys [29, 30, 64, 89, 91], the references therein, the discussion in the intro-
duction of [60], and indeed [77, equation (2)]. For agreement of some of the direct definitions of
solutions to (1.1) with the Hopf-Cole solution under certain hypotheses, see [88, Theorem 3.19],
[60, Theorem 1.1] (on the torus), and [57, Theorem 2.10] (up to a non-random additive term).

The Hopf-Cole transformation connecting (1.1) and (1.7) is central to our work. While it may
be possible to generalize some aspects of our method to settings which do not connect to a linear
equation like (1.7), the full strength of our results uses the linearity of (1.7) in an essential way.
This comes through a coupling based on the superposition principle. We can simultaneously study
all solutions to (1.7) started from all initial conditions and all initial times and to prove that
the resulting process satisfies strong continuity properties. The details of this part are in the
companion paper [1] that constructs and analyses the Green’s function of (1.7). Some aspects of
this construction previously appeared in [2, 3]. This coupling lies behind the uniformity of our
results, which essentially all hold on a single event of full probability, simultaneously for all choices
of all parameters of the model.

The coupling of solutions to (1.7) in [1] also allows us to construct a coupling of the full field
of continuum directed polymer measures. These are the finite length polymer measures for which
(1.7) describes the evolution of the partition function and (1.1) describes the evolution of the
free energy. As will be seen in the sequel, there is essentially an equivalence between stationary
distributions (modulo constants) to (1.1), Busemann functions, and semi-infinite length polymer
measures. Semi-infinite length polymer measures are probability measures on semi-infinite paths,
with distinguished start or end times, that are consistent with the finite-length polymer measures
in the sense of Gibbs conditioning.

The equivalence between stationary distributions and Busemann functions more properly holds
for generalized Busemann functions, which need not arise as limits. Such objects are typically known
as either correctors, by analogy with the corresponding objects in stochastic homogenization, or
else as covariant recovering cocycles. See the discussion in [71, 72]. In the present paper, stationary
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distributions modulo constants for (1.1) are understood through their equivalence to ratio stationary
solutions to (1.7), which are easier to work with in our analysis. See the discussion in Section 3.4.
In various guises, these equivalences between these different objects lie behind many of the existing
approaches to studying the 1F1S principle for models of this type, including the approach tracing
back to Newman’s method, where semi-infinite geodesics or characteristics play the role of infinite
length polymer measures.

Returning back to (1.1), we make one note about the scaling properties of the KPZ equation. In
principle, one could consider the more general class of models

Oth = %ayyh + 5(0yh)* + BW,

where v > 0 and X, 8 # 0 are free parameters. Our choice to restrict attention to the case where
A =v = [ =1 is justified by the scaling relations of the KPZ equation, which we record in the
following remark. The following computations are purely formal, but are nevertheless correct.

Remark 1.1. Given a strictly positive v and nonzero A and f, let h solve (1.1) and call
h(t,y) = hupp(t,y) = vAT RPN B N2 B%).

Then £ solves
Oth = %0yyh + 5(0yh)? + BW,

where I/IN/(t, y) = vINT3BT3W (b3 34, 132 3%y) is a new space-time white noise.
Because of this scaling property, it is without loss of generality to restrict attention to (1.1).

1.5. Integrable inputs and the shape theorem. Our general approach applies to non-solvable
models. We do, however, use inputs from integrable probability at one particular stage of our
argument. This occurs in our proof of a locally uniform version of the free energy density limit
(Lemma 6.1), which is known as a shape theorem in the the percolation and polymer literature.
It was shown in [4] that if A is started from the “narrow-wedge” initial condition at the time-space
point (0,0), then, in probability,
h(t, ty) 1y

(18) A TR

There have been significant refinements of this result since then, which we do not survey. Our
methods require a locally uniform almost sure extension of this limit, so we show the following
almost surely for all C' > 0:

t _
(1.9) lim n~! sup h(t,y|s,x) + 78 —logp(t—s,y—x)| =0,
n—90 (s,x,t,y)eR%:
s,z,t,y€[—Cn,Cn]

where p(t,y) is the heat kernel,

2

1 y
e 21 t),
o (0700)( )

(1.10) p(t,y) =

h(t,y|s,x) denotes the Hopf-Cole solution to KPZ (1.1) started from the “narrow-wedge” initial
condition at (s,z) and RY = {(s,z,t,y) € R* : s < t}. The coupling of solutions which makes this
statement possible is the one developed in the companion paper [1]. The quantity on the right-hand
side of the limit in (1.8) often goes by the name of (quenched) Lyapunov exponent or (limiting) free
energy density. Once the existence of the limit is proved, applying shear transformations to the KPZ
equation (1.1) implies that the form of the right-hand side is ag — y2/2 for some ag € R. Knowing
this, without the explicit value ay = —1/24, is in fact more than sufficient for the arguments in this
paper where we apply (1.9) and its consequences. See Remark 6.4.
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We know of no method of computing the precise value —1/24 on the right-hand side of (1.8)
without integrable probability inputs. To prove (1.9), we use strong tail estimates from [31-33].
In all lattice and semi-discrete models we are aware of, integrability is not needed for the shape
theorem to hold (with a potentially unknown centering). It may be possible to develop a purely
stochastic analytic method of proving (1.9) with the sharp —1/24 term replaced by an unknown
constant. As noted above, such arguments exist on the lattice under extremely mild assumptions.
See, for example, [69].

1.6. Stochastic homogenization. If U is a bounded and uniformly continuous function and
e >0, call u.(t,z) = —ch(t/e,z/c), where h solves (1.1) with h(0,z) = —e~'U(ez). Then u. solves
the viscous Hamilton-Jacobi equation

Opue(t, x) — 50zzuc(t, ) + H(t/e,x/e, Ozu:) = 0, ue(0,2) = U(x),

with Hamiltonian H (¢, z,p) = % +W (t,z). As a consequence of (1.9), almost surely simultaneously
for all U and u, as above, u. converges locally uniformly as € — 0 to the viscosity solution of the
effective Hamilton-Jacobi equation

o+ H(0,u) = 0, u(0,2) = U(x)

with effective Hamiltonian H(p) = %2 — ;. This is stochastic homogenization in the sense of

[74, 80]. The Busemann process furnishes the associated stochastic process of correctors, with

P 1
t,z) = —b"P(0,0,t,2) — <— - —)t
v(t, x) ( x) —px + 7~ 24
solving the corresponding corrector equation (with velocity p),
1 1 p? 1
(9151) — 58;5;5'[) + §(p+ amv)2 + W = 7 — ﬂ

See Remark 3.14 for an informal derivation of this equation following the treatment in [83].

1.7. Notation and conventions. The integers are Z, Z; = {0,1,2, ...}, N = {1,2,...}, the real
numbers in d dimensions are R%, the rational numbers are Q%. R_ = (—0,0] and Ry = [0, 0).
D denotes an arbitrary fixed countable dense subset of R. |A| is the cardinality of a finite set
A. Directed time-space domains in R? are denoted by Rf = {(s,z,t,y) € R* : s < t} and @f =
{(s,x,t,y) e R*: s < t}.

When X and Y are metrizable spaces, C(X,Y") denotes the space of continuous functions from
X to Y. We equip C(X,Y) with the topology of uniform convergence on compact sets and with
the corresponding Borel o-algebra.

B(X) is the Borel o-algebra of the metrizable space X. M;(X) is the space of Borel probability
measures on X, equipped with the topology of weak convergence. Given a signed Borel measure
won X, the total variation measure |u| is given by the sum of the positive and negative parts of
the Jordan-Hahn decomposition of p (see Definition 3.1.4 in [17]). The total variation distance
between signed Borel measures p and v on X is |p —v|rv = | — v|(X). In general, (1/2)|u]|Tv <
supy |u(A)| < [plrv.

M (R) is the space of non-negative measures on the real line, which we equip with the vague
topology (i.e., the test functions are compactly supported and continuous).

Paths are denoted by x,.; = {zs : 7 < s < t}, x_or = {25 : s < t}, and similarly for z,.o
and T_g.00. For t < s < s’ <t in [—o0,0], let G,.¢ be the o-algebra on C([t,t'],R) generated by
Xs.o = {X, : s <r < '}, where X is the coordinate random variable.
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Given s < t, a function F : C([s,t],R) — R is nondecreasing if F(Xs:) < F(Ys:) whenever
X, <Y, for all r € [s,t]. Given two probability measures )1 and Q2 on C([s,t],R), @Q; is stochas-
tically dominated by @2, abbreviated Q < Qo, if E?'[F] < E?2[F] for all bounded measurable
nondecreasing functions F': C([s,t],R) — R.

{B(x) : x € R} denotes two-sided standard Brownian motion with B(0) = 0. If A is an index set
and F' and G are A-indexed stochastic processes on a complete probability space (2, F,P), then F
and G are modifications of one another if P{F () = G(«)} = 1 for each o € A, and indistinguishable
if P{Vae A: F(a) = G(a)} = 1.

If F and G are o-algebras, F v G = o(F,G) is the smallest o algebra containing F and G.

Physical solutions to the KPZ equation (1.1) and the SHE (1.7) are defined via superposition
through (2.6) and (2.19).

2. SOLUTIONS OF SHE aAND KPZ

We turn to the discussion of our setting and coupling and then summarize some results from the
companion paper [1].

2.1. Probability space. We work on a complete Polish probability space (€2, F,P) that supports a
space-time white noise W on L? (R2) and a group of continuous measure-preserving automorphisms
described momentarily. A white noise W is a mean zero Gaussian process indexed by f € L?(R?)
that satisfies

P{W(af +bg) =aW(f)+ bW(g)} =1 and E[W(f)W(g9)] = - f(t,x)g(t,x)dtdx

for a,be R and f,g e L?(R?).

Denote by 91 the o-algebra generated by the P-null events in F. For —0 < a < b < o0, let
L, denote the B([a,b] x R) measurable functions in L?(R?). Let ]:Eé’o =o(W(f): feLlss) v N
be the o-algebra generated by the white noise restricted to time interval [s,¢] and M. For s < ¢,
FV = F ?ﬁ?t v = Nacs<tas F Z[:/I;O is the augmented filtration of the white noise. Abbreviate F"V =
FW oo = c(W(f) : fe L2(R?)) v .

On the plane, the shift maps T ,, the shear S, , by a relative to time s, time and space reflection
maps Ry and Ro, rescaled dilation maps D, x, and the negation map N act on f € L? (RQ) as follows:

Tsy f(t,x) = f(t+s,2+y) for s,yek;

Ssa f(t,x) = f(t,x +a(t—s)) for s,aeR;
(2.1) Ri f(t,z) = f(—t,z) and  Rof(t,z) = f(t,—2);
aAf(, ):\/af(at,)\x) for a, A >0;
Nf(t z) = —f(t ).

Their inverses are T, = T_; _,, R;" = Ri,R;" = Ra, S;4 = Sy —a, D\ = Dy-1,-1, and
N~!=N.
We assume that (€2, F,P) is equipped with a group (under composition) of continuous measure-

preserving automorphisms generated by translations {75, : s,y € R}, shears {S;, : s,a € R},
reflections Ry and R, dilations {D, ) : a, A > 0}, and negation N, that act on W by

Wo Tsy(f) W(T_s, yf) WoSsa(f)=W(Ss—af),
(2.2) WoRi(f)=W(Rif), WoRs(f) =W(Rsf),
W oD (f) = W(Dg-1x-1 ), WoN(f)=W(N).

We require that this group of automorphisms also be measure-preserving for (2, F w P) (in partic-
ular, the automorphisms preserve F'') and that (i) if (s,y) # (0,0) then T,y is strongly mixing on
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(Q, FW,P), and (ii) if a # 0, then Ss,q is strongly mixing on (£2, FW.P). A concrete example of a
space that satisfies all of these requirements is described in Appendix A. In that setting, FV = F.

The setting described above places us into the framework of the companion paper [1], where the
construction of our coupling of solutions to the SHE (1.7) appears. We next discuss this coupling
and summarize some of the key results from that work and their connection to the rest of the
literature. We refer the reader to [1] for the proofs and a more in-depth discussion.

2.2. Solving SHE. Let M (R) denote the space of locally finite positive Borel measures on R
endowed with the vague topology. It is shown in Theorem 2.6 of [1] that the state space on which
(1.7) admits non-explosive, non-negative, and not identically zero solutions is the subspace

(2.3) MHE—{feM+(R):O<f(R)<ooandVa>O:f
R

The zero measure is excluded to avoid accounting for trivialities in our results and, in any case, the
physical solution from a zero initial condition is identically zero.

e’ f(dx) < oo}.

Remark 2.1. Myg contains each point mass d, for x € R. Moreover, Myg contains all measures of
the form f(z)dx for Borel functions f : R — (0,00) for which there exist C' = 0 and a < 2 such
that f(z) < CeCl7l” for all z € R. In particular, by the law of the iterated logarithm, almost every
sample path of geometric Brownian motion lies in Myg.

For a fixed initial time s € R and a fixed (i.e. non-random) initial condition f € Myg, [27, 28]
showed the existence and uniqueness of a continuous and {F,}-adapted solution to the Duhamel
formulation of (1.7),

(24) Z(t,y) = pr(t,y —z2) f(dz) +f JR p(t —r,y—2)Z(r,2) W(dzdr), yeR, te(s,0).

Asin (1.10), p denotes the heat kernel. A fixed point of the mapping in (2.4) satisfying appropriate
measurability and moment conditions is known as a mild solution of the SHE. Previously, [13, 15]
proved the existence and uniqueness of a continuous adapted mild solution for certain random
initial conditions taking values in a subspace of My. Most importantly, the Hopf-Cole solution
of KPZ (1.1), which arises by taking logs of the mild formulation of SHE (1.7), is the physically
relevant solution for fixed initial conditions and fixed initial times.

As discussed in the introduction, our results require a coupling that (i) couples the solutions of
the SHE from all initial times and all initial conditions simultaneously, (ii) agrees with the physically
relevant mild solution for each given initial time and deterministic or random initial condition, and
(iii) satisfies pathwise continuity properties as a function of its arguments, including the measure-
valued initial condition. The mild formulation is not obviously well-suited to such a coupling,
because the fixed point problem in (2.4) is usually formulated to prove almost sure existence and
uniqueness for a fixed initial time and initial condition. Because there are uncountably many initial
times and initial conditions, one needs to prove that it is possible to glue these together consistently.
The main idea we use to build the coupling is to construct the Green’s function Z(¢,y|s,x) of the
equation, which solves

1
atZ(t7y|Sv$) = §ayyz(tay|37$) + Z(t,y|s,x)W(t,y),

Z(Svy|87$) = 5m(y)

for all (s, z,t,y) € R and then define solutions to (1.7) from general initial conditions f € M (R)
via the superposition principle:

(2.5)

0

(2.6) Ztyls. f) = f Z(tyls,x) f(dz) and  Z(s,dy|s, ) = f(dy).

—00
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When the measure in (2.6) is given by f(z)dx we write

e}

(27) Z(t,y|s,f)=j Z(t,y|8,$)f(l‘)d$ and Z(87y|87f):f(y)'
—00

It will always be clear from context whether f is a measure or a function.

The initial value problem (2.5) is first treated through its mild formulation for dyadic rational
s,z € R. The resulting solutions are then glued together to define the field Z(t,y|s,z). A similar
construction of the Green’s function, without most of the estimates we need for the present work,
appeared previously in [2, 3]. Our starting point is stated in the next theorem. It is a corollary of
Theorem 2.2 and Lemma A.5 of [1].

Theorem 2.2. There exists a process Z = {Z(t,y|s,x) : (s,z,t,y) € R?} taking values in C(R?,R)
with Z(t,+|s,+) FY.-measurable which satisfies the following: for each f € Myy and s € R, the
function Z(,+) = Z(+,+|s, f) defined through (2.6) is indistinguishable from the solution to (2.4)
constructed in [27, 28].

We continue to discuss the properties of the field Z(t,y|s, f) informally, with references to precise
statements in [1].

The automorphisms in (2.2) act on the Green’s function via the following identities, which are
contained in Proposition 2.3 of [1] and which hold for fixed a,r,z € R and all (s,y,t,x) € R?
simultaneously on an event of full probability that depends only on a,r, and z:

(2.8) Zt+ry+zls+re+z)oT,_.=Z(tyls x)

(2.9) Z(—=s,z| —t,y) o Ry = Z(t,y|s,x) and Z(t,—y|s,—x) o Re = Z(t,y|s,x)
a,2

(2.10) WS 7ty +a(t —r)|s,z + a(s — 1)) 0 Sp_a = Z(t,yls, x)

Because P is invariant under the automorphisms in (2.2), these identities induce distributional
symmetries. In particular, at the level of Z, the invariance under shear transformations in (2.10)
implies that y — Z(t,y|s,z) and = — Z(t,y|s, x) are stationary processes. See Corollary 2.4 in [1]
or Proposition 1.4 in [4].

The field Z satisfies a self-consistency which is essentially the Chapman-Kolmogorov identity for
the continuum directed polymer, which will be introduced in Section 9: for all s < r < ¢, and all
z,y € R,

e}
(2.11) Z(t,y|r,x) = j Z(t,y|s,2)Z (s, z|r,x)dz.

—00
See Lemma 3.12 in [1] or Theorem 3.1(vii) in [2]. Tonelli’s theorem then implies that for all
s<r<t,aly,and all fe M, (R),

o0

(212) Ztln ) = [ 2(tsls. ) 2o 21r ) dz

—0
This identity is recorded as Theorem 2.6(v) in [1]. (2.12) is the cocycle property for the solution
semi-group to (1.7) defined by superposition: for all s <r < t, all y € R, and all f € M, (R),

(2.13) Z(t,y|7‘,f):Z(t,y‘s,Z(s,-H,f)).

By way of analogy with the ordinary heat equation, where the heat semi-group defines physical
solutions, and for reasons we elaborate more on in the context of the KPZ equation below, we call
(2.6) the physical solution of the stochastic heat equation.

A key observation in [1] is contained the following remark, which motivates most of the properties
of this solution semi-group which we discuss in the sequel.
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Remark 2.3. The singularity in the solution to (2.5) as t \ s is fully captured by the heat kernel
in the following precise sense. Define the process

Z(tyls,x)

(2.14) Z(t,y‘s,x) _ {f(ts’yx) if t > s and

if t =s.

Then with P-probability one, Z is continuous and everywhere strictly positive on @f = {(s,x,t,y) €
R* : s < t}. Moreover, it is locally Hélder 1/2— in (x,%) and 1/4— in (s,t) on R?‘ = {(s,z,t,y) €
R* : s < t}. Moreover, for each T' > 0, there exists C = C(w,T) > 0 such that

CHA+ |z* + ) < Z(t,yls, ) < CA + |2/ + |y]*).

These claims follow from Theorem 2.2 and Corollary 3.10 in [I]. The Hélder estimates in that
paper become suboptimal near the boundary where ¢ = s, which is why we do not discuss precise

regularity on R?.

In words, the above remark says that Z(t,y|s,z) = Z(t,y|s,z)p(t — s,z — y) is, uniformly
on compact sets in time and uniformly in all of space, just the heat kernel up to a small (sub-
polynomial growth and decay), rough, multiplicative perturbation. It therefore inherits many
regularity properties as a solution semi-group from the heat semi-group.

It is immediate from everywhere strict positivity of Z(¢,y|s,x) and (2.6) that for all non-zero
feMi(R),all s <t,and all y € R,

(2.15) Z(t,yls, f) € (0, 0]

In Theorem 2.6 of [1], it is shown that the space My in (2.3) is a natural domain for (1.7) in
the sense solutions which start in My are well-behaved and remain in My for all time: for all
feMyg, s<t,and all y in R,

(2.16) Z(t,yls,f) e (0,00) and Z(t,x|s, f)dr € Myg.

Theorem 2.6 in [1] shows that if f € My, then the function (s,y,t) — Z(t,y|s, f) is continuous
on {(s,y,t) € R3 : s < t}. It is shown in Appendix D of [1] that the space of strictly positive
continuous density functions of measures in Myg,

(2.17) Cow = {f e C(R, (0,0)) : Va > o,f

e*“xzf(a;)dx < oo},
R

admits a Polish topology, where the convergence is characterized by uniform convergence of f on
compact sets, as well as convergence of the integrals in the definition. Theorem 2.9 in [1] shows that
with this topology on Cyg, the map (f, s,t) — Z(t,|s, f) € Cyg is continuous on {(s,t) : s < t} XCyg.
In particular, this solution semi-group induces a Feller process on Cyp. See Remark 2.12 in [1].

Conversely, Theorem 2.6 of [1] shows that My is sharp as a domain for (1.7) in the sense that
all other non-zero initial conditions are explosive: if f € M (R)\ My, then

(2.18) < sup{a >0: fe_axz f(dz) = oo} implies Z(t,y|s, f) = 0 VyeR.

2(t —s)

To summarize these observations: My is preserved by the dynamics of (1.7), all initial conditions
in Myg become strictly positive and jointly continuous instantaneously and remain so for all time.
All other non-zero initial conditions explode in finite time.
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2.3. Physical solutions of KPZ. At the level of the KPZ equation (1.1) started from an initial
condition f at initial time s, the Hopf-Cole transformation, combined with the previous observa-
tions, provides a coupling of all solutions which are started from a measurable function via the
identification for t = s, x,y € R, and f Borel measurable,

(2.19) h(t,y|s, f) =log Z(t,y|s,e’) = logf Z(t,y|s,x)ef(m)dx.
R
This coupling shows that the non-explosive initial conditions f for KPZ are precisely those satisfying

j el @=a® 10 o for all a > 0.
R

By Theorem 2.6 in [1], any such initial condition becomes instantaneously continuous.
Calling

Cxpz = {f € C(R,R) : J ef(w)iaﬁdﬂj < oo for all @ > 0},
R

one can check that Cxpy is Polish in the topology in which convergence is characterized by uniform
convergence on compact sets combined with convergence of all integrals of the form SR ef (@)—az? dx,
for a > 0. Indeed, this is just the topology on Cxpz induced by insisting that the bijection f +— log f
define a homeomorphism between Cyg and Cyxpy.

It is shown in Corollary 2.10 of [1] that the map (f, s,t) — h(t,-|s, f) € Cxpyz is jointly continuous
on Cxpy x{(s,t) : s < t} and satisfies h(t,-|t, f) = f(+) for all t € R. As a consequence, the solution
map defined in (2.19) induces a Feller process on the Polish space Cxp;. See Remark 2.12 in [1].

As mentioned above, the expression in (2.6) is indistinguishable from the physically relevant mild
solution to (1.7) under the most general assumptions for which uniqueness of the mild solutions
to (1.7) have been proven in the literature. This includes non-random initial conditions in Cyg.
Because of this observation, the fact that the Hopf-Cole transformation of a mild solution defines
the physically relevant solution to (1.1) for a fixed initial condition, and the just-observed continuity,
we will call the expression in (2.19) the physical solution to (1.1). To justify this, note that by
separability of Cxpy, this field is the unique (up to indistinguishability) jointly continuous extension
of the classical Hopf-Cole solutions, as can be seen by starting the field at rational times from
non-random functions coming from a countable dense subset of Cxpy.

The above continuity also shows that (2.19) defines a Feller process on the Polish space

CKPZ = CKPZ/~7

where ~ is the equivalence relation on Cyp, defined by f ~ g if f(z) = g(x) + ¢ for some ¢ € R and
all x € R. This process is the one which admits stationary distributions given by Brownian motion
with drift and it is on this space that we study questions of ergodicity. We discuss Feller continuity
and ergodicity in detail at the level of solutions to (1.7) in Section 8.

As is often the case in models of this type in non-compact settings, questions concerning er-
godicity of stationary distributions are complicated by the presence of a conservation law in the
dynamics of (1.1). It is shown in Proposition 2.13 of [1] that if k,% € R and f is a locally bounded
Borel-measurable function such that

(2.20) lim @) =R and lim @) =K,
T T r—>—0 T
then for all s < ¢,
h(t h(t
(2.21) lim hit,zls, f) =r and lim hit,zls, f) = K.
T—00 x Z—>—00 x

As noted previously, it has been known since [15] that there is a one-parameter family of increment-
stationary distributions modulo constants, i.e., on Ckpy (see Section 3.4) for (1.1), understood
through the Hopf-Cole transform of the mild formulation of the SHE in (2.4), given by Brownian
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motion with drift A. It is natural to suspect that these form attractors for (1.1) started from initial
conditions satisfying (2.20) if, for example, Kk = & = \.

2.4. Continuum directed polymer. The Feynman-Kac interpretation of solution of the SHE
(1.7) is as the partition function of the continuum directed polymer measure with a boundary
condition given by the initial condition f and a Dirac mass as a terminal condition. Because the
SHE dynamics proceeds forward in time, this Feynman-Kac interpretation is as a backward Markov
chain. Concretely, the continuum directed polymer measures are defined as follows: For r < ¢ in
R and f € Myg, the backward continuum point-to-line polymer that starts at (¢,7) € R? and
terminates at time r with terminal condition f is the time-inhomogeneous Markov process with
initial position (¢,y) and the following transition probability density from time s’ to time s:

Z(s' W' s,w)Z(s,wl|r, f)
Z(s",w'|r, f)
— Z(s', w'|s, w) SR Z(s,w|r, 2) f(dz)’ for s’ > s >r and w,w € R.
SR Z(s,w'|r, 2) f(dz)

We denote the path distribution of this process on the space of continuous functions C([s,t],R),
equipped with its Borel g-algebra, by Q(; ), r)- Many of our arguments involve analysis of these
measures and their infinite-volume counterparts, which we introduce and study in Section 9.

These measures were originally introduced in [2]. The construction in that paper builds the
measures for fixed initial and terminal conditions on an event of full probability that depends on
those conditions. Theorem 2.14 of [1] uses the coupling of solutions to (1.7) discussed in Section
2.2 to couple all these measures together on a single event of full probability. [1] also proves many
basic properties of the measures, including that sample paths under these measures are all almost
surely Holder 1/2— continuous.

The point-to-point quenched polymer is the special case Qi) (re) = Qt,y),(r6.)- Lhis is the
distribution of a path between the time-space points (¢,y) and (r, ) whose Markovian transition
probability density from (s, w’) to (s,w) is

Z(s' W' s,w)Z (s, w|r,x)
Z(s',w'|r, x) ’

ﬂr,f(s,w\s’,w/) =
(2.22)

(2.23) (s, w|s, w') = s >s>rand w,w €R.

3. MAIN RESULTS

We turn to the statements of the main results, with the proofs coming in the subsequent sections.

3.1. Busemann process. The main tool of this paper for studying the solutions of the SHE (1.7)
and the KPZ equation (1.1) is the Busemann process. This is the jointly stationary monotone
coupling of the spatially homogeneous stationary distributions of the KPZ equation that arises
naturally from the dynamics itself. This process is real-valued and parameterized by two time-
space pairs, slopes A € R, and signs +. The first theorem gives the existence and basic properties
of the Busemann process.

Theorem 3.1. There exists a stochastic process {b)"j(s, x,t,y): s,z t,y, \e R, O e {—, +}} defined
on the probability space (0, F,P) and satisfying the following properties.

(a) The process {b*°(s,z,t,y) : s,x,t,y, A € R, 0 € {—,+}} is a measurable function of the
Green’s function Z(«,+

..
(b) For any T € R, {b*°(s,z,t,y) : 0 € {—, +},2,y, A € R,s,t < T} is FV, . p-measurable and
hence independent of FW... .

(c) For each X\ € R, P{b*~(s,x,t,y) = W’ (s,z,t,y) Vs, x,t,y} = 1.
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(d) For each t,\ € R and 0 € {—,+}, the process {b*2(t,x,t,y) : z,y € R} has the same
distribution under P as B(y) — B(x) + Ay — ), where B is a two-sided standard Brownian
motion.

There exists an event Qqy such that P(Qy) = 1 and the following hold for all w € Q.
(e) For each Ae R and 0 € {—, +}, ¥’ € C(RY,R).
(f) For allx <y, t, and p < X,
Pt w, b y) < V(e ty) < OV (6 et y) < DY
V' (ty, tx) = 0y, t ) = 0 (4t o)

<0V (t,x,t,y) and
(3.1) \
> b (t,y,t, @)
g) For all r,z,s,y,t,2,\ and all O € {—, +}

(3 2 bAD(T7 x? 87 y) + bAD(87 y? t? Z) = b)\D<T7 x? t? Z)'

(
2)
(h) For all s,x,t,y,\ and all O € {—, +}
(3.3) W (s, z,t,y) = gl/n& WO (s, x,t,y) and b (s, x,t,y) = ling\ (s, x,t,y).

N\

(i) For allt>r, all s,z,y,\, and all O € {—,+}

0
(3.4) eb’\D(S,w,tvy) — j Z(t,y|r, 2) eb’\D(S,x,r,z) dz.

—00

Part (b) says that the Busemann process is adapted to the filtration of the white noise. Part
(c) says that when A is fixed, there is no O = =+ distinction. Part (d) says that the Busemann
process gives a coupling of the known invariant measures. Parts (e) and (f) say that the process is
continuous in the time-space parameters and monotone in the A and 0O parameters. Part (h) gives a
continuity in the latter two parameters. The possible jumps of the process when O = — is switched
to O = + are captured by the set A“, defined and studied further down (see (3.7)). Part (g) says
the process is an additive cocycle and implies in particular that b’\D(t, Y, S,x) = —b)"j(s, x,t,y).

Comparison of (2.7) and (3.4) shows that, for P-almost every w, for each A € R and each
oe{—, +},

(3.5) u? (t,x) = 7 (0.04,2)

is a solution of the SHE (1.7) defined for all times ¢ € R. Then *2(0,0,¢,z) is a physical solution of
the KPZ equation (1.1) for all time ¢. Such solutions are called eternal. The next section explains
how these processes yield pullback attractors in the sense described in the introduction. See (3.11)
and (3.20).

The Busemann process is initially constructed with a weak convergence argument in Section 5
on an extended probability space and Theorem 3.1 is proved in that setting. Later, in Corollary
8.1 in Section 8, we revert to the original probability space with the help of the almost sure limits
(3.11) in the next section.

The Busemann process inherits symmetries from the Green’s function, which were previously
recorded as (2.8), (2.9), and (2.10). These properties are proved in Section 8.

Theorem 3.2. The process {b)"j(s,a;,t,y) cs, oty € RO € {—,—i—}} satisfies the following
covariance properties.

(i) (Shift) For any r,z € R there exists an event Q.. with P(Q,.) = 1 such that for all
s,z t,y, \e R, o e {—,+}, andw e Q, 5,

PO (s +ra+z,t+ry+2) 0T, =bszt71).
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(ii) (Reflection) There exists an event Qo with P(Qy) = 1 such that for all s,xz,t,y,\ € R, all
Oe{—,+}, and w € Qy,

bENED (s, —,t, —y) 0 Ry = 05, 2, 1, ).

(iii) (Shear) For any r,c € R there exists an event Q.. with P(Q,..) = 1 such that for all
z,y, e R, 0e{—,+}, and w e Q,,
2
(36) b(AJrC)D(Sv:E - C(S - T)7t7y - C(t - T)) © S?‘,c = bAD(87$7t7y;w) + C(y - $) - %(t - S).

Theorem 3.1(i), Theorem 3.2(i), and the invariance of P under the action of T;¢ imply that the
Busemann process itself is invariant under the SHE evolution. Applying the temporal reflection R
corresponds to working with terminal conditions instead of initial conditions in (1.1) and results in
a different Busemann process, coming from sending the terminal time to oo instead of the initial
time to —oo, with the same distribution as the one we study. See Remark 3.25.

Our goal is to describe attractors simultaneously for all slopes A. For this we have to identify
the set of exceptional slopes at which the Busemann process jumps:

(3.7) A = {NeR:3(s,z,ty) € R with bA_(s,a:,t,y) # b)‘+(s,a:,t,y)}.

Pt = pr— u M =

When )\ ¢ A we write b* to denote the common function and similarly v =
ur. If A € A¥, there are two different eternal solutions having the same conserved quantity A. The
next result implies that in this case u*~(0, ) # u** (0, ) for all z # 0.

Theorem 3.3. The following hold P-almost surely.
(i) For each A € A and for each t,z,y € R with = # 1y, b’ (t,z,t,y) # bV’ (¢, z,t,y).
(ii) For eachteR, x <y, and k < p, V" (t,z,t,y) < V" (t,z,t,y).

Part (i) above reduces the definition of A“ to checking A-continuity at a single spatial point:
Corollary 3.4. With P-probability one, for any a # 0,
A = {X:027(0,0,0,) # b}(0,0,0, )} = {A: 0*7(0,0,0,a) # b*(0,0,0,a)}.
The next theorem describes properties of the set A“.

Theorem 3.5. The following statements hold.
(a) For any t,z,c € R we have for P-almost every w, A = AToe = AStew — ¢ = _\R2w,
(b) For each Ne R, P(Ae A¥) =0
(c) Either P{AY = @} =1 or P{A¥ is countable and dense in R} = 1.

Remark 3.6. Regarding the dichotomy in part (c), in all the solvable models where the distribution
of the Busemann process has been described explicitly, the set A“ is a countable dense subset of
the parameter space [12, 22, 46, 95]. In particular, [22] and the forthcoming [12] prove this for the
KPZ fixed point and the log-gamma polymer models, respectively. Solutions to the KPZ equation
converge to the KPZ fixed point under the KPZ scalings [90, 100] and the log-gamma polymer
free energy converges to a solution to the KPZ equation (1.1) upon appropriate rescaling [3]. This
suggests Open Problem 2 in Section 4.

The proofs of Theorems 3.3 and 3.5 are in Section 10.

Remark 3.7. We close this section by collecting the properties of the Busemann process as a process
in A. Giving an explicit description of the process b°(0,0,0,1) is left as Open Problem 2.
(a) Theorems 3.1(d) and 3.3(ii) say that for any ¢ € R, {b*°(,0,¢,.) : A e R, 0 € {—,+}} is a
coupling of strictly ordered two-sided Brownian motions with linear drifts and unit diffusion
coefficient. If one fixes A € R, then b** (¢, x,t,y) are both normally distributed with mean
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Ay —z) and variance y —x. Then the ordering (3.1) implies that the two + processes match
and this is consistent with Theorem 3.5(b).

(b) The Busemann process of the KPZ fixed point, called the stationary horizon (SH), is also a
coupling of ordered two-sided Brownian motions with drifts, parameterized by their drifts
[21, 22]. In SH, each pair of Brownian motions coincide in a nondegenerate neighborhood
of the origin. Thus the Busemann process we study is not the same as SH.

(c) By the shear-covariance in Theorem 3.2(iii) and the shear-invariance of P, for each ¢ and
r <y in R and for each 0 € {—, +}, the process A — b*7(t,2,t,9) — A(y — ) is stationary
and, therefore, A — b)"j(t, x,t,y) has stationary increments.

(d) The central limit theorem shows that for any ¢t and x < y in R and any O € {—, +}, the
process A — b*3(t,z,t,7) does not have independent increments. See Appendix C.

(e) By Theorem 3.3(ii), the process A — b*7(0,0,0,1) is almost surely strictly increasing.
(f) Theorem 3.2(i)—(ii) and the reflection and translation invariance of P imply that the process
A — b7(0,0,0,1) has the same distribution as the process A — —b(=Y(=0)(0,0,0,1).

3.2. Shape theorems and stochastic homogenization. We show the following shape theorem
for the fundamental solution Z, proved in Section 6.

Theorem 3.8. On an event of P-probability one, the following holds: for any C > 0,
t —
(3.8) lim n~! sup ‘ log Z(t,y|s,x) + e log p(t — s,y —x) | = 0.

o0 —
e (s,x,t,y)eRf: 24
s,z t,ye[—Cn,Cn]

Remark 3.9. We allow t = s in (3.8) by taking the convention that log Z (¢, y|s, x)—log p(t—s,y—z) =
log Z(t,y|s, z) for all parameter values and recalling that Z(s,y|s,z) = 1.

As a corollary of Theorem 3.8 and easier versions of tail bounds which appear in various proofs
below (see, e.g., the proof of Theorem 6.7), we obtain the following result. Remark 3.11 explains
how this result implies stochastic homogenization of KPZ.

Corollary 3.10. On an event of P-probability one, the following holds: for all bounded uniformly
continuous U € C(R,R), all t > 0, and all compact K R,

lim sup ‘5h(6_1t,5_1:1:|0, —U.) +u(t,z)| = 0

eNO zeK
where Ug(x) = e 1U(ex), h(+,+|+,+) is defined via (2.19), and
oyt @2
u(t,x) = ﬂ + ;Iel]lg{T + U(Z)}

Remark 3.11. (Stochastic homogenization of KPZ) In the setting of Corollary 3.10, call u.(¢,z)
= —eh(e7,e 2|0, —U.). Then for each € > 0 and each such U, u. is indistinguishable from the
Hopf-Cole solution to the viscous stochastic Hamilton-Jacobi equation

Opue(t, ) — S0pzus(t, ) + H(&?_lt,&?_lx, Ozue) =0, ue(0,2) = U(x),

with Hamiltonian H(t,z,p) = % + W(t,x). Corollary 3.10 implies that on a single event of full
probability, for all bounded uniformly continuous U € C(R,R) and all u. defined as above, u.
converges locally uniformly as ¢ — 0 to the viscosity solution of the effective Hamilton-Jacobi
equation

o+ H(0,u) = 0, u(0,z) = U(x)
with effective Hamiltonian H(p) = %2 — i. This is the usual definition of stochastic homogenization
as in [74, 80].
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We also prove a shape theorem for »*. Due to Theorem 3.1(c), there is no need for a ¥t

distinction.

Theorem 3.12. Fiz A € R. The following holds on an event of P-probability one. For all C > 0,

P
3.9 lim n~! sup Wi,z ty)— (5= — =)t —s)= Ay —z)| =0.
( ) 0 vavtvye[_CTL,Cn] ( ) ( 2 24)( ) ( )

We also have the following version of the shape theorem that works simultaneously for all A.
Theorem 3.13. The following holds P-almost surely: for all t, A € R and O € {—, +},
(3.10) ‘ l‘im lz|71p*7(0,0,t,2) — Az| = 0.
T|—00

Recall from (2.21) that the SHE (1.7) conserves the spatial exponential growth rate. The limit
(3.10) says that for P-almost every w, for all A € R the conserved quantity for both solutions u*~
and u**, defined in (3.5), is \.

These results also combine to show that the Busemann process defines correctors in the language
of stochastic homogenization.

Remark 3.14. (Busemann functions as correctors) Consider u. defined as in Corollary 3.10. We
follow the corrector derivation in [83] and assume that we may expand around @ by writing u. (¢, z) =
u(t,xz) + ev(t/e, x/e) + O(e?). Substitute in the equations for u. and @ and set the coefficients of
the different powers of € equal to 0. This leads to the corrector equation
1 1 p? 1
(9151) — 58;5;5'[) + §(p+ amv)2 + W = 7 — ﬂ,

for each fixed p. (3.4) implies that b=P(0,0, «, +) is a solution to the KPZ equation (1.1). Therefore,
the above corrector equation has a solution given by

o1
= _pP — - _
o(t,@) = =b7(0,0.t,0) —pz + (5 = o)t
on all of R?. Theorem 3.12 says that cv(t/e, z/¢) — 0 locally uniformly as € \, 0, which is consistent
with the convergence u. — .

Combining the control (3.10) gives on the exponential growth rate of the Busemann process with
results from [1] gives the following regularity of the Busemann process.

Theorem 3.15. The following holds P-almost surely: for all A € R and O € {—,+}, for all
a € (0,1/4) and v € (0,1/2), b’ (s, z,t,y) is locally a-Hélder-continuous in s and in t and locally
~v-Hélder-continuous in x and in y.

These shape theorems are first proved in Section 6 for the Busemann process on an extended
probability space. The proofs, and the proof of Theorem 3.15, are completed in Section 8 where
we return back to the original probability space.

3.3. Busemann limits. In Section 3.1, we saw how the Busemann process produces solutions of
the SHE (1.7) and KPZ equation (1.1) that are defined for all time ¢ € R. In this section we show
how these solutions can be recovered as almost sure limits as r — —oo of solutions to (1.7) that
start at time r with appropriate initial conditions. Then Section 3.5 explains how to interpret these
results from a random dynamical systems point of view. The main results of this section, Theorems
3.16 and 3.23, are proved first on the extended probability space in Section 7 and then in their final
form on the original probability space in Section 8. The first result Theorem 3.16 treats Dirac 9,
or narrow-wedge, initial conditions.
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Theorem 3.16. The following hold P-almost surely. Let A€ R, C > 0, € > 0, and 7 > 0. Then
there exist (possibly random) R <0 and § > 0 such that for all r < R, z such that |2 + | < 0, and
for all s,x,t,y e [-C,C| witht —s >,

Z(t,y|r, 2) Qfoo pA+ v A
207 < (1 Z(t (8,2,5,w) d 1 2] 7Z(t b (s,x,8,w) d
Z(s,z|r, 2) (I+¢) i (t,yls,w)e w4+ (1+¢) » (t,y|s,w)e w

and

Z(t 0 _ T

72((37,3;“:’, z)) > (1+e)7 f Z(t,yls, w)e” =5 duy 4 (1 4¢)78 foo Z(t,y]s, w)e? G20 qu,

In particular, with P-probability one, for any A\ ¢ A,

(3.11) i Z0yln2) ety

z?::io)\ Z(s,xz|r, 2)

locally uniformly in (s,z,t,y) € R*.

The gap 7 > 0 is a technical artifact of the proof, where shrinking 7 drives R towards —oo.
The explicit € bounds are included in the theorem to cover all slopes, as the limit (3.11) works
simultaneously only for all slopes A ¢ A“. If the conclusion is relaxed to a A-dependent full-
probability event, we can assert the limit for each fixed slope. This comes from Theorem 3.16 and
Theorem 3.5(b).

Corollary 3.17. For each X\ € R, there exists an event Q2 with P(2)) = 1 such that (3.11) holds
for all w e Q.

Remark 3.18. Equation (3.11) gives b* as a limit of differences of the height function log Z. In
the zero temperature (or zero viscosity) models of first- or last-passage percolation, the analogous
expression is a limit of differences of passage times. In the particular example of first-passage
percolation, which corresponds to a random pseudo-metric, this limit coincides with the classical
definition of Busemann functions. See [23, p. 131] and [86].

Remark 3.19. [40] proved that as t — oo, log Z(t,+]0,0) — log Z(¢,0/0,0) converges in distribution
to a standard two-sided Brownian motion B. The shear-covariance of the Green’s function then
implies that for any A € R, the process

{log Z(0,y|r,—Ar) —log Z(0,z|r,—Ar) : x,y € ]R}

converges in distribution to B(y) — B(x) + A(y — =), as r — —o0. This weak limit also follows from
our Corollary 3.17 and Theorem 3.1(d).

Next we treat function-valued initial conditions. For A € R, F, will be a space of initial conditions
attracted to the solution u* defined in (3.5). At a minimum, the basin of attraction should contain
those functions whose logarithms satisfy the limit in (1.6). Furthermore, the attractor itself should
be a member of the basin of attraction. To accommodate this, )y must admit time-dependent
functions.

Definition 3.20. For A € R, define the spaces F) as follows.

(i) For A # 0, F is the space of functions f : R_ x R — (0,00) such that f(r,«) is Borel-
measurable for each r € R_, there exists a dp € (0, |A|) such that

(3.12) lim 1 inf (log f(r,z) — Az) € [0, 0]

r——00 |7‘| ZEZ‘%+)\‘<50

_ 1 - A
(3.13) and lim  sup og f(r, ) = A
T==%0 2 Az>0 |7"| + |$|
12 47|25

€ [—o0,0] for all § € (0, do],
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and there exists u € R such that u/A > —1 and
_ 1 _
(3.14) lim sup og f(r,z) — px
=90 2: \2<0 |T| + |l‘|

(ii) For A = 0, Fy is the space of functions f : R_ x R — (0,00) such that f(r,-) is Borel-
measurable for each 7 € R_ and for which there exist a dg > 0 and a ¢ > 0 such that for all

€ [—o0,0].

de (0750]7
— 1
(3.15) lim  sup log f(r,z) € [-0,0] and lim |r\_1logf flr,z)dx € [0,00].
r==%0 2150 7]+ (2] r5—o0 el <c

Remark 3.21. Theorem 3.12 (more precisely, (6.24) and (6.25) in Theorem 6.5 below) implies that

P-almost surely, for each A € R and 0 € {—, +}, F, contains the function

Ao
— U (T7$) — bAD( 707 3 )
(316) f)\D(rax) - ’LLAD(T‘,O) - i

We will see later in Theorem 3.38(iv) that this is a pullback attractor for the SHE (1.7).

When the time variable is not present, conditions for membership in ) simplify to the ones in
Lemma 3.22 below. This lemma, is proved in Appendix C. In particular, for each A € R, F) contains
the function f(r,z) = .

Lemma 3.22. Let g : R — (0,00) be a Borel function such that logg is locally bounded. For
(r,z) e R_ x R, set f(r,x) = g(x). Then f € Fy if and only if

— 1 1
(3.17) _o< Tm 089@ g M when X > 0,
T—>—00 |;17| T—>0
1 — 1
(3.18) lim 089() =\ > ogg( ) > —0 when A <0, and
r——00 |;17| :cﬁoo X
— logg(x)
(3.19) —o0 < lim <0 when A = 0.

|00 |z

The next theorem is the function-to-point version of Theorem 3.16 and the last main result in
this section.

Theorem 3.23. The following hold P-almost surely. For each A€ R, feF,, C >0, e >0, and
T > 0 there exists an R < 0 such that for all r < R, for all s,z,t,y € [-C,C] witht — s = 7, we

have
g Z(t,ylr,2) f(r,z) dz 3 [@ P+
< 1 Zt (S,I,S,w)d

T, Z(s.2r2) F(r.2) d (42 | 2t yls,we v

+(1+ 6)3j Z(t,y|s,w)ebk7(s’m’s’w) dw

—00

and

S]R Z(t,y|r, z) f(r,2z)dz » o0 .
= (1 Z(t (s,x,s,w)d
SRZ(S7$|T7Z)f(T7Z)dZ ( +E) f (,y\s,w)e w

+ (1 + €)4J Z(t,yls, w)ebH(s’x’s’“’) dw.
— 00

In particular, on a single event of P-probability one, for each A ¢ A and f € F),

(3.20) i R ZEYN ) f(r2)dE iy

' ; 4
oo (o Z(s, x|, 2) f(r,2) dz locally uniformly in (s,x,t,y) € R*.

The following comes from Theorem 3.23 and Theorem 3.5(b).



ERGODICITY AND SYNCHRONIZATION OF KPZ 21

Corollary 3.24. For each A € R there exists an event Qy with P(Q)) = 1 and such that (3.20)
holds for all we Q) and f € Fy.

Remark 3.25. The R; reflection symmetry of the white noise and the Green’s function (2.9) implies
that, as r — o0, analogues of Theorems 3.16 and 3.23 hold for the ratios

Z(r, z|t,y) g Z(r, z|t,y) f(r,z) dz
——— 7~ and :
Z(r, z|s,x) S Z(r,z|s,x) f(r,z)dz

3.4. Ergodicity. We now turn to the structure of temporally stationary and ergodic initial con-
ditions. We begin with the SHE (1.7) and then address the KPZ equation (1.1).

3.4.1. Ergodicity of SHE. The cocycle property (2.13) and the independence structure of white
noise imply that SHE (1.7) defines a Markov process. There are several natural choices of state
space for this process. The most general space is the collection of all locally finite positive Borel
measures with an additional cemetery state X that accounts for the possibility of finite-time blowup
described in (2.18). Denote this space by M, = M, (R) u {£}. It is Polish with the vague
topology on M, (R) and with X as an isolated point. By definition, for any ¢ > 0 such that the
solution Z(t,dz |0, f) started from f € M, is not a locally finite positive measure, we stipulate
that Z(t,dx|0, f) = &

Introduce an equivalence relation on M_,: f ~ ¢ if f = cg for some ¢ > 0. Again, f can be
either a measure or the density function of a measure, since multiplication by a constant preserves
the relationship of a measure and its density. Let [f] = {g € M, : g ~ f} denote the equivalence
class of f € M. The cemetery state is alone in its equivalence class: [£] = {£}. Linearity ensures
that the SHE evolution (1.7) is well-defined on equivalence classes, that is, [f] = [g] implies
[Z(t,«|s, /)] = [Z(t,+]s, 9)]-

To define a convenient Polish state space of equivalence classes, we restrict from M (R) to the
space

(3.21) Mg = {n € M, (R) :supp(n) = R}

of positive Radon measures on R whose closed support equals the entire real line, and add in the
cemetery state to define M-g = Mg U {L}. Mg is a Polish space in its subspace topology
inherited from M, (see Appendix D). The space Mg is sufficient for studying stationarity of
nonzero solutions because, as can be seen from (2.15), for all f € M other than the zero measure,
either (i) Z(t,dz|0, f) = X for all sufficiently large ¢ or (ii) f € Myug and the support of Z(¢,dz|0, f)
is all of R for all ¢ > 0.

The space of equivalence classes is the quotient space

(3.22) M =Moo/~ ={[f]: f € M=o}

We show in Appendix D that M is a Polish space in its quotient topology Denote generic elements
of M by f, so that f € f is equivalent to [f] = f. We take M as the state space of the SHE
evolution Sof = S§,f = [Z“(t, -0, f)] on equivalence classes, well-defined for any representative

f € f of the initial state f M.

We recall briefly the standard notions of invariance, ergodicity, and total ergodicity. Given an
initial probability measure P on M , let the initial state f have distribution P and denote by IIp the
probability distribution of the Markov process {So.f : ¢ > 0}. IIp is a probability measure on the

~R
product space M N equipped with its product o-algebra. P is a stationary measure or invariant
distribution for the evolution if the distribution of {So+f : ¢ > 0} is invariant under time shifts, that
is, if the processes {So+f : t > 0} and {Sg s4+f : t > 0} have the same distribution for all s > 0. In
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~R
this case IIp extends to the space M of bi-infinite paths and Ilp is invariant under the time shift

~R
group {0y : t € R}. Time shifts act on elements f, = (f5)ser of M by (0:f.)s = f51+.
A stationary measure P is ergodic if Ilp is ergodic under the group of time shifts. This means

~R
that TIp(A) € {0,1} for every measurable set A — M that satisfies for each t € R that ;A = A
IIp-almost surely. Stationary measures form a convex set whose extreme points are precisely the
ergodic measures. Finally, P is totally ergodic if I1p is ergodic under each individual shift ; with

~R
t # 0. That is, for each t € R\{0} separately, IIp(A) € {0,1} for every measurable set A ¢ M
that satisfies §; 1A = A TIp-almost surely.

The product space ./\7R can be replaced by the space C (R,M) of continuous M-valued paths
when blowup does not happen. That is, if the initial distribution P is supported on equivalence
classes of measures from the subspace Myg of (2.3), then the process Sy f has continuous paths.
See Lemma 11.1. Indeed, this continuity holds in a much more restrictive topology.

It is shown in Theorem 2.6 of [1] that when blowups are ruled out by choosing an initial mea-
sure f € Myg, for any ¢ > 0, the process Z(t,+|0, f) is a strictly positive continuous function.
Hence perhaps the most natural smaller space that supports invariant distributions on locally finite
measures is Cyp, which was previously introduced in (2.17),

Cuw = {F € C(R.(0,00)) : Va > o,f e f(a)da < o0

R
the space of strictly positive continuous densities of measures in Myg. Measures represented by a
density in Cyg form a Borel subset of M (R) (Lemma D.4). Cyg is Polish in its natural topology, in
which convergence is equivalent to uniform convergence on compact sets combined with convergence
of the integrals appearing in the definition of Cyz. We completely metrize this topology explicitly
in equation (D.2). If started from f € Cyg, the process t — Z(t,+|0, f) has continuous Cyg-valued
paths by Theorem 2.9 of [1].

The space of equivalence classes of functions in Cyy is denoted by Cup = {[f] : f € Cug}. With
its quotient topology, Cu is homeomorphic to the closed subspace {f €Cug: f(0) =1} of Cyg and
hence is itself Polish. It follows that with initial state f € 5HE, paths of the equivalence class process
t — Sp.f are continuous and hence reside in the space C (R+,5HE). The Markov process defined
in this way is Feller in the sense that the finite dimensional marginals are weakly continuous in
the initial condition. Indeed, the structure of our coupling shows that the full path distribution is
weakly continuous in the initial condition. See Remark 11.2 below.

Theorem 3.26. Let B denote a standard two-sided Brownian motion.

(i) For each X\ € R, the distribution of [eB(’)”"] is stationary and totally ergodic for the C -
valued process t — Sqf.

(ii) Let P be a probability measure on M that is ergodic for the M-valued process t — Sof.
Then either P = d[1] or statements (ii.a)—(ii.b) below hold:

(ii.a) P is supported on Cun and there are deterministic finite constants k < K such that for
P-almost every £ € Cpp and all f € £,

K.

(3.23) lilzloo zVog f(z) =k and lin;o z 1 log f(z)

(ii.b) Assume that either

#—kKork=k=0. Then k = K and P is the distribution of
[eBCIHA] with X = k =

K
K=K.

The proof of this theorem in Section 11 relies crucially on the results on the Busemann process.
We add some remarks to it.
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B(x)

Concretely, part (i) says that with initial function f(z) = e?®*3% defined in terms of a Brownian

motion B(+) independent of the white noise, the process t — %, indexed by R, and with
values in the Polish space {f € Cug : f(0) = 1}, is stationary and ergodic under each individual

nonzero time shift.

An important corollary of part (ii) is the characterization of stationary distributions that are
invariant under spatial translations, and more generally, those whose left and right asymptotic
logarithmic growth rates k and K agree.

Spatial translations of measures and their equivalence classes are defined in the obvious way.
For a € R and f € M~ let 74[f] be the equivalence class [7,f] of the measure 7,f defined by
Taf(A) = f(A+a) for Borel A < R. This applies to functions similarly: if f is the density function
of the measure 7, then 7,f(z) = f(x + a) is the density function of 7,n7. The distribution of
[eB (')“"] is invariant under every spatial shift, as seen by recentering the Brownian motion:

Ta[eB(-)+)\-] _ [eB(a+-)+)\(a+-)] _ [eB(a+-)—B(a)+)\-] i [GB(.)-H\'].

The corollary below follows from Theorem 3.26(ii) and the fact that spatial invariance implies equal
left and right growth rates.

Corollary 3.27. Let P # d1) be a probability measure on M that is stationary and ergodic for
the M-valued process t — So.f.
(i) Suppose P has equal left and right growth rates A = k = &. Then P is the distribution of
[eB(')+)\’]'
(ii) Suppose P is invariant under at least one spatial translation T4 for some a # 0. Then R = K

and P is the distribution of [eB(*)+A*] for A = & = k.

We generalize these results to the joint evolution of multiple initial measures under a common
realization of the white noise. For n € N let f1» = (f!,... f") denote an element of the n-fold

Cartesian product M". On the space {0 X M define the evolution
(3.24) SUVE™ = (Souf", .+, Soaf™) = ([2(t 10, f)],- ., [29(t,+10, ™))

where f* e f' and t > 0. The common superscript w signals that each initial condition f?is updated
with the same Z“ in (2.6).
Theorem 3.28. Let n € N.
(i) Fiz M\1,..., A\ € R. Then the distribution of ([ebh(op,o,-)], cey [ebkn(070,07-)]) is stationary
and totally ergodic for the 5,:LE-valued process t +— Sg’?fl:" of (3.24). In particular, the
(e (B0L) b (08))

Chz-valued process t — 1s stationary and totally ergodic.

(ii) Let P™ be a probability measure on M that is ergodic for the process of (3.24) and sup-
pose that P {f1 . f1 = [1]} = 0 for each i. Then (ii.a)-(ii.b) below hold:

(ii.a) P™ is supported on C ZE and the deterministic finite asymptotic slopes exist:
(3.25) k'= lim z7'log fi(z) and ® = lim 2z 'log f'(x)
T——00 T—00
for P("‘)—almost every fi" e 5:E, each i and all f' € £'. Moreover, for each i, —o0 <
K < E'< oo,

(ii.b) Assume that for each i, either k' # —F' or k' = & = 0. Then k' = & for each i and
P s the distribution of ([ebh(o’o’o")], e 000997 with \; = ' = ',

There is an immediate corollary analogous to Corollary 3.27. We omit the statement.
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3.4.2. Ergodicity of KPZ. Next, we explain some immediate consequences of the above results for
the KPZ equation. Recall the space

Cxpz = {f eC(R,R): J e/ @=02® g0 < oo for all a > O},
R

which was introduced in Section 2.3. Cyg is homeomorphic to Cxpy through the bijection f € Cyg —
log f € Cxpz. Convergence in Cxpy is equivalent to uniform convergence on compact sets combined
with convergence of the integrals appearing in the definition of Cxp;. Recall also the space 5sz,
which is Cxpz modulo equivalence up to additive constants. We denote equivalence classes under
this identification via (f) = {g € Cxpz : 3¢ € R such that f(-) = g(+) + ¢}. It is straightforward to
see that the map f € Cyg — log f € Ckpy induces a homeomorphism between 5HE and 5sz-

Let f e 5sz and let f € f be arbitrary. The KPZ evolution is defined through (2.19) via

Ko f(:) = (h(t,+]0, f)) € Cxp
It follows from the definition that this evolution is well-defined. The resulting Markov process
taking values in C([0, c0), E’sz) is Feller. Indeed, this is just the Markov process obtained from the
one constructed above through S on CNHE by applying the homeomorphism between CNHE and 5sz

induced by the homeomorphism f € Cyy — log f € Cxp,. By this observation, the following is an
immediate consequence of Theorem 3.26.

Theorem 3.29. Let B denote a standard two-sided Brownian motion.
(i) For each X € R, the distribution of (B(+) + A+) is stationary and totally ergodic for the
Cxpz-valued process t — Ko f.

(ii) Let P be a probability measure on 51@2 that is ergodic for the EKPZ—valued process t — Ko f.
Then statements (ii.a)—(ii.b) below hold:
(il.a) There are deterministic finite constants k < R such that for P-almost every f € C KPZs
xl_i)riloox_lf(x) =k and xli_r){)lozn_lf(:n) =% forall fef.

(ii.b) Assume that either k # —& or k = K = 0. Then & = % and P is the distribution of
(B(*) + A+) with A = kK = R.

We have the following consequence of the previous result.

Corollary 3.30. Let P be a probability measure on Cxry that is stationary and ergodic for the
Cxpz-valued process t — Ko f.

(i) Suppose P has equal left and right growth rates A = k = K. Then P is the distribution of
(B(+) + Ae).

(ii) Suppose P is invariant under at least one spatial translation. Then E = k and P is the
distribution of (B(s) + A+) for A\ =% = k.

Note that the previous result implies the prediction implicit in the KPZ scaling theory [81] (and
more explicit in [99]) that the spatially translation invariant and temporally ergodic stationary
distributions form a one parameter family indexed, for example, by the mean of a fixed increment.

Remark 3.31. Theorem 3.29 leaves open the question of whether or not there exist stationary and
ergodic measures P for the KPZ equation (modulo additive constants) supported on (equivalence
classes of) functions for which —k = % for some £ > 0. Proving that such measures either do or
do not exist is Open Problem 1 below. If such measures are shown not to exist, this would confirm
the prediction in [49, Remark 1.1].

By the same logic as above, we have the following analogue (and consequence) of Theorem 3.28.
For n e N let f'' = (f!,... f") denote an element of the n-fold Cartesian product Czpz. On the
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space ) x EEPZ define the evolution
(3:26)  KGIET = (Koo' Kof") = ({5010, (02 (2410, 1))

where f* e f' and t > 0. The common superscript w signals that each initial condition f?is updated
with the same Z“ in (2.19).

Theorem 3.32. Let n e N.

(i) Fiz M1,..., A\, € R. Then the distribution of ((b*1(0,0,0,+),...,(b*(0,0,0,+))) is station-
ary and totally ergodic for the C.,,-valued process t — K(()?)fh” of (3.26). In particular, the
Ch,-valued process t — (b (t,0,t,+),...,bM(t,0,t,+)) is stationary and totally ergodic.

(ii) Let P™ be a probability measure on azpz that is ergodic for the process of (3.26). Then
(ii.a)—(ii.b) below hold:

(ii.a) Deterministic finite asymptotic slopes exist:
i1 —1 pi —i 1 —1 i
(3.27) K = mEIPoox f'(z) and F' = xh_l)l(}ox fi(zx)

for P("‘)—almost every 5" e CP,,, each i and all f* € fi. Moreover, for each i, —o0 <
K < E'< oo,

(ii.b) Assume that for each i, either k' # —F' or k' = & = 0. Then k' = & for each i and
P™ s the distribution of ((b*1(0,0,0,+)),...,{b*(0,0,0, ) with A\; = &' = &'

In words, the previous result implies in particular that the joint law of the Busemann process
gives the unique ergodic jointly stationary coupling of the invariant measures (modulo additive
constants) for the KPZ equation given by Brownian motion with drift.

3.5. Synchronization. In this section, we recast some of our results in the language of random
dynamical systems (RDS). We state these reformulations in terms of the SHE. Similar to Section
3.4.2, the results below imply analogous results for the KPZ equation. See Remark 3.41.

Recall the Polish quotient space Cup and the operators S, ¢, s < t, defined in Section 3.4. Define
the mapping

(3.28) ©:[0,00) X QX Cyp — Cp, (H,w,f) = o(t,w,£) = So.f = [Z(t,+]0, f)]

for f € £. By (2.6) we have p(0,w,f) = f for all f € Cypy and all w. For each (¢, f), ¢ is measurable
in the w variable and by Theorem 2.9 of [1], there is a full P-probability event € such that
(t,f) — p(t,w,f) is continuous for w € €.

We abbreviate temporal shifts as §; = T;o. By the cocycle property (2.13) and the shift-
covariance (2.8) of Z, for each s > 0 the exists an event Q) such that P(Q()) = 1 and for
each w € Q) the cocycle property holds: for all ¢ € [s,00) and f € 5HE,

(3.29) go(t — 5,0w, p(s,w, f)) = p(t,w, ).
v is called a crude cocycle and it defines a (crude) measurable random dynamical system (RDS)
on Cyg over (Q,F,P, {6, : t = 0}). See Definition 1.1.1 in [5] or Definition 6.2 in [35]. ¢ defines
a continuous RDS under both Definition 1.1.2 in [5] and the definition in the paragraph following
Remark 6.5 in [35].

A random variable w — £ from Q into Cyy is said to be (strictly) @-invariant if

(3.30) for each t > 0 we have o(t,w, f*) = £ P-almost surely.

See Definition 6.9(iii) in [35]. f is Markovian if £ is FV_ ,-measurable. If f is @-invariant and
Markovian, then the distribution of f* under P is invariant and totally ergodic for the Markov
process t — Sp f. See Lemma E.2.
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Lemma 3.33. There is a one-to-one correspondence between w-invariant CNHE—valued random vari-
ables £ and C(R,C yz)-valued random variables u* that satisfy these properties:

(i) P-almost surely, for all pairs t > s in R? and ally € R, Z*(t,y|s,u“(s,*)) = u“(t,y).
(i) u<(0,0) = 1.
(iii) The equivalence class is time-shift covariant in the following sense: for each r € R there
exists an event Q, such that P(Q,) = 1 and [u®“(t,+)] = [u“(t + 7, +)] for all w € Q, and
teR.

This f“ < u*¥ correspondence is given by the equations
_ Z¥(t,als, fO)
Z<(0,0]s, fo)

where on the left s can be any rational s < min(t,0) and f : Q — Cyg is the function defined by
f@ et and f¥(0) = 1.

Item (i) states that u is an eternal physical solution of SHE (1.7). The definition of u in (3.31)
does not depend on the choice of the representative from f%% or on the rational s < min(¢,0). The
lemma is proved in Section 12.

By Lemma 3.33, if one had an almost surely unique @-invariant random variable, then there
would be a unique way to measurably map almost every realization of the white noise forcing to a
covariant eternal physical solution. In such a setting, [44] (page 879), among others, say that the
one force—one solution principle (1F1S) holds.

In contrast, in a situation such as the SHE (1.7) with multiple ergodic invariant measures, one
expects distinct ¢-invariant random variables corresponding to distinct ergodic measures. Given a
probability measure P on Cup that is invariant and ergodic for the Markov process t — Sg ;g we say

(3.31) u®(t, x) and £ = [u”(0,+)]

that the 1F1S principle holds for P if there exists a P-almost surely unique ¢-invariant Cup-valued
random variable f such that the distribution of w — f* under P is P. This means that there is a
unique way to measurably map almost every realization of the white noise forcing w to a covariant
eternal physical solution u“ such that the distribution of w +— [u“(0,+)] under P is P.
P-synchronization occurs when there exists a ¢-invariant random variable f : Q — CNHE, a
countable set 7 < R with sup .7 = o0, and two events 50 c 5HE and Q¢ < € such that P(@o) =
P(Qo) =1 and
(3.32) lim ds (p(t,0_w,g), ) =0 for w € Qg and g € Cy.

Fot->0 CHE
Here and in the sequel, daHE is a complete metric for the topology of 5HE The idea is that for
initial conditions g € CNO, the solution started from g in the remote past “synchronizes” with f“.

The random variable f is a random (point) P-attractor.

Remark 3.34. When (3.32) holds for all g € Cup, T is said to be a global attractor. This does not
happen in our setting.

P-synchronization implies the 1F1S holds for P by Proposition E.3. Showing P-synchronization
is a common approach for proving 1F1S, as in [7, 8, 10, 11, 44, 93].

For A € R and O € {—,+} (and w from the full P-probability event on which the Busemann
process is defined) let

(3.33) F(z) = 70000 00 2y and £ = [f2],

where u** are the solutions defined in (3.5). Recall the set A“ of exceptional slopes defined in (3.7).
By Corollary 3.4 we have

A= NeR:f¥ #f ) ={AeR: £y £}
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As for the Busemann process, when A ¢ A” we write fy = Y, = £ and f{ = f{, = f{_. This is
the case with probability one when A is fixed, since P(A € A*) = 0 by Theorem 3.5(b).

The following theorem implies that for any fixed value of the slope A\, Py\-synchronization and the
corresponding 1F1S principle hold, where Py is the distribution of [eB(')“"] and B is a standard
two-sided Brownian motion.

Theorem 3.35. Fiz A € R. Then £\ of (3.33) is the (P-almost surely) unique @-invariant C -
valued random variable such that, with P-probability one, any representative f € fy satisfies (3.17)—
(3.19). Furthermore, the following synchronization statements hold.

(a) For any Borel function g : R — (0,00) such that logg is locally bounded and satisfies
(3.17)~(3.19), we have

(3.34) tlingo ds, (o(t,w,[g]), ff“") =0 in P-probability.

(b) For any countable subset T < [0, 0) with sup .7 = oo, there exists an event Q) 7 such that
P(Q,7) = 1 and for any w € Q) 7 and any Borel function g : R — (0,0) such that logg
is locally bounded and satisfies (3.17)—(3.19),

. R W\
(3.35) 91911&00 dg, (o(t, 0w, [g]),£}) = 0.
Remark 3.36. Results analogous to Theorem 3.35 have been shown previously in non-compact
settings for the Burgers equation with Poisson forcing [8] and smooth random kick forcing [7, 11].
It is expected that this form of synchronization and 1F1S hold for a general class of stochastic
Hamilton-Jacobi equations which includes the KPZ equation (1.1). See Conjecture 1 in [10].

Remark 3.37. The almost sure limit in (3.35) is restricted to a fixed sequence .7 because we cannot
define uncountably many time-shifts of Z on a single event of full probability on our probability
space (2, F,P). Recalling (2.8), the essential issue here is that our Green’s function was originally
built using (the chaos expansion of) the mild formulation of (2.5) in (2.4) and such objects are
only defined up to L2(Q, F,P) equivalence classes. Remark 3.40 discusses options for removing this
restriction.

Theorem 3.35 describes the behavior of the RDS for a class of initial conditions that supports
a given ergodic measure. A natural follow-up question is to describe the (quenched) long-term
behavior of the RDS for a fixed, typical realization w of the random environment. Therefore, we
drop the idea of working with one ergodic measure at a time and instead describe a family of
random attractors and basins of attraction, for each w outside a single P-null event.

The basins of attraction considered in Theorem 3.35 include only functions that depend on the
space variable z but not on w, since the focus there is on one ergodic measure at a time. While
these spaces include important cases such as all (equivalence classes of) locally bounded Borel-
measurable functions f : R — (0, 0) satisfying (3.23) with £ = § = A, they are not rich enough to
study the quenched problem in the previous paragraph for the following reasons.

(1) The pullback attractors fy in Theorem 3.35 do depend on w and a basin of attraction should
contain its pullback attractor.

(2) Studying the RDS for a (P-almost surely) fixed realization of the forcing w means the basins
of attraction should be allowed to contain initial conditions that depend on w. See Remark
3.2(iv) in [34] for a discussion of a similar point for general RDS.

Let H denote the space of all functions w — g% from {2 into 5HE, with no measurability require-
ment. For a subset H' « H and w € Q, let H'(w) = {g* : g € H'} < Cyp. For A € R and a time
set 7 < [0,00) with sup.7 = o0, define F) 7 exactly as Fy was defined in Definition 3.20 except
that f € F\ 7 requires that the limits 7 — —o0 in (3.12)—(3.15) are taken only along times r € —.7.
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Define the subspace H 7 of H by
(3.36) Hyz ={[f]: f: Q> Cus andVwe Q, (—F) xR 3 (r,z) — o (x) is in Fx 7}
The next theorem reformulates results from Theorems 3.3, 3.23, and 6.5 in the context of RDS.

Theorem 3.38. The stochastic process {fag : A € R,0 € {—,+}} of (3.33) is o{Z(t,+|s,+) : s <
t < 0} measurable. For any countable set 7 < [0,00) with sup T = o0, there exists an event Q4
such that P(Qz) =1 and for allw € Qg, all A € R, and both signs O € {—,+}:

(i) f3 € Hy 7 (w).
(ii) fy, is strictly positive, continuous, and f5_ (0) = 1.
(iii) For allt = s in T, ¢(t — s, &w,ffé“) = fftm‘“.
(iv) If A ¢ AY, then for any g € Hy 7,
(3.37) lim ds (p(t,0-w,8°), £5) = 0.

T 3t—0

(v) If xe A%, then f{ (x) < fY, (x) for all x > 0 and f{ (x) > f{, (x) for all x < 0.

Remark 3.39. The metric d~ controls convergence only on compact sets, so there is no contra-
diction between (i) the range of growth rates at @ — o0 and @ — —oo permitted by g € H 2, (ii)
the conservation law (2.21), which says for example that if g* = g does not depend on w and every
g € g has exponential growth rates which satisfy (3.17)—(3.19), then ¢(t,0_;w,g) has the same
growth rates as g for all t € .7, and (iii) the convergence in (3.37) to fi’(z), which has exponential
growth rate A in both directions, as x — o0 and as x — —o0, by (3.10).

Part (iii) says that for each A € R and O € {—, +}, f{_ is a random attractor and Theorem 3.1(d)
the definition (3.33) imply that it satisfies (3.23) with k = & = A. Parts (i) and (iv) say that for
A ¢ A Hy 7(w) is a basin of attraction of f. See Definition 9.3.1 in [5]. Since P(A € A¥) = 0 for
each given A € R, Theorem 3.35 is in fact a corollary of Theorem 3.38. Both theorems are proved
in Section 12.

Recall the dichotomy from Theorem 3.5(c): either A is P-almost surely empty, or A“ is P-almost
surely countable and dense in R. If it is the case that P(A¥ = @) = 1, then, by (3.3), A — f{ is
continuous, P-almost surely. On the other hand, if P(A“ is countable and dense) = 1, then part (v)
implies that the process has discontinuities in A\ on every interval (X', \”) € R. This suggests Open
Problems 3-8 in Section 4.

Remark 3.40. (Dependence on .7) The dependence on the countable time set .7 in the full proba-
bility events in Theorems 3.35 and 3.38 can be removed in two ways. One option is to avoid working
with shifts ; and work directly with the operators Ss;. This involves changing some definitions,
e.g. using the definition of an RDS in Section 2.1 of [37] and, similarly to the definitions in Section
1 of that paper, using the notion of attractors f’ e CHE at time t, instead of £ and replacing
p-invariance (3.30) with the condition S,f¢ = fy for all t > s. Alternatively, one could push
forward the distribution of Z(+,+|-, ) and work on its state space Q = C(R{,R,) instead of 2. On
Q, the temporal shift map is continuous and so the issue mentioned in Remark 3.37 is not present.

Either of these approaches will result in a continuous RDS and ¢ becomes a perfect cocycle (see
e.g. Definition 6.2 in [35]). Theorems 3.35 and 3.38 then hold with .7 = [0, o).

Remark 3.41. (Synchronization of KPZ) Because the Hopf Cole transformation Cyg 3 f — log f €
Ckpz defines a homeomorphism between CHE and CKPZ, each result above is equivalent to an
analogous result for the KPZ equation, with minimal notational changes. In particular, one
would replace all instances of CHE with Csz, ¢ with ¢ : [0,00) x ©Q x CKPZ — Csz defined by
Y(t,w,f) = (h(t,+]0, f)), and would need to take logarithms of the expressions in equations like
(3.31) and (3.33). A handful of other similar changes are needed which we do not enumerate.
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Remark 3.42. (Hyperbolicity) Stochastic Hamilton-Jacobi equations like KPZ are expected to be
associated to certain generalized directed polymer measures. See Section 3 of [10]. In this corre-
spondence, p-invariant random variables are associated to infinite-volume polymer measures. Fairly
generally, one expects that when synchronization occurs, the paths (with different terminal points)
under these measures should coalesce either at a finite time or else asymptotically. This property
is known as hyperbolicity. See Conjecture 2 and Section 5 of [10] for further discussion of what
is expected to hold. We introduce the infinite-volume measures in Section 9 and prove locally
uniform (in the pair of space-time terminal points) quenched hyperbolicity in total variation norm
in Theorem 9.4.

4. OPEN PROBLEMS

Open Problem 1. Does there exist A > 0 and a stationary and ergodic probability measure P
on Csz for the Csz valued process t — Ko f with the property that for P-almost every f € CKPZ,
hmoozn Lf(x) = =X and hngloaz Ye@)=Xforall fef?

r—— r—

Open Problem 2. Determine whether the set A of discontinuities is empty or dense. It suffices
to prove or disprove that P{IX € R : ¥**(0,0,0,1) > b*7(0,0,0,1)} > 0. More generally, describe
the distribution of the process A — b**(0,0,0,1).

Open Problem 3. For A e A, are u** from (3.5) the only continuous functions u : R? — (0, c0)
such that u(0,+) satisfies (3.17)~(3.19) and u(t,z) = Z(t,x|s,u(s,+)) for all x and t > s? If not,
are there finitely, countably, or uncountably many such solutions?

Open Problem 4. For \ € A, what is the basin of attraction of f5 ¢ In particular, is it only
the singleton {5 }? The same questions can be asked about the solutions in Problem 3, if they do
exist.

Open Problem 5. When A e A and f € Fy, find the limit points of % as r — —oo.

Take k,% € R and consider a locally bounded Borel function g : R — (0, 00) such that
li]r£1OO z 'logg(z) =k and liriloo z llogg(z) =%
Define f : R_ x R — (0,00) by f(r,z) = g(x). Then it follows from Lemma 3.22 that either

E>0v(—k)and feFzgork <0v (—R)and feF,,or K<0<kand feFp,or K =—k>0. In
the last case, there is no A € R such that f € Fy. This suggests the following.

Open Problem 6. Take A > 0 and suppose g is a locally bounded strictly positive Borel function
satisfying lim,| o lz| "' log g(x) = A\. Find the limit points of

g Z(t,ylr,z) g(z) dz
g Z(s,x|r, 2) g(2) dz

(4.1) as r — —o.

Open Problem 7. Find the limit points in (4.1) for A€ A“ and g as in the previous problem.

Open Problem 8. Find the limit points of % asr — —oo, for f : R_ xR — (0,00)

such that f(r,+) is Borel-measurable for each re R_ but f ¢ | Jycg Fa-

Open Problem 9. Show that for all t,y, A € R and o € {+,—}, the distribution of {r 1 X . : 7 >
0} under the semi-infinite path measure Qf‘fy) introduced in Section 9 satisfies a large deviation
principle with rate function

PU) =5 [+ ap e

when f:[0,00) — R is such that f(0) =0 and (f' + \) € L*([0,0)) and I*(f) = oo otherwise.
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5. CONSTRUCTION OF THE BUSEMANN PROCESS

This section constructs the Busemann process. The starting point is to build a monotone coupling
of the known (ratio-)stationary distributions of the SHE (1.7) given by geometric Brownian motion
with drift A € R, all of which are started in the infinite past. To construct the process, we start
the equation from a countable collection of coupled stationary distributions driven by the same
Brownian motion and then take subsequential weak limits of these measures as the initial time
tends to the infinite past.

Because the Busemann process is initially defined through a weak limit, its construction will ini-
tially require working on an extended probability space (€2, F,P). This is a temporary convenience.
Once the limit (3.11) is proved in Section 7, we know that the Busemann process is measurable
with respect to the Green’s function and hence the driving white noise. Using this fact, in Section
8, we revert to (£, F,P) and the technical details concerning Q will become immaterial.

Let D be a countable dense subset of R. Define the product space

(5.1) Q=0 xCR,R)P.
C(R* R) comes with its Polish topology of uniform convergence on compact sets and C(R*,R)P
with the product topology and the corresponding Borel o-algebra. A generic element of Q is
denoted by &. The projection from € onto € is denoted by w and the projection onto C(R*, R)? by
(M (s,x,t,y) : A€ D, s,z t,y € R}. Define the white noise W on the new space Q by W (&) = W (w).
We equip Q with the completion F of the product o-algebra under P.

A~ ~W,0 2
Denote by 1 the o-algebra generated by the P-null sets. Let o, = o(W(f): f € Ls;)vN. For
AW AW,0 2> W,0 :
each s <, we define F,, = F,_; = ﬂ(a7b):a<5<t<b Fap to be the associated natural augmented

filtration, which satisfies the “usual conditions”.

Proposition 5.1. There exists a probability measure P on (SAZ,]?) that satisfies the following.
(a) The Q-marginal of P is P.
(b) For each r,z € R,

{w,b’\(s,az,t,y) :AeD,s,x,t,y € R} 4 {ﬁ,zw,b’\(r—i-s,z—i-a;,r—kt,z+y) :AeD,s,x,t,y € R}
(c) For any T € R, {b(s,z,t,y): Ne D,z,y € R,s,t < T} is independent of ﬁ;[/:oo.

In the course of the proof, we establish a monotonicity property (see Lemma 5.3) that allows
us to define the full Busemann process {b’\D(s,x,t,y) :s,o,t,y, A€ R, 0€ {—,+}} on (Q, F) by
taking left and right limits in the slope parameter:

bAi(‘gaxatvy) = ’Dgi,un}')\ bu(37x7tay) and bAJr(Saxatvy) = Dl)i,un\ly)\ b“(37x7tay)7 37957757?47)\ eR.

Lemma 5.7 says that for A € D, b** = b, i.e., the new definitions extend the old one. The next
result gives the properties of the above process.

Proposition 5.2. The measure P satisfies:

(a) For each A e R, P{b*~(s,x,t,y) = b’ (s,z,t,y) Vs,x,t,y} = 1.

(b) For each t,\ € R and 0 € {—,+}, the process {b*2(t,x,t,y) : x,y € R} has the same
distribution under P as B(y) — B(x) + My — x), where B is a two-sided standard Brownian
motion.

There exists an event Qy € F such that P(ﬁo) = 1 and the following hold for all & € Q.

(¢) Forallz <y, allt, and p < A,

VA (t, ot y) < BT (s, ty)

<b
(5.2)
V(b y ta) = 0ty ta) > b

A (t,x,t,y) At (t,x,t,y) and

B <b
Myt r) =0yt ).
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(d) For allr,s,z,t,y,z and all O € {—, +}

(5'3) bAD(””’ ':L'7 87 y) + bAD(S7 y7 t7 z) = b)\D(r7 x? t7 z)'
(e) For all s,x,t,y,\ and all O € {—, +}
(5.4) bA_(s,a:,t,y) = lim " (s, z,t,y) and b)‘+(s,a:,t,y) = lim b"7 (s, x,t,y).
A HNA

orallt>r, all s,z,y, and allO € {—, +

f) F Il ll d all
ee}

(5‘5) eb/\D(s,m,t,y) :J Z(t,y|r, Z)ebm(s’m’T’z) dz.
—0

The rest of this section is dedicated to the construction of P and the proofs of Propositions 5.1
and 5.2.

Let P be the distribution on C(R, R) of two-sided standard Brownian motion {B(z) : = € R} with
B(0) = 0. Let P® P be the product probability measure on the space 2 x C(R,R), equipped with
the completion of the product Borel o-algebra. On this space, for z, A € R, define

(5.6) faz) = BEH for e R,

Then f) € My almost surely. For t > S and z € R, define Z(t,z|S, f\) on © x C(R,R) as per
(2.7). By [1, Theorem 2.6] and (2.16), we have that P ® P-almost surely, Z(¢,y|S, f)) is positive
and continuous on (t,y) € [S,0) x R. For z,y € R and s,t > S, let

(57) b§(87$7t7y) = 10gZ(t,y|S, f)\) - logZ(s,a:|S, f)\)

Note that (2.12) implies that for S fixed, P ® P-almost surely, simultaneously for all t > r > S|
s> .S, and x,v,

Z(t,y|r, z)ebg(s’x’r’z) dz.

© Z(t,ylr,2)Z(r, 2|8, dz 0
(5.8) bé(s,x,t,y):logg_oo byl )20, 215 1) —logf

Z(S,.Z'|S,f)\) —o0
This implies that for any r > S, one can compute {bg(s,m,t,y) 0 s,t € (r,0),z,y € R} from
{b3(r,z,m,y) : 7,y € R} and {Z(t,y|r,2) : t e (r,0),y,2 € R}.
Lemma 5.3. Take S € R and A > p. Then P ® P-almost surely, for all real xt < y and t = S,
b3(t @, ty) = Vs(t, @, t,y).
Proof. By (2.7),
bé(t,$,t,y) = 10gZ(t,y|S, f)\) - logZ(t,x|S, f)\)
0 ee}
= logj BTN 74 4|8, 2) dz — logJ BTN 7 (42| S, 2) d.

—Q0 —00
Differentiate with respect to A to get
§° 2eBEZ (¢ y|S,2) dz B §° 2eBEAZ (¢ 218, 2) dz
2, PO Z(t,y|8,2)dz  §7, eBOTNZ(t,2]S,2)dz

_0 €

5>\b§ (ta z, tv y) =

The differentiation is justified by (2.16): since B does not grow faster than linearly, P ® P almost
surely,

o0

j Z(t,y|S, 2) |z|eB@+=l 4z < o0

—a0

for all ¢ = 0 and all S,t,y with t > S.
Consider the Markov process Q. (s,f,) defined in Section 2.4. Denote the position of the

Markov process at times s by X. By Proposition 2.18 in [1], we have that if z < y, then Q¢ ) (s, f,)

is stochastically dominated by Q) (s,f,)- Therefore, EQ(t’yMSva)[Xg] > EQ“@MS’J‘A)[XS].
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Now compute

0 0
ERua) 600 [ Xg] :J 25 (S, 2|t z) de :j ,2(t,218,2)2(5,2]5, /) .

. ’ 0 Z(t,x|S, fr)
_ JOO . Z(t, |8, z)eBE+A= g So_ooozeB(z)+>‘ZZ(t,x|S, z)dz
—o0 Z(t, x[S, f) (2 eB@=Z(t, 2|8, 2)dz
From this,
8>\b§(t,:17,t,y) - EQ@,y),(s,fA)[XS] _ EQ@,z),(s,fA)[XS] > 0.
This proves that bg(t, x,t,y) is nondecreasing in A and the proof is complete. O

We turn to extending the distribution of (w,bg) as we let S N\, —c0. Note that the distributional
equality in (5.9) below is not valid without restricting Z to [T, 00) because by on [T,0) depends
on Z in the time interval (S,T). We get around this inconsistency by averaging over S € (—o0,T)).

Lemma 5.4. Let A€ R and S <T. Then, under PQ P,

(5.9) (Z‘(Too xRx [T,00) xR)"RY ’ bg‘[T,oo)x]Rx[T,oo)x]R) (Z‘ [T,00) xR x [T,00) xR) "R bT)

In particular,
(5.10) {b3(T,2,T,y) 1 v,y e R} £ {B(y) — B(x) + Ay —z) : 2,y € R}.

Proof. By Lemma A.5 in [1], for each fixed S and A, Z(,+|S, f)) is indistinguishable from the
unique adapted continuous solution to the mild equation

0

Z(t,ylS, fr) = J p(t — S,y — ) fa(z) (dr) + L JOOOO p(t —u,y — 2)Z(u, 2|8, f)W (dudz).

—Q0
By Proposition 3.19 on page 218 in [49] or Remark 8.3 in [56], we have that under P ® P,
oty _ Z(TylS ) R} d weR
and the processes on both sides of the above equality are independent of F. :,W:OO. Furthermore, by
(5.8) with s =r =T and =z = 0,
(Toty) _ ZEylS, ) }
e’s =——"—"""":t=>2T/yelR
{ Z(T,0[S, /) i

satisfies

0
SATOLY) _ j Z(t,y|T, 2)eb3@OT2) g
—Q0

By (2.7), {Z(t,y|T, f)) : t = T,y € R} satisfies the same formula, with ebs(TO.T.*) yeplaced by fy.
Consequently, for each S < T,

ebg(T,o,-,-)’

(Z’(Too xRx[T,00)xR)"R ? [T,oo)xR) (Z’(Too xRx[T,00)xR)R} Z(ss - |T, f/\)‘ [T,0) XR)

In particular, the distribution of the left-hand side does not depend on S and (5.9) follows from
this and from

bg(s,m,t,y) = bg(T,O,t,y) — bg(T,O,s,m).
Claim (5.10) follows because bé‘p(T,x,T,y) = log fa(y) — log fx(z) by (2.7) and (5.7). O
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Recall that D is a countable dense subset of R. Equip C([S, ) x R x [S,0) x R,R) with the
Polish topology of uniform convergence on compact sets. Let Pg be the joint distribution of w and
{bg(s,az,t,y) cx,y € Rys,t € [S,0),A € D}, induced by P® P, (2.7), and (5.7), on the product
space

Qg = Q% C([S,0) x R x [S,0) x R,R)D
eAquipped with the product topology and Borel o-algebra. Recall that € is a Polish space. Therefore,
Qg is also Polish.

Lemma 5.5. There exists a measure P on (ﬁ,]?) and a sequence (S; : j € N) satisfying S; — —o0
with the property that for every T € R,

T
Pgrls dR — PlA th Qrp.

Proof. Our first claim is that for each T € R, the family {1 Sg Pgrlg, dR : S € (=00, T)} is

tight on SA)T. In order to show tightness on a countable product space, it is enough to prove
the tightness on each of the factors. Lemma 5.4 implies that for any A € D, the distribution of
{b;‘z(s,x,t,y) s x,y € Rys,t = T} under P® P does not depend on R € (—o0,T]. Since P is a
probability measure on a Polish space, it is also tight. Hence, the family is tight on SA)T.

Using Prohorov’s theorem and the diagonal trick, we may find a sequence S; \, —c0 such that
for all T € Z, there exists a weak limit

(5.11)

T
Prlg . dR — P
T —5j Lj o, jow T

on the space Q. Define for any 7" € R and T € Z with T' < T" a measure on SA)T/ via f’T/ = 13T|QT/’
This definition is consistent because for T' < T” in Z,

Prls , = ].11330 T3,

T T’
Prls. )la = li P P
J:gj( R|QT)|Q dR = 31—>H;o T — S j R|Q dR = T

A similar computation shows that (5.11) holds for all 7" € R. The above consistency and the
projective version of Kolmogorov s extension theorem [75, Corollary 8.22], then imply the existence
of a measure P on (€, ) with the property that Py = P, G, 8 measures on Qr. O

Recall that the coordinate projection onto C(R*, R)? is denoted by {b*(s,z,t,y) : A\e D, s, z,t,y €
R}.

Lemma 5.6. For each real pair S <T and A € D,

the joint distribution of ( under P

A
Z‘ [T,00) x Rx[T,00) xR) AR ? b ‘Too XRX[TOO)XR)

= the joint distribution of ( under P® P.

Z| [T,00) x Rx [T,00) xR) R ? S|[Too xRx[Too)xR)

In partzcular the jomt distribution of ( under P is

‘ A‘ X X )
TCD xR x Too)xR)m]R T XRX T )XR

At this point, we cannot claim any ergodicity of P under shifts in time. This comes in Section
8 as a consequence of the almost sure limit (3.11).

Proof of Lemma 5.6. From (5.9), we have that for R < T', the distribution of

(5.12) (Z‘ [T,00) xR x[T,00) xR) "R} bA)
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under PR|§T is the same as that of

(5.13) (Z‘(Too xRx [T,00) xR)"RY ’ bT)

under P®P. In the expression above, the projection b* is restricted to b* € C([T,20) x R x [T, 00) x
R,R) because P R‘QT is a probability measure on Q7. Consequently, for S < T, the distribution

of (5.12) under (T — S)~* Sg Prlg, dR is the same as that of (5.13) under P®P. Since Plg_is a
limit point of these Cesaro averages, the distribution of (5.12) under P|@T is the same as that of
(5.13) under P® P.

Recall that Brownian motion is the integral of a one-dimensional white noise, which is mixing
under non-trivial shifts. We have assumed that for a # 0, 7o, is mixing on (2, F W P). For b # 0,
call 7,f(-) = f(b+ -) the shift by b on C(R,R). Since independent mixing processes are jointly
mixing [20, Theorem 5.1(a)], it follows that for a,b # 0, 7o, ® 7 is ergodic on (2 x C(R,R),
FV ® B(C(R,R)),P ®P). The claimed ergodicity then follows from the F¥ ® B(C(R,R)) mea-
surability of (Z|( T,00) x Rx [T,00) x R) AR ? g|[T,oo)><R><[T,oo)><R)' .
Proof of Propositions 5.1 and 5.2. Proposition 5.1 follows from the construction of P. We prove
Proposition 5.2.

As a consequence of Lemma 5.6, the monotonicity proved in Lemma 5.3 transfers to a mono-
tonicity P-almost surely and now for all times ¢t € R. This allows us to take left and right limits in
the parameter ) to extend {b*(¢,z,t,y) : t,z,y € R, A € D} to A € R by defining

A\— _ : n A+ _ : "
(5.14) bV (tx,t,y) piLH}Ab (t,z,t,y) and b (t,,t,y) pibn{Ab (t,z,t,y),
for all t,z,y € R with 2 < y and setting b’ (¢t,z,t,2) = 0 and b’ (¢, z,t,y) = —b E(t,2,t,y)

when z > y. Then (5.2) is satisfied and part (c) is proved. We also have for all s,z,y,\ € R and

o€ {—, +},

(5.15) b)‘_(s,a:,s,y) = lim b"7(s,x,s,y) and b)‘+(s,m,s,y) = lim b"7 (s, z, s,y).
A ENA
For s <t and X € R, define
o0
b)\i(37x7tay) = IOgJ\ Z(t7y|37z)eb>\i(87m7s’Z) dz
(5.16) s »
—log<f Z(t,yls, z)eb (sxsz)dz—kf Z(t,y|s,z)eb (s””sz)dz>
—0Q0 x
(5.4) follows from monotone convergence and (5.15). For s > t, let b’T (s, x,t,y) = —b*E(t,y, s, z).

The limits in (5.4) still hold for this case. Part (e) is proved.

Part (d) follows from the definition (5.7), Lemma 5.6 (which transfers the property to b*, A € D),
and the limits (5.4).

For t > r > ¢ (5.16) and (2.11) imply

0 0
P (a ty) f Z(t,y|r 2)Z (T72|q7w)ebm(q,x7q7w) dz dw

0 J—00
0

0
f Z(t,y|r, z) f Z(T,z|q,w)ebm(q’x’q’w) dw dz
—0

= f Z(t,y|r, z)e W (g.arz) g,
—0

Multiplying both sides by b7 (5:2.:0:2) and using the cocycle property (5.3) gives (5.5) and part (f).
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Next, we prove part (a). By monotone convergence, (5.14), and Lemma 5.6 with S =T = r, we
have, for r,z,y, A € R,
E[b*~ = lim E[p* = i —x) = Ay —
o™ (2, y)] = lim, B[ z,r,y)] = lim u(y —2) = Ay - o)
and similarly
E[b)\Jr(ra xz,T, y)] = )‘(y - ‘T)

Thus, for any given r,z,y, A € R with x < y we have P-almost surely

y
f M (r 2, r,2) =0 (r 2,7, 2)) dz = 0

T

and

y y
E[f (b)‘Jr (ryz,ryz) — b’\_(r,x,r, z)) dz] = f E[b’\+(r,x,r,z) — b’\_(r,m,r,z)] dz = 0.

T

Consequently, for all r € R, P-almost surely,
W (ra,ry) = U\ (r,2,r,y)  for Lebesgue-almost every z,y € R.

But now, (5.5) implies that for all 7, A € R, there exists an event QT, » such that P(Qr) =1 and
for each & € Q, y, VY (r,x,t,y) = W’ (r, 2, t,y) for all t > r and z,y € R. By the cocycle property
(5.3) we have that b*%(s, z,t,y) = b*2(r,0,t,y) — b (r,0,s,2) forallOD € {—, +}, 7 € Z, and 5,t > 7.
This implies that for each A € R, the following holds P-almost surely:

b)‘*(s,x,t,y) = b)‘+(s,x,t,y) for all s,x,t,y € R.

Part (a) is proved.

Lemma 5.7 below shows that when A € D, we actually have P(b*~ = b* = ) = 1. This and
Lemma 5.6 with S = T = ¢ imply the claim in part (b) when A € D. Since D is arbitrary and
any given A € R can be thrown into D, the distributional claim in fact holds for all A € R. The
proposition is proved. O

b)\i

The next lemma shows that when A € D, the newly defined are the same as the old b*.

Lemma 5.7. If A\ € D, then P-almost surely b*~(s,z,t,y) = W’ (s,z,t,9) = b (s, x,t,y) for all
s,x,t,y e R.
Proof. If A € D, then monotonicity and the limits (5.14) give

D (r, 2,7, y) = plim, b(r.z,myy) < oM (r,x,7,y) < pim bz y) = DM (2, y)

for all r,z,y € R with = < y. This and Proposition 5.2(a) give that P-almost surely, b)‘*(s, x,t,y) =
W (s,z,t,y) = b(s,x,t,y) for all s,z,t,y € R. O

6. SHAPE THEOREMS

The next item on the way to the limits (3.11) and (3.20) are shape theorems for the Green’s
function and the Busemann process. These are Theorem 3.8 above and Proposition 6.2 below. The
proofs begin with the next preliminary version of the shape theorem for the Green’s function, where
some of the variables are restricted to a lattice. The distinction between statements (6.2) and (6.3)
below lies in which spatial variable, x or y, is restricted to a discrete set.

Lemma 6.1. There exists a finite constant cg > 0 such that the following holds. If the sets S, < R,
Tn R, and V,, € R have no accumulation points and the constant C' > 0 satisfies

(6.1) Z nl{(s,t,v) € Sy x Tp x Vy 15 < t,|s| + |t| + [v] < Cn}le” " < 0,

neN
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then the following hold P-almost surely: for any M > 0,

R s (y—u)°
(6.2) lim n~! sup log Z(t,ys, ) + + ’ =
o (5,2,t,Y) € S XxRX T X Vn: t>s, 24 2(t o S)
s,t,y€[—Cn,Cn], |z|<Mn
and
(6.3) lim n~! sup log Z(t,ys, ) + 24 t — ) ‘ =

n—00 (8,2,t,4)ESn X Vi X Tp xRit>s,
s,t,xze[—Cn,Cnl,ly|<Mn

Proof. We prove (6.2) and (6.3) comes similarly or by using the reflection invariance recorded as
(2.9).

Recall the renormalized Green’s function Z(t,y|s,z) = Z(t,y|s,x)/p(t —s,y—x) from (2.14). As
recorded in Proposition 1.4 in [4] or Corollary 2.4 in [1], the process x — Z(t,y|s, =) is stationary.
Using this in the first equality and then and the translation and reflection invariance in (2.8) and
(2.9) as part of the second inequality, we have the following:

; 2
log Z(t,y|s,x) + s+(y ?) ’2671}

P{ Sy 24 " 2(t—s)

(8,2,t,y) € S XRX T X V1 t>s,
s,t,ye[—Cn,Cn], |z|<Mn

< X ) ]P’{ sup ‘logZ(t,yls,:v)+t_s+(y_$)2‘>6n}

Im|<Mn+1 (8,t,y) € Sn X Tn X Vn: msesmtl 24 Z(t B 8)

s<t, s,t,y€[—Cn,Cn]

t—
= Z Z IP’{ sup logZ(t,y|8,:E)+W+logp(t—s 0)‘ }

Im|<Mn+1 (8,t,y) € Sn X T X Vn: Osesl

s<t, s,t,y€[—Cn,Cn]

t —

2(Mn +1) Z P{‘logZ(t—8,0|0,0)+78‘2671/2}

(8,t,y) € Sn X T X Vn:
s<t, s,t,y€[—Cn,Cn]
2
~|—]P’{ sup |log Z(t — s,w|0,0) + ———

t —
2(Mn + 1) 3 (]P’{‘logZ(t—s,Om,O) + 73 >sn/2}
(8,t,y) € Sn X T X Vn:
s<t, s,t,y€[—Cn,Cn]

“log Z(t — 5,010, 0)‘ en/2}>

2
+ Z ]P’{‘logZ (t —s,0]1, 0)+—’ en/S}
1=—1
w?
—HP’{ sup |log Z(t — s,w[0,0) + —— —log Z(t — s,0|0, O)‘ en/2,
O<sw<l1 2(t—s)

t_
‘logZ(t— 5,0]7,0) + TS‘ <en/8forie {-1,0,1,2}}).

Proposition 4.3 of [33] says that the last probability on the right-hand side is bounded above by
C'e=""" for some finite strictly positive C’ and ¢. By Theorems 1.11 of [31] and Theorem 1.1
of [32], the other two probabilities on the final right-hand side are bounded above by C” e=<"" for
some finite strictly positive constants C” and ¢”. Since we assume (6.1), claim (6.2) follows from
the above and the Borel-Cantelli lemma. d
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Proof of Theorem 3.8. At various points in this proof it is convenient to use (2.14) to switch between
studying Z and Z. We first prove the statement over bounded time differences:

t—
(6.4) lim n~! sup log Z(t,y|s,x) + 75 log p(t — s,y — z) | = 0.
nee (s,z,t,y)eR*:0<t—s<1 24
S,QU,tvyE[*Cn,Cn]

Since t — s < 1 we can ignore the term (¢t — s)/24. Take 6 > 0 and write

P sup |log Z(t,y|s, )| >5n}
(vavtvy)eR4:0<t—S<1
57$7t7y€[*0n,0n]

< Y Bl sw  |logZ(tyls.a) > on)
m<s<m+1,s<t<s+1
me[—Cn—1,Cn]nZ ,ye[—Cn,Cn]

< C’nIP’{ sup  |log Z(t,y|s,z)| = 5"}

0<s<t<2

z,y€[—Cn,Cn]
< C’n]P’{ sup  Z(t,yls,x) = 65”} + C’n]P’{ sup  Z(t,yls,z)t > 65”}
0<s<t<2 0<s<t<2
z,y€[—Cn,Cn] z,y€[—Cn,Cn]

< C//n4675n .

In the last inequality uses Corollary 3.10 in [1]. (6.4) follows from this and the Borel-Cantelli
lemma.

With (6.4) at hand (3.8) follows if we show

. _ t—s (y—mx)?
(6.5) lim n~1 sup log Z(t,yl|s,x) + + =0
n—P0 (s,x,t,y)eR*t—s>1 24 2(t - 8)
s,z,t,y€[—Cn,Cn]

Since the above event is monotone in C, it is enough to work with a fixed C' > 0. We prove the
lower and upper bounds separately.

Step 1: Lower bound. For ne Nlet S, = T, = n~2Z and V,, = n~'Z. Then (6.1) is satisfied for
any strictly positive C' and ¢p. Consequently, (6.2) and (6.3) hold P-almost surely, for any strictly
positive C' and M.

For s€ Rlet k = [n?s] + 1 and s’ = n2k and for t € R let £ = |[n?*t] — 1 and ¢’ = n=2(. Note
that if t — s > 1 and n? > 8, then

s<s<s+omni<t—l4+2ni<t-2n"2-1/2<t —1/2
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For x € R let m = |nz| and 2’ = m/n and for y € R let m' = |ny| and ' = m’/n. Then
Z(t,yls,x)

f f Zt,ylt ,wpt —t,y —w)Z({t,w|s',u)p(s’ — s,u—x)Z(s',uls, x) dw du
x'+

n~ly +n~1

f f Z(t,y|t,w)pt —t,y—w)Z{t ,w|s,u)p(s’" — s,u—x)Z(s',uls, r) dw du

. / . /
2{ inf Z(r,v|t,w)}-{ inf Z(s,u\r,v)}
v <v,w<y’+n"1 2’ <uw<z’ +n"1
t4+n"2<r<t' +2n 2 s'—2n2<r<s’—n "2

T +n Yy +n
. j J pt =ty —w)Z({t ,w|s', u)p(s’ — s,u — x) dw du.

y [1, Corollary 3.11], we have

(6.7) E[ sup Z(2n*2,u\r,v)*1] < E[ sup Z(s,u|r,fu)*1] =(C < w.
0<u,v<1 0<u,v<1
o<r<n—2 0<r<s<2

A simple calculus computation shows that
(6.8) Va > 13c, <o: V=0 (log(l+x))* < com.
Next, let A be an arbitrary set and g : A — (0,00). Then we have this bound Vp > ¢ > 0:

([igflogg(:p)]_)p = ([sgplog(g(m)_l)r)p < (suplog(l +g(z)™))”

= sup(log(1 + g(z) ')’ <c Z/q Sllpg( ),

(6.9)

where for the last inequality we used (6.8) with o = p/q.
By (6.7) and (6.9) we have

E[([ inf logZ(2n72,u|r,v)]i>p]<E[<[ inf logZ(Zn*Q,uV,v)]i)p]<C’cp

0<u,v<n ! 0<U7U<12
0<r<n—2 o<r<n—

for any 1 < p < oo. Taking p > 6 and using a union bound then the Borel-Cantelli lemma gives

(6.10) lim n='  sup < inf log Z(n*2k,u\r,v))_ =0 a.s.
n—K0 \m\<Cn +1 1m<u,v<n*1(m+1)
lk|<Cnd+2 (k=2)n~?<r<(k—1)n—?
Similarly,
(6.11) lim n~'  sup ( inf logZ(r,U|n72€’w)>_ 0 ae
n—0o0 ‘m/|<cn2+1 lml<v w<n71(m/+1)

l(j<Cnd+2  (E+)n 2<r<(E+2)n 2

Next we treat the last double integral in (6.6). Note that |y —w| v |u — x| < n~! and both t —#'
and s’ — s are between n =2 and 2n~2. Therefore, the double integral is bounded below by

' +n~t py'4nTl /' +n~1 py'4nt
(47T€)1’I’L2j J Z({t' wl|s' u) dw du = j J Z(t' w|s',u) dw du
m/ y/ :B’ yl

for n large enough. Apply (C.1) to write
Z({t'w|s,2"Z({t Y| s u)

Z t/ / 2
( 7w|8 ,’LL) Z(t,,y,|8/,l‘,)
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Factoring the above double integral gives

2’+n~1 ryf4n1
10gJ J Z(t' w|s',u) dw du
m/ y/

-1

y' +n~t z’+n
> logj Z({t w|s 2")dw + logj Z{t Y| u)du —log Z(t',y' |, x').

y/ :EI

To derive a lower bound, restrict s,z,t,y to [-Cn,Cn]. Recall that ¥/ < y < ¢’ +n~! and
v’ <z <2’ +n7!and, as in the integrals above, consider u € [2/,2' + n~!] and w e [¢/,y' + n~!].
In the first inequality below, for the cross term in the numerator use |w —u + y — x| < 4Cn +
2n~1 < 4(Cn+1), lw—y| < n ' and |z —u| < n~!. Recall also that ¢/ — &' > 1/2,t —s > 1,
n2<t—t'<2n 2, andn?<s —s<2n2

(w—a')? + (' —u)?— (y —a')°

2(t" — §")
2u —2)w—y)+(w—-—u+y—z)(w—-—u—y+x)+(y— )
B 2(t" — s")
2 2
12 < -2 -1 (y_x) < (y_‘r)
(6.12) <207 " +8(Cn+1)n +72<t,_8,)<2+8(C+1)+72(t/_8/)
4C2 ([t -t + s — &) (y—=x)?
S8 e =) 2(t —s)
2 (y—a)?
<10+ 8C + 16C +2(t—s)'

Return to (6.6) to collect the bounds. Use t' — s’ = (|n?t| — [n?s] —2)n"2 < t — s and use (6.12)
2
to bound (23,(:2) from below.

-5  (y—a)?

21 +2(t—s)>

t
inf (logZ(t,y\s,a:)—i—
(s,2,t,y)eR*:t—s>1,
s,z,t,ye[—Cn,Cn]

> inf inf log Z(r,v|n"20, w)
|m/|<Cn?+1 n~lm/<vw<sn™ (m/+1)
g <Cn34+2  (L+1)n2<r<(0+2)n"2

+  inf inf log Z(n "2k, u|r,v)
|m|<Cn2+1 n~Im<uv<n™H(m+1)
|k|<Cn3+2 (k—2)n2<r<(k—1)n~2

t/ _ S, (w _ $,)2
+ inf <lo Z({t wls', ') + + )
(s', @'t/ ;w)ESH x Vi x Tr XRit' >s', & ( ‘ ) 24 2(t/ — 8/)

s'x! ¢ we[—Cn—2,Cn+2]

t—d <y/ _ u)2

inf <lo ZW,y |8, u) + + )

(8" ust! ;Y )ESH XRX Ty X Vit > 67 & ( y | ) 24 2(t’ — S’)
s ut’ y'e[-Cn—2,Cn+2]

¢ s <y/ _ x/)2
- sup <log Z{t s ') + + >
(8", @'t/ Y )ESH XV X Ty X Vnit! >’ 24 2<t/ - 3/)

s'x' it y'e[—Cn—2,Cn+2]

— (10 + 8C) — 16C2.



40 C. JANJIGIAN, F. RASSOUL-AGHA, AND T. SEPPALAINEN

Then (6.10), (6.11), (6.2), and (6.3) give

t—s (y—ux)?

24 * 2(t—s)>/0‘

(6.13) lim n~! inf (log Z(t,y|s,x) +
n—o0 (8,x,t,y)eR*:t—5>1,
s,z,t,ye[—Cn,Cn)

Step 2: Upper bound. Take M > C > 0. Decompose as

Z(t,y|s,x) = ff Z(t,yll/4,w)Z ()4, w|k/4,u)Z(k/4,uls,x) dw du
R2\[-Mn,Mn]?
(6.14)
f f 2t y10/4, ) Z(0/4, w| k)4, 1) Z(k /4, u| 5, 2) duw du.
—Mn,Mn)?

We address the first integral on the right. For any ¢, k,m,m' € Z with ¢ > k, |m|v |m/| < Cn+1,
and (¢ — k)/4 < 2Cn, we have

m<z<m+1

(k72)/4<s<(k71)/4 R2\[—Mn,Mn]?
m/<y<m/+1

(L+1)/4<t<(0+2)/4

jj sup Z(t,y\@/él,w)] p((€—k)/4,w —u)

m/<y<m/+1
R2\[-Mn,Mn]? =(¢p+41)/4<t<(0+2)/4

]P’{ sup log Jf Z(t,yll/4,w)Z ()4, w|k/4,u)Z(k/4,u|s,x) dw du = _sz}

m<r<m+1

X E[ sup Z(k:/4,u|s,x)] dw du
(k—2)/d<s<(k—1)/4

ff [ sup Z(r,z|0,0)] p((ﬁ—k)/él,w—u)E[ sup Z(r,z|0,0) | dwdu

m/ —w<z<m/—w+1 u—m—1<z<u—m

R2\[—Mn,Mn]? 1/4<r<1/2 1/4<r<1/2
< Ce™ Jf (m' —w)3(u —m)? sup  p(r,z) p((€ — k) /4,w — u) sup p(r,z)dwdu
m/ —w<z<m’ —w+1 u—m—1<z<u—m
RA\[—Mn,Mn]? 1/4<r<1/2 1/4<r<1/2
2 b2 w=w o
< C'e™ e~ ow=m) = gen ey duy

R2\[—Mn,Mn]?

0
< Clean2 f efc(wfm’)2 duw - f efc(ufm)2 du
—o0 R\[—Mn,Mn]
2

ee}
+ Clean”? J e=cuw=m)® gy, . j e~ =) gy
—0 R\[—Mn,Mn]

0
< C//ean2 J efcvz dv
~ .
M—-C)n—1
( )

For the equality we used shift invariance and reflection symmetry from [1, Proposition 2.3|. For
the second inequality we used Corollary 3.10 in [1] and for the third inequality we used the bounds
1/4 < (£ —k)/4 <t — s < 2Cn. For the last inequality we used |m| v |m/| < Cn + 1.
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The above bounds, a union bound, and the Borel-Cantelli lemma tell us that P-almost surely,
for any a > 0, and for any M large enough relative to a and C,
lin%O n2 sup log fj Z(t,y|(l4t] — 1)/4,w)

(s,2,t,y)eR*:t—5>1,
(615) 87x7t7y€[_cn’cn] R2\[—MH,M7L]2

< 2((14t] = 1)/4,w] (45] + 1)/4,0) Z(([4s] + 1)
This takes care of the first integral in (6.14).

, )dwdu < —a.

For the second integral in (6.14) we start by recording bounds on the discrete lattice from (6.2)
and (6.3): P-almost surely, for any § > 0, if n is large enough, then for any (s,u,t,w) € R* with
t—s>1,|s|+|t| <Cn, and |u| v |w| < Mn,

log Z (4] — 1)/4, w|([4s] + 1)/4, |u] + 1) < <ony L_t=s_ 2w H 1)

20 20 (4]~ as] ~2)
_ 1ot=s o 2w] - )
log Z ([4t] — 1)/4, |w]| ([4s] + 1)/4,u) < dn + % 2 () - [5]-2)
log Z ([4t] — 1)/4, |w]| ([4s] + 1)/4, |u] + 1) = —én + 1 t=s 2(w]—|u]-1)

48 24 (|4t] —[4s] —2)

Take m = |z|, m' = |y|, k = [4s] + 1, and £ = |4t] — 1. As we integrate over [—Mn, Mn]?, apply
first the comparison inequality (C.1) to the middle term. Then bound the integral by the maximum
of the integrals over squares [i,7 + 1] x [, + 1] and use the above bounds on the middle ratio.

Z(t,yll/4,w)Z(l/4, w|k/4,u)Z(k/4,u|s,x) dw du

[—Mn,Mn]?
Z(t/4, wlk/4, [u] + DZ(£/4, |w]|k/4, u)
Z(t,yll/4,w) - - Z(k/4 dw d
H (ol 2074, el K/ [l + 1) (/) d
—Mn,Mn)?
(2Mn)2 36n+ fs— 12 max sup Z(Tv v |€/47 w)
il v]il<Mn+1 j<w<j+1 p(r — @/4, v — w)
m/<v<m/+1
(0+1)1/4<r<(0+2) /4
Z
J 0w (k/4,ulr.)
i<u<i+l p(k/4 —r,u—v)
m<vsm+1
(k—2)/A<r<(k—1)/4
i+l g+l _2w=i=1)?+(—w)? = (j=i=1)?]
X f f p(t — /4,y —w)p(k/4 — s,u—x)e (=) dw du
' J
< We%mr%—tgj max sup Z(r,v|l/4,w)
li]v]|j|<Mn+1 j<w<j+1
m/<v<m/+1
(L+1)/4<r<(€+2)/4
X [ sup Z(k/4,ulr, v)]
i<u<i+1
m<vsm+1

(k—2)/4<r<(k—1)/4

ttl pgtl w2 wea)? 2fw—imD24G—w)?—(—i—D?)
e 20— 5/4)6 2(k/A—5) @ (=) dw du




42 C. JANJIGIAN, F. RASSOUL-AGHA, AND T. SEPPALAINEN

t—s (y—ac)2

2,2 30n+L4a—tos L2l

< 8M7rn P L T 7 R () max sup Z(r,v|l/4,w)

[jI<SMn+1 J<w<j+1

m/<v<m/+1

(+1)/4<r<(6+2)/4
(6.16)

X max sup Z(k/4,ulr,v).

[i|<Mn+1 i<u<i+l

m<vsm+1
(k—2)/4<r<(k—1)/4

For the last inequality we used two facts. First,
(w—i=1?+ (G —u)? = (G —i—1)° = (w—u)? <2

)2, (w—w)?

_w2 u
of Yy + ¢ 5 T 20-a)

20—0) T

and second, for s < a < b < t and any x,y € R, the minimum over (u, w)

equals (29(;_92)2 )

Next, use the same 0 > 0 and write for |j| < Mn + 1, |m/| < Cn+ 1, and |¢] < 4Cn,

—x
a—

IP’{ sup log Z(r,v|l/4,w) = 5n} = IP’{ sup log Z(r,v|0,w) = 5n}
jSw<j+1 o<w<1

m/<v<m/+1 m/—j<v<m’—j+1

(0+1)/A<r<((+2)/4 1/a<r<1/2
<e ME sup Z(r,v]0,w)| < C'nde™
O<w<l1
m/—j<v<m/—j+1
i/4<r<1/2

for a finite strictly positive constant C’. The last bound used [1, Corollary 3.11]. A union bound
and the Borel-Cantelli lemma imply then that

— Z /4
(6.17) lim n~! max sup log (r, 0] /4, w) < 6.
n—0o lil<Mn+1 jw<j+1 p(r —L£/4,v —w)
|ml‘<CTL+1 mlgygm/Jrl
l|<4Cn  (0+1)/d<r<((+2)/4
Similarly,
— Z(k/4
(6.18) lim n~! max sup log (k/4, ulr,v) < 0.
n—ao lil<Mn+1 i<u<itl p(k/4 —riu—v)

|m|<Cn+1 m<v<m+1
|k|<4Cn+2 (k—2)/4<r<(k-1)/4

Return to (6.14). Take a > 2C? and M large enough for (6.15) to hold. The choice of a and the

n~2 normalization in (6.15) control the term (23’(:2)2 which is at most 2C%n2. Putting (6.17)—(6.18)

and (6.15)—(6.16) together and taking 6 — 0 gives

— t — _ 7)2
lim n~! sup <log Z(t,yl|s,x) + =) ) <0
n—m (s,x,t,y)eR*:t—s>1, 24 2(t - 8)
s,z,t,ye[—Cn,Cn])
The theorem is proved. O

We turn to the shape theorem for the cocycles b*. Recall that, for the moment, the Busemann
process is defined on the extended probability space (2, F,P).

Proposition 6.2. Fiz A € R. The following holds on an event of P-probability one. For all C > 0
)\2

1
6.19 lim n~* sup v s, t,y) — | ——=—|(t—s)— ANy —=x)| =0.
( ) 0 vavtvye[_CTL,Cn] ( ) ( 2 24>< ) ( )
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Let Z; o be the o-algebra of events that are invariant under the shift by one unit in time. Let
Zo,1 be the o-algebra of events that are invariant under the shift by one unit in space.

Recall that we do not know yet if the distribution of b*(,+,+,+) under P is ergodic under shifts
in the time direction. For A € R define the random variable

ay = E[b*(0,0,1,0) | Z; 0].

Since x — b)‘(O, 0,0,x) has the same distribution, under P, as a standard Brownian motion with
drift \, we have
E[b"(0,0,0,1)|Zy1] = A P-as.

Lemma 6.3. For all A € R we have with P-probability one, ay = \?/2 — 1/24.

Proof. The cocycle property of b, time-stationarity of P, and Birkhoff’s ergodic theorem imply
that P-almost surely
ay = lim n~16*(0,0,n,0).

n—aoo

By the shear (3.6), v*(0,0,n,0) has the same distribution as °(0,0,7,An) + A?/2. Birkhoff’s
ergodic theorem implies that n~'6°(0,0,0, \n) converges to 0, P-almost surely, and therefore
n~10%(n,0,n, An) (which has the same distribution as n='6°(n,0,n, An)) converges to 0 in P-
probability. Theorem 1.2 in [19] implies that n~'6°(0,0,n,0) converges in P-probability to —1/24.
Therefore,

n=1%(0,0,n, An) = n16°(0,0,7,0) + n=16°(n, 0,1, An)
converges in P-probability to —1/24. The claim follows. ([l

Remark 6.4. The above lemma is another place where integrable probability is used. However,
combining (3.6) with (3.9) we get ay,. = ay — cA + ¢?/2, which gives a. = ag + ¢*/2. This is more
than enough for our results in this paper and knowing the exact value ag = —1/24 is not necessary.

Proof of Proposition 6.2. By Lemma B.1 it suffices to prove that for some p > 2
(6.20) v*(0,0,0,1) and 4*(0,0,1,0) are in LP(P) and  sup [b*(0,0,t,z)| € L*(P).

1<t<2

0<z<1
Since *(0,0,0,1) is a normal random variable, all its moments are finite. That |6*(0,0, 1,0)]| is in
LP(P) (and in fact has an exponential moment) and the last part of (6.20) come from verifying
that

(6.21) E[ sup ebk(o’o’t’y)] < o0
1<t<2
O<y<l

and

(6.22) E[ sup e*bk(o’o’t’y)] < o0.
1<t<2
O<y<l

For (6.22), use (3.4) to write

_ 0 —1
E[ sup e—bA(O,Oﬂf,y)] — B[ sup <f ebk(o,o,o,x)z(uym’x)dw) ]
1<t<2 L1<t<2\ J_oo
0<y<l 0<y<l1
_ 1 1
o ¥ s ([ 0009 70410.0000) |
1<t<2 N Jo
O<y<1
< E| sup eibk(o’o’o’m)]E[ sup Z(t,y|0,:17)71].
Lo<z<i 1<t<2

0<z,y<1
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The first expectation on the right-hand side is finite because b’\(O, 0,0,x)— Az is a Brownian motion.
The second expectation is also seen to be finite by applying [1, Corollary 3.11].
For (6.21), apply (3.4) again to write

_ o0
A A
E[ sup € (O’O’t’y)] =E| sup f Z(t,y\O,x)eb (0,0,0,) dm]
1<t<2 Li<t<2 )0
0<y<l1 o<y<l

ee}
=E| sup J Z(t,y|0,:17),o(t,y—x)ebk(o’o’o’m) d:z:.]
List<2 J-oo

O<y<1

- (00
<E f sup Z(t,y[0,2) - sup plt,y —a) - 000 g

—oo 1<tL2 1<t<2

0<y<1 0<y<l
ee} bA
0,0,0,
=J E[ sup Z(t,y|0,x)] - sup p(t,y —z) - E[e” ©002)] 4y
—0 1<t<2 1<t<2
0<y<l 0<y<l1
o0 2
_z¥ 2|z x
éC’f lz[?-em 1 -e2tMdr < 0.
—00

In the second inequality we applied Corollary 3.10 in [1] and used the facts that 5*(0,0,0,2) — \z
127 xr
is a two-sided standard Brownian motion and p(t,y — z) < \/%—We_ 2 for all t € [1,2] and

y e [0,1]. O

The following theorem gives versions of (6.19) that hold for all A simultaneously.

Theorem 6.5. The following holds P-almost surely: for all A\ € R and 0 € {—, +}

(6.24) rEIEloo |r| ! | |su£| ||b)‘D(T,O,r,a;) — x| =0, foralC >0,
z|<C|r
A0 _
(6.25) lim sup (. Oy w) = Ax| 0, and
=0 ek 7 + [z
(6.26) | l|im 2|10 (8,0, t,2) — Ax| =0 for all t € R.
x|—00

Proof. Due to the monotonicity in C', it is enough to work with a fixed value of C. Let Ql be the
intersection of the full P-probability event on which (5.2) holds with the full P-probability event
on which (6.19) holds simultaneously for all A € D.

~

For any @ € Oy, any kK <  in D, and any X € (k,u), r <0, and = > 0, by (5.2),
V(r, 0,7, ) — Kz + (k — Nz < V(1 0,7, 2) — Az < b(r,0,7,2) — pz + (1 — N)z.

The same bounds with reversed inequalities hold for x < 0. Divide by r, take it to —o0, and use
(6.19) to get that

Im |r|7! sup |D7(r,0,7,2) — Az| < C(p— k).

e |z[<Clr|

Take p down to A and k up to A to get the first limit.
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For the second limit one can again use the above bounds to reduce the problem to one with
A € D and thus dispense with the 0. For A € D we have for any m € Z, n€ N, and 6 € (0,1/2)

P{ sup  |bM(r, 0,7, x) — Az| = 6(n + |m\)}
—n—1<r<—n
m<rsm+1

= P{ sup  |[bA(r, 0,7, 1) — Ax| = 6(n + \m|)}
1<r<2
m<z<m+1

—62<n+|m|>/3E[ {é A _
e exp sup  |b7(r, 0,7, ) — Az
3 r

mi§<§n2+1

—62(n+|m|)/3E[exp{5 sup |070,0,7, 0)|}] 1/3

1<r<2

[exp{& sup \bA(O,O,O,x)—)\x\}]l/g

m<r<m+1

E
1/3
X E[exp{é sup MO,z 7z |}]
1<r<2
m<z<m+1

< BB o5 sup 1|bA(O,0,O,w)—Axl}]l/gE[eXP{5lsup2IbA(nyﬂ%x)\}]Q/g
m<rsm-+ SUSS
0<z<l1

1/3 1/3
6_62("+|m|)/3E[eXp{5 sup |b)‘(0,0,0,:17)—)\x|}] E[exp{% sup |b)‘(0,0,7‘,x)|}]
m<z<m+1 éiri%

1/3

xE[exp{% sup |b)‘(0,0,0,x)|}]
0<z<l1

< Qe (n+Iml)/3,82m|/6

We used here (6.21) and (6.22) (since 26 < 1) and the fact that b*(0,0,0,z) — Az is a standard
Brownian motion. The desired limit comes then by applying Borel-Cantelli lemma. The last limit
is an easier version of the first two. O

The next result is a convex dual of (3.8), which can be interpreted as a variant of Varadhan’s
theorem from the theory of large deviations.

Lemma 6.6. The following holds P-almost surely. For all p € R and all —o0 < A\; < Ao < 0, for
any C > 0,
Aa|r| )\2 1
(6.27) lim sup ’ logf Z(t,x|r,w) e dw — sup {,u/\ - - —}‘ =0
r=>=2 ¢ wel-cc) Tl I A <A<z 2 24

We will need a variant of this lemma that links Z and the Busemann process. This is given in
the next theorem. The proof of this theorem comes at the end of the section. The proof of Lemma
6.6 is an easier version of that of Theorem 6.7 and is therefore omitted.

Theorem 6.7. The following holds P-almost surely. For allpe R, O € {—,+}, for all —o0 < A\ <
Ao < 00, and for any C > 0,

Az|r| 5 A2 1

(6.28)  lim sup ’ logf Z(t, x| r,w)e?” 0w gy — sup {,u)\ - - —}‘ =0.
r==0 ¢ ge[-C ‘T A1lr A1 <A<z

Proof. First, we prove the result for fixed g € R and —o0 < A\; < Ao < 0. In this case, there is no

need for the + distinction. We begin by treating the case of finite A\; and A\o. In this case, (6.19)

and (3.8) imply that P-almost surely, for § > 0, C' > 0, and r < 0 with |r| large enough, we have
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for any t,z € [—-C,C]

1 Azlr| ” 1 Xl _ior @ow?
_]ng Z(t,$|7”,w)e (r,0,r,w) dw<5+_10gj e 2@ 2 THY dw

7 D 717 Iain
11 Aot C/Irl 22
<0+ ¢ 1 + og r| + Clul + —l j e~ 3o kil gy
24|r| 24 || rl - [r] O/l
C 1 I C log(Ao — A1 +2C/|r
L C 1 loglr|  Clu|  log(A2 — M +20/|r])
24r| 24 td i i
[r|\?
+ sup —— + A
Al—C/r<>\<>\2+C/|r|{ 2(C +|r|) }
C 1 log|r| Clyl N log (X2 — A1 +2C/|r]) n C(M v A3)
24r| 24 td i i 2(C +r|)
)\2
+ sup {—— + ,u)\}
A—CJlr|<A<roro/r b 2
_ 2 2
s G loglrl  Clul  log(he =X +2C/Ir])  C(X v X3)
24|r| td i i 2(C +r|)
2 2
pt 1 (=)
- Stp { 2 24 2 }

A —C/|r|<A<Aa+C/|r|

The lower bound comes similarly. Taking § — 0 shows that

Aalr| } 21
lim sup ‘— logJ Z(t,x|rw)e (r0mw) oy —  sup {,u/\ - — = —H =0
=m0 ¢ e[ A1lr| AL <A<A2 2 24
Next, we treat the case where A\; = —o0 but Ay < 0. By [1, Lemma 3.1], there exists a ¢ > 0
such that Dl/ Y n3 < e for all n € N. Fix

4,2(n+1)

221
M < su { /\————}
15 1 L R

and ] < 0 A Ay such that

(6.29) (W+22— (N —2u+2)/4<M-c—1
and

A1 A2
6.30 SUD{UA — o — =7 (= Sup JpA— — — .
( ) )\<)\2{ 2 24 } N <)\<)\2{ 2 24 }

Then for n e N

1 Ain
P{ —log j sup  Z(t,xz|r,w)  sup 05 gy > M}
n

—o0 —n—1<r<—n —n—1<s<—n
t,ze[—C,C]

A 1/4 1/4
< e_M"f E[ sup  Z(t,x| r,w)4] E[ sup e4b“(570’_"_2’0)]
—n—1<r<—n —n—1<s<—n
t,xe[—C,C]

« E[e4b“(fnf2,0,fnf2,w)]1/4 E[ e4b“(fnf2,w,s,w):| 1/4 dw

sup
—n—1<s<—n

_ e’M”E[ sup ef4b“(0,0,s,0)]1/4 E[ sup 646“(0,0,3,0)]1/4

1<s<?2 1<s<2
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A 1/4
X f ' E[ sup  Z(r, —w\t,x)4] B[ (00.0.w)]1/4 g,

—00 n<r<n+1
t,xe[—C,C]
1/4 1/4
— _Ap H
e MnE[ sup e (0,0,3,0)] E[ sup e (o,o,s,o)]
1<s<?2 1<s<2

Ain LR

xf E[ sup  Z(r,—w|t,x) ] 2w gy,
-0 n<r<n+1
t,ze[—C,C]

By similar arguments to the ones giving (6.21) and (6.23), the expectations in front of the last
integral are finite. Applying Corollary 3.10 in [1], we have

1/4 1/4
E[ sup Z(r,—w\t,x)4]/<E[ sup Z(r,—w\t,m)‘l]/' sup  p(r—t,w+x)

n<r<n+1 n<r<n+1 n<r<n+1

t,ze[—C,C] t,ze[—C,C] t,ze[—C,C]
2
1/4 n3lwl? _w®
CD42(n+1 jw|*e™2n,
1/4

for some constant C’ > 0. Recall that D
the above bounds with:

12(n+1) < e" for all n € N. Therefore, we can continue

’

Ain

< Cln3e(Mc)nj ! |w|3 T e(u+2) dw
—0
A /m

_ C/e—(M—c)nnE) f ! |u|3e—§e(u+2)u\/ﬁ du

o]

A v/n
< C//ef(Mfc)nn5 j wn ef%e(u+2)u\/ﬁ du

—00

MVRe )2
_ C//e—(M—C)ne(u+2)2nn5j —( Aut2)yn) du

(M 72(u+2
40”67( ) (,Ur‘r2 n 5\/7 j *UT d’U
< 4C//e—(Mfc)ne(u+2)2n7()\’1f (1+2)) "/4n5ﬁ.

By (6.29), the right-hand side is bounded by 4C”e~"n’,/m. Consequently, by the Borel-Cantelli
lemma, P-almost surely, for n large enough,

1 A b (s,0,s,w) A2 1
—log sup  Z(t,x|r,w) sup e I dyw < sup{,u)\————}
n —o —n—1<r<—n —n—1<s<—n A<Ao 2 24
t,ze[—C,C|
This implies that P-almost surely, for » < 0 with |r| large enough,
1 Alrl )\2 1
(6.31) Sup logJ Z(t, z|r,w)e?” "0 dyy < sup {,u)\ - — = —}
t,xe[—C |T| —© A<)a 2 24
Recalling (6.30), we by now know that
L el A2
lim sup — logf Z(t,x\r,w)ebﬂ(r’o’r’w) dw — sup {u)\ - — = —H = 0.
r==0 we[-c,0] T NIl A<h2 2 24
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Therefore, we have

)\2|r " )\2 1
lim sup ‘ logf Z(t, x|r,w)e’ (10.mw) doy — sup {u)\ - — = —}‘ = 0.
Py el A<Xo 2 24
The case where A\ > —o0 and Ay = o0 is similar and the case A\ = —o0 and Ay = oo follows.

To prove the claim on one full P-probability event, simultaneously for all p e R, 0 € {—, +}, and
—00 < A1 < Ay < 00, note that if ] < X, € Qu {—o0, 0} and u € (k1,K2) with K1 < kg in D, then
one can bound

Az|r| e A || i
J Z(t7 €T ‘ T, w)e (r,0,r,w) dw < j Z(t, T | r, w)e (r,0,r,w) dw
Al N ||
(0AXY)|r] - (0vAY)|r] -
J Z(t, x | T, 'w)e (r,0,r,w) dw + j Z(t, T ‘ r, w)e (r,0,r,w) dw
(O] (OvA))|r

A

and applying the already proved result to get that

_ 1 Az|r| -
fim, sup —bgf 2t ry ) H050) gy

r==%0 42—, I Al

P P
< Sup {K1>\————}~I— sup {/42)\————}
0AN, <A<0AN, 0V A, <A<V N, 2 A

Taking \| — A1, A5, — Ao, and both k; and k2 to p we get the desired upper bound. The lower
bound comes similarly. (]

Remark 6.8. The formula for a, that appears in Lemma 6.3 can also be seen from (6.28). Namely,
use (5.5) and (6.19) to write

1 0 "
Lok [ 200,01, wje 0 iy - 2000

[ r o

Consequently,

7. BUSEMANN LIMITS

With the Busemann process constructed in Section 5 and the shape theorems proved in Section
6, we can prove the limits claimed (3.11) and (3.20). However, we are still working on the extended

probability space (€, F,P) of (5.1). Define the set
(7.1) A = {XeR:3(s,z,t,y) € R* with B’ (s, 2,t,y) # b (s, 2, t, )}

Remark 7.1. When we switch back to (2, F,P), in Section 8, we will denote the above set by A“.
See (3.7).

When \ ¢ A% we write b* for ¥t and v*~. This convention is consistent with the earlier use of
b* for A € D because by Lemma 5.7 we can always include the condition D < R\A@ in any P-full
probability event we work on.

The main goal of this section is to prove the following proposition.

Proposition 7.2. There exists an event (AZO e F such that P(ﬁo) = 1 and we have the following
forallwe Qy, \e R, C >0,e>0, and 7 > 0.
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(a) There exist (possibly random) R < 0 and deterministic § > 0 such that for all < R, z
such that |2 + X < 6, and for all s,z,t,y € [-C,C| witht —s>1T1

xT

Z(t o0 _
72((8”1“22)) < (1+ 6)2 L Z(t,yls, w)ebﬂ(s’m’s’w) dw + (1 + 6)2 JOO Z(t,yls, w)ebA (5:2,8,0) oy

and

xT

Z<t y‘,r Z) -3 J\OO bA7 _ At
77 > (] Z(t (8,,8,w) d 1 3f 7Z(t b (s,x,8,w) dw.
Z(s,x|r, 2) (1+e) . (t,y]s, w)e w+ (1+¢) . (t,y|s,w)e w

(b) For each f € Fy, there exists (possibly random) R < 0 such that for all r < R, for all
s,x,t,y € [—C,C| with t — s = 7, we have

Sz Z(t,ylr,2) f(r,2z) dz 3foo P+
< 1 Z t (vavsvw)d
Sp Z(s,x|r, z) f(r,z)dz (1+e) (t,yls, w)e v

T

+(1+ €)3j Z(t,y|s,w)ebk7(s’m’s’w) dw

—00
and

SR Z(t7y|’r7 Z) f('r', Z) dz 4 00 .
> 1 Z (S,:B,s,u;)
S Z(s,x|r, 2) f(r,z)dz (1+¢) J (t,y|s,w)e dw

xT

X
+(1+ 6)_4J Z(t,yls, w)ebH(s’x’S’w) dw.
—0

In particular, with P-probability one, for any A ¢ A and any f € Fy, we have the limits

(7.2) fim 22 et g
r——n Z(s,x|r, z)
z/r—>—A

(7.3) lim o Z(t,ylr.2) [ 2) d2 — Pty

r——c0 (o Z(s,z|r,2) f(r,z) dz
locally uniformly in (s,z,t,y) € R,
We begin with the following preliminary lemma.

Lemma 7.3. The following holds with P-probability one: for all Kk < p in D, ¢ > 0, and C > 0,
there exist (possibly random) R < —C' and deterministic 6 > 0 such that for all X € [k + &, — €]
and t,x € [-C,C], for all r < R, and for all z such that |Z + \| <9,

Z(t
(7.4) % < (14 e)e"G=tY)  for all y € (x,0)
and
(7.5) Z(tylr,2) < (1 +e)e B2t for all y e (o0, ).

Z(t,x|r, 2)

Proof. We prove (7.4), the other bound being similar. Take the full P-probability event to be the
intersection of the events in Proposition 5.2 and Lemmas 5.7 and C.1, with the event on which
Theorem 6.7 holds for all 4 € D and A, A2 € D U {+®}. By (C.2), for all y > z, all r < ¢, and all
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f as in that result,

Z(t,y|r, 2) - SZOZ(t,y|r,w)f(w)dw
Z(t,x|r,z) S?Z(t,a;\r,w)f(w)dw
_ SO_OOOZ(t,y\T,w)f(w)dw ' SioooZ(t,xV,w)f(w)dw . SZO Z(t,y|r,w) f(w) dw
SiOOOZ(t,a:\T,w)f(w)dw SZOZ(t,xV,w)f(w)dw SZOOOZ(t,yV,w)f(w)dw
_ SO_OOOZ(t,y\T,w)f(w)dw ' SioooZ(t,xV,w)f(w)dw
= SO_OOOZ(t,a:\T,w)f(w)dw SZOZ(t,xV,w)f(w)dw )

Take € D and use f(w) = eV (0rw) 46 get

Z(ta Yy ‘ r, Z) < SO_OOO Z(t, y|r7 w)eb# (r,0,r,w) dw . SO_OOO Z(t, . |r7 w)eb“ (r0.m0) .
Z<t7 x ‘ Ty Z) = Si)oo Z(ty T |T7 w)eb# (7”,077“7’[1}) dw S;D Z(t, €T |,,,.’ w)eb# (7»’077“7“}) dw
* b (r,0,r,w

— M(Emity) S—Ogo Z(t,z|r,w)e”( ) dw
SZ Z(t,$|7‘,w)eb“(r70,r,w) dw

‘ b (r,0,r,w -1

= eb“(t,x,t,y) . (1 . Sfoo Z(t,x|7’,w)e ( )dw > |

S(iOOO Z(t7 € |7', w)eb“ (r0,m,w) daw

For the first equality we applied (3.4) and the cocycle property (3.2). Take
Xo€(p—3e/4,p—e/4) nD and e (0,e/4).

Then for all r <0 and A < p—¢€, 2+ A > —0 implies z < —A2r and

Z(t,x|7’, Z) - Sio Z(t7$|r,w)eb“(7’,0,r,w) dw

0

>\ r T W -1
Z(tylr2) _ oty (1 I >dw>

Since Ao < p, Theorem 6.7 implies that the ratio of integrals converges to 0 as r — —o0. Indeed,
take g = (1 — A2)?/8. Then there exists and R; < 0 depending on x and Ay, which in turn is
determined by p and €, such that for » < R; the bottom integral is at least e(®—<0)I"l while the top
one is at most e(@—(H=22)*/2+e0)lrl and the ratio is at most e~ (B=A2)?IM/4 < e_€2|’"|/64, uniformly in
t,x € R with |¢| +|z| < C. Now choose R < R; so that e== 1Bl/64 < /(14 ¢) and (7.4) follows. O

Lemma 7.4. Fiz M € [0,00]. Then with P-probability one, for any A\ € R and O € {—,+},
Si\/[ Z(t,y|s, w)ebm(s’x’s’“’) dw and SfM Z(t,y|s, w)ebm(s’x’s’“’) dw are jointly continuous in (s, z,t,y),
with t > s.

Proof. First, recall that we have P-almost surely, b*2(s, z, s, w) < b*(s,z,s,w) for all O € {—, +},
Ae R, peDwith g > A, and all x < w and s in R. Similarly, we have P-almost surely,
VO (s, z,s,w) < b%(s,x,s,w) for all me {—,+}, A e R, k € D with k < A, and all z > w and s in
R. Thus, the claim follows from the dominated convergence theorem if we show that for each fixed
A€ R and each C >0 and € > 0,

o0
(7.6) f E sup Z(t,y|s,w)] E[ sup ebk(s’x’s’“’)] dw < 0.
—0 s,t,ye[—C,C] s,ze[—C,C]
t—s>e
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By Corollary 3.10 in [1], the first expectation is bounded by C’ e~? for some strictly positive finite
constants ¢ and C’. For the other expectation, write

E[ sup ebk(&%s,w)] — E[ sup ebk(&%s,w)] < E[ sup e_bk(op,s@) sup ebA(070,s7w)]

s,2e[—C,C] 1<s<2C+1 1<s<2C+1 1<s<2C+1
|z]<C |lz|<C
A 1/2 A 1/2
<E[ sup e 2b (0,0,S,m)] IE[ sup o2 (o,o,s,w)] ‘
1<s<2C+1 1<s<2C+1
lz|<C

By a minor change to (6.23), the first expectation on the right-hand side is bounded by a constant.
Similarly, we get that the last expectation is bounded by C” vl Here are the details:

E[ sup e2bA(0’0’s’w)] < E[(foo e (0.0,0.u) sup Z(s,w|0,u) du)2]

1<s<K —o0 1<s<K

—f E[ebA(O’O’O’U)ebk(o’o’o’”)] E[ sup Z(s,w|0,u) - sup Z(s,w\O,fu)] du dv
R2

1<s<K 1<s<K

<J E[e2b’\(0,0,0,u)]1/2.E[e2b’\(070,0,v)]1/2
~ Rz

xE[( sup Z(S,w|0,u)>2]1/2-E[< sup Z(S,w|0,v)2]1/2dudv

1<s<K 1<s<K

2

/ / M, — o (1 —an)2
< C/f € \u|ec \v\e " (u—w) e ¢ (v—w) du dv
R2

© 2
_ Cl(f ec’|u\e—c"(u—w)2 du) < C//ec'|w\‘
—00

In the second inequality, we used Corollary 3.10 in [1] and the fact that *(0,0,0,z) is a Gaussian
random variable with mean Az and variance |x|. Thus (7.6) holds and the lemma is proved. O

Lemma 7.5. The following holds with P-probability one. For all Kk < p in D, ¢ > 0, C > 0,
and T > 0, there exist (possibly random) R < —C and deterministic 6 > 0 such that for all
X € [k + €, u — €] these statements hold.

(a) For all s,x € [—C,C1, for all t,y € R with t > s, for all r < R, and for all z such that
|z/r + A < 4,
Z(t,y|r,z) J
7.7 — < (1
0D ey <02,
(b) Foralls,x,t,ye [-C,C| witht—s =7, for all ™ < R, and for all z such that |z/r + \| <9,
Z(t,y|7",2) —2 joo
7.8 —— 2= (1
(78) Z(s,x|r, 2) (1+¢) ( -
Proof. Apply (7.4) and (7.5) with s in place of t and w in place of y, multiply all sides by Z(t, y|s, w)
and integrate the first inequality over w € (x,0) and the second one over w € (—o0,z), then add
the two inequalities to get (7.7).
For the other bound take an integer M > C. Apply (7.4) and (7.5) to get that there exist an

R < —M and § > 0 such that for all s € [-C,C] and w € [-M, M], for all » < R, and all z such
that |z/r + A\| <0,

0 T

Z(t,yls, w)eb“(s’x’s’w) dw + j Z(t,yls, w)ebm(s’x’s’w) dw).

—00

xT

Z(t,yls, w)ebﬂ(s’x’s’“’) dw + j Z(t,yls, w)eb“(s’m’s’w) dw).

—00

Z
% > (14¢e) L @sw) for all 2 € (w, )
and

Z(s, wlr, z)

Z(s,x|r, z) > (L+e) temo) for all z € (=0, w).



52 C. JANJIGIAN, F. RASSOUL-AGHA, AND T. SEPPALAINEN

Multiply all sides by Z(t,y|s,w) and integrate over w to get
7 o Z(t yls, ) Z (s, w]r, 2) duw
Z(s,x|r 2)

>(1+e) ! J Ny Z(t,yls,w)ed” (5=5) qy,

and "
$ 7 Z(t,yls,w)Z(s,w|r,z)dw ™M -
z > (1 Z(t (8:2:5,0) gy,
g 1+ [ Zitylswe w

xT

Add the two and enlarge the integrals on the left-hand side to get
Z(t7y|rvz) —1 jM

79 —/————==(1

79 Zoanzy > 097 (),

Next, note that for ¢ > s, Siooo Z(t,y|s, w)et" (5m5w) dyy = " (2:4Y) < o0 with a similar bound for
b*. Therefore,

X
Z(t’ y|s, w)ebK(S%S,w) dw + J Z(t, y|s, w)eb“(S,x,s,w) dw) .
—-M

52 Z(t,yls, w)e?" o) du §7 0 Z(t,yls, w)e? ms) du
an
§o Z(t,y|s,w)ed (sm5w) dw §0 Z(t,y|s, w)et (525w) du

xT

(7.10)

both increase to 1 as M " o. By Lemma 7.4, these are continuous functions. Since they are
monotonically converging (pointwise) to a continuous function, Dini’s theorem [94, Theorem 7.13]
implies the convergence is uniform on the compact set K = {(s,z,t,y) € [-C,C] : t — s = 7}.
Thus, for M large enough and all (s,z,t,y) € K,

0

M
f Z(t,yls,w)ed @5 quy > (1 + E)lf Z(t,y|s, w)ed" (®5v) dy

x x

and
T

| ztulswer ez (o [ eyl G du.
—M

—00

(7.7) follows from this and (7.9). O

Proof of Proposition 7.2. Part (a). We work on the full P-probability event that is the intersection
of the one on which Theorem 2.6 in [1], (2.16), (2.18), Theorem 3.8, Proposition 5.2, Lemma 5.7,
and Lemmas 6.6, 7.3, and 7.5 hold, with the event on which Lemma 7.4 holds for all M € Z, .

By monotone convergence,

Q0 Q0
f Z(t,y|s, w)e” 55 dyy — f Z(t,y\s,w)eb%(s’x’s’w) dw as Dok /A

T

and
f Z(t,y|s, w)e? 5w dyy — f Z(t,y|s,w)eb“(s’x’s’w) dw as D3puN\ A\
—o0 —00

By Lemma 7.4, these are continuous functions that are monotonically converging (pointwise) to a
continuous function. Thus, Dini’s theorem [94, Theorem 7.13] implies the convergence is uniform
on the compact set K = {(s,z,t,y) € [-C,C] : t — s = 7}. Consequently, given ¢ > 0 and X € R,
there exists an g > 0 such that if K < g in D are such that © — x < gg and kK < A < , then for all
(s,x,t,y) e K

Q0

0
j Z(t,yls, w)ebﬂ(s,x,s,w) dw = (1 + 6)71 j Z(t,yls, w)ebA*(s,m,s,w) dw

xT x

and
X

J Z(t,y|8,w)ebu(s’x’s’w) dw > (1+ 5)1j Z(t,y|s,w)eb“(s’m’s’w) dw.

— o —a0

Take 1 € (0,6 A (L — A) A (A — k)) and take R large enough (and negative), depending on C, T,
d, k, i, and &1 (and hence also depending on \), so that (7.8) holds for any X € [k + 1, — 1]
and z such that |z/r + N| < 0, with &1 in place of €. The second inequality of part (a) now follows.
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The first inequality comes similarly. The limit (7.2), locally uniformly in (s, z,t,y) € R* with t > s
comes immediately. To extend the statement to all of R* take any C' > 0 and take s’ < —C — 1.
Then we have that

Z<t=y‘T7z) :ebk(s’,o,t,y) and Z(S,%‘T,Z) :ebk(s’,o,s,x)

I
e Z(s',0|r, z) o Z(s',0|r, z)
z/r—>—X z/r——X

uniformly in (s,z,t,7) € [-C, C]*. Take a ratio and use the cocycle property of b* to conclude.

Part (b). Consider first the case A > 0. If f € Fy, then for any § > 0 small enough there exists
a p > —A such that for any € > 0 there exists an R; < 0 such that for » < Ry we have for all t > r
and all y

Z(t,y|r,z) f(r,2)dz < esrf Z(ty|r, 2) N i,

LZO:;’:—F}\Z(S 220:|Z+A|=0

0 0
f Z(t,ylr,z) f(r,z)dz < "l f Z(t,y|r,z)e* <l dz, and
—0

—0

f Z(t,y|r,z) e dz < el f Z(t,y|r, z) f(r,z)dz.
|2 4+A/<6 |2 4+A|<6
Note that reducing p makes the right-hand side in the second inequality larger. Therefore, one

can assume 4 € (—A,0]. Lemma 6.6 implies that for any ¢ > 0, for any § > 0 small enough, for
e € (0,9) such that e < min(ﬁ, ’\92%2”:), for any C' > 0, there exists an Ry < R such that for
any t,y € [—C,C], and any r < Ra,

Q0
e€|’"|< f Z(t,y|r, z) eAT)7 dz + f
(

A+6)|r| 0
< ef\r\/24e2e|r|(e()\+5)()\+2675)|r|/2 1 QA=) (M t2etd)lrl/2 e(,u,fe)2|r|/2)

(A=3)Ir| 0
Z(t,ylr,z) €O+ dz + f Z(t,ylr, 2) 0" dz)
—a0

_ e—\r\/24e—2s\r\e,\2|r|/2 (e[—52+2e()\+6+4)]\7’\/2 + e[—62+2e(,\—6+4)]\r\/2 + e[—()\2—uQ)—2ue+e2+85]\r\/2)

_ _ 2
< eeIrl/24,=2€lr] N2Ir|/2

< ee eI jz ‘ Z(t,y|r, 2) e dz.
Z40<é

For the penultimate inequality, after fixing €, |r| is increased further if necessary so that the sum
of three exponentials is < . The last inequality is another instance of Lemma 6.6.
Together, the above bounds give

jR Z(tylr, 2) f(r,2) dz — j

Z(t,y|r,z)f<r,z)dz+j Z(ty|r.2) f(r, ) d
[Z2+A[>0

[2+A[<0

<(1+5)j Z(t,y|r, z) f(r,z)dz.

|Z+A[<0

(7.11)
The already proved part (a) says that for § > 0 small enough there exists an R < Ry such that for
all r < R and s,z,t,y e [-C,C|] witht —s>7>0

f Z(tylr ) £(r.2) de
1Z4<6

< ((1+s)2foo

T

T
Z(t,yls, w)e! T EEsw) qy 4 (1 4 2)2 f

—0

Z(tv ) | S, w)ebkf(s,x,s,w) dw)
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xf Z(s,x|r,z) f(r,z)dz
[2+A]<0

00 xT

< ((1 +¢)? f Z(t,yls, w)ebki(s’m’s’“’) dw)

xT

Z(t,yls, w)ebH(s’m’s’“’) dw + (1 + E)zf

X f Z(s,x|r, z) f(r,z) dz.
R

The upper bound of part (b) follows. The lower bound is similar, again using (7.11). The case
A < 0 comes the same way.

It remains to prove the case A = 0. If f € Fy, then for any 6 > 0 small enough, for any ¢ > 0,
there exists an R; < 0 such that for » < Ry we have for all £ > r and all y

Q0
f Z(t,y|7", Z) f(?", Z) dZ < €€|T|f Z(t7y|r7 Z) €6|Z| dZ.
|z|=0]|r| |2|3]r|

Lemma 6.6 implies that for any 6 > 0 small enough, for € € (0,6), for any C' > 0, there exists an
Ry < R; such that for any ¢,y € [-C, C], and any r < Ra,

2
f Z(t,y|r, z) el dz < 2elete0—F =2l
|2/=1r]

By Theorem 3.8 and condition (3.15) there exists an R3 < min(Rg, —C') such that for all s,z €
[-C,C] and r < R3,

. (z—2)2

1 s— _
e~cIrle="21 f e 6= f(r,z)dz
|z|<e

2n(s —r)

f Z(s,x|r,z)f(r,z)dz >
|2|<d|r|

This and the above two bounds give that for any ¢ > 0, taking € < % we have for any
s,x,t,y € [—C,C] and any r large enough negative,

fR Z(t,ylr,2) F(r,2) dz — f

|2[>4]|r|

Z(t,y|r,z>f<r,z)dz+f 2ty 2) f(r,2) dz

|2 <dlr]

2
< 2e2eted= =zl 4 f Z(t,y|r,z) f(r,z)dz

|2 <dlr|

s 2
R < S e f Z(t,y|r 2) f(r,2) dz

2] <dlr|

|r]
< %6_2046_36|T|€_24€+f Z(t,y|r,z) f(r,z)dz
|2|<]r|

(7.12) < (14 E)J Z(t,y|r, z) f(r, z) dz.

|2|<d|r|
The claims of the theorem now follow as for the case A # 0. O
We close this section with a line-to-point version of the bounds (7.4) and (7.5). The difference

between these bounds and those of Proposition 7.2(b) is that in (7.13) and (7.14) below the terminal
times are equal.
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Lemma 7.6. The following holds P-almost surely: for any k < pin D, e >0, A€ [k +&,u — €],
feFy, and C > 0, there exists an R < —C' such that for all t,z € [-C,C] and all r < R,

SR (t,y|r, 2) f(r,2) dz

7.13 1+ ¢)2eb"(taty) ll
( ) SR t $|7‘ 2 f(T‘ Z)dz ( +€) fOTa ye(x7w)
and
(t,y|r,z) f(r,z)dz Kbz
(7.14) §R 2 2]r2) f(r2) dz < (1+e)2" by for all y e (-0, z).
R )
Proof. Apply (7.11), then (7.12), and then Lemma 7.3. O

8. ERGODICITY AND SYMMETRIES OF THE BUSEMANN PROCESS

The almost sure limit (7.2) of the previous section implies that the Busemann process can be
defined on the original probability space (€2, F,P) of the white noise, as stated in the next corollary.

Corollary 8.1. The process {b’\D(s,x,t,y) cs,xyt,y, A e Roo e {—, +}} is a measurable function
of the Green’s function Z(+,+|+,+) and hence is F" -measurable.

Proof. For A\ € D, (7.2) implies the claim for the process {b*(s,z,t,y) : s,z,t,y € R} and (5.4)
extends this to the whole process {b’\D(s,m,t,y) cs, oyt y, Ne RO e {—, +}} O

Proofs of Theorems 3.1, 8.12, 3.183, 3.16, and 3.23. By Corollary 8.1, the properties of b* under P
in Propositions 5.1 and 5.2 are now properties under P. All the claims of Theorem 3.1 follow.
Similarly, Theorem 3.12 follows from Proposition 6.2 and Theorems 3.16 and 3.23 follow from
Proposition 7.2. Also, the claim in Theorem 6.5 holds P-almost surely and then Theorem 3.13
follows from (6.26) since u*?(t,z) = b7 (0,0,6,0) gb*2(1,0,6,) O

Proof of Theorem 3.2. All the properties are direct consequences of the limits (3.11) and (3.3) and
the properties of Z and Z in Proposition 2.3 of [1]. We spell out the proof of the shear-covariance
property. For this, first use the shear property of Z to get that for any r,a € R there exists an
event (). . with P(Q;. ) = 1 such that for all w e Q. , for all Re R, t € (R,0), and all r,y, 2 € R,

r,c?

2
e*C(y*Z)JF?(t*R)Z(t, Yy — C(t — 7")|R, z— C(R — 'r')) o Sr,c = Z(ta y|R7 Z)'

Next, for A € D, take R — —0, z/R — —\ and use P(A ¢ A¥) = P(A+c ¢ A¥) =1 (see Proposition
5.2(a)) and (3.11) to deduce the existence of an event 2 . < € . such that P(Q;.) = 1 and for all
we Q! all s,z,t,y e R, and all A€ D,

e

eb>‘+c(s,mfc(sfr),t,yfc(tfr);Srycw) lim ( (t — T) |R —AR — C(R T)) © Sr,c
R—-w Z(s,x —c(s —r)|R,—AR —¢(R —71)) 0 Sy
e rAR-5-R) Z(t,y| R, —AR)
= lim =

(3 R) (S,.Z'|R, _)‘R)

bA (S,w,t,y;w)*i’C(y*ZE)* % (t S)

R—— ec(er)\R)
=e
The shear-covariance claim follows from this and (3.3). O

Proof of Theorem 3.15. The limit in (3.10) implies that for any r, f(z) = b (r0m2) does not grow
in z faster than exponentially. Then (3.4) and [I, Theorem 2.6] imply that b (r0tY) g locally
Hélder-continuous with the claimed exponents, in t € (r,00) and y € R. Consequently, b7 (s, ty)
and therefore also b*?(s, x,t,y) are locally Hélder-continuous in all four variables. O
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In the sequel we no longer need to refer to the extended space (ﬁ,j} ,P). We also note that the
claims in Theorem 6.7 and Lemmas 7.3, 7.4, 7.5, and 7.6 all hold P-almost surely.

We close this section with an immediate consequence of Corollary 8.1, Theorem 3.2(i), and the
ergodicity of (€, 7V, P) under non-trivial shifts.

Theorem 8.2. The process {b)‘D(S,$,t,y) cs,x,t,by, A€ ROe {—,~|—}} is totally ergodic under
non-trivial shifts. Precisely, for any (r,z) # (0,0) and any Borel set A = C(R* R)®*{=+} that is
invariant under the simultaneous shift of all spatial coordinates by z and all temporal coordinates
by r,

P({bm(s,az,t,y) s,z by, NeR,0€{—,+}} € A> € {0,1}.

In particular, for any given A, {b)‘(s,x,t,y) : 8,:17,75,@/} is ergodic under each temporal shift.
(Recall from Theorem 3.1(c) that when A is fixed, the A+ distinction disappears P-almost surely.)
This says that the known ratio-stationary solutions of (1.7) (see [15, 49, 56]) are ergodic under the
time shift. More details follow in Section 12.

9. SEMI-INFINITE CONTINUUM POLYMER

Our proof of Theorem 3.26 relies on the analysis of a family of semi-infinite continuum directed
polymer measures, which we discuss in this section.

For each (¢,7) € R?, it is shown in Theorem 2.14 of [1] that the polymer measures {Quy) (s2) 1 t>
s,y € R} from Section 2.4 are consistent in the sense of Gibbs conditioning, or, equivalently, that
they satisfy the domain Markov property. It is then natural to consider the question of existence
of infinite length polymers, i.e., solutions to the Dobrushin—Lanford—Ruelle (DLR) equations. A
discussion of these equations in the context of planar lattice polymers appears in Sections 2.4 and
2.5 of [70]. Formulas (2.22) and (2.23) suggest that this question is tightly bound to the Busemann
limits (3.20) and (3.11) and that the limiting objects are tightly connected to the Busemann process
b"*. We thus now describe the limiting polymer measures.

Fort,y,Ae Rand O € {—, +}, let Qg‘fy) denote the distribution of the real-valued Markov process
{Xs : s € (—oo,t]} that evolves backward in time from the initial point X; = y and whose move
from (s,x) to (r,z) obeys the transition probability density

(9.1 ™(r, z|s,2) = Z(s,x|r, z)ebm(s’m’r’z), s>rand z,z € R.

These are indeed transition probability densities because (2.11) and the additivity (3.2) imply
that they satisfy the Chapman-Kolmogorov equation and (3.4) implies that

J ™9 (r, z|s,2) dz = j Z(s,z|r, 2)e? " emm2) gy = P Vsmsm)
R R

One can immediately recognize in the expression above that this family of semi-infinite length
continuum polymer measures arise by using the Busemann process to define a family of Doob
transforms of the finite length measures.

Our first result in this section collects some basic properties of these semi-infinite polymers.

Theorem 9.1. The following statements hold P-almost surely.

(a) (Existence) For each A € R, 0 € {—, +}, and initial point (t,y) € R?, the expression in (9.1)
defines a measure Qg‘fy) on C((—o0,t],R) with its Borel o-algebra, under which the path is
almost surely locally a-Hélder-continuous for any a € (0,1/2).

(b) (Thermodynamic limits) For all A ¢ A, (t,y) € R2, terminal condition f € Fy, and time-
space paths {(r,z,) : v € (—00,t]} such that z./r — —X as r — —0, for any s < t, both
Q(my),(n%)(Xs;t € +) and Q(t7y)7(r,fr)(Xs;t € «) converge in the total variation distance to
Qi\t,y) (Xst €+) as T — —0.
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(c¢) (LLN) For all t,y, A€ R and O € {—, +},
Xy
(9.2) QY { ar —A} —1

rﬁoor

(d) (Continuity) Let t,y, A€ R and O € {—,+}. Asx — y, Q(t'jx) converges weakly to Q(ty as

probability measures on C((—o0,t],R). Furthermore, for any s < t, Q(t v) (Xs:t € ) converges
in the total vartation distance to Qz\t;/) (Xst€e)aspu /A, and to Qf‘iy) (Xst €°) as ™\ A.

Remark 9.2. By Theorem 9.1(c), for any A # p and 0,0 € {—,+}, the measures Q‘(fy) and

QE\E;) are mutually singular. Therefore their total variation distance is one and the total variation

convergence of Theorem 9.1(d) cannot hold on the semi-infinite time interval (—oo,t]. However,
the total variation convergence of the projections onto bounded time intervals does imply weak
convergence on the full time interval.

Combining Theorem 9.1(b) with Theorem 3.1(c) gives the following statement for each fixed A.
Corollary 9.3. Fiz A € R. Then the following holds P-almost surely. For any (t,y) € R?, f € Fy,
and time-space paths {(r, ,zr)}re (—w,y] Such that z./r — —X as v — —oo, for any s < t, both
Q(t,y),(rz) (Xt € +) and Q1)) (r, 1) (Xs:t € *) converge in the total variation distance to Qg‘t Y) (Xst €
<) as r — —0.

Recall that in zero temperature or inviscid settings, semi-infinite polymer measures correspond
to semi-infinite geodesics or characteristics. Fairly generally, one expects that when synchroniza-
tion occurs (Section 3.5), these minimizing paths should coalesce either at a finite time or else
asymptotically. This property is known as hyperbolicity. Our next result shows that for A ¢ A¥,
the polymer measures with parameter A started from different initial conditions are hyperbolic in
total variation norm.

Theorem 9.4. The following statements hold P-almost surely simultaneously for all X ¢ A“.
(i) We have locally uniform total variation convergence: for all C' < oo,
(9.3) lim supcc HQf‘t’y) (X _oour €E°) — Qf‘s’x) (X_ooir € %)

r——00
s "E7t7ye[7 ’

= 0.

(ii) The measures {Q(ty . (t,y) € R?} are equal and trivial on the tail o-algebra Giay =
(), <0 G—cowr Of the path space.
(iii) Fach Qg‘t ) is mizing in the following total variation sense: for B € G_u . such that

a,y)<B) >0,

(9.4) im Q) K coir € +) = QP (Xcoir €+ | B

Before turning to the proofs of these main results, we make two remarks concerning the forward-
in-time version of the continuum polymers.

=0.

v

Remark 9.5. The invariance of P under temporal reflection R implies that the analogous results
also hold for the forward random polymer measure with terminal time ¢ and terminal condition f,
which has kernel
Z(t, f|s,w)Z(s w'|s,w)
Z(t, fs,w)

/ / / /

— Z(shw'|s,w SR (¢ 2], w )f(dz), for s < s <rand w,w € R.
g Z(t,z|s,w) f(dz)

The forward semi-infinite polymer is then defined via the forward Busemann limits mentioned in
Remark 3.25.

7t (s w'| s, w) =
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Remark 9.6. The forward point-to-point and point-to-line polymer measures mentioned in the
previous remark (with f = 6, and f(dz) = dz, respectively) were originally introduced in [2]. It
was shown in that on an event of full probability depending on the initial and terminal conditions,
the finite-dimensional marginals of the path measures are absolutely continuous with respect to
the corresponding finite-dimensional marginals of Brownian motion, but the two distributions are
mutually singular at the process level.

We begin with the proof of the parts of Theorem 9.1 other than (c). Part (a) shows existence and
basic properties of the measures studied in this section, part (b) shows that these measures arise
as limits of finite volume measures, and part (d) shows that these measures satisfy basic continuity
conditions. We return to prove part (c) after proving a large deviation principle for the paths.

Proof of Theorem 9.1 except part (c). Initially, the probability measure QE\fy) can be defined on

the product space R through Kolmogorov’s extension. But then one notes that for any r < ¢,

Q(ty )Gt Q(t,y),(r,fﬁ‘u)’ where ff\D(z) — 0O(r0,r2) Indeed, for s < & in (r, ],
Z(s/ w/|s w)ebm(no,s,w) Z(s/ w/|8 w)Z(s w|r )\D)
A / / ) ) ) ) / /
s wls ) = b8 (10,8, w') - Z(s',w'|r, f29) = Mol wlsh vl

By Theorem 3.13, f° € My for any r,A € R and 0 € {—, +}. Existence and uniqueness of the
claimed measure on C([r,t],R) and the claimed a-Holder-continuity on [r,¢] follow from Theorem
2.15 in [1]. Consistency then shows furnishes a measure on C((—0,t],R), proving (a).

Turning to part (b), we begin with an observation similar to one in the proof of Theorem 9.1.
We have that if r < s < t, then Q(t,y),(r,zr) Gt = Q(t,y),(s,gr) and Q(t,y),(r,f) Gow = Q(t,y),(s,hr)v where
the right-hand sides are the finite-length polymers (2.22) with terminal functions

Z(s,x|r, z) Z(s,x|s, f(r,+))
Z(s,0]r, z,) Z(s,0]s, f(r,+))
The denominators can be cancelled. They are included for the next step.

By Lemma 7.3 (which we now know holds on the space (2, F,P)), P-almost surely: for any x <
in D, e > 0, and s € R, there exist R < s and ¢ > 0 such that for any r < R, A€ [k —e,u + €], 2
such that |2 + A\| < 4, and all z € R,

Z(s,2|r,2)
Z(s,0]r, z)

By Lemma 7.6, P-almost surely: for any k < pin D, e > 0,s€ R, A€ [k +e,u—¢], and f € F),

there exists an R < s such that for any r < R and z € R

and h,(x) =

gr(x) =

< (1 + E) (eb’i(8707s7w) + eby‘(s707s7m))'

SR (s,x|r,z) f(r,2)dz

S Z(s,0|r,2) f(r,2)dz

The claims now follow from Theorem 3.13, the convergence in Theorem 2.16 of [1], and the limits
(3.11) and (3.20). This shows part (b).

By the monotonicity (3.1), if u € [ — 1,7 + 1], then f/°(2) < )+ () + f(77 b= (z), for all

z € R. By (3.10), §z e*“2z(f7("+l)+(z) + fqgn_l)_(z))dz < oo for all @ > 0. The convergence claims

n (d) then follow from Theorem 2.16 [1] and the limits in (3.3). O

< (1 + 8)2(eb"€(s,0,s,ac) + eb“(s,O,s,x))‘

Recall the notation Gs.¢ for the o-algebra on C([t,t'],R) generated by X,.» from the notation
section.

The law of large numbers in Theorem 9.1(c) arises in part through the following large deviation
principle for the finite-dimensional distributions of the path. This LDP has the same quadratic
rate function as Brownian motion with drift —A. Note that on every interval, the path measure
should be expected to be singular with respect to a Brownian measure. See [2, Section 4.4].
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Lemma 9.7. The following holds P-almost surely: for all t,y,A € R, 0 € {—,+}, and 0 = 19 <
T < - < Tk, the distribution of (T*IXTIT,...,T*IXTW) under Qi‘t'jy) satisfies a large deviation
principle, as r — —o0, with normalization |r| and rate function

1 Wit — Us 2
I)\(ula"'vuk)zi (M_'—)‘) (Ti+1—7’i), u0:07 (uly"'vuk)ERk'
iz i+l — T
Remark 9.8. A special case of the above is the large deviation principle for the distribution of
2
X,./r under Qé‘fy), which has the rate function I(—p) = @ In particular, for any ¢ > 0,

Q?ﬁy)ﬂXr + Ar| > e|r|) decays exponentially fast as r — —o0.

Remark 9.9. Lemma 9.7 suggests that as r — —oo, the distribution of the scaled path {r~'X,, :
7 > 0} under Qg‘tuy) satisfies a large deviation principle with rate function
1 e}
P =g [ e azan

0

where f : [0,00) — R is such that f’ 4 X is in L?(R) and f(0) = 0. The above lemma immediately
implies the weak large deviation upper bound. The full LDP is Open Problem 9.

Proof of Lemma 9.7. The weak large deviation principle follows directly from the shape theorems
(3.9) and (3.8). More precisely, consider the full P-probability event that is the intersection of the
events on which parts (g) and (i) of Theorem 3.1, Theorem 3.12, Theorem 3.8, Theorem 6.7 (which
holds on (2, F,P)), and (6.31) are satisfied. Take w in this event. Then for any bounded Borel set
AcRF and any (t,y) e R%, o€ {—,+}, k <pin D, and X € (s, \),

1 _ -
— log Qg‘t'?y){(r YXoiry o r 1 X, ,) € A}

|
k—1

1 A

= m log JA b D(tyyv‘f'kﬁzk)Z(t, y|mir, z1) H Z(7im, 2| Tis 17, i1 ) d21ok
" i=1
b)\D (t7 Y, TET, y)
Ir]

1 k—1
+ ﬂ log[ f ]1{Zk > y}eb”(Tkr’y’Tkr’zk)Z(t, y|7’1’r’, zl) H Z(TZ‘T‘, ZZ'|TZ'+1T‘, Zi+1) le:k

" rA i=1

k—1
+ J 1z, < yhe? Wrvmn ) Z(ty e, 2) [ [ Z(mir, zilmiar, i) le:k]
rA i=1

VOt 1

_ ( 7yaTkray) +—10g‘7"|k
| |

1 k—1
+ o log[ j og = ylr| "y T ) 7yl e, v |r|) H Z(riryvi|r| | Tigar, viga|r|) dogg

" -4 i=1

k—1
+ f 1{vp < ylr|~ 13" kv kD Z (¢ | 7 o)) H Z(7ir, vilr|| Tigar, vie1|r|) dvlzk].
-4 i=1

By Theorems 3.12 and 3.8, the |r| " log[- - -] converges to the maximum of

R (Vi1 — vi)”
sup {ka————1+2 i i+ _Z i+ i }

—(v17~~~,vk)eA,vk>0 24 2T1 i=1 24 i=1 2<Ti+1 - Ti)
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and
sl 2 Rl g 1 s (Vig1 — v;)?
1 v i+ 1+1 7 U
sup {ka—————i- g - g }
7(”17"' 7Uk)eA7vk<0 24 27—1 i=1 24 i=1 2(T2+1 - TZ)

Taking x and p to A gives the limit

k=1 _ k=1, N2 A2 1
sup {Avk—l—v—l—ZTl Tm_Z(vm vz)}:<___>7k_i%“x‘

—(v1,,vk)EA 2(7—i+1 - Ti)

Next, apply (3.4) to get

)
pro (t, Y, Tk, y) = — lOgJ Z(t, y | T, Z)ebm (7Y, 7T, 2) dz.

—0

Theorem 6.7 implies that after dividing the right-hand side by |r| and taking r — —o0 it converges
to

o {AV_V_Q_L} <A_2_i)
Th SUP 2 2af - \3 T

Thus, we get that

lim 10g Q(ty {((r Xy 71X ) € AY < —i%f .

T—>OO||

The matching lower bound comes by switching around s and pu:

lim log Q(ty ((r Xy 71 X ) € AY = —i%f .

S

The weak large deviation principle is proved. (That is, the upper bound holds for compact
instead of all closed sets.) The full large deviation principle follows from exponential tightness.
See Theorem 2.19 in [92]. For this, it is enough to show that P-almost surely, for any t,y, A € R,
o€ {—,+}, and 7 € (0,1],

hm hm 7|~ 1logQ {|er‘ Clr|} = -

—>OO7‘

This comes with the exact same argument as for (6.31). 0
With these large deviation results in-hand, we turn to the proof of Theorem 9.1(c).

Proof of Theorem 9.1(c). Consider the full P-probability event that is the intersection of the events
on which parts (g) and (i) of Theorem 3.1 and Theorems 3.13, 3.16, and 9.1 are satisfied. For € R
and r < s < t define

Z(s,z|r, X,)

Msvxvtvy — .
' Z(t,ylr, X:)
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Then {M7™" . r < s} is a QE\fy)—baCkward martingale with respect to the path filtration G_ .,
which was defined in the notation section 1.7. Indeed, for ' < r” < r let F be a bounded G,.,»-
measurable function. Then

QAtD s,z,t,y
E~@w M F(X,n)]
= J Z(t, y|'r'7 u)ebAD (ty,mu) | Z(s7 z |T7 ’LL)
R2

A " Ao
m . Z(T,u|r”,v)eb B (ruyr” w) QG v [F(X,0n)] dv du

AO

- J Z(s, & |T7 ’LL)Z(?", u|r”, U)ebAD (ta.rt0). EQ(T”’U) [F(X?“’:?“”)] du dv
R2

u] ” A0
= J Z(s, x|, v)el " ) 'EQ(T’%)[F(X,,/:T,N)] dv
R

Z(s,z|r",v) Ao

_ 7(t " b8 (t,y,r" v) . .EQ(T”,v) F(X....)| d
JR (t,y|r", v)e Z(t,y|"0) [F(Xprpr)] dv

QP 5,2ty
= E ( ’?!)[MT” F(XT”:T’”)]'
By the martingale convergence theorem (see e.g. [76, Theorem 3.15, page 17]), the limit
. Z(s,x|r, X,)
9.5 Ms,x,t,y - 1 ) s LA
9 = 2y )
exists Qf‘tuy)-almost surely.

Suppose now that, with strictly positive foy)—probability, r~1X, does not have a limit as r —

—o0. We can then find k¥ < p in D, the countable dense subset of R from Section 5, such that with
strictly positive szy)—probability, we have

lim 7 'X, < —p<—k< lim rlX,.
r—>—00 r—>—©

By path-continuity the above event equals {—x and — yu are limit points of r~!X,}. Limit (3.11)
of Theorem 3.16 implies that on the intersection of this event and the event on which (9.5) holds,

Q0 0
f_oo Z(t,yls, w)eb“(s,@s,w) dw = ¥ (&mty) — Mszﬁo,t,y — Msaity) _ f_oo Z(t,ys, w)ebu(s,@s,w) dw.
The previous equalities then hold foy)-almost surely for all rational s < t and « . Taking s — ¢
we get that b*(t,z,t,y) = b (t,x,t,y) for all rational x. This contradicts (3.10), since K # pu.
Consequently, we have shown that r~1X, has a limit, Qz\t?y)—almost surely. Then Lemma 9.7 (or,
more precisely, Remark 9.8) implies that this limit must equal —A\. O

We turn to prove the second main result of this section, Theorem 9.4 on hyperbolicity.

Proof of Theorem 9./. Fix A ¢ A“.

Part (i). By symmetry, we can assume s < t. We prove first total variation convergence of the
one-time marginals, that is,

(9.6) lim sup [ Q. (Xr €)= Qly(Xr€4) |y = 0.

rom® s,smt,ye[—C,C']

Let Qg‘t )i denote the distribution of X, under Qg‘t )" We have for all s,z,t,y e R, r < s A t, and
zeR

A
A _ dQ(va)V’ _ Z(Sv z | T Z) b (s,2,t,y)
gr,s,m,t,y(z) - by (Z) = —F—~ € .
dQ(t,y);r Z(t,ylr,2)

Fix 7 > 0.
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Case 1 of (9.6): t —s = 7. By Theorem 3.16, for any A ¢ A“, any C > 0, ¢ > 0, and 7 > 0, there
exist R < 0 and § > 0 such that for all r < R, z such that \f—k)\\ < 4, and all s,z,t,y e [-C,C]
with t — s > 7,

(14+6)? < guary(z) < (1+e)
By the LDP of Lemma 9.7 and the above uniform bound on the Radon-Nikodym derivative there
exist ¢ = ¢(\,d) > 0 and R < 0 such that

sup Qty{‘X/T+)\|>5}<€_CH for all » < R.
t,ye[—C,C]

Take € > 0 small enough so that
1—(1+e)2<(1+e)—1<4e.
By Lemma C.2,

1 A
§HQ€\S7I);T - Q?t,y);rHTV < EQ(t’y) [|gr)’\,s,x,t,y(XT’) - 1| : 1“% + )‘| < 6}] + Qi\t,y){‘% + )“ = 6}

< de + el

The bound above is uniform over s,xz,t,y € [—C, C] such that t — s > 7 and r < R. Take r - —0
and then € — 0. We have proved (9.6) for t — s > 7.

Case 2 of (9.6): 0 <t—s < 7. Pick u < —C — 7. By the Markov property, for B € B(R) and
K € (0,00),

A
Qa,y);r(B) o Q?s,x);r(B) = E%w [Qi\t,y);r(B) o Q?u,Xu);T’(B)]

A
= B9 [(Qz\tvy);r(B) N Qz\quu);r(B)) ]1|Xu\<C+K] + QE\S@){|X“| >C+ K}
From this, for K > C + |ul,

1 A A A A
sup S [QG ) — Qs sup 1QG ) — Qloyzyir TV
s tye[-C.0] 2 (bl (s v,z,tye[-C—K,C+K]:t—v=T (tg)ir (w2)ir
+  sup Q) {lXul > C+ K}
s,ze[—C,C]

For a fixed K, the first term on the right converges to 0 as 1 — —o0o by the case already proved.
The last term converges to 0 as K — oo. This completes the proof of (9.6).

The Markov property takes us from (9.6) to (9.3): for r < s A t,

o ‘ i\t,y)( —ooir € ) B i\s,x) (X*(X)Z’r‘ € A)|

AeB(C((—o0,r],R)) Q

= sup ' J (1) (Xr €d2) — QE\M) (X, € dz)]QE\m) (X_ oo € A)
AeB(C((—o0,r],

<2 Q) (X € 4) = Q) (X € 4) v

Part (ii). By (9.3) and the implication (iii)=(i) of Theorem 25.25 on p. 576 of Kallenberg [75],
Q(ty Qf‘s ) On the tail o-algebra Giay for all time-space points (s, ), (t,y) € R%. Let A € G

and ¢ = Qf‘t Y (A) the common probability value for all (¢,y) € R2. Then Qf‘t y)—almost surely, for
s < t, first by the Markov property and then by martingale convergence,

¢ = Qs x)(A) = Qi) (AlGs) — Ta.
Hence the common value ¢ = 0 or 1.

Part (iii). The implication from part (ii) to part (iii) is the implication (i)=(ii) of Theorem 26.10
on p. 595 of Kallenberg [75]. O
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We close this section with some a result about stochastic monotonicity. Planar directed poly-
mer measures with nearest-neighbor random walk (on the lattice) or continuous sample paths are
typically stochastically monotone in their initial and terminal conditions. This is a straightforward
consequence of the Karlin-McGregor theorem. See the proof of Proposition 5.2 in [1].

To make this precise in our setting, recall that measures on continuous functions come with a
natural partial order, defined as follows. Given s < t, a function F : C([s,t],R) — R is nonde-
creasing if F(Xs) < F(Ys4) whenever X, <Y, for all r € [s,t]. Given two probability measures
Q@1 and Q3 on C([s,t],R), we say (1 is stochastically dominated by @2, and write Q1 <s Q2,
if EQ[F] < E%[F] for all bounded measurable nondecreasing functions F : C([s,t],R) — R.
Then the polymer measures are stochastically ordered. Proposition 2.18 in [1] shows that for all
s,x,t,y,u,v € R with s <t, u <z, v <y, and for all f € My, we have the stochastic ordering,

(9.7) Qt0),(s.0) <st Qty),(s,2) and Qo) (s.f) st Qty).(s.1)-

Because the infinite length polymers arise as limits of finite length polymers, they inherit this
monotonicity from the finite volume measures.

Lemma 9.10. The following holds P-almost surely: for all 0 € {—,+} and all t,y,v,\, u € R with
v <y and A < pu, we have the stochastic ordering

A— A — + A A A— A—
Q) Sot Qi) ot Qley) Sot Q) Qi Sot Qi and - Q) <ot Q-

Proof. The continuity of the paths implies that it is enough to prove the stochastic ordering claims at
the level of the finite marginal distributions. Then an induction, using the Chapman-Kolmogorov
property of the point-to-point measures and the Markov property of the semi-infinite measures,
reduces this to the one-dimensional marginal. See the proof of Proposition 2.18 in [1] for a similar
induction argument.

Start by observing that for r < ¢
a bA+ s & Ty 0 bA+ ,a,T,
S_ooe (T“T“)Z(t,y\r,u)du<l<ga e e Z(t y|r,u) du

§* e marn Z(t ylru) du S §o0 et (rarw) Z(t y|r,u) du’

From this we get

1-§” Dty 7t e u)du o §0 Dy 7 (¢ ylr u) du § M ) 7ty v, u) du

1— {“ et v Z(t,y|r, u) du a ¢ e twrw) Z(t y|r,u) du N S0 et (byran) Z (¢, y|r, u) du’

Rearranging, one gets
(9.8) QX =a) < QY (X, = a).

The next two inequalities come similarly.

For the second-to-last inequality apply (C.2) with the function f(w) = b (E0,rw)

to get

Sioo Z(tv y|7‘, w)ebk+(t707r’w) dw < SZO Z(t7 y|7‘, w)ebk+(t’07’"vw) dw

§ o Z(t,v|r,w)ed™ G0rw) dy - §20 Z(t,v]r,w)el™ B0mw) gy

Multiply both sides by ebH(t’yvt’o)/ebﬂ(t’”’tvo) and rearrange to get Qf‘tt)) (X, =a) < QE\ter) (X, = a).

The last inequality is similar.
10. EXCEPTIONAL SLOPES

This section contains the proofs of the properties of the set A“ of the discontinuities of the
Busemann process, defined in (3.7).



64 C. JANJIGIAN, F. RASSOUL-AGHA, AND T. SEPPALAINEN

Proof of Theorem 3.3. Suppose that b*~(t,z,t,y) = b (t,2,t,y) for some t € R and = < y. Take
r <tand for O e {—,+} let

FT7D<U) = Qz\ﬁx) (XT’ < 'U) = f Z(t7 x‘747 Z)eb)‘u(t,x,r,z) dz.
-0

By Lemma 9.10 we have F, (v) < F, _(v) for all v € R. Let U be a uniform random variable
on [0,1] with distribution @ and independent of everything else. Let X7 = Frfml(U ). Then

X < XF. Also, the distribution of X® under Q is Qf‘tt‘x). The comparison inequality (C.1) tells
us that
Ztylr, X)) _ Z(ty|r, X))

10.1 < 5
(10-1) e lr, X2) S Z(taln X2)

with a strict inequality if X}~ < X,
By (3.4) we have for s <t and z,y, A € R,

Z(t,yls,X?D)]

o0
A0 O A0
O mty) J Z(t,y|8,u)eb (t,2,8,u) doy = EQ(t,z) [Z(t P )\D)
bl bl S

—00
Since b*~(t, x,t,y) = b’ (¢, z,t,y) we get that equality holds in (10.1) Q-almost surely and therefore
we have Q(X)~ = X ) = 1. Consequently, F, 1 are equal, which implies that VW (t,x,r, 2) =
W (t,z,7,2) for all z € R because the probability densities 0, F, o(2) = Z(t,z|r, 2)e? 2 bwrz) are
continuous. Since r < t was arbitrary, we get that b**(r,u, s, v) match for all r, s € (—o0,t) and all
u,v € R. By continuity, this extends to r,s € (—o0,].

To summarize, we have shown that if for some ¢t € R and some z < y we have b*~ (t,x,t,y) =
W (t,z,t,y), then b match on (—o0,t] x R x (—o0,t] x R. A similar argument shows that if for
some t € R, x <y, and £ < u, we have b"* (¢, z,t,y) = b' (t,z,t,y), then b*" and b*~ match on
(—00,t] x R x (—00,t] x R. We are now ready to prove the theorem.

Take A € AY. Then there exist s,w,s’,w’ € R such that b*(s,w,s’,w') # b (s,w,s,w').
Then by (3.4) it must be that for any » < min(s, s’), there exist u < v such that o>~ (r,u,r,v) #
b (r,u,7,v). By the above, we get that for any ¢t > r and any 2,y € R, we must have b~ (t, z, t,y) #
b (t,z,t,y). Since r < min(s, s') is arbitrary, ¢ is also arbitrary and part (i) is proved.

If K < u, then (3.10) implies that for any r € R, there exists a v > 0 such that b"*(r,0,7,v) #
b"~(r,0,7,v). This implies that b"* (¢, z,t,y) # b* (t,z,t,y) for any t € R and any z,y € R. Part
(ii) follows since we already know that when x <y, bt (¢, z,t,y) < b*~ (¢, z,t,y). O

Proof of Theorem 3.5. The symmetry claims in part (a) follow from the definition (3.7) and the
properties in Theorem 3.2.
From Corollary 3.4

(10.2) A® = {\:*7(0,0,0,1) < b*(0,0,0,1)}.

This shows that for a given A € R, {\ € A“} is a measurable event and part (b) follows from
Theorem 3.1(c).

For s < p, {[r, u] " A # @} = {b*7(0,0,0,1) < b**(0,0,0,1)} € FV. By part (a), {[s, u] " A* #
@} is invariant under each shift 7; .. The ergodicity of (Q, F",P) under these shifts implies

(10.3) P{[x, u] N A = &} € {0, 1}.

Combining the statement for shear in part (a) with the shear-invariance of P, we have for any
t,ceR,

(104)  B{fr.u] 0 A = 2} = P{[s + e, + ¢ ASe® = ) = P{[r + e, + ] 1 A = @),
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Suppose now that P{A* # @} > 0. Then for any n € N there exists a m € Z such that
P{[m/n,(m + 1)/n] n A% # @} > 0. Then (10.3) implies that P{[m/n,(m +1)/n] n A¥ # @} =1
and (10.4) implies that this is in fact true for all m € Z. Thus,

P{[m/n,(m +1)/n] " A* # @ VneN, YmeZ} = 1.

Part (c) of Theorem 9.1 is proved. O

11. ERGODIC SOLUTIONS

This section proves the results on ergodic invariant distributions in Section 3.4. Recall the space
M of equivalence classes defined in (3.22), and the random evolution defined on it: for ¢ > s and

f € M>07

[Z(t,+]s, f)] if Z(t,+]s,f) € M=o and

(11.1) Sslf] = {[;] if not.

By (2.13), these operators satisfy the cocycle property: for r < s <t,

(112) Ss,tsr,s = Sr,t-

Define the transition kernel 7(¢,«|s,+) on the quotient space M between times s < t by
(11.3) | 2@t dels.£) ~Blas.) - [ sz 2,
M Q

for £ € M and a bounded Borel function ® : M — R. This is a time-homogeneous transition
kernel, that is, 7(t,dg|s,f) = 7(t — s,dg|0,f).

~

Two relevant subspaces of M require mention. Recall definition (2.3) of Myg. Let

(11.4) MHE:{[f]:fe./\/lHEmM>o}:{[f]eﬂzfeMHE}

denote the subspace of equivalence classes of measures that do not blow up under the evolution.
./\7HE is not a closed subspace of M. It can be given its own Polish quotient topology but we have
no need for this. Recall also the space Cyp of strictly positive continuous densities of measures in
My defined in (2.17) and its quotient space Cyp. Both are Polish. Parts (iii) and (iv) of the next
lemma follow because the appropriately initialized equivalence class process Sgf possesses paths

in the spaces C(Ry, M) and C(R.,Cyg), as mentioned in Section 3.4.

Lemma 11.1. The following hold.
(i) The transition kernel (11.3) satisfies the Chapman-Kolmogorov equations.

(ii) Let P be a probability measure on M. Then {So,+f}i=0 under P(dw) ® P(df) is a realization
of the Markov process with initial distribution P and transition kernel (11.3).

(iii) If the initial distribution P satisfies P(/WHE) = 1, then the Markov process with transition
kernel (11.3) can be realized on the path space C(Ry, M).

(iv) Suppose the initial distribution P satisfies P(&HE) = 1. Then the Markov process with
transition kernel (11.3) can be realized on the path space C(Ry,C ).
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Proof. Let r < s <t and pick a state fy € M:
L( L D(E) w(t,dfy s, F1) ) (s, df |1, Fy) = f~< f D(S2,£1)P(dw) ) (s, df |, fo)
M M M Q
= [ (] eszessitorio) e - | osz,sz.0P)
Q Q Q

= J @(S:tfo)]}»(dw) = J"” (I)(fg)ﬂ'(t, dfg |7", fo)
Q M

In the third equality we used the fact that the time intervals (r, s|] and (s, ] are disjoint and hence
their white noises are independent. Thus the two integrals P(dw)P(dw’) combine into one. The
fourth equality used the cocycle property of (11.1). Part (i) is proved.

The Markov process on /WR+ is then obtained by an application of Kolmogorov’s consistency
theorem. To prove the distributional claim of part (ii) it is sufficient to check that the finite-
dimensional marginals coincide. This is done inductively through repeated use of the definition
(11.3) and (2.13). For 0 =tg <t; < --- <y,

n—1

fwnﬂ O(fo, ... £n) [ [ w(tivr, dfiialts, £) P(dfo)
M i=0

n—2
_fw (f D(fo, - 01,57, 0, Ba 1) P(dw)) [ ] mltisn, dfisa |4, E) P(dFo)
M A i=0

[l
—
—

n—3
®(fo,... F00,SY ., 2,87 4 fu2) ]P’(dw)) H m(titr1, dfiy1 |t £) P(dfo)
i=0

f(I)(fo, SP 1 f0...., S8, £0) P(dw) P(dfy) = EY®F[®(£0, St0,1, 0, - - -, Sto.t.F0)]-

MO
From an initial state n € Myg, t — Z(t,dz|0,n) is continuous on R, in the vague topology of
M (R) by Theorem 2.9(i) in [1]. Note that the topology on My in that result is finer than the

vague topology. Consequently, if f € MHE, then the path {So+f : t e Ry} lies in C(Ry, M) and its
distribution defines a probability measure on C(R., ./\/l) This and part (ii) imply part (iii).

Part (iv). By Theorem 2.9(iii) in [1], the process [s,0) 3 ¢t — Z(t,+|s, f) is continuous in the
space Cyp. Hence so is the process ¢ — [Z(t,+|s, f)] in the space Cyg. O

Remark 11.2. One can put complete and separable metrics on Myg "M~ as well as on the space
Cug of strictly positive continuous functions that are Radon-Nikodym derivatives of measures in
Myg. See Lemmas D.1 and D.2 in [1] and the proof of Lemma D.1 in this paper. Then Theorem
2.9 in [1] says that P-almost surely, for any ¢ > s, the mappings f — Z(t,x|s, f)dzr on Myg
and f — Z(t,+|s, f) on Cup are continuous in the induced topologies. This remains true on the
quotient spaces with their quotient topologies. In particular, by the bounded convergence theorem,
the Markov process of Lemma 11.1 is Feller continuous in the sense that the finite dimensional
marginal distributions are continuous in the weak topology if the initial conditions converge in the
topologies mentioned above. See Remark 2.12 in [1] for a similar argument.

Proof of part (i) of Theorem 3.26. Fix A € R and recall that b* has no A+ distinction P-a.s. Call
fi(s) = RLACUDN By the propagation in (3.4) and the additivity in (3.2), for t > s
(I15)  Suf = [Z(1,«|s, fo)] = [7 O] = [ 0080 FE0LT) = [PE00I] = f,

Now, let P € My (Cyg) denote the distribution of [¢Z(*)***], where B is standard Brownian motion.
Recall from Section 3.4 the notation IIp for the induced measure on the product space. By Theorem
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3.1(d) and the computation above, the finite-dimensional distributions of the 5HE—Valued process
(f; : t € R) are given by IIp. On the other hand, by Theorem 8.2, fi(+) = P (0L ig g totally
ergodic Cyg-valued process under time shifts. The continuous mapping f; — f; = [fi] € Cup O
equivalence classes implies that f. is a totally ergodic Cup-valued process under time shifts. It
follows that Ilp is totally ergodic under time shifts. O

Proof of part (i) of Theorem 3.28. The C},-valued process t — (ebh(t’o’t"), e (0:2)) is sta-
tionary and totally ergodic by Theorem 8.2. Mapping the components to their equivalence classes
gives the stationarity and total ergodicity of the process ¢ — ([ebh(tvo’tv')], el [ebM (t’ovt")]). The
argument in (11.5) applies to each component. O

We turn to develop a series of auxiliary results towards proving part (ii) of Theorem 3.26. Part
(i) of Theorem 3.28 comes from a small extension of the proof.

Let P # d[1] be a probability distribution on M that is invariant and ergodic for the Markov
kernel (11.3). As recorded in (2.18), any initial condition which does not lie in M reaches [X] in
finite time. Hence P(./\N/IHE) = 1. As is remarked between (2.16) and (2.18) and proven in Theorem
2.6 of [1], any initial condition in My instantaneously becomes a measure in Cyp and therefore
P(Cug) = 1.

The proof constructs a new cocycle b from P and couples it with the fundamental solution Z and
the Busemann process b*2. The polymers defined from the cocycle b have asymptotic velocities by
the same martingale argument as used in Section 9. This gives the spatial asymptotics of P claimed
in Theorem 3.26(ii.a). With these asymptotics we appeal to the Busemann limits of Corollary 3.24
to conclude the proof.

Put the product measure P(dw) ® P(df) on the space 2 x 5HE On this space, define the process
{Ssif : s <t} as in (11.1). We construct an ergodic dynamical system that couples a globally
defined cocycle built from P with the fundamental solution Z. An explicit coupling is defined on
each time interval [S,0) and then the joint distribution extended to all times.

For S € R, define the parameter domains

Us = {(s,z,t,y) : t >s>=S5; z,y e R}  for strictly ordered times and
11.6
(11.6) RE = {(s,z,t,y) : 5,t = S; x,y € R} for unordered times.
The joint distributions will be constructed on the Polish spaces I's = C(Ug,R) x C (R%,R) and
extended to the space I' = C (R?‘,R) x C(R* R) with unrestricted time coordinates. On the space

Q x 5HE, define the I'g-valued random pair (Zg,bg) as follows. Zg is the restriction of Z to a
C(Ug,R)-valued random variable:
7§ ={Z“(t,y|s,x): t >s=85; x,y e R}.

For any f € f € Cyug, (t,2) — Z(t, 2|8, f) is strictly positive and continuous on [S,0) x R. This
follows from Theorem 2.6 in [1]. Define the C(R%, R)-valued random variable bg as a function of
(Zg,f): for s,t > S and z,y € R, for any representative f € f,

(11.7) exp{bs(s, x,t,y; 24, £)} = %ﬁ%
Then
18) [8.0) 3¢ fexplts(t0.)] = | 2SS < z0,015.0) - St

is the stationary Cup-valued Markov process with marginal distribution P.
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Let Pg be the distribution on I's of (Zg,bg) under P(dw) ® P(df). By Proposition C.4 in
Appendix C.5, there is a unique probability measure P on I' whose projection to I'g agrees with
Pg for each S € R. The coordinate functions on I' are denoted by (Z,b). Proposition C.4 gives also
the invariance and ergodicity of P under the time translation group {6,}.ecr that acts on ' by

(11.9) 0.2)(t,y|s,x) = Z(t + u,y|s+u,x) and (0,b)(s,z,t,y) =b(s + u,z,t + u,y).

The marginal of P on C (]R‘Tl, R) is the distribution of the fundamental solution Z of SHE. Hence
all the properties of the fundamental solution transfer to the coordinate function Z on (I', Br, P).
In particular, utilizing Corollary 8.1, we can define the Busemann process b2 on (T, Br,P) as a
function of Z.

The update rule (5.8) and the cocycle property that bg satisfies by its definition (11.7) transfer
to b and so we have P-almost surely:

0

(11.10) bl ty) — f Z(t,y|r, 2)e"&Tm) dz Vt>rand s,z,yeR and
—00

(1111) b(T,.’L’,S,y) +b(37y7t7 Z) = b(r,x,t,z) V(T,.’L’),(S,y),(t,Z) eRz’

From (11.8) follows that [e®®9%°)] has the distribution of the stationary Markov process with
marginal distribution P and transition kernel (11.3), now defined for all ¢ € R.

Next we define quenched semi-infinite backward polymer distributions as functions of the envi-
ronment (Z, b) on the probability space (T, Br,P). For (t,y) € R? let Q(Zt:lz)/) denote the distribution
of the Markov process {X : s € (—o0,t]} with initial point X; = y and the transition probability
density from (s,z) to (r,2), r < s < t, given by

ﬂ-(r7 Z|87 x) == Z(S7 ,:U|7"’ Z)eb(575077“7z)‘

That 7 is a transition probability that satisfies the Chapman-Kolmogorov equations comes from
(11.10), (11.11), and identity (2.11) for Z. Since P{e?"0"*) € Cyyy ¥r € R} = 1, the same proof
as in Theorem 9.1 on page 58 implies that P-almost surely, Q(Zt’z) is supported on paths that are

locally a-Holder for any « € (0,1/2). Thus we consider Q(Zt’g) as a probability distribution on the

path space C((—o0,t],R). We will compare measures Q(Zt”z) from different starting points (¢,y) even
though they may a priori be defined on different path spaces. We can always put them all on
C(R,R) by stipulating that Q(Zt”z) (X, =y Vr e (t,0)) = 1. Without further comment, we restrict
consideration to the P-almost every environment (Z,b) under which the polymer measures are
well-defined and all the further properties we use below are valid.

By the proof of Theorem 9.1(c) on page 60, P-almost surely, for any s,z,t,y € R,
Z(s,x|r, X;)

—_—————— 'I"<S/\t
Z(t,ylr, X;)’ ’

MS,ZB,t,y —
T

isa Q(Zt”z)—backward martingale with respect to the filtration G_... By martingale convergence,
Ms,x,t,y — lim Z(87 €z |T7 Xr)
- r—== Z(t,y|?", X?“)

exists Q(Zt’z)-almost surely and in L'. Next, the proof of Theorem 9.1(c) gives that

(11.12) x = lim s7'X, € [~o0, 0]

§——00

exists as a possibly random limit Q(Zt’z)-almost surely, for P-almost every (Z,b). Lemma 11.3 below
shows that y is finite. We also use

(11.13) X =

s'X, and x = lim sTIX,

li
§—=>—00 5——00



ERGODICITY AND SYNCHRONIZATION OF KPZ 69

to state events without reference to a particular Q(Zt’g)
For A\ € R define the events

(11.14) Ay={x=-A and T, ={(Zb)el: Q (AA > 0}.

Note that A, can be viewed as a tail event on the path space C((—o0,t],R) for each ¢t € R. For any
tail event G € (), _y G-, for all s <t and y € R,

(1.1 Qi (@) = [ Z(tyls.0) o DQE () s
k) R b

Thus in a given environment (Z,b), all the polymer measures {Q(Zt:Z) . (t,y) € R?} are pairwise
mutually absolutely continuous on the tail o-algebra. This applies in particular to A,, and hence
Qo) (Ay) > 0 implies that Q[ (4,) > 0 for all (¢,y) € R?. Thereby 6, 'T'y = T, V¢ € R and by
ergodicity P(L"y) € {0, 1}.

On the event A,, for any rational € > 0 and large enough negative r, X, < —r(XA +¢). Then the
comparison inequality (C.1) gives for each x < 0, and all sufficiently large negative r,

Z(t,x|r,—(A+¢e)r) Z(t,x|r, X;)
g, < Sy
Z(t,0lr,—(A+¢e)r) AT Z(t, 0| X)) A

_ t,x,t,0 t,x,t,0
= M0 1, < MESEO,

From this and by a direct computation of the expectation,

Z(t,x|r,—(\+e)r)
Z(t,0lr,—(A +¢&)r)

(11.16) Q(Zt:l())) (A4,) < (t 0) [Mt 0] = D(t0LT)

Consider now A fixed so that by Theorem 3.1(c) there is no A+ distinction. Take r — —oo and
apply (3.11), then take e — 0 and apply (3.3) to get

A x 3 xT
(11.17) P (HOEN QR0 (4y) < O for all z < 0,
By the shape theorem (3.9) for Busemann functions for a fixed A € R, P-almost surely,

(11.18) (Z,b) ey = VteR: Q[ (4) >0 = VteR: Tm o 'b(t,0,t,2) <X

Tr——00

By the invariance of P, we have established the following statement:

. . IR coul | .
(11.19) P{Q(oo —A) >0} >0 implies P{f : mEIPoox log f(z) < )\} =1

In the last event, f can be any representative of f € Crin.

For the next step, let Ay = {} < —A}. On this event, for any rational € > 0 and r large enough
and negative, X, = —(A—e&)r. The comparison lemma (C.1) gives for each 2 < 0 and all sufficiently
large negative r,

Z(t,x|r, X;) Z(t,x|r,—(A—e)r)

VA ) J 1 < ’ e
" A)\ Z(t,0|7", XT) A)\ Z(t,0|7‘,_()\ _6)7‘) A/\

Taking r — —oo then € — 0, we see that Qi’g)-almost surely,

A
llm Mt :r:,t,O 1 \ eb (t,O,t,:c) . I]-Z

r——00 A



70 C. JANJIGIAN, F. RASSOUL-AGHA, AND T. SEPPALAINEN

Compute

Zb —
EQ(t,O) [Mﬁ’m’t’ollz ]= EQ(t 0) [Mt Lt’OQ(rX (A )\)]

Z(t,x|ryz) zp —~
— |z b(t,0,r,z) Z\BH Ml <) Y (A
f ( ,0|7", Z)e Z(t,0|7’, Z) Q(T’,Z)( )\) dz

= P00 f 2t x|r, 2)! 0 rIQE (Ay) dz

_ eb(t,O,t,x)Q(Zt:l;)(Z)\).
Therefore for all x < 0,

A Zb
(11.20) Eb(t’07t’x)Q(Zt:l;) (Ax) = TEIP EQ(t 0 [ME m’t’ojl ] Ew0) [Tkmoo M sc,t,oj1 ]
< POIQEL (T,

If Q(ZO’%) (Ay) = 1, then (11.15) implies Q(Zt’l;)(ZA) = 1 for all (t,z) € R?. Then, recalling that
X = limg, o, X/s exists, (11.20) and ergodicity lead to

(11.21) P{Q%h (x<-A) =1} >0 implies P{f lim o log f(@) > )\} ~1.
Repeating analogous reasoning twice more shows that

(11.22) P{Q%} (x < —A) >0} >0 implies P{f  lim 2 log f(z) > )\} ~1

and that

(11.23) P{Q(ZO’%)(X >-)\)=1}>0 implies P{f : x@@x_llogf(x) < )\} =1.

The left-hand sides in (11.22) and (11.23) cannot fail together. This forces
VAeR: P{f hm:z:llogf )\}—1 or P{f hm:pllogf() }=1.

The same works for (11.19) and (11.21). Thus there exist deterministic constants %, k € [—00, 0]
such that

1 -1 _ = _ LT -1 _ _
(11.24) P{f : 9511—I>r<)lo$ log f(z) = /{} = P{f : xl_l)rzlooa: log f(z) = @} =1.
From (11.19) and (11.22) we get that
(11.25) P{Q(00 —E<x<-kK) =1} =1

In particular, k < R.

Lemma 11.3. We have
(11.26) P{¥(t,y) e R*: Q7 (—0 < x <) =1} = 1.

Proof. Suppose Q(Zt’z) (x = —©) > 0 for some (t,y) € R%. By the mutual absolute continuity on the
tail o-algebra,
Zb Zb
Q(O’,l)(A)\) = Q(O’,l)(x = _OO) =04>0,
for all A € R. This and (11.20) imply that
b(0,0,0,—1) +log d < b*(0,0,0,—1),

for all A € R. Since v*(0,0,0,—1) is normally distributed with mean —\ and variance 1, letting
A — o contradicts the finiteness of the random variable b(0,0,0,—1). The fact that the limit of
571X, cannot be co comes similarly, using (11.17). O
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By (11.25) and (11.26) we know that k < &, £ < 00 and & > —o0. Next we show in Lemma 11.8
that kK > —o0 and E < o, after several auxiliary lemmas. Recall this identity from (11.16), valid
forr <saAtandx,yeR:

Z.b
(11.27) EQCao [ Mbys] = blsoity),
Lemma 11.4. For P-almost every (Z,b), the following holds for allt € R and x < y:

A— x Z,b x A+ x Z b
(11.28) fR QR (—x e dA) < BT < fR B QR (=X € dN).
Furthermore,
(11.29) R = Q(de’o)-esssup(—x) and k= Q(ZO%) essinf(—yx).

Proof. In a given environment (Z,b), the at most countable set of atoms of x is common to all
polymer distributions Q(Zt’z) due to their mutual absolute continuity on the tail o-algebra (recall
(11.15)). Let t € R and < y. Fix m € N. Choose A_,, < --- < A, so that no A; is a jump of

the Busemann process b2 and no —); is an atom of x. For r <0 let 2z = —X\jr = \j|r|. Use the
comparison inequality (C.1) to write

Z(t X - Z(t X
Il{XT» < Z&}Mﬁ@,ﬁm = ﬂ{Xr < ij}w + Z 1{227‘71 <X, < er} ( 7y|7‘, r)

Ztolr X b4 Z(t, w7, X,)
= Z(t,y|r, 2~ 1 Z(t,y|r, 27)
< {—r'X, < Ay, 20t ylr 2 m) 1{\i— X, < N} oo i
{=r = }Z(t x|r, 2", +Z__Zn;+1 i1 < = }Z(t,az\r,z{)

Under QZ’b , X, has a continuous distribution, the finite limit y = lim,_,_., 7~ 'X, exists, and no
(tx)

—\; is an atom of the limit. Hence the indicators converge. Since z]/r = —\;, we can take the

limit as r — —o0 to get, for P-almost every (Z,b) and Q(Zt’l;)—almost surely,

m
1{—x < A} MR < 1{—x < A_p}e ety 4 Z {1 < —x < Ajje? i (bmtw),
i=—m+1
Fix p > 0. Keep Ay, = —A_,, = p while letting m " o0 and refining the partition so that

max;(\; — A\j—1) — 0. For each value of —x € [—u, i), as the partition refines, the unique \; that
satisfies A\;_1 < —x < A; converges: A; \, —x. In the m ' oo limit we get

H{—x < pp M < 21—y < —ppe? 0 L1 {op < —x < pyel T ot)

< 1{—x < u}e Hltaty) 4 DO (taty)

Let u / o0. For o <y, e “"t:2:bY) — 0 as —p \, —c0. In the limit we have

(11.30) MEUb® < PO (Baty),
For the lower bound, begin with the following and take limits:
m
t,ylr, X,)
Mt7y7t7x 2 :[]- < X \ ( ) Y
' i—ZTfL+1 i r<A Z(t,x|r, X;)
- Z(t,y|r, 2zl )
> TN < —r 1X, < V2 miml
. Z { i—1 r (s Z}Z(t,xh’,z[l)
i=—m+1 7

Let  — —o0, refine the partition, and let A, = —A_,; " o to get the lower bound
(11.31) Mbute 5 b7 (b ty).

—0
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Z,b
The conclusion (11.28) comes from (11.27) and by taking E9ts) expectation over (11.30) and
(11.31). Identity (11.29) follows from (11.28). O

Lemma 11.5. There exists a P-almost surely finite random Ao > 0 such that P-almost surely
(11.32) VA= Ao, O€{— +},y=0: [b72(0,0,0,9) — \y| < 1+ (logA+ 1)y.

Proof. Pick slopes \; /' o and constants a; > 0. Define standard Brownian motions B;(y) =
b4 (0,0,0,y) — Ajy. Using the exact formula for the probability that Brownian motion ever reaches
a line (Eq. (5.13) on page 197 of [76]),

P{3y>0:|B;(y)| =1+ ay} <P{3y=>0:B(y) =1+ a;y} + P{Iy > 0: B;(y) < -1 - ajy}

= 2¢72%,
We conclude that

26_2%' <o == 3 random jy < o0 such that

(11.33) -

V5 = Go,y = 0:[67(0,0,0,5) = Ayl < 1+ agy.
Then for j = jo+ 1, A e (A\j_1, ), 0€{—,+},y=0

Ay — (N — N1y —ajo1y — 1< N1y — aj1y — 1 < 5Y71(0,0,0,y)

< *7(0,0,0,y) < b%(0,0,0,y) < A\jy + ayy + 1
<A+ A=Ay +ay+1
from which
(11.34) 629(0,0,0,9) — Ayl < 1+ (aj_1 v aj + Aj — N\j1)y.
To get (11.32) choose A\; = j and «; = log(j — 1) = log \j_; for j > 2. O

Lemma 11.6. Suppose Q(ZO’%)(—X > A) >0 for all \ < 0. Let e (0,00). Then

b ty) — b t
(11.35) lim inf (0,0,0,ty) —b(0,0,0,tx) _
t—=00 ze[0,u], y&[240,0) t

Proof. Let Ao > 0 be large enough to satisfy Lemma 11.5 and also so that A > 4(log A + 1) for
A= Ag. Then for any y > 2u > pu > 2 > 0 and A = Ag,

My —z)— (x+y)(logA+ 1)

> Ay — Iz +y) =3\ —2\x
(11.36) >A( ) —gAz +y) =1y — 3

Abbreviate Q(d\) = Q(ZO’%)(—Y € d\). Since A — b (0,0,0,2) is increasing for = > 0, we have the
positive correlation

(11.37) f@ gy > @(Ao,oo>-fReb 0.0.02) G(dN).
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In the calculation below, begin and end with (11.28).

b(0,0,0,ty) 2] ebA*(O,O,O,ty)@(d)\)
R

ZJ M (0,0,0,62)+627(0,0,0,ty) —b**+(0,0,0,tx) @( )
()‘07 )
(by (11_32)) 2] ebk+(0,0,0,t:c)+>\t(y x)—2—t(z+y)(log A+1) @( )
(X0,%0)
(y (1136))  z e | To00egay
()‘07 )

(by (11.37)) > e 2Fadomt (), 0) fReb 0002 Q(dN)

> e—2+§,\out @(/\0, ) 0(0,0,0,tx)
Since Ay can be taken arbitrarily large, the conclusion follows. O

Lemma 11.7. The following large deviation bounds hold P-almost surely.
(a) IfR =X and K = —\ for A€ (0,00), then for u < v in (—A,\)

hm tlog Q70 (t0) (ut < Xo <wvt) <0,
andforl/’>l/>/\and,u <p <=\
hmt 1logQ Pt < Xo<put)<0 and hmt 1logQ vt < Xo < V't) <0.
(t,0) (t,0)
(b) If § = w0 and k € R, then for any u <0,
hmt 1logQ(w( < Xp<0)<0.
Similarly, if K = —o0 and & € R, then for any v > 0,
hm t 1logQ(1t0 (0 < Xo <vt) <.
(¢) If &R = w0, then for any v > 0,
T 4—1 Z,b .
tlgglot log Q(LO)(O < Xop < vt) = —0.
Similarly, if K = —o0, then for any u <0,
hmt 1loth0 (ut < Xop <0) = —o0.
Proof. For t > 0 and Borel A c R,
Q(Zt”g) (Xoe A) = JA Z(t,0]0, x)eb(t’o’o’m) dx = b(£0,0.0) JA Z(t,0]0, a:)eb(o’o’o’””) dx
~ $42(t,0]0,2) )eb(0:0.0.2) g 4 2(t,0]0, tx)eb0.0.0.12) o
g Z(,010,2)eb(0002) gz § Z(t,0]0, tx)eb0-0.0.42) gy

Recall from (11.24) the limits of 2716(0,0,0,z) as & — +00. When these limits are finite, we utilize
them in this form: for any C' > 0,

lim t~! sup [0(0,0,0,z) —Fz| = lim ¢t~ sup [b(0,0,0,z) — kx| = 0.

t—00 0<z<Ct t—00 —Ct<z<0

We start with the case ® = —k = A € (0,0). Take v/ > v > X > 0,and 0 <0 <v — A. Then
for t large enough, we have b(0,0,0,tz) < Rtz + et for all z € [v,v/] and b(0,0,0,tx) > Ktx — et for
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all z € [A, A+ ¢]. From the shape theorem (3.8) we also have that for ¢ large enough, Z(¢,0|0, tz) <
et t/24=2t/2 for all z € [1,/] and Z(t,0]0,tz) > e t71/24=2"/2 for all 1 € [\, A + 6]. Putting all
this together gives

det (V' o—a?t/24 Xzt g
Q(to( X0<z/t)<e ), e ’

A+46
S}\"' e—x2t/24+xt o

v (A +0)%

< exp{4€t -5t Avt + —AMA+ 5)t} W — ).

2
Take logarithms, divide by ¢ and take it to oo, then take § — 0 then € — 0 to get
T ,—1 Z.b (V — )\)2
Jim ¢ log Qo) (vt < Xo < V't) < ey < 0.
Similarly, if 4/ < p < =\, then
—\)?
hmt 1lothO (W't < Xo < pt) < —% < 0.
Similar arguments give that if -\ < u < v < A, then
- v—A)?
t1i>nolot 1logQ(Zt”g)(0 < Xo <vt) < —% <0 and
— -1 Zb (- )\)2
t1i>nolot log Q) (nt < Xo <0) < g < 0.

Part (a) is proved.
Next, consider the case & = o0 and x € R. Take v > 1 such that 42 — x% > 6 and take € € (0,1/3).
Then, for t large enough, we have

sup [6(0,0,0,xt) — kat| < et  and mfa; '5(0,0,0,2t) = ~t.

pn<x<0
Below, replace the integrand in the numerator by its global maximum taken at x = k.

0 _,2
e3¢t Su e T t/2+ Kt dx

Z.b
’ < < <
Q(t,o) (Mt x XO < 0) ~ S:y{"rl e_x2t/2+.yxt d,fE

+1 _
exp{?)&?t + _7 + % —v(y + 1)t} (—p) < |ple”

A similar reasoning works for the case K = —c0 and % € R and part (b) is proved.
To prove part (c), assume K = o0 without any assumptions on k. Let v > 0.

e2et SV —2%t/2+5(0,0,0,tz) 7.

1 0< < <t!
t~ " log Q(to (0O< Xo<vwt) <t log 2T —y?1/246(0.0.0.9) dy

2 2
X
<2+ sup (—— +t715(0,0,0,tx) + L — t’lb(0,0,0,ty)) +t ogr
0<z<v 2 2
2v<y<2v+1
2u+1)? b(0,0,0,ty) — b(0,0,0, tx
<2€+¥— inf ( y) ( ) +t togy —> —o0.
2 o<z<v t t—0
2uv<y<2v+1

The last limit follows from Lemma 11.6 because, by Lemma 11.4, § = oo implies that —y is
unbounded above.
Again, a similar reasoning works when K = —o0 and the lemma is proved. O

Lemma 11.8. Both k and K are finite.
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Proof. Recall that
similar. So assume

Kk < 0, and & > —o0. We prove that E < o0, the proof of Kk > —o0 being

<R,
— . Lemma 11.7(b)—(c) give P-almost surely, for any u < 0 < v,

a
R

hm t1log Q7 t0) (ut < Xo <wvt) <0.
Use the temporal shift invariance of P to write, for p < 0 < v,

©0) Qo[ 1

r——00

< lim EQ(ZObO( ur < X, <—1/7")—hmEQ(Ztg( t < Xo<vt)=0.

r——00 t—00

This contradicts the finiteness of the limiting velocity y, proved in Lemma 11.3. O
We are ready to complete the proofs of Theorems 3.26 and 3.28.

Proof of part (ii) of Theorem 3.26. The existence of left and right asymptotic slopes was estab-
lished in (11.24). The combination of (11.25) and Lemmas 11.3 and 11.8 show that —0 < Kk <% <
co. Part (ii.a) of Theorem 3.26 has been proved.

To prove part (ii.b) of Theorem 3.26, assume that either  + k # 0 or kK = K = 0. Define A € R
as follows:

e If K+ k > 0 and therefore & > 0, let A =& > 0.
e If K+ k < 0 and therefore Kk < 0, let A = k < 0.
e Ifk=F=0,let A=0.
In these cases all f € f satisfy the conditions of Lemma 3.22 and are thus in Fy. Theorem 3.23
implies that P ® P-almost surely, for any f € f,

SR (t,y|r,2) f(z )dz o
11. li (s:2,t:y)
(11.38) o SR s,x|r,z) f(z )dz

locally uniformly in (s, z,t,y) € R* The above ratio does not depend on the choice of f € f.
Since the distribution of f(+)/f(0) under P is the same as that of e?™0"*) under P and e""07*) ig
independent of {Z(t,+|r,+) : t > r} we get that for any m > 0, as r — —o0,

{SR (t,y|r, z) e0m2) dz

11.39
( ) Sg Z(s,x|r, z) br0r2) dz

:s,1,t,y € [—m,m]}

converges weakly under P, on the space C([—m, m]*, R), to the distribution of {ebA (s2ty) . g 2t ye
[~m,m]}. But (11.10) implies that the ratio of integrals is actually equal to e®(*%%¥%)  Consequently,
the distribution of e® under P is the same as that of e under P. In particular, P is the distribution
of [ebA(O,O,O,-)]. Since limyy|_,o y~102(0,0,0,y) = A\, we must have k =& = \. O

Proof of part (ii) of Theorem 3.28. The multivariate case follows the same reasoning. Start with
the product measure P(dw) ® P™ (df'™) on the space Q x 5;; and construct the time-ergodic
measure P on the space I'™ = C(RLR) x C(RY,R)™ with coordinate variables (Z,b'™) =
(Z,b',...,b"). The previous arguments apply to each (Z,b%) marginal.

Part (ii.a) of Theorem 3.28 follows from part (ii.a) of Theorem 3.26.

For part (ii.b), the limit (11.38) becomes now P ® P{™-almost sure locally uniform convergence
of the n-tuple:

S]R t y\?‘ z (Z) dz " _ bAZ(s:c,t,y)
(11.40) r—» oo{ Sg Z(s,x|r, 2) fi(2)dz }i=1 e b

=1
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for any f e f'. In the next step, as in the proof of part (ii) of Theorem 3.26, we get distributional
convergence of n-tuples of continuous functions:

n

(t,y|r,z)e b'(r.0,r2) gy

{ebi(s,m,t,y) cs,x,ty € [—m,m]}? — {SR 1s,x,t,y € [—m,m]}

=1 Sp Z(s,z|r, 2) e (0m2) dz i1
d Ai
r:)OO {eb Hety) : S’$’t’y € [ m m]}z 1

Since P™ is the distribution of {e( (0,00, )} ' 1, we have identified P as the distribution of
e b2 (0,0,0,*)\n O

z—l

12. SYNCHRONIZATION AND ONE FORCE—ONE SOLUTION PRINCIPLE

Proof of Lemma 3.33. Given a p-invariant random variable f :  — Cup let f:Q — Cug be the
function defined by f“ e f* and f“(0) = 1. Define u : R? x Q — R as follows: for ¢t € R take a
rational s < min(¢,0) and let

Ze(t, s, ')
Z4(0,0]s, fos) "

(12.1) u?(t,x) =

Observe that by a combination of a temporal translation (2.13) and the p-invariance (3.30) of f,
the equalities
ZY(t, xz|r, ferw) Z“(t x‘s Z9(s,«|r, ferw))
Z<(0,0]r, forw) — Z(0, o], fOre))
_ Z¥(txls, f(’S‘“)
~ Z%(0,0]s, f9sv)

w(t7$‘87 Zgrw(s — T |07 f@rw))
w( ) 37Z67'w<3_7q7"07f6rw))

Z
-z

(12.2)

hold simultaneously for all (¢, x), on a full P-probability event that depends on the pair r < s in
(—o0,t). We apply (12.2) only for rational r < s so that the null events do not accumulate. Then
we can conclude that u(t,z) is well-defined for all (¢,z) € R? on a single event of full P-probability
and its definition (12.1) is independent of the choice of the rational s < min(¢,0).

The definition (12.1) and the cocycle property (2.13) of Z imply that, P-almost surely, for all
pairs t > s in R? and all y € R, Z(t,y|s,u(s, )) = u(t,y).

Next we check the shift-covariance claim that for each r € R there exists an event €2, such that
P(Q,) = 1 and [u?“(t,+)] = [u®(t + r,+)] for all w € Q, and t € R. No proof is needed for 7 = 0 so
let 7 # 0. For each ¢ € R pick and fix a rational s < min(¢,0). Then

799t x|s, fOs+r@)  Z9(t 4+ rx|s + o, flH9)  w(t 4, )

Orw
Tt = = =
B ( 7‘T) Zerw<070|37f08+rw) Zw(r70|3+747 f08+rw) uw(n 0)

The first equality above is the definition (12.1) of u. The second equality is the shift-covariance
(2.8) that holds on an r-dependent full-probability event, simultaneously for all real ¢ and rational
s < min(¢,0). The third equality is a combination of (12.1) and (12.2). (12.2) is used here, at the
expense of another r-dependent null event, in case s+ r is not rational. The properties of u claimed
in Lemma 3.33 have been checked.

Lastly, we verify that the equivalence class of u“(0, +) recovers f* P-almost surely. Fix a rational
s < 0.

(2.8)

[uw<07 ')] = [Zw(()? ° |37 fesw)] [Zesw<_37 ° |07 fGSw)] = 90<_3768w7f95w) =,

P-almost surely. The last step is from (3.30) and holds almost surely for a given s.
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Conversely, let u be a C(R, Cyg)-valued random variable on (2, F,P) such that P-almost surely
Z%(t,yls,u(s,+)) = u?(t,y) for all t > s and y € R, and for each given r > 0, [u?(0,+)] =
[u¥(r, +)] P-almost surely. Then f* = [u¥(0, +)] satisfies

plt,w,£) = [Z°(t, +]0,u(0,))] = [u(t, )] & [u?(0, )] = £,

By the assumption on u, equality () above holds on a ¢t-dependent full probability event. Thus f*
is a -invariant random variable f : Q — Cyg. ]

Proof of Theorem 3.38. The measurability claim follows from Theorem 3.1(b). By Theorem 6.5
there exists an event (y such that P(€) = 1 and for any w € Qp, A € R, and O € {—,+},
(r,x) — b*3(r,0,7,2) is in F). By Theorem 3.2(i) there exists an event %, such that b*7(r,0,r,z) =
v 7(0,0,0,2) 0, for allwe Q. re =7, 2, A\e R, and 0 € {—, +}. Consequently, f’ € H, 7(w),
for w € Qg N QL. Part (i) is proved. Part (ii) is immediate from the definition (3.33) and Theorem
3.1(e). Next, note that, on a full P-probability event, we have for s€ R and ¢ > s

[Z(t, . ‘S, eb)‘D(s,O,s,'))] _ [eb)‘D(s,O,t,')] _ [ebku(t,o,t,')]

and the left-hand and right-hand sides equal, respectively, p(t — s, 05w, fg;“) and fgé“ if s and t are
in .7 and w € Q7. This proves part (iii).

If g € Hy 7, then there exists g : © — Cug such g = [g] and taking f(r,z) = ¢%"“(z) gives
f €Fy 7. The proof of Theorem 3.23 works word for word if we restrict r to —7. Then if A ¢ A,

applying (3.20) (with r restricted to —.7) gives that % converges, locally uniformly in

z, to e (0002) a5y — _o0in —7. This implies (3.37) and part (iv) is proved. Part (v) is in
Theorem 3.3. O

Proof of Theorem 3.35. Let f : Q — Cus be a p-invariant random variable such that for any f € f
the distribution of {log f“(z) — log f“(0) : € R} under P is that of a Brownian motion with drift
Az. This implies that the distribution of f“ under IP is the same as that of f{’ under P. We want
to show that in fact the two are equal, P-almost surely.

For s,x,t,y € R take any rational » < min(s,¢) and any f € f and let

(12.3) b(s,z,t,y) = log Z(t,y|r, f7) —log Z(s, z|r, f).

This definition does not depend on the choice of f € f. It also does not depend on the choice of the
rational r because, similarly to (12.2), for any rational 7’ < r < min(s, ) we have, P-almost surely,
for any s, z,t,y

Z(t,ylr', fore)  Z(tylr, f)

Z(s,x|r', fore)  Z(s,z|r, forv)’

In the above computation we used (2.13) and the p-invariance of f.

Repeating the above construction with f{" instead of f gives b*. Since f¥ and fy have the same
distribution, we get that the distribution of {b(s,z,t,y) : s,x,t,y € R} under P is the same as that
of b (s,z,t,y) : s,x,t,y € R}. As such, b satisfies the same shape theorem as b*, namely (6.19).
Then, (6.24) and (6.25) in Theorem 6.5 imply that, on a full P-probability event, (r,z) — e?(07:2)
isin F). Applying (3.20) and (12.3) we get that b = b, P-almost surely. This implies that f* = £y,
for P-almost every w. The one force—one solution principle is thus proved.

The synchronization claim follows from Theorem 3.5(b), Lemma 3.22, and Theorem 3.38(iv). O
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APPENDIX A. PROBABILITY SPACE FOR WHITE NOISE

The underlying assumption is that the complete Polish probability space (€2, F,P) supports a
space-time white noise W and a collection of measure-preserving automorphisms as described in
Section 2. This section describes a standard example of a separable Hilbert space (a negative index
Hermite-Sobolev space) satisfying the required hypotheses. This is essentially Example 2 in [101,
Section 4]. In this setting, verifying our hypotheses is relatively simple using the spectral theory
of the quantum harmonic oscillator. We follow [96, Section 6.4] and its notation to supply some of
the details missing from [101].

Define the Hermite functions for = € R by

1 a2 1 d\"
eo(x) = e ¥ and, forneN, by e,(z)= m(w - £> eo(x).

[96, Theorem 6.4.3] shows that the family {e,,}?°_, forms an orthonormal basis for L?(R). By [96,
Theorem 4.8.11], the family {emn(7,y) = em(w)en(y) : m,n};, ,_o is an orthonormal basis for

L*(R?). Let H be the two dimensional quantum harmonic oscillator Hamiltonian,

02 02 9 9

H=-A 2o - = .
+ x| P 6x2+x +y

It follows from (6.4.38) in [96], that for f € S(R?),
(Al) <Hf, en,m>L2(R2) = 2(1 +n+ m)<f, en,m>L2(R2)’
[96, Theorem 6.4.7] shows that if f € S(R?) is a Schwartz function, then for all £ € N,

e @]

Z (1 +m + n)25<€m,n7 f>%2(R2) < 00.

m,n=0

Note that there is a typo in the definition of the semi-norm in equation (6.4.45) of [96], which does
not depend on ¢ as written. See equation (6.4.33) for the correct form of the definition.

Define a new Hilbert space H by taking the closure of S(R?) in the norm (with the inner product
defined by polarization)

(A.2) Hf“g-t = Z Z 16(1 +m + n)4<f, em,n>iQ(R2)-

m=0n=0

Parseval’s identity and (A.1) combined with (A.2) imply that for f € S(R?),
2 0 0 2, 2\ ?
(A3 1B = [ |( - 5~ oz + 2+ S

dxdy.
Lemma A.1. (H,| - |y) is separable. H is a dense subset of L?(R?), and the inclusion ¢ : (H,| -
[#) = (L*(R?), | - | p2(2y) is Hilbert-Schmidt.

Proof. H has a countable orthonormal basis {fyn, : m,n € Zzo} defined by frn, = 4711 +m +
n)~2emn. Separability follows. For f e S(R?), we have | f|z > | fl2(r2)- Therefore, H = L? (R%)
and the natural inclusion map ¢ is continuous. Density of H in L?(R?) follows from the density of
S(R?) in L?(R?). To see that ¢ is Hilbert-Schmidt, it suffices to observe that by Parseval’s identity
and the orthonormality of {e;,, : m,n € Zso} in L*(R?), we have

o0 0
1
2 2 o
HLHHS - Z ”Lfm,n||L2(R2) = Z 16(1 p—— n)4 < 00. O
m,n:O m7n:0

Let H* denote the continuous dual of H, equipped with its norm topology. Denote by W the
canonical (i.e., identity) random variable on (H*, B(H*)) and by ¢ a generic element of H*.



ERGODICITY AND SYNCHRONIZATION OF KPZ 79

Lemma A.2. There exists a probability measure p on (H*,B(H*)) under which W is space-time
white noise. That is, for f € H,

Ef[eV (D] = f ) (dy) = e~ 2122y
H*

Proof. Existence follows from [101, Theorem 4.1]. The characteristic function identity follows

from the characterization of Hilbert-space valued Gaussian random variables by their characteristic

functions; see [16, Theorem 2.2.4]. The extension to f € L?(R?) follows from the variance isometry

and the fact that # is dense in L?(R?). O

To verify that H* satisfies our hypotheses, we need to construct the automorphisms in our
setting. Before doing this, we note that in the sense of equivalence of norms, we have

(A4) £ = 3 1D 12, +j<x8 ) f(a,y)2dady

|or| <4

where for a = (k,£), D* = ok (95 denotes the partial derivative with multi-index o and |a| = k + £.
See [50, Claim 9.8.7] for the details of the 2 bound. The < bound is easier and follows from the
triangle inequality, integration by parts, and repeated applications of Cauchy-Schwarz.

For o € H* and f € H, Toyo(f) = o(T—s—y f), Rie(f) = R [f), Rae(f) = o(Raf),

Sspo(f) = ©(Ss,—v f), Dare(f) = ©(Da-15-1 f), and No(f) = (N f). We first claim that
these are continuous operators from H* to itself.

Lemma A.3. For each G € {Ts 4, R1,R2,Ss., Do, N} defined above, G : H* — H* is a continuous
linear operator.

Proof. Linearity follows from the definition, so it suffices to show norm boundedness. For this,
it suffices to show norm boundedness of each linear map G : H — H where G € {T_, _,,
R1R2,Ss v, Dg-13-1,N}. Using (A.3), boundedness of R1, Ra, and N are immediate because they
are norm preserving. Boundedness of the remaining maps follow immediately from (A.4). O

Call B(H*) the completion of B(H*) with respect to p and let (Q, F,P) = (H*, B(H*), j1). We will
make use of the following sufficient condition for mixing. In the statement below, if G : H* — H*
is a map, then G acts on the identity random variable W by (GW)¥ = Gy.

Proposition A.4. Let G : H* — H* be an invertible, norm bounded, linear transformation and
suppose that (0, F,P,G) is a measure-preserving dynamical system. Then the condition

lin&oE[W(f) G"W(g)] =0 forall f,ge H
implies that (0, F,P,G) is strongly mixing, i.e., for all A,B e F
lingO P(AnG " B)=P(A)P(B).

Proof. We first note that B(H*) = o(W(f) : f € H) by the equivalence of the norm and weak
Borel o-algebras on H* [45, Theorem 1.1]. If f;,;i = 1,2,..., is an orthonormal basis for H, then
oc(W(f): feH)=c(W(f;):ieN). By a standard approximation argument, it therefore suffices
to check the mixing condition for sets A, B € o(W(f;) : i < k) for some k.

For each n € N; the vector X,, = (W (f1),...,W(fx),G"W(f1),...,G"W(fr)) is jointly Gaussian
in R?* with mean zero. The hypotheses and orthogonality of f1, ..., fi show that the covariance ma-
trix converges to a diagonal matrix with entries (| fi ||L2(R kaHLz(R | f1 ||L2(R ”kaL2(R ).
Continuity of the determinant of the covariance matrices 1mphes that for all sufﬁcuently large n,
therefore, X,, has a density function. The hypotheses now imply that these density functions con-
verge pointwise and therefore, by Scheffe’s lemma, X,, converges in total variation norm to a vector
of independent Gaussians with mean zero and the above variances. The result follows. O
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Proposition A.5. With T5,, R1,R2,Ssv:Dax, and N as above, (2, F,P) satisfies the hypotheses
of section 2.1.

Proof. Since H is a separable Hilbert space, so is H*, and therefore H* is Polish. Direct computation
checks that each of these transformations preserves the mean and covariance structure of u and
therefore, because the characteristic function is unchanged, each such map is measure preserving.

Take f,g € H. Then for n € N, denoting the n-fold composition of maps with a power superscript,
we have

E[TZ,_, W(f)W(9)] = » f(t+ns,x + ny)g(t, z)dtde and

E[SQ_V W(f)W(g)] = fRz flt,x +nv(t—s))g(t,x)dtdx.

In each of the expressions on the right-hand side above, so long as (s,y) # (0,0) and v # 0,
respectively, the integrals can be seen to converge to zero as n — o for all f, g € L?(R?) > H by
approximation by compactly supported functions. Mixing follows from Proposition A.4. O

APPENDIX B. SHAPE THEOREM FOR SHIFT-COVARIANT COCYCLES

Suppose P is a probability measure on a Polish space (2, F). Let d € N. Suppose {T}, : = € Z%}
is a group of measurable bijections on Q: T,T), = T, ., and Ty is the identity map. Let ei,...,eq
denote the canonical basis vectors of R? and let 0 denote the zero vector and let 1 = Ele e;.
Assume that for each i € {1,...,d}, P is invariant under the action of Te,. Let Z; be the o-algebra
of Te,-invariant events.

A measurable function F : Q@ x R% x R — R is called a cocycle if there exists an event Qg such
that P(£2) = 1 and

F(w,z,y) + F(w,y,2) = F(w,z,z) for all z,y,z € R% and all w € Q.
The cocycle is said to be shift-covariant if there exists an event g such that P(Qg) = 1 and
F(w,z+ 2,y +2) = F(Tow,z,y) forall z,yeR? zeZ? and we Q..
Let

d
m(F) = Y E[F(0,e;) | Ti] e;.
=1

For z,y € RY, 2 < y is interpreted coordinatewise. Let |+| denote any norm on R

Lemma B.1. Let F be a shift-covariant cocycle. Assume that for some p > d and k € Z* we have

(B.1) F(0,e;) € LP(P) Vie{l,...,d} and sup |F(0,z)] € LY(P).

rzeRL:k<ax<k+1

Then, with P-probability one, for all C > 0
lim n~'  sup |F(z,y) —m(F)- (y—z)| =0.

ne lz|v]yl<Cn

Proof. We derive the result from the corresponding lattice-indexed shape theorem from the litera-
ture. By the cocycle property, F(z,y) = F(0,y) — F(0,x) and therefore it is enough to prove that
P-almost surely

lim n~' sup |F(0,2) —m(F)-z| =0.

n—w lz|<Cn

By Theorem 1 of [18] and Lemma B.4 of [70] we have
lim n~'  sup |F(0,£) —m(F)- ¢ =0.

n—P0 0e7:8:0|<Cn
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By assumption, supp<,<p+1 |F(0,2)] € LY(P). By the shift-invariance of P this implies that A =
SUpg<a<1 |F(0,7)| € L4(P). Hence, for any € > 0

D P{A > ez} < C + CE[(A/e)] < oo,
zeZd

and then by the Borel-Cantelli lemma, we have P-almost surely
lim n~!  max sup |F(4,z)] =0.
n—0o0 CeZ:14|<Cn 0<z—r<1

The claim of the lemma follows:

Iim n~ ! sup |[F(0,2) — m(F) - z|

n—o0

|z|<Cn
< limn™'  sup  [F(0,6) —m(F) £+ lim n=! max sup |F({,x)|=0. O
n—w teZ4,6|<Cn w0 (eZ:10|<Cn 0<z—4<1

APPENDIX C. AUXILIARY RESULTS
C.1. Comparison principle.
Lemma C.1. There exists an event Qo such that P(Qg) = 1 and the following statements hold for
all we Qqy. For all real x <y, s <t, and v < w,
Z(t,yls,v) _ Z(t,yls, w)
Z(t,x|s,v)  Z(t,z|s,w)’

For all real x <y, s <t, and z, and any non-negative function f for which the integrals below are
nonzero and finite,

o Ztyls,w)f(w)dw  Z(t,yls,z)  §Z(ty|s,w)f(w)dw
17, Z(als, w)fw)dw ~ Z(tals,2) {7 Z(ta|sw)f(w) do’

Similarly, for all real v < z, s < t, and z, and any non-negative function f for which the integrals
below are nonzero and finite,

§20 Z(t uls, 2) f(u) du - Z(t,x|s,z) SZO Z(t,uls, z)f(u)du
§° o Z(tuls,0)f(u)du ~ Z(t,z|s,v) S;OZ(t,u|s,v)f(u)du'

(C.1)

(C.2)

(C.3)

Proof. According to Theorem 2.15 in [1], the fundamental solution Z is strictly totally positive:
that is, on a single event of full probability, for all s < ¢, 1 < -+ < z, and Y1 < -+ < Yn,
det[Z(t,y;|s,i)]} ;=1 > 0. The 2 x 2 case gives (C.1). Next, take a non-negative Borel function
f, multiply both sides of (C.1) by Z(t,z|s,v)f(v), take w = z and integrate over v < z. This
gives the first inequality in (C.2), provided the ratios are well-defined. The other inequalities come
similarly. O

C.2. Total variation distance.

Lemma C.2. Let P and Q be two probability measures on a measurable space (2, F). Suppose
Q «< P and let f = %. Then for any event B € F,

317 = Qlrv < sup[ P(4) = Q(A)] < B[(1 - )*Ls] + P(B).

Proof. First, note that for any event A € F we have
QUAN{f <1}) = BP[1al{f < 1}f] < P(An{f <1})

and

QAN {f>1}) = EP[141{f > 1}f] > P(An {f > 1}).
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Next, write
PANnB)—QAnNB)=PAnBn{f<1})—QAnBn{f<1})
+PANBn{f>1})—QAnNBn{f>1})
<PANBA{f<1})-QUABA{f<1))
=PBA{f<}) -QBn{f<1))
S P ABA{f <)+ QU ABA{f < 1))

SPBA{f<1}))-QBn{f<1})=E"[(1-f)15].

Now
P(A)—Q(A) < P(AnB) —Q(An B) + P(B°) < EP[(1 — f)"15] + P(B°). O

C.3. Increments of the Busemann process.

Proof of Claim (d) in Remark 3.7. We work out the case O = +, the other case being similar. Since
the process has Gaussian marginals we know that the increments have a finite second moment. Since
the process has stationary increments we know that if it had independent increments, then for A < p,
the variance of b** (t,x,t,y) — b (¢, z,t,9) would be equal to o?(p — ), where ¢ is the variance
of b'*(t,x,t,y) — b°*(¢,2,t,y). The central limit theorem would imply then that the increments
are normally distributed and then we would conclude that X — b *(t,z,t,7) is a Brownian motion
with a linear drift. This would contradict the fact that this process is nondecreasing in . O

C.4. Membership in F).

Proof of Lemma 3.22. Assume f € Fy. Consider first the case A > 0. Then taking = = (A + dg)|r|
in (3.12) and (3.13) (with § = &) and sending r — —oo shows that = !logg(z) — \ as x — 0.
Taking z = 7 in (3.14) and sending 7 — —o0 gives lim, ,  x 'logg(x) > u > —\. The case
A < 0 is similar. For A = 0, taking = 0r and « = —dr in the first condition in (3.15) and sending
r — —oo gives (3.19).

For the other direction consider the case A > 0 and assume (3.17). Choose i € R to satisfy
lim, o |2| "t logg(z) < —p < A. Let € > 0 and g € (0, ). Choose zg > 0 so that

|log g(x) — A\z| < ¢elz| for x =z
and log g(x) — px < elz| for = < —xg.

Let r < —w0/(A—00). Then if |¥ + A| < dp we have z > z¢ and log g(z) — Az = —ex = —(A+do)|r|.
(3.12) follows. Next, let

r < min (—5_1 sup (logg(y) — \y), 0).
0<y<zo
Then
log g(x) — Az < elr| <e(|z| +|r|) for 0 <z <xo
and log g(z) — Az < elz| < e(|r| + |z]) for z > .

(3.13) follows. Finally, let

r < min(—af1 sup (logg(y) — N?J)70>'
—zo<y<0

Then (3.14) comes from

log g(x) — px (|r] + |x|) for —xo<x<0
and log g(x) — px

|
| (Ir| +|z]) for x < —xy.
The case A < 0 is similar and the case A = 0 is an easier version of these arguments. O
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C.5. Extension of Pg. We prove the extension of Pg to an ergodic measure P utilized in the proof
of Theorem 3.26 in Section 11. The result comes in Proposition C.4 below after some preliminaries.
The setting developed in Section 11 is assumed.

The generic variables on I's and I" are denoted here by (¢, g) to avoid confusion with the processes
Z and bg defined on Q x Cyp. The time translation mapping (u, ¢, g) — (04C, 0,9) of (11.9) is jointly
continuous from R x I' into I'. Hence for any probability measure () on I' that is invariant under
the group {0, }uer, (I', Br, @,0.) is a continuous dynamical system in the sense of [38]. We use
S : T to denote evolutions restricted to the time interval [S,T]: Sg.rf = {Sg.f : t € [S,T]},
bs.r = {bs(s,z,t,y) : S < s,t < T; x,y € R}, and similarly for Zg.p. Abbreviate bg(Zg,f) =
bs(e,+,+,+; Zg,f) when the time-space variables are not explicitly needed. Throughout, f € f and
the choice of representative is immaterial.

We make the cocycle property of bg explicit. Let s, > T > S.

(t,y|S, f)  Z(t,y|T,Z(T,-|S,[))

A
oxplbs (2003 25,0} = Z0 8 ) ~ 2521, 21,15, )

= exp{br(s,z,t,y; Zr,[Z(T,+|S, f)]) } = exp{br(s,z,t,y; Zr,Ssrf)}.

In words, bg can be calculated from time T onward by letting f evolve from S to T and then
running SHE evolution from initial condition Sg7f.

We make explicit the effect of time shift on b. Let s,t > S, 7 > 0. Recall from (2.8) that 7;¢
denotes temporal shift on the white noise probability space.

exp{(0-bs)(s, 2, t,y; Z§,£)} = exp{bs(s + 7,2, t + 7,y; Z§, )}
22t +mylS+ 7, 29(S + 7,418, f))

(C.4)

Trow w
= = /s VA4 .
(C.5) Zo(s + 10|54 7. 295 < 7,-15.1) exp{bs (s, @, t,y; Z5" 7, [Z9(S + 7,418, F)]) }
= exp{b3(37x7tay; Zg‘;’o“: §,3+Tf)}'

Lemma C.3. Let P(df) be a probability distribution on Cpy. Let S < T < S+ 7. Then the
conditional distribution of 0,;bg under PQ P, given the evolution (Zs.7,Ss.7f) over the time interval
[S,T], is given by the following formula for bounded Borel functions ® on C(Ug,R):

(C6)  EPRP[0(0,bs)|Z8r, Shrf] = fP(dw’) fw(s T, dg|T, S2.8)®(bs(Z7° g)).

Note that on the right w is inherited from the left while w’ is integrated over.

Proof. By (C.5), 0:bs(Z¢,f) = bs(Z;;'Ow, % s4+.f). Note that S§ ¢, f depends only on the white

noise on time interval (S,S + 7], while ZZ:T’OW is a function of the white noise on time interval
(S +7,0). Use independence of white noise over disjoint intervals (S,T], (T, S+ 7] and (S + T, 00),
the cocycle property of S, in (11.2) and the transition probability in (11.3) to write

f f P(dw) P(df) U (7.7, S5, 8) B (bs(Z0°% 82 ¢ 1))
_ f f P(dw) P(df) ¥(Z8.7, $2.11) f P(dw”)fﬂ)(dwvwbs(z;ff’“", S S8.6))
_ f f P(dw) P(df) U (7.1, S, ) f 7(S + 7. dg| T, S%.1f) f P(du!) ®(bs(Z0° g)) O

Recall that Pg on I'g is the distribution of (Zg, bg) under P(dw) ® P(df).

Proposition C.4. Let P € My(Cyp) be an invariant distribution for the Markov kernel (11.3).
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(a) The measures {Pg : S € R} are consistent under projections I's — I'r for S < T. There is
a unique probability measure P on I' whose projection to I's agrees with Pg for each S € R. P is
invariant under the time translation group {6y }uer-

(b) Assume further that P € My(Cys) is ergodic for the Markov kernel (11.3). Then P is ergodic
under the time translation group {0y }uer.

Proof. Step 1. Consistency. Let T > S and let ® be a function on I'p.

LS ¢ dPs = Up(dw)P(df)<1>(ZS|UT,bS|R%(ZS,f))
| [[Ba) ) @(Zr.br (21 207,15 D)
= Up(dw)P(df)@(ZT,bT(ZT,f)) = L ® dPr.
rf‘he penultimate equality used the independence of Zpr and Zg.7 anc? the invariance of P which
o P® P{(w,f) : [Z°(T,-|S, f)] € B} = P(B)  for Borel B c Cys.

The projection consistency implies that there is a unique P € M;(I") whose restriction to I'g agrees
with Pg for each S € R (Corollary 8.22 in [75]).

Step 2. Invariance under time shift. It is enough to check the invariance of Pg under positive
time shifts. Let ® be a bounded measurable function on I'g¢ and 7 > 0. Use the independence of

Z;;'Ow and Z¢.g, ,, the assumed invariance of P, and the shift-invariance of P’ to write
f ddPgof; ! = Up(dw)P(df) (2 0,b5(28, 1))
I's
C.5 w T w W
(@) HP(dw)P(df) B2 bg (20 [24(S + 7,15, 1)]))

_ HP(dw)P(df)@(Zg,bs(zg,f)) - LSCI>dPS.

Step 3. Ergodicity under time shift. We use Definition (1.1.4) of ergodicity from [38]:

1 T
(C.7) jlim TJ P(An6_,B)dt =P(A)P(B) for Borel sets A, B < I
—00 0

By approximation, it suffices to consider sets A and B that depend only on ((s.7,gs.) for a
bounded time interval [S,T] < R. Then we can replace P with Pg.
Begin with this auxiliary calculation for S <T < S + 7.

C.6
f ®(Cs:1>95:7)Y(0-Cs:1, 0-95:7) dPs () ff[P’(dw)P(df) ®(Z8.7p,bsr(Z8.1, 1))
s
x f 7(S + 7., dg| T, S%.rf) fP(da/) W(270 bsr (2707 )
- ﬂmdw)p(df) (28 bs0( 2. 1))

x f 7(S + 7. dg| T, S 1£) jP(dw'> V(28 bsr (247, 8)).
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7?0

In the last step, we used the P(dw’)-almost sure equality 0, 2% = Zg " recorded as (2.8) above

and the shift invariance of P(dw’).
We verify the limit in (C.7):

1 N
~ | drPsiCor.gsir) € 4, 0rsir.6,95:) € BY
0

—0(1=5) 4 f f P(dw)P(df) 14(Z%.7, bs.T)

I , :
4 f (S + 7,dg| T, S4 rf) f P(dw') 15 (28, bs:r(Z8ir. 8))
T—
(C.8) =0(5#2) + H (dw)P(df) 1 A(Z8.7, bs.T)
1 N—-S+T , /
X Ny dr jﬂ'(T, dg|0,S% rf) j]P’(dw') 15(Z8.p,bs:r(Z8.7,8))
©9) o || PP a0 | Plde) [ B 10 (250 bsr (251 8)

= Ps{(Cs:r, 9s:7) € AYPs{(Csir, 9s:7) € B}

In the second equality above, time homogeneity of the transition probability is used to shift T to
zero and then S — T + 7 is renamed 7. The limit (C.9) is justified as follows. By Theorem 3.2.4 on
page 25 of [38], an ergodic invariant distribution p of a stochastically continuous Markov semigroup
P; on a Polish space S satisfies

T
(C.10) lim %f Ppdt = fgod,u in L?(p), Yo € L?(p).
0

We apply this to the transition probability 7 of (11.3) on the Polish state space 5HE By Lemma
11.1(iv) the paths are continuous and thereby the stochastic continuity assumption of Theorem
3.2.4 of [38] is satisfied. Thus for ¥ e L?(P(df)),

1 N
(C.11) Jim Nf dr fm, dg)0,£) U(g) — f\I/(f) P(af) in L2(P(df)).
—00
We take the function ¥(g) = (P(dw’) 1p(Z%r, bs.r(Z%r,g)) above.

Now the situation at (C 8) can be abstracted as follows: fy — cin L%(u), (X,Y) are jointly
defined random variables, 0 < Y < 1, and X has distribution . Then

| BLY fx(X)] = BY -c| < B[Y |fy(X) - el | < {E[Ifn(X) = *]}"* — 0.

In the application to (C.9), fn is the average on the second line of (C.S), X = Sgrf which has
distribution ¢ = P by the invariance of P, and Y = 14(Z%.p,bs.7). This completes the proof of
Proposition C.4. O

APPENDIX D. QUOTIENT TOPOLOGY ON STRICTLY POSITIVE MEASURES
Recall the space M (R) of positive Radon measures on R and the space
Mo = {¢ € M4 (R) : supp(¢) = R}

of these measures whose support is the whole real line. Fix a countable dense subset {¢; : j € N}
of C.(R,R) such that no ¢; is identically zero and each open interval of R contains the support
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of some ;. Define the metrics

e}
dpt, () (C: 1) —;Tj min{ UR ©; dC—chﬁj dn ,1} and

1
pjdn

1},

both bounded by one. The topology induced by dp4, ) is the usual vague topology on M (R).

mMmm—szmHL%%—L%M+&;M_k

J

Lemma D.1. (Mxo,dnr.,) is complete and separable and daq., generates the subspace topology
on Mg, viewed as a subset of M (R).

Proof. These topologies are metric and therefore sequential. Separability can be seen by adding ¢
times a Gaussian measure to an approximation by a linear combination, with rational coefficients,
of Dirac masses at rational points. To see the completeness, note first that a Cauchy sequence (,
in (M=o, dp.,) is also Cauchy in (M (R),dpq, (). Call its dag, (r)-limit ¢. Because (§p; d¢,)™!
is Cauchy and § ¢, d¢, — {¢;d(, these limits of integrals must be strictly positive for all j € N.
Therefore ( € M~g. Finally, if ¢, € M~ converges to ( € M~ vaguely, then for all 7,

1 1
dC, — d _ N
UR% ¢ jR% <‘+ g 0idCn g widC

and so d.o(Cns¢) — 0. Conversely, da.o(Cn,¢) — 0 implies daq, (r)(¢n,¢) — 0. Therefore, the
topology induced by daq_, on M-~ is the subspace topology. O

0

Add to M~q a cemetery state £. Call M=g = Mso U {1} and define a metric on M~q by
setting dyg_ (£, %£) = 0, dgg_ (¢, %) = 1, and dyy_ (C;n) = dm.o(Cm), for 0, € Moo, It is
straightforward to see that because M is complete and separable under daq_,, Mg is complete
and separable under dﬂ>0.

For n,( € M~, recall the equivalence relation under which { ~ 7 if there exists a finite constant
¢ > 0 such that ¢ = ¢n, and the only element equivalent to X is X itself. Denote the equivalence
class of ¢ € Mxg by [¢]. Denote the quotient space M~q/~ by M and give it the quotient topology.

Remark D.2. If one defines the equivalence relation on M, (R), then the zero measure 0 makes
the quotient topology uninteresting. This is because ¢ — 0 as ¢ N\, 0 for all ( € M (R). Since
all the measures c( are identified under ~, the continuity of the quotient map implies that every
neighborhood of [0] contains the entire quotient space.

Lemma D.3. The quotient topology on M s Polish. There ezists a homeomorphism [ from M
onto a closed subspace of Mg such that

(D.1) d ([0, [€]) = dyy_, (f([nD), F([<D)

defines a complete separable metric for the quotient topology of M.

Proof. Call X the space Mg equipped with the topology generated by the metric dm>0. Let
Y = {¢ e Mso\{1}: fgp1d¢ =1} u{£}

inherit the subspace topology from (m>0,dﬂ>o). Y is Polish, being a closed subset of a Polish
space.
Define the surjection g : X — Y by g(X) = L and ¢(¢) = m - ¢ for ¢ € Mg \{L}. g is the
R

identity on Y. To check that g is continuous, let ¢, — ¢ in (Mo, dﬂ>0). If { = X, then (, = X
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for all sufficiently large n because X is isolated. If ¢ # X, then (, # X for all sufficiently large n,
and for j € N,

' _ Sk %5 dln §i 05 dC _ ,
JR i d(9(Cn)) = [ ordln e foprdl  Jn? d(9(¢))-

Thus in all cases, g(¢,) — g({).

The quotient map p : M~g — M is p(¢) = [¢]. Call X* the topological space M equipped with
the quotient topology, i.e., the finest topology in which p is continuous. Since g is constant on each
[¢], [85, Theorem 22.2] implies that the map f : X* — Y defined by f([¢]) = g(¢) is continuous.
We have the following commuting diagram:

X
| X‘
X* — Y
By [85, Corollary 22.3], f is a homeomorphism if and only if ¢ is a quotient map, meaning that
A c Y is closed in the topology of Y if and only if g~!(A) is closed in the topology of X.
Continuity tells us that if A is closed in the topology of Y, then g~!(A) is closed in the topology
of X and so it suffices to show the converse. Fix A = Y and suppose that g~!(A) is closed in X.
Because Y is sequential, it suffices to show that A is sequentially closed. Take any sequence (, € A
and suppose that ¢, — ¢ € Y. Notice that ¢, € g7(¢,) and so because g1 (A) is closed, we must
have ¢ € g~ '(A). But since ¢ € Y, we have ¢g(¢) = ¢ and so ¢ € g(g~'(A)) = A.
Because f is a homeomorphism, the quotient topology of M is Polish. O
o 1
d =Y o2m(1 - S
unlfi9) = X218 s (150 -0+ |75 - 2o ])
(D.2) "
_m L 1,2 _1.2
w3 (| [ s [ e gman ).
m=1

Lemma D.2 in [1] shows that this metric is complete and separable.

The space Cyg of (2.17) is given the metric defined for f, g € Cyg by

Lemma D.4. The set
(D.3) {ne ML(R):n(dz) = f(z)dx for some strictly positive and continuous f}
is a Borel subset of M1 (R).

Proof. The set (D.3) can be represented as follows:

{n € M, (R) : the limit u(q) = lin%O %nn[q —n~! g+ n71 exists in Ry for each g € Q,

Vk € N the function u on [—k, k] n Q is uniformly continuous and bounded away from zero,

and the continuous extension f of u to R satisfies j on(x) f(z)dr = j ondnVneN }
R R

Note that § ¢, f dz can be evaluated as a Riemann integral from the values of u on the rationals. [
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APPENDIX E. RANDOM DYNAMICAL SYSTEMS

In this appendix we give proofs of some well-known results for which we could not find references
in the RDS literature proving the precise statements we wanted. These results build up to a proof
that with the definitions in Section 3.5, P-synchronization implies that the 1F1S principle holds
for P.

The setting in this section is that of Section 12. The independence of F"V_ , and F} . implies
that the RDS ¢ is of white noise type under Definition 2.11 in [36]. Recall the abbreviation 6; = 7y .

Define the skew-product flow (or semigroup) (O)s=0 acting on the spaces (Q X 5HE,]:®B(5HE))
and (Q x CNHE,}"W®B(5HE)) by O4(w,f) = (bw,¢(t,w,f)). A probability measure P on (€ x
5HE,]: ®B(5HE)) is invariant for the RDS ¢ if its marginal on € is equal to P and P is invariant
under the action of ©; for all ¢ > 0.

For a probability measure P on Cyy and t > 0 call ¢(t,w)P € M (Cyp) the probability measure
determined for o : 5HE — R bounded and Borel measurable by

R[] = f B(g) p(t,w) P(dg) = f@@(uw,g))mdf) _ fq><saitg>P<df>.

For a probability measure P on (Q X 5HE,]: ®B(5HE)) with marginal P on €, let P,, denote
its regular conditional probability, given F. Then P is invariant for ¢ if, and only if, for all
t > 0, for P-almost every w, ¢(t,w)P, = Ppy,.; that is, for any measurable set A 5HE, ﬁw{f :
o(t,w,f) € A} = Py,,(A). See Section 2 in [34]. Note that the Borel o-algebra on Cug is countably

generated and so it suffices to check this equality on a countable generating m-system. If w — P,
is FW_ ,-measurable, then P is said to be Markovian. See Definition 6.14 in [35].

Lemma E.1. For each probability measure P on C ue that is invariant for the Markov process with
kernel (11.3) there exists a unique Markovian probability measure on ( x Cyp, F @ B(Cuz)) that

is invariant for ¢ and whose c we-marginal is P. Conversely, the C we-marginal of any Markovian
invariant measure for ¢ is invariant for the Markov process with kernel (11.3).

Proof. Suppose that P € ./\/ll(CNHE) is invariant for the Markov process with kernel (11.3), i.e. IIp
(defined in Section 3.4) is invariant under the shift 6, for each ¢t > 0. Proposition 4.2 of [36] implies

that there exists a FV,, ,-measurable random measure w > y,, taking values in ./\/ll(CNHE) and such
that, for any sequence t; — o0,

(E.1) for P-almost every w, ¢(tx,0_,w)P — p, in the weak topology on M (Cug)
and
(E.2) for each t > 0, for P-almost every w, o(t,w)py, = Ho,w-

Let P(dw,df) = pi,(df)P(dw) be the measure on (€ x 5HE,]~'®B(5HE)) which satisfies for
bounded measurable ¥ : 2 x 5HE - R,

(E.3) jww,g)ﬂdw,dg) _ f f U(w, g) o (dg)P(dw).

This identifies that u, = P, is a version of the regular conditional distribution given F. (E.2)
implies that P is invariant for the RDS . It also follows that P has Q-marginal P and is Markovian.
By the invariance of P for the Markov process, {¢(t,0_,w)PP(dw) = P. Combined with (E.1),

this implies that P has 5HE—marginal P.
For the uniqueness claim consider a probability measure P on (Q X Cug, F ®B(CHE)) satisfying
(a.i) the Q-marginal of P is P,
(aii) P is invariant under O, for each t > 0,
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(a.ii) the Crp- marginal P of its regular conditional probablhty given F is such that { ®(f) (df )
is FW_ ,-measurable for each bounded measurable & : Cuz — R, and
(a.iv) the Cyg-marginal of P is P.
Take ® bounded and take a bounded F : Q — R that is ", -measurable for some ¢t > 0. Then

| @ P dondg) = [ F0)2(0(t,0.) P (do. i)
- ﬂFwtw)@(so(t,w,g))F;<dg>1@<dw> ~ [[] Fwrpott.w. 0) Platag) Pla) Pl
H (61)®(p(t, w, ) P(dw) P(dg) = UF ot 0w, £)) P(dw) P(dg)
_ f () EFE0-P [§] P(duw).

The first equality is @_r—invariance The third equality used the facts that F(0_,w)®(p(t,w,g)) is
F -measurable, Pis Markovian, and fo " is independent of F_ . The fourth equality used

the fact that P is the CHE—marglnal of P'. The fifth equality used the #.-invariance of P.
Applying (E.1) gives

jF(w)cwg) P (dw, dg) = f F(w)(g) P(dw, dg).

By the monotone class theorem, the above equality holds for any bounded measurable @ : Cur — R
and any bounded FW_ _ -measurable F : Q — R. Lastly, we extend this to any bounded F-

measurable F' by utilizing the Markov1an property of P and the Markovian assumption on ?,,
which say that {®(g) P,,(dg) and {®(g) P, (dg) are FV, -measurable. Then

jF<w>¢><g> P (dw, dg) = f E[F| FY,.,19(g) P (dw, dg)
_ f E[F| 7Y, ]8(g) P(dw, dg) = fF<w><I><g>ﬁ<dw,dg>.

This implies that P = P and proves the uniqueness of P. The last claim is in part (ii) of [36,
Proposition 4.2]. O

The next lemma shows how ¢-invariant random variables are related to ergodic probability
measures for the Markov process.

Lemma E.2. Let £ : (0, F) — (Cpup, B(Cyz)) be a p-invariant random variable and let P on
(Q X CHE,.F®B(CHE)) be the distribution of (w,f¥) under P. Let P be the distribution of w +— f¥

under P, equivalently, the 5HE—marginal of P. Then the following hold.

(i) P is invariant under the action of ©; for each t > 0. If £ is F" -measurable, then
(Q x CNHE,]:W®B(C~HE),F) is ergodic under ©; for all t > 0. If f is only F-measurable
but we assume further that (2, F,P) is ergodic under 0; for a given t > 0, then (Q X
5HE,.7:®B(C~HE),F) is ergodic under the action of ©; for that t.

(ii) If f; : Q — Cyup is a p-invariant random variable such that the distribution of (w,f®) under
P is P, then f = f; P-almost surely.

(iii) Assume f is Markovian. Then P is invariant and totally ergodic under the Markov ker-
nel (11.3). Iff; : Q — 5HE is a Markovian p-invariant random wvariable such that the
distribution of w — f’ under P is P, then f = f; P-almost surely.
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Proof. Part (i). Consider the event {w : (w,f¥) € A} for a measurable A € F® B(Cyz). For each
t > 0 the g-invariance of f implies that P-almost surely

0, Hw : (w,f9) € A} = {w: (B, 7)€ A} = {w : (Bw, (t,w,f)) € A} = {w: (w,f¥) e ©;1A}.
Therefore, the invariance of P under 6; implies the invariance of P under 0.

For the first ergodicity claim, suppose that A € FV ® B (5HE) is invariant under ©; and ¢ is FW-
measurable. Then {w : (w,f¥) € A} € FV is invariant under ; and the ergodicity of (Q, FV,P)
under 6; implies that P(A) = P{w : (w,f¥) € A} € {0,1}. The second ergodicity claim follows
similarly after replacing F" by F.

Part (ii). The assumptions give for any bounded measurable & : Cup — Rand F: Q — R,

fF(w)@(ff)]P’(dw) = fF(w)(I)(g)F(dw,dg) = fF(w)(I)(fw)]P’(dw).

This implies that ®(f¥) = ®(f}’) for P-almost every w. Since Cus is Polish, there exists a countable
collection of bounded measurable functions ® that separates points. Thus f* = f}’, for P-almost
every w.

Part (iii). Since P is the distribution of (w,f*) under P we have that P, = &g, P-almost surely.
If f is WV ,-measurable, then P is Markovian and Lemma E.1 gives the invariance of its marginal
P under the Markov kernel (11.3).

By Part (i), the distribution of (w, f{’) under P is invariant under ©; for all ¢ > 0. It has marginals
P and P and is Markovian. The uniqueness in Lemma E.1 implies then that this probability measure
is P and then Part (ii) implies that f¢’ = f*, P-almost surely.

For the ergodicity claim we will use the ergodicity criterion in Theorem 3.2.4(iii) of [38]. Take
any t > 0 and consider a measurable set A © Cyp such that 7(¢, 4]0,g) = 1 A(g), for P-almost
every g € Cyg. This is the same as P(S¥ 0.8 € A) = 14(g) for P-almost every g € Cis, which in turn
says that for P-almost every w, either f* ¢ A or S]l{S“ f“ € A} P(dw') = 1. By the measurability
condition on f, this says that for P-almost every w, either £ ¢ A or Sp.f“ € A. But then we have

P{(Qx A)\O; (2 x A)} = P{f“ € A and S§,f* ¢ A} = 0.

This says that the set Q x A is P-almost surely invariant under the action of ©;. By Part (i),
(Q x Cug, F¥ ® B(Cugs), P) is ergodic under this action and so P(4) = P(Q x A) € {0,1}. O

The last result shows that synchronization implies the 1F1S principle.

Proposition E.3. Let P be a probability measure on C ue that is invariant for the Markov process
with kernel (11.3). Let f : Q — Cus be a w-invariant random variable. Fiz a countable subset
T < [0,00) with sup T = . Suppose that there exist events Co < Cup and Qy < Q such that
P(Co) = P(Q) = 1, and for any g € Cy and w € Qp,

(E.4) 7191tm ds,, ( (t,0_w,g),f*) = 0.

Then P is the distribution of w — f“ under P and f is Markovian. Furthermore, if f; : Q — 5HE
15 a p-invariant random variable such that the distribution of w — f° under P is P, then fy’ = £
for P-almost every w.

Proof. Let P be the unique Markovian probability measure on (Q X CHE,]—" ®B(CHE) ) from
Lemma E.1, with marginals P and P. Define F(w,g) = daHE(g, f«). The invariance of P under 6;,
for all ¢, and the fact that (E.4) holds P-almost surely imply that F' (@t(w, g)) — 0 in P-probability,
ast — o0 in 7. Since P is invariant under ©; for all ¢ > 0 we get that da,. (g, f¥) = F(w,g) =0,

P-almost surely. This implies that P,, = dg, P-almost surely. As a result, f is Markovian and the
marginal P is the distribution of w — f“ under P.
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By assumption P(ff’tw € Cy) = P(Cy) = 1 so there exists an event €, < Q such that P(Q;) = 1
and ff’tw € Cyforall we Q and t € F. Let Qs = Q be an event such that P(Q) = 1 and

G,tw

o(t, 0w, f]77) =, for all we Q9 and t € J. Then for w € Qy N Q) N Qs we have that

W pw 0_tw W
daHE( Tt ):dCNHE(gD(t,Q_tw7f1 t )7f )—)0

as t — o0 in 7. The proposition is proved. O
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