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EXISTENCE OF GENERALIZED BUSEMANN FUNCTIONS AND GIBBS MEASURES
FOR RANDOM WALKS IN RANDOM POTENTIALS

SEAN GROATHOUSE, CHRISTOPHER JANJIGIAN, AND FIRAS RASSOUL-AGHA

ABSTRACT. We establish the existence of generalized Busemann functions and Gibbs-Dobrushin-Landford-
Ruelle measures for a general class of lattice random walks in random potentials with finitely many admissible
steps. This class encompasses directed polymers in random environments, first- and last-passage percolation,
and elliptic random walks in both static and dynamic random environments in all dimensions and with
minimal assumptions on the random potential.

1. INTRODUCTION

The model of a random walk interacting with a random potential (RWRP) has been a major topic of
research in probability over the last half-century. Through various specializations, it encompasses random
walks in both static and dynamic random environments, directed polymers in random environments, as well
as zero-temperature models of deterministic walks in random environments like directed and undirected first-
and last-passage percolation. The objects we investigate, called generalized Busemann functions, have been
previously studied in specific instances through the structure of positive harmonic functions [69-71] and the
associated Martin boundary [9], infinite volume Gibbs-Dobrushin-Landford-Ruelle measures and geodesics
[1, 4-6, 8, 14, 16, 23, 24, 27, 39, 41, 54, 63], increment stationary distributions of directed polymers and
stochastic Hamilton-Jacobi equations [1, 4-6, 8, 14, 17, 40, 41, 63], solutions to variational formulas for the
limiting free energy and shape function [9, 57, 60, 61, 70], and, in the related stochastic Hamilton-Jacobi
setting, correctors for the stochastic homogenization problem [15, 41].

In this introductory section, we will motivate the model and questions we consider informally, ignoring
technical complications. A careful treatment follows in the main body of the text. Our model begins with
a time-homogeneous reference random walk with finitely many admissible steps on an integer lattice Z<.
We denote the set of admissible steps by R, the associated transition mass function by p, and the path law
started at z € Z¢ by P,. The random walk interacts with a random potential {V (w, z) : z € R} through its
position and its increment.

At positive temperature, the quenched (unrestricted-length) point-to-point polymer measure in environment
w is a Gibbsian measure on paths X. which emanate from a site x, defined via the Radon-Nikodym derivative
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In the previous expression, T, w is a shift of the environment w by z, 7, is the first strictly positive time the
path reaches site y, and the partition function is

(1.1)

s, ooy (X0).
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Here E, is the expectation with respect to P, and § € (0,0) is interpreted as the inverse temperature.
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A straightforward computation checks that these measures are Markovian with one-step transition prob-
abilities from x # y to x + z, z € R, given by

7z ! g 28 1o 284
—BV (Tpw, +2y _ —B(V (Tww,2)+ % (log 22 —log 25
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As 8 — o0, one should expect the measure in (1.1) to converge to a distribution supported on paths which
minimize the potential along the path; i.e., the measure is asymptotically supported on paths which optimize

Ty—1 1
(1.4) - x.eggpw{ k2=0 V(Tow, Tpr1 — xk)} =Py = Bhﬁm@ 3 log Z1).
This “zero temperature” RWRP model is known in the literature as first-passage percolation (FPP), with
the standard undirected Euclidean model arising if P, is any random walk with the same admissible steps
as simple symmetric random walk on Z?. In that setting F5° is called the passage time. The statement
that the transition probabilities in (1.3) sum to one becomes the following local control problem, which can
be used to construct minimizing paths, called geodesics in FPP:

0= rzrgrzl{V(wa, T+ z)+ FoY — F;ﬁ‘jy}

If one replaces stopping on reaching y with stopping after n steps, then the positive-temperature polymer
measure defined through (1.1) is what we call the quenched restricted-length point-to-level polymer measure,
which is defined via the Radon-Nikodym derivative

ngﬁ: ( ) e—ﬂZL‘;S V(Tx,w, Xk+1—Xk)
de,n ) Zzﬁ,ﬁ

(1.5)

In the previous expression, P, is the restriction of P, to the first n steps of the walk and
28 () = By B VP50 X130 |

Again, these measures are Markovian with one-step transition probabilities from x to x + z, where z € R,
given by
(16) p(z)e_ﬁV(TT“’vz) Zeranl(w) _ (z)efﬁ(V(TIw,z)Jr%(logZf‘nflongJrz,nil)).
Zhm(w)
Denote by P the law of the random environment w. In general, the above quenched point-to-level polymer
measures are not Kolmogorov-consistent as n varies unless it happens to be the case that P-almost surely
for all z and all n,

(1.7) me(w) =1 or, equivalently, 2 p(z)e PV Tewsz) — 1,

ze€R
If this holds, then the restricted point-to-level model reduces to that of a random walk in a random environ-
ment (RWRE).

As previously noted, except in the special case where the model is an RWRE, the measures (Qg;‘;)n and
(Qg:;j )y discussed above are not in general Kolmogorov-consistent. The domain Markov property satisfied by
another family of measures (restricted length point-to-point, defined further down in (2.3)) gives Dobrushin-
Landford-Ruelle (DLR) equations which characterize infinite volume Gibbs measures in this setting. One
typically expects such measures to arise in the thermodynamic limit as the terminal condition (y or n,
respectively) tends to infinity. Such a limit is equivalent to the convergence of the transition probabilities
defined through (1.3) (or (1.6)). Writing 37! log Zf;’ = Ff;, this, in turn, is equivalent to the convergence
of limits of the form

(1.8) B (a,y) = tim{ Fl — i,

where the limit is taken as u — o0 in an appropriate sense. In the zero-temperature setting of FPP, the
analogous limits

(1.9) B*(z,y) = ligl{Fg??# - Fﬁ?a“}
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are known as Busemann functions, which is a name inherited from their interpretation in metric geometry.
We keep this terminology in the general model.

The existence of such limits is highly non-trivial to prove in general, with most arguments, even in the
planar d = 2 setting, relying on strong and generally unproven hypotheses about the limiting free energy
(8 < ) or limit shape (8 = o). These quantities are defined respectively (in the point-to-point setting)
through the limits

1 1
B — i _ B,w o0 S H - po0,w
A() = lim ~Fg and  AT(E) = lim —Fp 7,
where z,,/n — & € R%. In the setting of RWRE, the corresponding object has also been studied extensively
in the guise of the quenched large deviation rate function for the time n position of the path.
If the limits in (1.8) and (1.9) exist, then these Busemann functions satisfy four key properties, the first

three of which are inherited immediately from the pre-limit structure of the model:
(i) (Recovery) For 8 < oo,

1= 2 p(z)e—ﬁ(V(wJH-/%BB““(O,Z))7
Z2ER
and for 8 = o0,

0 = min{V (w, 2) + B®*(0, 2)}.

z€R
(ii) (Cocycle)
B (x,y) + BP¥(y,2) = BP*(z, 2).
(iii) (Shift covariance)
BAT (g, ) = BP(z+ 2,y + 2).
(iv) (Duality) There exists m € dAP(¢) for some & for which
(1.10) E[B?*(z,y)] = m - (z — y).

In the duality expression, dA®(¢) denotes the superdifferential of the concave function A”. With some convex
analysis, one can generally show that duality is actually a consequence of the previous three conditions. We
include this condition as part of our (informal) definition to simplify the discussion below. Random fields
which satisfy these four properties are called generalized Busemann functions. Where such objects exist, they
can serve essentially the same role as true Busemann functions defined through the limits in (1.8) and (1.9).
In particular, in the setting of polymer models (resp. FPP/LPP), the recovery property of the generalized
Busemann functions can be used to construct semi-infinite Markovian path measures (resp. paths). Then,
the cocycle property implies that these measures (resp. paths) satisfy the aforementioned DLR equations
(resp. are geodesics). Gibbs measures (resp. geodesics) built in this way have extra structure and can be
shown to also be consistent with the unrestricted-length point-to-point measures (resp. geodesics) which are
discussed above.

As the reader will see in the body, because of how generally we work in this project, the careful statements
of our main results are fairly technical. For this reason, we give informal statements in this introduction,
with precise statements to follow. Our main technical result, stated carefully in Theorem 4.5 below, is that
generalized Busemann functions essentially always exist.

Informal Theorem 1.1. For appropriate choices of the distribution P of the environment w and all choices
of the reference walk with finitely many admissible steps, for each & and m € 0AP(€), there exist random
variables B%* (x,y) satisfying the duality (1.10) and the recovery, cocycle, and covariance properties above.

In the statement above, what is meant by “appropriate” is that the environment needs to be appropriately
ergodic or mixing and satisfy mild moment hypotheses. Our hypotheses include most models with finitely
many admissible steps studied in the literature, with two significant exceptions being degenerate (i.e. not
elliptic) random walks in random environments and walks on percolation clusters.

The fourth condition in our informal definition of the generalized Busemann function was called duality
because it expresses a Legendre-Fenchel duality (through the concave function A?) between the mean vector
m of the Busemann function and a direction & for which m € dAP(¢) which appears when one uses the
Busemann function to construct Gibbs measures or infinite geodesics.
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The study of the Gibbs measures and semi-infinite geodesics has been a focus of significant recent attention.
We discuss some of these related works below and refer the reader to the introduction of [42] for a more
comprehensive discussion. The main result of this paper establishes the existence of such measures and
geodesics in a broad setting, while also detailing some of their fundamental properties. The precise statement
of our existence result is Theorem 3.14 below. Informally, we can summarize that result as follows.

Informal Theorem 1.2. Under the same hypotheses as Informal Theorem 1.1, for each x € Z¢, €, and
m e ONP(€), there exists a probability measure ng,w on infinite paths starting at x. This measure satisfies
Gibbs consistency with the restricted-length point-to-point measures and, in an appropriate sense, with the
unrestricted-length measures. Furthermore, it corresponds to the tilt m through the following dualities:

For almost all w, Qg’m’“—almost surely, the limit points of X,,/|Xy|1 lie in the set of directions ¢ such that
m e ONP(C). Similarly, the limit points of X,,/n lie in the set of velocities satisfying the analogous condition
with respect to the restricted-length free energy.

The need for understanding consistency with the unrestricted-length measures “in an appropriate sense”
in the statement above is because the unrestricted-length measures are not in general self-consistent in the
Gibbs sense. We discuss this point further in Appendix B.

Appendix A.1 of the Ph.D. thesis [32] contains some further preliminary results on the general structure
of infinite volume Gibbs measures in this general setting, including their equivalence to recovering cocycles.

What we are calling generalized Busemann functions have previously appeared with other interpretations
in other settings. Suppose that the model is an irreducible RWRE as in (1.7) and that h solves for all z € Z¢
and some c € R,

(1.11) h(z) =Y p(z)e”V T2 =h(z + 2).

Then the above equation says that h(X,,)e is a (quenched) martingale for the RWRE. When ¢ = 0, this
becomes the usual notion of a harmonic function. We call the ¢ # 0 case a time-dependent harmonic function.

If B satisfies the recovery and cocycle properties discussed above, then the function h(z) = e? De0.2) g
harmonic (with ¢ = 0). More generally, we will see that the (space-time) generalized Busemann functions
(see Remark 4.2 below for a careful definition) coming from the restricted-length measures in (1.5) define
time-dependent harmonic functions as in (1.11). Such time-dependent harmonic functions have previously
been used to study RWRE in [69-71]. One could conversely start with a covariant positive harmonic function
with ¢ = 0 and construct a generalized Busemann function by setting B(x,y) = log h(z) —log h(y). A similar
statement holds for space-time generalized Busemann functions in the case of ¢ # 0.

Through this connection, generalized Busemann functions can be seen to be closely related to the Martin
boundary theory of the RWRE and generalizations to the RWRP model. In this interpretation, the infinite
volume polymer measures discussed in Informal Theorem 1.2 are the Markov processes generated by Doob
h-transforms of the RWRE with respect to this harmonic h. Through this connection, it is our hope that
the study of the objects constructed in this work may shed some light on the long-open questions concerning
zero-one laws for RWRE models previously studied in [43, 56, 64, 67, 73, 74].

As mentioned in the opening paragraph of this manuscript, many other connections are present in related
settings. Next, we briefly comment on two of these connections. Generalized Busemann functions have been
shown in [40] to be equivalent to translation invariant stationary distributions for directed polymer models
(in the sense that a realization of one induces a realization of the other). See also [41]. These translation-
invariant stationary distributions play a prominent role in the KPZ scaling theory, which predicts the values
of the non-universal constants needed to center and scale to see the universal distributions in the KPZ class
[46, 65].

In the closely related setting of stochastic Hamilton-Jacobi equations, generalized Busemann functions
correspond to globally defined solutions to the corrector equation, as discussed in [15, 41]. The construction
of such objects is a key step in one approach to the problem of proving stochastic homogenization for such
models, beginning with the pioneering work [50]. We refer the reader to the discussion in [7] as well as that in
[41] for connections between the problems studied here and the general stochastic Hamilton-Jacobi setting.

Before concluding this section on motivation, it is important to clarify that our focus in this work lies in
the simultaneous construction of the generalized Busemann functions for a countable dense set of vectors in
the superdifferential of the limiting free energy. Our scope does not encompass the complete construction
of the Busemann process, meaning a stochastic process indexed by the whole superdifferential. Thus far,
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such a process has only been successfully constructed generally in two-dimensional directed nearest-neighbor
settings [39, 42], where the path structure imposes a monotonicity that allows for the construction of the
Busemann process based on its values at a dense countable set of directions.

We close this introductory section by remarking that this work leaves open many of the usual questions,
such as those considered in Newman’s seminal work [54], regarding the structure of the semi-infinite Gibbs
measures and geodesics. In particular, it is natural to wonder whether all semi-infinite Gibbs measures and
geodesics are directed into faces of the unrestricted-length limit shape. One might also ask for conditions
under which one can show the uniqueness of these semi-infinite measures and geodesics or the non-existence
of bi-infinite measures and geodesics. See [19, 20] for some recent relevant results. The existence of the full
Busemann process and its connection to the non-uniqueness of Gibbs measures and infinite geodesics as in
[39, 42] would also be of interest.

Another open problem of interest is to determine the conditions under which paths have an asymptotic
law of large numbers (LLN) velocity. In the context of standard FPP, this is commonly referred to as the
problem of asymptotic geodesic length. Our results show that a sufficient condition for paths to possess
an almost sure asymptotic velocity is for the restricted-length limiting free energy to be strictly concave.
However, it is known that this condition does not hold universally, as exemplified by marginally nestling
RWRE, where the limiting free energy features a linear segment [68, Theorems 7.4 and 8.1]. Nevertheless,
even for such models, it has been proven that in certain special cases the paths do have an asymptotic
velocity [22, 55, 66], but the general scenario remains unresolved. The results in [10] and [45] suggest that
in the standard FPP model, for a given asymptotic direction, there is a large class of weight distributions
for which there are multiple asymptotic speeds and, conversely, there is a large class of weight distributions
for which there is a unique asymptotic speed. Consequently, it is natural to question whether or not having
positive temperature forces the LLN to hold, as is conjectured, for example, in the case of a uniformly elliptic
RWRE with i.i.d. transition probabilities.

1.1. Methods and related work. In the polymer and percolation literature, two main approaches have
been widely utilized to establish the existence of Busemann functions. The earliest approach can be traced
back to the pioneering work of Newman and collaborators [35, 48, 54] on first-passage percolation.

In this approach, quantitative estimates on the strict convexity (or concavity, depending on sign conven-
tions) of the limiting shape are used to prove geodesic coalescence, from which the existence of Busemann
functions follows as a consequence. These ideas were later carried over to other percolation [4, 6, 17, 18] and
polymer [8] models.

However, it is worth noting that obtaining the required curvature bounds for this approach, except for a
few specific cases where the shape function can be explicitly computed, remains a major open problem in
the field. More importantly, from our perspective, such conditions are provably false in full generality. It
was shown by Haggstrom and Meester [33] that in two dimensions, every compact convex shape with all the
symmetries of the lattice appears as the limit shape of some stationary FPP model. See also the polygonal
examples constructed in [2, 13]. Moreover, even in the FPP setting, geodesic coalescence in dimensions three
or higher continues to be an unresolved problem, with even its validity in high dimensions remaining unclear.

The approach we employ in this work is based on the connection between generalized Busemann functions
and invariant measures. It broadly follows the idea of Césaro averaging distributions of Markov processes
to produce stationary distributions, a concept that traces back at least to the classical Krylov-Bogoliouboff
theorem [47]. The essential technical difficulty in this approach in RWRP models is constructing generalized
Busemann functions that satisfy the duality condition (1.10) for a rich set of vectors m. There are two main
steps to such an argument: constructing tight approximate Busemann functions with means converging to
m and then establishing uniform integrability.

A method for proving the existence of generalized Busemann functions with the correct mean structure
was developed (mostly in the context of FPP) over a series of works tracing from Liggett’s proof of the
subadditive ergodic theorem [49, Theorem 1.10], to Garet and Marchand [25] to Gouéré [30], Hoffman
[34], and finally culminating with Damron and Hanson [23]. This approach was subsequently applied by
Cardaliaguet and Souganidis [15] to construct correctors in a class of stochastic Hamilton-Jacobi equations.

The uniform integrability requirement is simplified in settings like FPP where loops are possible and
easy upper and lower bounds on the approximate Busemann functions immediately imply the result. In
settings where loops are not allowed in some directions, only one-sided bounds follow quickly from the model
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structure, and one needs more involved tools to obtain the mean convergence. In the queueing literature,
this issue was also encountered in the construction of stationary «/G/1/00 queues in [51], which also follows
the general Krylov-Bogoliouboff approach mentioned above. This construction was later applied in [28] to
show the existence of Busemann functions in the two-dimensional directed last-passage percolation model.
A generally applicable method was introduced in [39] in the context of a 1 + 1 dimensional nearest-neighbor
directed polymer in an i.i.d. random environment, where a variational representation of A?, originally proven
in that setting in [26], was used to show the uniform integrability.

Implementing these previous ideas in this general setting is complicated by the variety of admissible paths
and the structure of the limiting free energy and shape function in the range of models we study. Our
approach is a hybrid of that of [23] and [39], but with some significant differences from both. In [23], the
approximate Busemann functions corresponding to a direction £ are increments of point-to-(randomized-)
hyperplane passage times, where the hyperplane is chosen to be tangent to the limit shape in direction &.
These point-to-hyperplane passage times can be viewed as a random discrete approximation to the dual
norm of the limit shape. One sees immediately from this construction how the relationship to a vector in
the subdifferential of the (convex) limit shape arises. In the restricted-length setting of [39], by contrast, the
approximate Busemann functions are increments of point-to-(randomized-)time-level passage times, with
an external field added to the potential. These tilted point-to-level passage times are a random discrete
approximation of the Legendre transform of the shape function. Standard convex analytic arguments then
connect the external field to the superdifferential of the (concave) limiting free energy.

In our setting, which encompasses models with characteristics of both directed and undirected models,
neither of these approaches appears to work on its own. Notably, there are cases where the tangent to
the limiting free energy can be the zero vector, or the limiting free energy itself can be zero in non-trivial
directions (e.g., in certain RWRE models), which poses challenges in implementing the approach of [23]
in a general setting. Furthermore, when loops are permitted in the model, introducing external fields to
unrestricted-length point-to-level models may lead to infinite partition functions. To address these challenges,
we employ a hybrid approximation utilizing a point-to-hyperplane free energy with an external field, which
proves successful except in purely directed cases where all hyperplanes become the zero hyperplane. In such
instances, our approach closely resembles the one adopted in [39].

With generalized Busemann functions constructed, the existence of Gibbs-Dobrushin-Landford-Ruelle
measures follows essentially immediately from the cocycle and recovery properties. We show that these mea-
sures are simultaneously consistent with both the restricted and unrestricted length point-to-point measures,
as well as with the Green’s function. The next natural questions are if the paths under these measures are
directed (meaning that X, /|X,|1 converges) and if they satisfy a law of large numbers (meaning that X, /n
converges).

The argument that the paths under the semi-infinite measures have an asymptotic direction requires
some care because our models allow for the possible existence of traps that constrain paths to bounded
sets. We give an exact characterization of when this occurs and provide easy-to-check conditions on the
environment that ensure the paths do not become trapped. We then show that in the absence of traps, the
paths are strongly directed into the set of directions that are in a Legendre-Fenchel duality (defined through
the concave function A”) with the mean of the Busemann function. This is the set of directions ¢ such that
m € OAP(€), where m is the mean vector of the Busemann function. This essentially follows by combining
the recovery property of the generalized Busemann functions with the shape theorems for both the free
energy and the generalized Busemann functions themselves. This argument is similar to the approach taken
in [23, 27], with certain details modified in the positive temperature case.

We also prove a large deviation principle for the velocity of the path under the semi-infinite polymer
measure, using methods similar to [39, 58]. The possible law of large numbers limiting velocities are then
included in the zero set of the rate function, which turns out to be the set of vectors & that are dual to the
mean of the Busemann function through the concave function A, i.e., such that m e dA®(€).

We conclude this section with a brief technical remark. For simplicity, the preceding discussion focused
solely on the free energy A? and its superdifferential as a function on the cone generated by the admissible
steps R. In actuality, when working with a direction £ in this cone, we restrict attention to the unique face of
the cone containing ¢ in its relative interior. This restriction arises because paths with £ as their asymptotic
direction can only take steps within this face. Another subtle technical point is that the free energy A? is
not generally known to be continuous up to the boundary of the face. To address this, we instead consider
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the unique continuous extension of A? from the interior to the entire face, which happens to be given by the
upper-semicontinuous regularization of the restriction of A? to the interior of the face. The Gibbs measures
(and geodesics) we construct are then supported on semi-infinite paths that are constrained to steps lying
within the corresponding face of the cone.

Outline of paper. The outline of the remainder of the paper is as follows. Section 2 describes our setting,
defining the relevant path spaces and RWRP measures, then collects results about the free energies, and
states the shape theorems. Section 3 collects the technical conditions for our results and states our main
result concerning the existence of Gibbs measures and geodesics. Section 4 includes both the statement
and proof of our results concerning the existence of the generalized Busemann functions. Section 5 contains
the construction of the associated semi-infinite Gibbs measures. Section 6 then concludes the proofs of
the results stated in Section 3. Appendix A collects some basic facts we use from linear algebra and
convex analysis. Appendix B discusses Gibbs consistency and inconsistency of the various RWRP models we
consider. Appendix C proves the shape theorems we state in Section 2. Appendix D relates the restricted-
and unrestricted-length limiting free energies.

Notation. R denotes the real numbers and Z denotes the integers. For a € R, R, = [a, ), R~, = (a, ),
Zsq = Rsg nZ, and Rey, Ry, Z~y, Z<q, Z<, are similar. For x € RY, let |z|; denote the ¢! norm of x,
and |x|y, denote the £*° norm of z. A sequence (xf)n<k<m is denoted by @y, Similarly, ., = (k) k<n,
Tnioo = (Tp)k=n, and T_g.0 = (T )kez. When the index set is understood, we denote the sequence by ..
For a € R, at = max(a,0) and a~ = — min(a, 0).

Throughout, we use the convention that inf @ = 0. 1i A denotes the relative interior of a set 4 — R,
ext A denotes the set of extreme points of a convex set A = R

Given a metrizable topological space X, we denote by B(X) the Borel o-algebra of X. The collection of
probability measures on (X, B(X)) is denoted by M (X) and equipped with the weak topology.

The symbol A marks the end of a numbered remark.

2. SETTING

In this section, we describe the models of random walks in random potential that we study in this work.
The examples at the end of Section 2.2 show how a large number of models studied elsewhere in the literature
are special cases of the models we consider.

2.1. The admissible paths. We begin by defining the path spaces used by the various models. Let d > 1
be a positive integer and consider a non-empty finite subset R < Z? containing at least two points. This is
the set of admissible steps. R may contain the zero vector 0 € Z%.

We denote the additive group and semi-group generated by R by

G={Ybezibez) and " ={} b.zib e Tl

zeR z€ER
For each n € Z(, the set of points that are accessible from 0 in exactly n admissible steps is

D, = {x €G* :3(b.)oer € 25 with Y b, =nanda = bzz}.
ZER zZER

We now define several collections of admissible paths. The set of all admissible paths of length n € Zx¢
from x € Z% is denoted by

XP = {x();n cxog=x,0; — i1 € Rforall 1 <i< n}
For integers j < k, the set of admissible paths from z € Z% at time j to y € Z¢ at time k is denoted by
X{C’Z = {xj:k Tx; =2, T, =Y, Tig1 — 2 € Rforall j <i<k— 1}.

This set is empty unless y — x € Dj_;. When j = 0, we abbreviate the set of admissible paths from z to y
of length n by
Xy, =Xpn

The set of all admissible paths from z € Z¢ to y € Z¢ is

a0
_ n
Xey = | X2,
n=0
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This set is empty unless y — 2 € Gt. Define the space of paths from x € Z% that reach y € Z¢ for the first
time in exactly k € Zx¢ steps

Xiy:{xo;kexﬁzm;éyfora110<i<kandxk:y}.

Define the space of killed paths from z € Z¢ to y € Z¢, i.e. paths of arbitrary length that start at  and end
when they reach y:

a0
- —k
Koy = %oy
k=0
The set of all semi-infinite paths rooted at x € Z¢ is denoted by

X, = {1100:00 cxg=2x,x; —xi—1 € R for all i > 1}.

X, and the spaces above, which can be embedded in it, come equipped with the natural filtration generated
by the coordinate projections. We denote the natural stochastic process on these path spaces by X.. For
y € Z4, define the stopping time 7, = inf{k > 0: X}, = y}.

All of the path spaces discussed above are compact metrizable spaces in the product-discrete topology.

When we wish to emphasize the dependence on the set R of admissible steps, we will write D,,(R), X2 (R),
X;(R), and so on.

Let p : R — (0,1] be a probability kernel, i.e. }} - p(2) = 1. We assume, without loss of generality,
p(z) > 0 for all ze R. Let P, (with expectation E,) be the classical random walk starting at = and having
ii.d. increments with distribution p. This random walk is referred to as the reference walk, and P, is the
reference measure.

2.2. Random walks in random potentials. Let (£2,&) be a Polish space endowed with its Borel o-
algebra. We assume this measurable space is equipped with a commutative group of continuous bijections
T ={T,:Q — Q:xeZ% such that Tp is the identity map, and for all z,y € Z%, T, o Ty=TyoTy =Typiy.
A generic element in © will be denoted by w and is referred to as an environment. Let P (with expectation
E) be a probability measure on (€, &), called the environment measure. We assume P is invariant under
T, for all z € Z?. For a subset S < Z¢, we say (2,8,P,{T, : z € S}) is ergodic if for every event A € &
satisfying T, 1A = A for all z€ S, P(A) € {0,1}.

Let V : 2 x R — R be a measurable function, which we will call a potential. For ¢ > 1, we say V € L if
E[|V(w, 2)]7] < oo for all z € R.

Let 8 be a positive real number, called the inverse temperature. For x,y € Z¢ such that y — z € G+,
n € Z-g, and u,v € Z% and n € N such that v — u € D,,, the restricted and unrestricted-length point-to-point
partition functions at inverse temperature [ are, respectively,

(2.1) 2L @) = By e PR VTxe X=X ] and
(22) Z;?,y(w) = EQL [676 2;1’:31 V<Tka*Xk+17Xk)l{Ty<oo}]-

Throughout the paper, depending on what notation is most convenient in a particular expression, we will at
times place the dependence on w into a superscript, writing expressions like Zﬁ;} ,, or omit the dependence
on w entirely and write expressions like Zfiv’n. Since R is finite, Zf’v’n(w) is always finite. Zf’y(w), on the
other hand, can be infinite if the potential V' can take negative values and the paths can make loops. When
loops are present, (3.1) below suffices to ensure that Zf , (w) is finite. Define ZJ,,  (w) = 0 when v —u ¢ D,
and ZJ (w) =0 when y —z ¢ G*.
The corresponding restricted and unrestricted-length point-to-point free energies are, respectively,
FB(w) = %log ZzP,  (w) and ny(w) = llog way(w).

u,v,n u,v,n ﬁ

If v—u¢ D,, define F?, (w)= —oo. Similarly, if y — 2 ¢ G*, then ny(w) = —o0.

w,v,n

Remark 2.1. A more physically correct definition of the free energy includes a minus sign. Many mathematics
papers, including many of those on which we rely in this work, omit this sign to avoid proliferating minus
signs in the various computations. To maintain consistency and avoid conflicting notation with most of the
earlier works we cite, we have also omitted the minus sign. A
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The corresponding quenched point-to-point polymer measures are the probability measures on ng and

Xy, respectively, such that

Qu . e BIilo V(Tka,Xk+1—Xk)1{Xn:U}
— (X)) = 3 and
(2.3) dPy Zuwn(w)
dQB e -BEL! (Tka7Xk+1—Xk)1{Ty<oo}

—5 (X)) =
dPy VA4 (W)
For a tilt (or external field or force) h € R? and an integer n > 1, define the tilted n-step partition function

2B (@) = By e DR VT XX )|
and the corresponding free energy

z,n

1
Fl ) = 5 log ZEh(w).
Similarly to the point-to-point case, Zf,}f (w) is always finite, since R is finite. The corresponding quenched
polymer measure is the probability measure on X7 such that
ng,Z,w B S V(Tx, w,Xpp1—Xi)+Bh(Xn—2)

ap, X = 221 w)

Through most of the manuscript, we work with the unrestricted-length model. This is without loss of
generality because a restricted-length model can be rewritten as an unrestricted-length model, as explained
in the following remark.

Remark 2.2. (Restricted-length models as unrestricted-length models) Consider a restricted-length model in
7% with steps z € R, random walk probability kernel p, and potential function V (w, z). This model can be
written as an unrestricted-length model in Z%*! as follows. Write Z4*! = Z¢ x 7 and denote elements of
79+ by (z,n), where z € Z% and n € Z. The set of admissible steps of the new model is R = {{z,1): z € R}.
Shifts in the (d + 1)-st dimension are defined to be the identity shift, i.e., T<Z,n> = T,. The probability
kernel is p({(z,1)) = p(z), and the potential function is V(w,{z,1)) = V(w, z). Then the restricted-length
point-to-point partition function and quenched polymer measure from x to y in n steps are equivalent to the
corresponding unrestricted-length objects from (x,0) to {(y,n). Theorem 2.17 and Remarks 4.6 and 5.9 are
examples of how results for the restricted-length model can be obtained from ones for the unrestricted-length
model. Remark 3.19 explains how other quantities for the restricted-length model transfer to ones for the
unrestricted-length model. A

Taking 8 — o0 in the above definitions leads to polymer models at zero temperature, where the free
energy becomes a passage time. For x,y € Z¢ with y — x € G* and an integer k& > 0, the restricted and
unrestricted-length point-to-point passage times are given by

k—1
sup 2 (=V(Ty,w,iy1 —x;)) and

k—1
FE, = sup sup > (<V(Thw, 21 — 1)),

z,Y
k€Z>o0 zo.1€Xk  iZ0

Similar to the positive temperature situation, while F .k 15 always finite, condition (3.1) below suffices to
ensure the finiteness of F°, if loops are allowed.

At zero temperature, the quenched measures are replaced by (restricted and unrestricted-length) geodesics,
which are optimal paths that achieve the passage time. Between two points, there may be multiple geodesics.
One may choose an ordering on R to order all paths lexicographically, obtaining an ordering of geodesics.
Then, for example, the first geodesic in this ordering is unique.

Next, we give examples of models that appear in the literature and are covered by our setting.

Ezample 2.3 (Edge and vertex weights). We can represent random weights assigned to the vertices of Z? by
taking {2 = RZ* and V(w) = wo. To represent directed edge weights, take Qy = R®, Q = Q%d. Then for each
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2 € 2%, wy = (Wizut2))-er is the vector of edge weights out of . The potential function is V(w, 2) = w(g ).
The shifts are (T,w) (z,042) = W(a+v,a+v4z) 0T VE VAS
For undirected edge weights, assume 0 ¢ R and define the set of edges & = {{z,y} < Z¢ : y —z €
Rorz—yeR} Let @ =R and V(w, 2) = w(o,,}. The shifts are (Tyw) (4 542} = Wiztv,tvss} for veE ZL
One can also have a hybrid of all three versions by letting 2 = RZ" x (RR)Zd x R¢. For each x € Z%, the
weights at x are given by w, = {, V2,042, 0{z,042} : 2,2’ € R} and for z € R, V(w, 2) = ag+70,- +050,23- A

Ezample 2.4 (Product environment). Let £y be Polish and = Q%d equipped with the product topology
and Borel o-algebra. We denote points w = (wy)zeza. The translations are (Tpw), = wyty. P is a product
measure if {w; },eze are i.i.d. random variables under P. P has a finite range of dependence if there exists an
7o = 0 such that for any A, B < Z¢ where |z —y|y > ro forallz € Aand y € B, {w, : z € A} and {w, : y € B}
are independent. V' is local if there exists an L > 0 such that for all z € R, V(w, z) is measurable with
respect to o{w, : |z|; < L}. In other words, V only depends on finitely many coordinates w,. A

Ezxample 2.5. Our general setting covers the following models.

(1) First- and last-passage percolation. At zero temperature, directed last-passage percolation is obtained
by taking R = {e1,...,eq}, Q = de, setting V(w, z) = —wp, and taking 8 = co. The last-passage
time is

k—1

©
F,., =sup sup Z Wa, -
ke€Z xo.xeXk , iZ0

Standard first-passage percolation is obtained by taking R = {+ey,..., *eq}, putting weights on the
edges as explained in Example 2.3, then taking § = o0 and putting a minus sign in front of the free
energy. The first-passage time is

k-1
—F* = inf inf Z Wi 1.
Y kelaonexk , S tovain)

(2) Directed polymers in random environments (DPRE). This is the case where § < oo and there exists
a vector 4 € R? with z -4 > 0 for all z € R or, equivalently, where 0 does not lie in the convex hull
of R. Thus, the polymer always moves strictly forward in direction u; by [60, Corollary A.2], this
is equivalent to the condition that there are no loops, i.e., Xg 0 = {0}. A commonly studied special
case, which we call a space-time directed polymer, is one where there exists a vector 2 € R? such that
z-u=1for all ze R. Then (X,, — Xo) - u = n plays the role of a time coordinate. There is a large
literature studying this model; see [21] and the references therein. By Lemma A.2, this is satisfied if
and only if, for any two points = and y in Z? such that y — z € G*, all paths from z to y take the
same number of steps. A common example of this is when R = {ey,ea,...,eq}.

(3) Random walk in a random environment (RWRE). Let R be general and 8 = 1. Let 7, : Q — [0, 1],
z € R, be measurable such that } _, 7. = 1, P-almost surely. Let V(w, z) = —log 7. (w) + log p().
Then Z;:ﬁ = 1 and the measures {Qi’%w : n € N} are consistent, being the marginal distributions of
the Markov chain X, starting at  which uses transition probabilities 7, 1. = 7. (Tyw). Under the
path measure this family induces by Kolmogorov’s extension theorem, Z;f’y(w) is the probability that

the path ever reaches y if started at x and Qi’yg’” is the distribution of this Markov chain conditioned
on reaching y, provided that this probability is positive. A space-time directed polymer which is also
a random walk in a random environment is called a random walk in o dynamic random environment.

An RWRE is called elliptic if m, > 0 for all z € R and wuniformly elliptic if there exists a
deterministic ¢ > 0 such that 7, > ¢ almost surely for all z € R. If the model is not elliptic, we say it
is degenerate; such models are not covered by the results of this paper. Note that uniform ellipticity
is equivalent to the potential V' being bounded.

An RWRE is called nestling if 0 lies in the relative interior of the convex hull of the support of the
random vector Y _. .z, marginally nestling if 0 lies on the relative boundary of this convex hull
and non-nestling if 0 does not lie in the convex hull. This concept features in some of the discussion
above and in the discussion below.
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(4) Stretched polymers. The term h - (X, — ) in the definition of Qf:ﬁ’“ can be interpreted as an
external force that stretches the polymer. A special case that appears in the literature is when
R = {tej, tes,..., teq}, Q= de7 and V(w, z) = wp. This model is studied in [36], for example.

(5) Killed polymers. Let f < oo and consider an unrestricted-length model with Q = de, R =
{£e1, teq, ..., teq}, and V(w,z) = wg. The Green’s function g(z,y), defined in (3.7), can be
interpreted as the expected number of visits of the reference random walk to the site y before it is
“killed” by the potential. See, for example, [72, p. 249]. A

2.3. Limiting free energies. Before we state our main result, we need to record a few limit theorems for
the various free energies defined in Section 2.2. These results require the following definition.

Definition 2.6. For a finite subset R < Z% and z € R\{0}, a non-negative measurable function g : 2 — R
is in class L, g if
Iim Iim max n! Z 9(Tpipw) =0 for P-a.e. w.

N0 N—0 gegt (R)

2 <n 0<k<en
<

Membership in class £,z depends on a trade-off between the moments of g and the degree of mixing of
P. For example, if (P, T,) is exponentially mixing, then g € L4(P) for some ¢ > d is sufficient. For a general
P, if g is bounded, then g € £, z. See [60, Lemma A.4] for a precise formulation of sufficient conditions to
ensure g € L. R.

For inverse temperature /3 € (0, 00] and velocity & € U the restricted-length limiting quenched point-to-point
free energy is defined by
(2.4) AZ (€)= lim n 'F

res n—oo O,i\n(f),vﬁ

where Z,,(§) € D,, is a lattice point approximation of n¢ as defined in [58, (2.1)].

It was shown in Theorem 2.2 in [58] and Theorem 2.4 in [26] that the limit (2.4) exists in (—o0, 0], P-almost
surely, for all £ € U simultaneously. By [58, Theorem 2.6] and the inequalities in [26, (2.11)], A2 (&) is either
identically infinite for all ¢ € rit and B € (0, 0] or AL is bounded on U, for each 3 € (0,00]. In the latter
case, [58, Theorem 2.6] and [26, Remark 2.5] state that with P-probability one, AZ,_ is lower semicontinuous
on U and concave and continuous on ril/. Furthermore, the upper semicontinuous regularization of A2 and
its unique continuous extension from rid to U are equal. The conditions of Theorem 2.17 below ensure that

AB  is finite on the relative interior of the face being considered in that result.

res

Remark 2.7. In [26] and [58], the authors assume that P is ergodic, but the results we mention above continue
to hold for a stationary PP by the ergodic decomposition theorem. The authors of these papers also assume
that for each 2’ € R, |V(w,2’)| € L'(P) and belongs to £, for all 2 € R\{0}. However, upon closer
examination of their proofs, it can be observed that the condition on V' in Theorem 2.17 below is sufficient
for their results to hold. This can be seen, for instance, in the proof of Lemma 5.20, which demonstrates
how the arguments can be adjusted to work under the weaker assumptions. AN

Remark 2.8. In general, AZ_(¢) may not be deterministic. For example, if 0 is an extreme point of U, then

A8 (0) = —V(w,0) + B~ Llogp(0). A sufficient condition to ensure that it is deterministic is to have the
ergodicity of (Q, &Y, PAT. : z € R’}), where R' = U' "R, U’ is the unique face of U such that £ € rilf’,
&% =o(V(Tww,z) iz € G, z€R'), and G’ is the additive group generated by R’'. A

The following example provides a simple model where A, can be computed via simulations. We will also

refer to this example throughout the paper to illustrate key results and definitions.

Ezample 2.9 (Nearest-neighbor RWRE on Z). Let p(1) = p(—1) = 1/2 so that R = {—1,1} and U’ = [-1,1].
Consider the ii.d. RWRE model as in Example 2.5(3). Greven and den Hollander [31] gave a detailed
description of —Al_, which is the large deviation rate function for the position of the particle. They
demonstrated that this function is always differentiable away from 0 but may have a corner at 0. It also
may have two linear pieces around the corner at 0 but is strictly convex otherwise. Figure 2.1 shows the
results of simulations for the model with 71 = 1 — w_; = a; with probability ¢ and 71 = 1 — 7_1 = as with
probability 1 — g, for the various regimes of the parameters g, a;,as € (0,1). N, in the caption of the figure,
is the number of steps we used for the random walk in the simulation used to approximate —AL, which is

plotted in blue. The unrestricted-length rate function —A!, defined in (2.6) below, is plotted in red. See
Remark 2.11 for the details involved in the computation of —A!. A
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1 L
1
0.5
0.5
0 0. ‘ ‘
-1 05 0 0.5 1 -1 0.5 0 0.5

A: (Recurrent) ¢ = 1/3, a1 = 1/5, a2 = 2/3, N =

1

B: (Transient with 0 velocity) ¢ = 2/3, a1 = 3/4,

2,000 as = 3/10, N = 20,000
2l
1.5¢
1l
0.5
0t : / ‘ ‘
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
C: (Marginal nestling) ¢ = 3/5, a1 = 1/2, a2 = D: (Non-nestling) ¢ = 4/5, a1 = 9/10, a2 = 7/10,
95/100, N = 1000, 000 N = 200,000

FIGURE 2.1. The thicker blue curves show plots of the approximation of —Al(¢) from
Example 2.9 by —N_lF& LN, N for t € [-1,1] in simulations. In the recurrent example in

Figure 2.1A, —Al_ is differentiable and strictly convex. In the transient example with 0

velocity in Figure 2.1B, —AL_ is strictly convex and differentiable except at 0. In the ballistic

marginal nestling example in Figure 2.1C, —Al_ has a flat segment and a linear segment,

meeting at a corner at 0. Elsewhere, it is differentiable and strictly convex. (The ballistic
nestling case looks qualitatively the same.) In the non-nestling example in Figure 2.1D,
—Al has two linear segments that meet at a corner at 0. Elsewhere, it is differentiable and
strictly convex. The thinner red piecewise linear graphs show plots of —A(t) for t € [—1,1].
In all cases, Al(t) = 0 for t = 0. In Figure 2.1A, A'(t) = 0 for t < 0 as well. In Figures
2.1B and 2.1C, the slope of —A! on ¢ < 0 matches the slope of the linear segment of —Al |

left of 0. In Figure 2.1D, —A! is tangent to —Al,, at a unique point in (—1,0).

res

Define the cone

C:{Z bzz:bzeR+}.

z2eER

For a face Aof C,let Rq=Rn A, Us =UnN A, and let G4 and g; denote, respectively, the group and the
semigroup generated by R 4. For the definition of a face of a convex set, see Appendix A.
Define

(2.5)

Rij = {z€ R4 : T, is the identity map}
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to be the set of steps for which the associated shift is the identity. If 0 € R 4, then 0 € ’Rij. Non-zero steps
can also be in this set. As an example, in the restricted-length setting of Remark 2.2, if 0 is an admissible
step, To,1) is the identity. It may also be the case that R = @. Let A be the set of faces A of C such that
R4 # Ri$. Note that if 0 is an extreme point of U, then the face {0} is not in A.

Given A € A, € e ri A, and an inverse temperature 3 € (0,00], the unrestricted-length limiting quenched
point-to-point free energy is defined by

(2.6) AP(€) = lim ™ Ry,

where the sequence z,, € G} satisfies ,,/n — ¢. In [37, Theorem 2.8] it is shown that the limit exists P-
almost surely for all £ € C simultaneously, and is finite, positively 1-homogeneous, and lower semicontinuous
on C, and concave and continuous on riC. As in Remark 2.7, although [37] assumes stronger conditions on
class £ membership, minor adjustments of their proofs (along the lines of the proof of our Lemma 5.20) give
the same results under the assumptions of Theorem 2.15 below.

Remark 2.10. Similarly to the restricted-length case, a sufficient condition to guarantee that A®(¢) is deter-
ministic is to have the ergodicity of (Q, &%, PAT, : z € R’}), where R' = An R, A€ A is the unique face
of C such that € € ri A, and &Y%, is as in Remark 2.8. A

Remark 2.11 (RWRE on Z). We sketch the computation of A? in the case of the one-dimensional RWRE
models from Example 2.9 which were discussed in Figure 2.1. Here, C = R and it is the only face.

In this model, Zé,’;j represents the probability that the RWRE, starting at 0, eventually reaches z. In
the recurrent case (Figure 2.1A), Zéf = 1 almost surely for all z € Z, which implies that A! is identically
0. Similarly, in the other (transient-to-the-right) cases, A'(t) = 0 for all ¢ > 0. By homogeneity, A’(t) =
—tAl(—1) for all ¢+ < 0. Using the results in [70], we identify —A'(—1), which corresponds to A(0) in the
notation of that paper.

In that work, the rate function I corresponds to our —Al_, and A(0) there matches —A!(—1) in our
framework. For the transient nestling cases (Figures 2.1B and 2.1C), Theorem 1.8 of [70] shows that, in the
notation of that paper, r. = I(0) = —Al,(0) = 0. The arguments in the proof of that theorem (page 1052
of the paper) further establish that the left derivative of —Al at 0 equals A\(0) = —A!'(—1). This explains
the behavior depicted in Figures 2.1B and 2.1C.

In the non-nestling case (Figure 2.1D), we have r. = I(0) = —AL,(0) > 0, and there exists a point
€. € (—1,0) such that r(&.) = r., where r(¢) is defined in the middle of page 1050 in [70], substituting A
for A. By [70, Theorem 1.8], {. is the left endpoint of the interval [¢.,0] where I = —Al_ is linear, with
the derivative of —Al., = I at & matching its left derivative at 0. Then, referring again to the formula on
page 1052 in [70], we get that the left derivative of —AlL, = I at 0 equals A(r(&)) = A(I(0)) > A(0). In
particular, —A!(—1) < 0, and the slope of the line representing —A! on (—o0,0] is steeper than that of the
linear segment of —Al_ to the left of 0. Furthermore, a little bit of calculus, using the formula (1.8) in [70],

intersect at a unique point in (—1,&.). This explains the behavior illustrated in

shows that —A' and —A!
Figure 2.1D. See Remark 4.7 for more. A

S

res

The above limits can be strengthened to uniform limits, commonly referred to as “shape theorems.” The
shape theorem for the unrestricted-length model is established in [37, Theorem 3.10], where the uniform limit
holds within the interior of each face. Theorem 2.15 extends this result to the entire face, while Theorem
2.17 presents the shape theorem for the restricted-length model. Detailed proofs are provided in Appendix
C. A key observation is that the shape theorem is stated face-by-face, with the proper centering achieved
through the upper-semicontinuous regularization of the limiting shape restricted to the interior of each face.
The restriction to faces arises because paths starting at the origin and terminating at a specific point remain
within the face containing the endpoint in its relative interior (see Lemma A.4). The primary technical
point, however, is the necessity of the upper-semicontinuous regularization. This stems from the fact that
the continuity of the limiting shape up to the boundaries of the faces is not generally known. Thus, the
correct centering requires using the unique continuous extension from the interior of the face to its boundary,
which is precisely captured by the upper-semicontinuous regularization.

Recall the upper semicontinuous regularization of a function f : X — [—00, ) defined as

fo(x) = inf{sup fly) : G2z and G is open}.
yeG
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Given a face A of C, let Ai be the function that equals A® on A and equals —o0 outside of A. Denote the
upper semicontinuous regularization of Aﬁ by Ai’usc. Then, under the conditions of Theorem 2.15 below,

B,usc
AA

the restriction of to A is the unique continuous extension of Ai from ri A to all of A. In particular,

Ai’usc is concave and positively 1-homogeneous.

Remark 2.12. The shape A? is expected to be continuous on all of C in a wide class of natural models. In
such cases, the restrictions and upper semi-continuous extensions discussed above can be dispensed with.
The example following this remark gives examples where this continuity is known to hold.

In the example in Remark 2.8, if the distribution of a zero step is continuous, then A? cannot be continuous
at zero and so considering passage times seen from the relative interior of a face is necessary. A

Ezample 2.13 (i.i.d. directed LPP and RWRP). In i.i.d. directed LPP on Z¢ with R = {e1,ea,...,eq}
(discussed in Example 2.5(1)) under a moment hypothesis slightly weaker than the weights having > d

moments, it is shown in [53] that the shape function A® is continuous on all of C = RY = {(z1,...,24) :
Z1,...,2q = 0}
Continuity of Al on U is proven for a wide collection of RWRP models in [58, Theorem 3.2]. A

We will reference the next example frequently in the discussion that follows to illustrate our results and
the definitions.

Ezample 2.14 (FPP on Z3 with a forbidden step). Consider the standard FPP on Z? with i.i.d. Exponential(1)
weights, but where paths are not allowed to use the —e3 step. We can model this as a zero temperature model
with hybrid edge weights as in Example 2.3. In the notation of that example, let R = {e1, —eq, €2, —ea, e3}.
For x € Z® and z € {—ey1, €1, —€2,e2} let ay = Yy piz = Otz zresy = 0 and let {Vz wtess Ofy,yter}s Ouutes}
z,y,u € Z% be ii.d. Exponential(1) random variables. The first-passage time is given by —F,. Then
C = {(z,y,2) € R® : z > 0} has two non-empty faces: C and its boundary, oC = {(x,y,0) : z,y € R}.
Restricted to A = dC, this model becomes the classical planar standard FPP with i.i.d. Exponential(1) edge-
weights and the upper semi-continuous regularization of —A% is the usual shape function of that planar
FPP. See Figure 2.2 for simulations of the limit shape in this model. A

As explained above, it is enough to study the model from the perspective of the relative interior of each
face A of C. That there is a locally uniform version of the limit (2.6) defining the shape function is the
content of the following “shape theorem”.

For w € G* let T, be the o-algebra generated by A € & such that 7,14 = A.

Theorem 2.15. Let B € (0,0]. Fir a face A € A of C (possibly C itself). Assume V*t(w,z) € L*(P) for
each z € Ra, and V*(w,z) € L, r, for each z € RA\Rid For each z e R4 assume that there exists a
z2e RA\RYS such that V*(w,z) € Lz »,. Assume that E[sup,=,n “R[FY 0.n | Z,]] < oo for all x € G\{0}.
Then P-almost surely, Ai is finite on A, Aiusc is the unique continuous extension of Ai fromri A to A,

_ EP —AR(y
(2.7) i Loe AU () 0,

|z|1—00 |$h

meg;
and, simultaneously for all § € A with ||y = 1 and any sequence v, € G} with |v,|1 — 0 and v, /|v,y|1 — &,
we have
(2.8) AP(€) < lim Jou|; ' Fy,, < Tim Jou|y ' Fy,

0,v, =
n—0o0

If furthermore (2, Sk PAT. : z€ Ra}) is ergodic, then Ai’usc is deterministic on A.

<AL,

In the statement of the previous result, the first three conditions concerning the integrability of V* and
membership of potential steps in £ classes are minor regularity assumptions which are satisfied in the typical
applications. The last condition, on the integrability of conditional expectations of n 1Fg nas 18 addressed
in the following remark.

Remark 2.16. [37, Theorem 2.8] provides common cases which guarantee the hypothesis

E[sup n_lE[FO na | La ]]

n=1
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A
A: Level 75 sub-level set of an approximation of —A%, B: Level 75 sub-level set of an approximation of —A%,
A=C={(z,y,2) e R®: z = 0}. Darker colors represent  where A = 0C = {(2,4,0) : 2,y € R}. Darker colors
points with lower z coordinates. represent points closer to the origin.

FIGURE 2.2. A simulation of the ball of radius 75, {£ : —A®(¢) < 75}, in Example 2.14
obtained by taking sub-level sets of the average of 100 samples of passage times from the
origin. Both figures use the same data, so the pane on the right is the figure on the left
viewed from below (with different coloring). We expect that A is continuous on C.

holds for all z € GT\{0}. Particularly this hypothesis is satisfied under Condition 3.2 below. See [37, Lemmas
3.11 and 3.12] for the proofs of these implications. A

Naturally, there is a version of the previous result in the special case of a restricted-length model, which

we record below for use later in the paper. Given a face U’ of U, let AZ, s De the function that equals

AL, on U’ and equals —oo outside of U’. Denote the upper semicontinuous regularizations of Ag,wes by
Ag}lffgs. Then, under the conditions of Theorem 2.17, the restriction of Ag’,lff; to U’ is the unique continuous

Aﬂ,usc

extension of Af{, from ritd” to all of &', In particular, A;;">" and Ai’usc are concave and Ai’“sc is positively

1-homogeneous.

Theorem 2.17. Let 8 € (0,0]. Fiz a face U’ # {0} of U (possibly U itself). Let A be the cone generated
by U'. Assume Ra # R{. Assume V*(w,z) € LY(P) for each z € Ra, and VF(w,2) € L, », for each
z € RA\Rij, For each z € RIS, assume that there exists a 2 € RA\Rij such that V*(w,z) € L3, . Take
B € (0,0]. Assume that for all k € Z=o and x € Di(R nU'), E[sup,>, n_l]E[Féi’m’nk |Z,]] < . Then

P-almost surely, Af,, vos 18 finite on U, Ag’,“rsecs is the unique continuous extension of Ag, fromrid’ toU’,
F,B _ Aﬁ7usc (I>
T 0,z, u’,
(2.9) lim max i =~ <0,
n—o0 xend’' D, n

,res

,res

and, simultaneously for all £ € U’ and any sequence vy, € QI with v, /n — & we have

(2.10) Al res®) < lim n7'FY < Tim 0 TR, <AL (6).

o Ovn,n S I res
If furthermore (P, &%, P{T. : z € R4}) is ergodic, then AL’B,}'?:(:S is deterministic on U’.
Remark 2.18. Condition 3.3 below implies

E[sup n_llE[Fgmmk |Iz]] < ®

n=1
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holds for all k € Z~o and 2 € Dp(R nU’). This can be shown by transforming the restricted-length model
into an unrestricted-length one, as described in Remark 2.2, using (3.10), and following the argument in
Remark 2.16 within the context of the unrestricted-length version. A

3. THE MAIN RESULT

Recall that R denotes the set of admissible steps, its convex hull/, and the cone C = {}], 5 b2z : b, € R }.
By [60, Corollary A.2], 0 € U is equivalent to the existence of loops, i.e. Xg ¢ # {0}. By [60, Corollary A.3],
0 € rild is equivalent to the existence of admissible paths from 0 to each z € G, i.e. G* = G. See Figure
3.1 for an illustration of possible cases of R and U and Figure 3.2 for illustrations of C. Note that because
this cone is finitely generated, it is either equal to R? (which happens if 0 € rilf) or it is an intersection of
finitely many half spaces whose boundary hyperplanes pass through the origin (see [62, Theorem 19.1]).

N UL

FIGURE 3.1. The different panels depict various possible cases of R and U. In each panel, the
large balls represent z € R that are extreme in U, the small ball is 0, and U/ is the lightly shaded
figure. Left to right: 3a: Ve e U, x-u=1;0¢U; 0 € extU; 0 € U\rild; 0 € rild.

Given a proper concave function f : R? — [—00,00), we will denote by df the superdifferential of f. For

£eRY,
0f() ={veR": f(O<fO) +v-((—§) VY(eR™

By the argument in [62, p. 15], df(£) is a closed convex set. The image of A = R? is denoted by of(A). If
f is positively 1-homogeneous, then by the Fenchel-Young inequality, if m € 0f(&) then f(§) = m-&. See
Lemma A.1.

For each face A € A (possibly C itself), let W4 be the linear subspace of R? generated by R 4. Since
AZ"(¢) = —oo when ¢ ¢ W4 we have

Wa n OAL™(€) = {ve Wa s MG < AL +v-(( =€) V(e Wal.

The set on the right-hand side is the superdifferential at ¢ of the restriction of Ai’usc to Wy If AJB‘(“SC(f) is
finite for all £ € A, then [62, Theorem 23.4] says that this set is non-empty and bounded. It then has an
extreme point, e.g., by the Krein—-Milman theorem. Remark 3.6 explains how Conditions 3.2 and 3.5 below
guarantee the finiteness of Ai’usc. See Figure 3.2 for an illustration of some possible cones and super-level
sets of AP"¢. Figure 2.2 already gives an example of the case where 0 lies on the relative boundary of C.

Remark 3.1 (FPP on Z? with a forbidden step). In the model described in Example 2.14 above, the cone
has two faces C = {(v,y,2) : z,y € R,z = 0} and dC = {(z,y,0) : z,y € R}. If A = C, then W4 = R?
and the elements of W4 n dA%™"*(€) correspond to 3-dimensional hyperplanes (2-dimensional planes) which
are tangent to A" at & See Figure 2.2A. If A = 0C, then W4 = {(z,y,0) : 2,y € R} and the elements
of Wu n dA"™(€) correspond to 2-dimensional hyperplanes (1-dimensional lines) on {(z,y,0) : z,y € R}
which are tangent to A% at . See Figure 2.2B. A

To ensure that the unrestricted-length polymer measures in the next theorem are well defined, we need
the following conditions.

Condition 3.2 (Unrestricted-length conditions). Given a face A of C (possibly C itself), assume that one
of the following holds:
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0 0 0

FIGURE 3.2. The different panels depict various possible cases of the super-level sets By = {£ €
C: APU5°(€) > t}, which are depicted darkly shaded. When 0 € rilf, the cone C is the whole of R%.
When 0 ¢ rild, the cone C is depicted lightly shaded. These cones are unbounded but truncated in
the drawings and hence appear as pyramids. The faces of each of these cones are the cone itself,
the two-dimensional faces that are truncated in the drawing and appear as triangles on the side
of the pyramid, the lines that are the boundaries of the two-dimensional faces, and the point 0.
The super-level sets on the first row are all bounded. Left to right: 0 € riid, t < 0, and A®U¢ is
differentiable; 0 € rild, t < 0, and B; is polygonal; 0 ¢ U, A?"°(€) < 0 V€ # 0, t < 0, and B; is
polygonal. The shapes on the second row are all unbounded and are truncated in the drawings.
Left to right: 0 ¢ 2/, A®"*° takes both < 0 and > 0 values, t < 0, and B; is polygonal; 0 ¢ I/, A?15¢
takes both > 0 and < 0 values, ¢ > 0, and A?"° is differentiable; 0 ¢ U, A®U5°(€) > 0 V€ # 0,
t > 0, and A?"° is differentiable.

(a) The setting is undirected (meaning 0 € U4) and the potential satisfies
(3.1) P{V(w,2) =20} =1 forallze Ry
and VF(w, z) € LY(P) for each z € R 4.
(b) The setting is directed (meaning O ¢ U,), there exists ¢ € R such that
(3.2) P{V(w,z) =¢c} =1 forall z€ Ra,
and V*(w, z) € L*(P) for each z € R 4.
(¢) The setting of Example 2.4 holds, 0 ¢ U, V is local, P has a finite range of dependence rq, and for
some ¢ > d, V¥ (w,2) € LY(P) and V~(w, 2) € LY(P) for all z € R 4.

When considering a restricted-length model, one can convert it to an unrestricted-length model as in
Remark 2.2. When viewing the model without doing this, parts (b) and (c) of the above condition then
specialize to the condition below, which we present without going through unrestricted-length measures for
the convenience of the reader.
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Condition 3.3 (Restricted-length conditions). Given a face U' of U (possibly U itself), assume that one of
the following holds:

(a) There exists c € R such that
(3.3) P{V(w,z) =c} =1 forallze RnU'

and V*(w, z) € LY(P) for each ze R nU'.

(b) The setting of Example 2.4 holds, 0 ¢ U', V is local, P has a finite range of dependence rq, and for
some ¢ >d, V¥ (w,z) e LY(P) and V~(w,2) € L4(P) for all ze RnU'.

Before continuing, we comment on the strength and generality of these hypotheses.

Remark 3.4. The moment hypotheses in Conditions 3.2 and 3.3 hold in typical applications but are also
often not quite sharp in particular examples. For example, in the standard FPP with i.i.d. edge weights,
one can often weaken the moment hypothesis to one involving the minimum of the edge weights at a site.
If 0 € Uy, then (3.1) in Condition 3.2(a) is necessary for the finiteness of Zf’y. Otherwise loops can be
repeated indefinitely, causing nyy(w) = o for z,y € Z% with y — z € QI, with positive probability. The
standard FPP gives a frequently studied example of a model satisfying this condition. Condition 3.2(b) (and
3.3(a)) corresponds to a physically reasonable assumption that energies are bounded from below. Among
many other examples, this allows us to consider well-studied bounded potential models like uniformly elliptic
RWRE models in ergodic environments, without needing independence. The last conditions allow us to cover
examples which are unbounded below with a finite range of dependence. Natural examples of such models
not covered by the first two cases include i.i.d. Gaussian last-passage percolation and directed polymers as
well as (not necessarily uniformly) elliptic RWRESs in independent environments which satisfy our moment
conditions. A

Recall the set R4, defined in (2.5). To apply the shape theorems for the limiting free energy we need the
following mild technical condition. As explained after Definition 2.6, this condition is a trade-off between
moment and mixing assumptions and is typically valid in practice.

Condition 3.5. Given a face A of C (possibly C itself), assume VT (w,z) € L'(P) for each z € R4, and
V*H(w,2) € Lor, for each z € R4A\RI{. For each z € RIS, assume that there exists a Z € R 4\RI{ such that
Vt(w,2) € Lir,-

Remark 3.6. By [37, Theorem 2.8], if Conditions 3.2 and 3.5 are satisfied, then we have, P-almost surely,
|Afg4 (&)] < oo for all £ e ri A, and |A§"usc (&)] < oo for all £ € A. As mentioned earlier, the version of Condition
3.5 assumed by [37] is stronger than the one we assume here. However, their results still hold under our
weaker condition with minor adjustments in the proofs. For detailed information on these adjustments, see
the proof of Lemma 5.20. VAN

A primary objective in this work is to construct polymer measures that are supported on the set of directed
semi-infinite paths. To that end, we now define directedness.

Definition 3.7. For a set A < U, the sequence x,, is directed into A if |x,|1 — o0 and all limit points of
Zn/|Tn|1 are contained in A.

The directedness of the polymers we construct requires the following extra assumption that avoids degen-
erate situations. Let Ug be the unique face of U that contains 0 in its relative interior. Let Rg = R nUy. If

0¢ U, then Uy = Ro = &. Let
Aoz{ 3 bzz:bzeRJr}.

z2€Ro

Condition 3.8. Assume that
(3.4) P{V(w,z) 20} =1 forallze Ro
and if B < o, then assume also that either the reference walk Pq is transient or it is recurrent and

P{Hz € QIO,HZ ERo: V(Tw,z) > ()} =1.
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Remark 3.9. Condition (3.4) states that the potential V must be non-negative along any loops that may exist.
This is implied by Condition 3.2, which we already assume to ensure the well-definedness of the unrestricted-
length polymer measures with which we work. By Lemma 5.14 below, Condition 3.8 is equivalent to the
positive-temperature semi-infinite polymers we construct being transient, which is a necessary precondition

for them to move in a preferred direction. A
For 3 € (0,0], a face A € A (including C), and m € &’Ai’““(ri A), define
(3.5) Fooa={6e A:|gly = 1and AZ"(€) =m &}

This set is not empty because m € 8Ai’usc(ri A) and A% is positively 1-homogeneous.
Also, define

(3.6) Up,a = {6 €Uz AL =m &}
Theorem 3.14 implies, in particular, that this set is not empty (a direct convex analytic proof is also possible).

Definition 3.10. For z,y € Z% with y — x € G the Green’s function is given by

© 58]
“BYTI V(T w, X1 — X
g(z,y) = 2 Zf,yl =1ly—ny + Z Ez[e f im0 VT X J)l{Xe:y}]
(3.7) £=0 B =1
£—1
_E, [Z e PEITE V(ijwXHl—X,-)l{XFy}],
£=0
where an empty sum is taken to be zero.

Let D4 be a countable (possibly empty or finite) set of pairs (8,m) so that for each pair, 8 € (0, ],
A" is deterministic and finite on A, and there exists a € € (11.4)\{0} such that m e W4 n dA%"(€) and,
if 0 ely, Ai(f) # 0. An important case will be one where each m is an extreme point,

(3.8) m € ext(Wa N 6A§"USC(§)) for some ¢ € (ri.A4)\{0}.
Also, define D = {(A,3,m) : A€ A, (8,m) e Da}and B = {B e (0,0] : Im e R4 A e A with (4, 3,m) € D}.

Remark 3.11. For maximum utility, one would take D4 to consist of a countable dense set of 5 € (0, 00] which
includes o0 and then for each such 3, an appropriately dense subset of m € Ugeri A\{0} {ext(Wan GA%USC(f )N}
One natural way to construct such a set is to take a dense set of 8 as above and then a dense subset of
directions € € ri (A)\{0} (for which AZ’USC(S) # 0 if 0 € U,) which are directions of differentiability of Ai.

For such &, 61\3({) consists of a single point. Existence of such a set follows from [62, Theorem 25.4]. A

Remark 3.12. Tt can happen that (3, m) can be in D 4 for multiple faces A of C. A simple, albeit degenerate,
example is one where d = 3, R = {ey, e, e3}, and A?(£) = £ -e;. Then for A€ {C,C(e1,e3),C(eq,e3),C(e1)},
and £ eri A, OAi(g) = e1. For all other faces A, Ai =0 and (?Afi =0. A

Remark 3.13 (RWRE on Z). We illustrate the conditions on the membership in D4 in the case of the
RWRE models from Figure 2.1, which were defined in Example 2.9. In this model, C = R is the only face
and We = R. Recall the description of A! from Remark 2.11 and Figures 2.1. In the recurrent case, we
have 0Al(t) = {0} for all ¢t € R. In this case, there are no points that can belong to D¢ with 8 = 1. In all
the other cases, dA(t) = {0} for t > 0, dA(t) = {—A}(—1)} for t < 0, and OA*(0) = [-Al(—1),0] (with
the extreme slopes in the last case being —A!(—1) and 0). Thus, the only point that can belong to D¢ with
B =1is (1,-A(-1)).

If, on the other hand, we consider the restricted-length version of the RWRE model and rewrite it as an
unrestricted-length model, following Remark 2.2, then the paths become directed and the restriction on the
choice of £ in the definition of D disappears. See Remark 4.7 for further details. VAN

With the previous discussion in mind, the following is our main result. It produces for each linear facet of
Ai’usc (which can degenerate into a singleton) a probability measure on semi-infinite paths that is consistent
with both the restricted-length and the unrestricted-length point-to-point quenched polymer measures and
under which the polymer is directed into the given facet. Appendix B discusses the Gibbs consistency
properties of the restricted- and unrestricted-length measures, from which one can connect to the familiar
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setting of Dobrushin-Lanford-Ruelle equations. Before stating the result, note that because C is finitely
generated, it has finitely many faces [62, Theorem 19.1].

Theorem 3.14. For each face A€ A (possibly C itself) where Dy # &, assume that V satisfies Conditions
3.2 and 3.5 on A and that (3.8) holds for each (3,m) € Da. For each x € Z%, there exists a family
{Qf’ﬂ’m"" A e A (B,m) € Da} of random probability measures on semi-infinite paths To.o € Xz(Roa),
such that the following is satisfied. There exists an event Qqi, < Q with P(Qair) = 1, on which the following
properties hold:

(a) If B < o0, then for all non-negative integers j < k < n, points u,z,y € 7 with x —u and y — x in
g;{, zo:k € Xy y with j =min{0 <i < k:z; =z}, and Ty € XL”_k(RA),

Qf’&m’w(XO:Ternfk = Z0o:n | Tx < Ty < 0, AXVO:'FJc = $01j7XTytTy+n7k‘ = xk:n)
= Qf767m’w(XTI:Ty =Tj:k | Te < Ty < OO) = Qg,,;d(XO:Ty = xj:k)-
(b) If B < o0, then for each distinct x,y € Z such that y — x € gj,

Q.A,[S,m,w &L 1
B [Z (X, =y}

n=0

g(x,y)
Ziy

Ty<oo]=

(¢) If B < 0, then for all non-negative integers j < k < n, points u,z,y € Z* such that x —u € D;(R 4)
and y —x € Dx_j(Ra), To.; € X095 € X2K " and x4, € XZ"“(RA),

w,x? T,y
A,B,m,w _ — - — A B MW — — —
Qu (XO:n = Zo:n |X0:j = xO:jka:n = xk:n) = Qu (Xjk: = Tj:k |X] =z, Xy = y)
= QY (Xow—j = mj)-

(d) If B = oo, then for each x € 79, Q;‘t’w’m’“ is supported on a set of semi-infinite geodesics rooted at
x and having increments in R 4.

(e) If either 8 = o0, or B < o0 while A # Ao, or B < w0, A= Ag, and Condition 5.8 holds, then for all
zeZd, QMPMmUX, |, > o) =1 and

(3.9) Qf’ﬁ’m’“’(Xo;oo 1s directed into fi’A) =1.
(f) For each x € 74, Q;\,ﬁ,myw(all limit points of X,,/n are contained in L{f%A) =1.

Remark 3.15 (Previous work). This result extends several works in the literature, including [23, Theorem
1.1] and the extension of that result to Z¢ described in [3, Section 5.4] (though with slightly more restrictive
moment hypotheses), [39, Theorem 3.2}, and [27, Theorem 2.1 (i) and (ii)]. The proof of Theorem 3.14 relies
primarily on Theorem 4.5, which provides another construction of the queueing fixed points in [51, Theorem
5.1] as well as the harmonic functions for RWRESs considered in [69, Theorem 4] and [71, Theorem 3.1] (for
directions where the quenched and averaged rate functions coincide), [70, Lemma 1.6] (the one-dimensional
RWRE case), and [26, Example 5.6] (the L? weak disorder regime). It can also be applied to exactly solvable
models such as those in [9, 29] to construct infinite-volume Gibbs measures, infinite geodesics, and generalized
Busemann functions. In [26, 69, 71], stronger almost-sure limits are proved using martingales available in
these settings. Similarly, almost-sure limits are obtained in [9, 24, 27, 29, 39, 54, 70] by exploiting the
geometric constraints on paths inherent to lower-dimensional cases. A

Remark 3.16. If ]:517«4 consists of a single point, e.g. when Ai’usc is strictly concave, then (3.9) says that the

polymer has an asymptotic direction, Qf’ﬂ Y _almost surely. Similarly, when Ufl 4 1s a singleton, (f) says

that the polymer has an asymptotic velocity, Qf’ﬂ Y _almost surely. A

Remark 3.17. A common way to parametrize the measures in the above theorem is by directions & €
(ri.A)\{0}, A € A instead of by vectors m in the superdifferential 6A§{“S°(ri A), A e A. This can be done
by applying Theorem 3.14 with m € ext(W.4 N 8AZ’HSC(§)). Such an extreme point must exist, as explained
earlier in this section. Then by homogeneity, (&/|]1) - m = Afi{”sc(f/|§|1)7 and ¢/|€] € ‘7:7?@,,4- As a result,

P-almost surely, under Q%™ X.. is almost surely directed into F* 4> which is a linear facet of Ai’usc

m,

that contains €. A
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Remark 3.18 (FPP with a forbidden step). In Example 2.14, applying the previous result to A = C =
{(z,9,0) : &,y € R} with D4 given by a countable dense set of directions of differentiability, we recover the
construction of semi-infinite geodesics in planar Exponential FPP which can be obtained from the results in
[23]. Because here we have 0 € U4, our conditions defining D 4 require us to know that such directions satisfy
A% (&) # 0. This follows from [44, Theorems 3.1 and 6.1]. Applying the result to A = C = {(z,y,2) e R® : 2z >
0} with D4 given by a countable dense set of interior directions of differentiability in C, we similarly obtain
the existence of semi-infinite geodesics corresponding to a countable collection of faces of the limit shape
defined by sub-level sets of —A% as illustrated in Figure 2.2A. These have asymptotic directions contained in
those faces by part (e) of the theorem. Note that by a coupling with standard three-dimensional exponential
FPP, it also follows from [44, Theorems 3.1 and 6.1] that A% (&) # 0 for £ € C\{0} here. A

Remark 3.19. (Restricted-length models as unrestricted-length models) Remark 2.2 explained how one can
rewrite a restricted-length model as an unrestricted-length one. We explain here how certain quantities for
the restricted-length model transfer to ones for the unrestricted-length model. Consider a face U’ of U. Then
the cone A generated by U’ is a face of the cone C and R4 = R nU’. Continuing to use bars to denote the
quantities in the unrestricted length model, let R = {(z,1) : z € R4} and let A be the cone generated by

this set. Then R4 = R, and A = {(¢,ty: Ce At >0,¢/t e’} U{{0,0)}. Since, by definition, T 1y = T,
for all z € R, we have RA = {(z,1) : z € Ri{}. In particular, R 4 # R{ implies Ry # RA and A is the set

of faces A such that A € A. .
If V' satisfies the conditions of Theorem 2.17, then V ' satisfies the conditions of Theorem 2.15. Similarly,

Condition 3.3 transfers to Condition 3. 2 If V+ satisfies Condition 3.5, then V™ also satisfies that condition.
Since for all k € Z~y and x € Dy, F<0 Ok = (?I , and I<_,,3 By =

(310) E {supn™ IE[F‘<0 0),nlx,k) |I<z k>]] |:Sllp n_l]E[FOB,nI,nk |I-’JU]

n=1 n=1
Therefore, if the right-hand side is finite (as assumed, e.g., in Theorem 2.17), then so is the left-hand side. In
this case, Theorem 2.15 implies that with P-probability one, K% is finite on A. Then, from (2.4) and (2.6), we
get that, P-almost surely, A (<C ) = tAg, res(¢/t) for all ¢ € A and ¢t > 0 with ¢/t € U’. This implies that,

with P-probability one, Au' is finite on U’, and as mentioned above Remark 2.7, this implies that, P-almost

—[3,usc is

res toU’. By Theorem 2.15, P-almost surely, A7

the unique continuous extension of K% to A. Therefore, with P-probability one, AZ (<C ) = tAg,?fecs(C /t)
for all (e A and t > 0 with {/telUl’. A

,res

B,usc - . . . B
surely, Au',res is the unique continuous extension of Ay,

Remark 3.20 (Extension to |R| = o0). It is natural to wonder to what extent our methods can be expected to
generalize to the setting of an unbounded number of steps. Some extension in this direction is undoubtedly
possible under some hypotheses on the reference walk and the potential. At this point, however, it is not
clear to us what the correct conditions for such an extension are in general. The place to start any such
program is the existence of the free energy and the shape theorem and then development of a variational
representation of the free energy in terms of cocycles similar to [37, Theorem 2.14]. With these inputs in hand,
our methods should mostly extend (as related methods have already done in the fully continuous setting
of the KPZ equation and its associated continuum directed polymer [41]), though one expects additional
technical complications. A

The proof of Theorem 3.14 is given in Section 6. Sections 4 and 5 develop a more general theory from
which Theorem 3.14 follows.
4. RECOVERING COCYCLES

In this section, we construct the generalized Busemann functions mentioned in the introduction. We then
use them to construct the semi-infinite polymer measures in Theorem 3.14.

Definition 4.1. Given a face A€ A (possibly C itself), consider a Borel-measurable function

B:{(z,y):z,yeZ:y—xze Gy} x Q2 —>R.
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(a) B is said to be a cocycle, if for P-almost every w, B(v, z,w)+B(z,y,w) = B(v,y,w) for allv,z,y € 74
with t — v,y —x € G4.
(b) B is T-covariant if for P-almost every w, B(z + v,y + v,w) = B(z,y, T,w) for all v,z,y € Z¢ with

y—x€Gy.
(c) For B e (0,00], we say that B B-recovers, if for P-almost every w, we have for all x € 72,
(4.1) Z p(z)exp{—BB(z,z + z,w) — BV (Tyw,2)} =1, for B < © and
2ER A
(4.2) m7izn {B(z,x + z,w) + V(Tyw, z)} =0, for = 0.
ZER A

(d) A cocycle B on A is said to be L*(P) if E[|B(0,2)|] < o for all z € R4. If also E[B(0,z)] =0 for
all z € R 4, then B is centered.

(e) An LY(P) T-covariant B-recovering cocyle is called a generalized Busemann function (in inverse
temperature 3).

For a face A € A (possibly C itself), recall that W4 is the linear span of R 4. Let Z4 be the o-algebra
generated by the events that are invariant under T, for all z € G4. For a T-covariant L!(PP) cocycle B on
A, the invariance of P under the shifts 7, implies that E[B(x,y)|Za] = E[B(0,y — ) |Z4] for all z,y € G 4.
Consequently, there exists a unique (possibly random) vector m(B) € W4 such that

(4.3) E[B(z,y)|Za] = m(B) - (y — x).

Remark 4.2 (Space-time cocycles). If we write a restricted-length model as an unrestricted-length model, as
in Remark 2.2, then a cocycle in the unrestricted-length version corresponds to a space-time cocycle in the
restricted-length version. Precisely, let G4 be the group generated by {(z,1): 2 € R4}. Lemma A.3 gives a
characterization of this group. Consider a Borel-measurable function

B:{(x,,y,k) €2t x ZLx 2 x Z,{y — x,k — j) € Ga} x @ — R.
(a) B satisfies the space-time cocycle property if for P-almost every w, all .y, z € 7%, and all j. k,leZ
with <y_$7k —j>,<Z _yvg_ k>€ g.A7
(4.4) B(x,j,y, k,w) + By, k, z,0,w) = B(x, j, z,{,w).
(b) B is T-covariant if for P-almost every w, B(z + v,j + £,y + v,k + l,w) = B(z,j,y,k, Tyw) for all
gk, € Z and x,y,v € Z% such that (y — x,k — j) € G4. In particular, B(z,j + £,y,k + {,w) =
B(x,j,y, k,w), i.e., the cocycle depends on the time coordinates only through the size of the time

increment. Consequently, in the case of a space-time directed polymer, described in Example 2.5(2),
one can drop the time coordinates and write B(z,y), since (y — ) - U determines the time increment.

(c) For 8 € (0,0], the B-recovery property is that for P-almost every w, we have for all z € Z¢ and j € Z,

(4.5) Z p(z)exp{—BB(x,j,x + 2z,j + 1,w) — fV(Thw,z)} =1, if § <o, and
2ER A

(4.6) min {B(z, j,2 + 2,j + 1, w) + V(Tiw, 2)} = 0, if § = o0.
zER A

(d) A space-time cocycle is said to be L'(P) if E[|B(0,0,2,1)|] < oo for all z € R4. If in addition
E[B(0,0,z,1)] = 0 for all z € R4, then B is centered.

(e) For a shift-covariant L!(IP) space-time cocycle B, the random vector m(B) € W4 x R is the unique
vector such that E[B(z,7,v,k)|Za] = m(B) -y — 2,k — j) for all 2,y € Z¢ and j, k € Z such that

<x7j>,<y,k>€§,4. A

We next note a property of space-time cocycles which explains their relationship to the cocycles one sees
when working with unrestricted-length models and which will allow us to connect our results to some of the
previous literature. In words, it says that a space-time cocycle can be decomposed into a cocycle in the sense
of Definition 4.1 plus a shift-invariant linear function of the time increment.

Lemma 4.3. Fiz a face A€ A (possibly C itself). Let B be a space-time T-covariant cocylce as in Remark
4.2. Then there exists an T 4-measurable random variable ¢ and a cocycle B (as in Definition 4.1) such that
P-almost surely, B(x,j,y,k) = B(x,y) +c(k—7), for all (x,j,y, k) € Z¢ x Zx 23 x Z with {y —x,k—j) € G 4.
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Proof. Let A denote the set of m € Z such that (0,m) € G 4. Note that A is an additive subgroup of Z. Fix
m e A. Take any z € R4. Then (z,1)€ G4 and (z,m + 1) € G4 and so P-almost surely,
B(0,0,0,m,w) + B(0,0,z,1,w) = B(0,0,z,m+ 1,w) = B(0,0, z,1,w) + B(z,0,z,m,w)
= B(0,0,z,1,w) + B(0,0,0,m, T,w).
This implies that P-almost surely, B(0,0,0,m,w) = B(0,0,0,m,T.w) for all z € R4. Consequently,
for any m € A, B(0,0,0,m,w) is Zs-measurable. Call ¢,, = E[B(0,0,0,m)|Z4], which satisfies ¢, =
B(0,0,0,m,w), P-almost surely.

If m,n € A, then n + m € A and the cocycle property of B implies ¢4 = ¢ + ¢,. This implies that
there exists an Z 4-measurable random variable ¢ such that ¢,, = ¢m for all m € A. Then we have P-almost
surely, for any m € A, B(0,0,0,m) = cm.

By the covariance of B, we have

B(z,k,z,j,w) = B(0,0,0,j — k, T,w) = c(j — k),
for P-almost every w and any z € Z% and (j,k) € Z x Z with k — j € A.
Now, take (x,v,j, k,m,n) € Z9 x 79 x 7. x 7 x 7. x 7 with {y — x,k —j)€ G4 and {y — x,n —m) € G 4.
Then
B(x,j,y,k‘)—B(x,m,y,n) = B(%an’k—j)—B(%Oa%n—m) = B(yvn_mayvk_j) = C((k—])—(?’l—m))
Thus, if 2,y € Z% x Z? are such that y — 2 € G4, then

B(x,y) = B(x,j,y,k) —c(k —j) for any j,k € Z x Z such that (y —z,k — j) € G4
is well defined and we have B
B(z,j,y, k) = B(x,y) + c(k — j)
as desired. O

We document next a property of the random vector m(B), which will be of use to us in what follows.

Lemma 4.4. Fiz a face A€ A (possibly C itself). Let B be an L'(IP) T-covariant 3-recovering cocycle on
A. If Elm(B)] € 8/}&’”50({) for some £ € ri A, then m(B) € 8Aﬁ’usc(§), P-almost surely. If additionally
E[m(B)] € ext 6Ai’u“(£), then m(B) = E[m(B)], P-almost surely.

Proof. Let € € ri A be such that E[m(B)] € 8Ai’“sc(f). By Lemma A.1, this implies that A%(¢) = Ai’“sc(f) =
E[m(B)] - £&. By the variational formula [37, Theorem 2.14], we have P-almost surely, A?(¢{) < m(B) - ¢ for
all ¢ € A. Thus, it must be that, P-almost surely,

0=A%(¢) - m(B)-£< EUE(AB(C) -m(B)-() <0.
€
Then applying [59, Theorem 4.21], we obtain that m(B) € aAfi{uSC(g). If additionally E[m(B)] is an extreme
point of 6Ai’usc(§), then m(B) = E[m(B)] P-almost surely by the definition of an extreme point. O

For a face A of C and a non-empty set I < Z%, define the set of points reachable from some point of I
taking steps in R 4,

(4.7 Ii={yeZd:y—xegjforsomexel}.
Also, define the set of points unreachable from all points in I with steps in R 4,
(4.8) I3 =271 ={yeZ:y—x ¢ G} forall z € I}.

If the model is undirected on A, i.e. 0 € rild4, then QI = G 4 so that Ij = U,er (@ +Ga).

Recall the countable (possibly finite or empty) set of inverse temperatures and extremal supergradients
D 4 defined in the paragraph containing (3.8). For each A € A, let £4 = {(8,m,x,2) : (,m) € Da,x €
7% z € R4} and let Q=0x [T aca R4 be equipped with the product topology and its Borel o-algebra,

S. For & € Q, let m (@) be the projection to its Q coordinate w. We will sometimes write this as w(®).
For each A € A and (8,m,x,2) € E4 let BAP™ (2,2 + 2,®) be the (A, 3, m,z,z)-coordinate of &. Let
T = {T, : v e Z*} be the G-measurable group of transformations that map

(w, {bA,,B,m,a:,z tAeA, (67 m,, Z) € gA})
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to

(Tow, {bagmatvz: AEA (B, m,x,2) € Ea}).
As such, we have m(T,0) = T,mo(®) and for all A € A and (8, m,z,2) € E4, BAP™(z,z + 2, T,0) =
BABT™ (¢ 4 v, x4+ v+ 2,@). Note that Q satisfies the hypotheses on € in Section 2.2.

Theorem 4.5. For each face A € A (possibly C itself) where D4 # 3, assume that V' satisfies Conditions
3.2 and 3.5 on A. There exists a T-invariant probability measure P on (Q (‘5) and a real-valued measurable
function BAP™ (2,y,0) of {(A,B,m,z,y,0) : Ae A, (B,m)e Dy,xeZlyeZly—xeGade Q} such
that the following hold.
(a) For any event A€ &, P(nq(&) € A) = P(A).
(b) There exists a T-invariant event (AZCOC with I@(QCOC) = 1 such that for each face A€ A, & € ﬁcoc,
u,v,z,y € Z4 such that v —u e Ga, y —x € Ga, and (3,m) € Dy,

(4.9) BAP™ (3 4 v,y +0,0) = BAP (2, y, T,0)
(4.10) BA’ﬁ’m(u,x,@) + BA’ﬁ’m(a:,y,&}) = BA’ﬁ’m(u,y,@
(4.11) Z p(z)exp{—BBA’B’m(x,x +2,0) — BV(w(fchJ),z)} =1, if <o
ZER A
(4.12) min {BA’ﬂ””(x,m +2,0) + V(w(Td), z)} —0, if B = .
zZzER A
(c) For any face A€ A, (B,m) € D4, and x,y € Z¢ such that y — x € G4, BAP™(x,y) is integrable
under P,
(4.13) E[B4%" (2,y)] = m - (y — @),

and IAE[m(BAﬁ’m)] =m.
(d) Fiz a face A€ A. If the random variables {(V(T,w, 2)).er 4 : v € Z%} are independent under P, then
for any non-empty set I < Z2, the variables

(4.14) {BA’ﬁ’m(x y,0):xel,y—xeGi, (8,m)eDa}
are independent, under P, of the variables {(V(Tyw,z): ze Ra,ve I3}

Remark 4.6 (Restricted-length space-time cocycles). The above can be applied to restricted-length polymers
as follows. Let U’ be a face of U with R4 # R, where A is the cone generated by U’. Let 8 € (0,0].
Write the restricted-length model in terms of an unrestricted-length model as described in Remark 2.2. If
V satisfies Conditions 3.3 and 3.5, it satisfies the conditions of Theorem 2.17, and V satisfies Conditions
3.2 and 3.5 on A, and hence it satisfies the conditions of Theorem 2.15. As explained in Remark 3.19,
with P-probability one, A" os 18 finite on U, K%u is finite on A, and AEUSC(« D) = tAf,’,urS;(C /t) for all
e Aand t > 0 with (/t € U'. Therefore, if Ag’,l’lrfs is P-almost surely deterministic on U’, then AEUSC
is P-almost surely deterministic on A. Observe next that if & € ritd’, then £ = (£, 1) € (ri.A)\{{0,0)}.

—/3,usc

Take m € W TN 0N ({£ 1)) for some £ € ritd. (This set is non-empty, bounded, and has at least one
extreme point, as explained at the beginning of Section 3.) Now all the hypotheses of Theorem 4.5 are

satisfied for the unrestricted-length model, and the theorem produces the cocycles EA’ﬂ’m(@m ky, {y, £y, w),
{(y —x,k —£) € Gz. Then, for the original restricted-length model, we define the space-time cocycles (see
Remark 4.2) by setting

BT (0, b,y 0,0) = BT (G, b, (0, 0),0).
In particular, if we write ™ = {m, ¢), then
~ ’ m .A ﬁ m
E[BY 7 (2, k,y,0)] = B[B™" (G k), (y, )] = -y — 2, £ — k) = m - (y —x) + (£ — k).
A direct computation given in Appendix A shows that

(4.15) = At (& —m - &
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moreover, m is in the superdifferential at £ of the concave function that is equal to Aﬁ’usc on U’ and is set
to —oo outside U’. When T 4 is trivial, this is also the value of ¢ from Lemma 4.3. A

Remark 4.7 (RWRE on Z). Consider the models in Figure 2.1. As noted in Remark 3.13, in the recurrent
case, there are no points in Dy with S = 1 that can serve as input for Theorem 4.5. In contrast, in the
transient cases, there exists a unique point (1,m), where m = —A!(—1), that can belong to D¢. Using this
as input in Theorem 4.5 yields a cocycle B¢1™ which we will denote more concisely as B™.

Next, consider the restricted-length version of the RWRE, reformulated as an unrestricted-length model
per Remark 4.6. Here, the set of admissible steps becomes R = {(1,1),{—1,1)}, and {0, 0) ¢ U. Consequently,
if we take the full cone C < R? generated by R, there are no restrictions on the choice of ¢ in defining Ds.

Remark 4.6 explains how the superdifferential of the limiting free energy for this unrestricted-length model
connects back to the superdifferential of AL, which is either the single point £ AL (t) for ¢t € (—1,1)\{0},
or an interval [0, £ Al (0—)] when ¢ = 0. See Figure 2.1.

Using this setup, Theorem 4.5 produces space-time cocycles (as described in Remark 4.6) for a countable
collection of m € dAL(t) with t € (—1,1). By Lemma 4.3, these cocycles take the form

Bm(l',j,y,k‘) = Em(xvy) + C(k _.7)3

where B is a cocycle and ¢ is a deterministic constant.
The corresponding Gibbs measure, constructed via Theorem 3.14, is the Doob h-transform of the RWRE;,
with the one-step transition probability kernel

m B (0,z)+c'

T =rm.e

These measures were previously constructed and studied in [70] as the minimizers of the level-3 to level-1
contraction principle for quenched large deviations in a more general one-dimensional RWRE model. See, in
particular, Lemma 1.6, Definition 5.6, and Theorem 5.17 of that paper. Our constant ¢ corresponds to the
parameter r in their notation.

B™ is a genuine cocycle if and only if ¢ = 0, in which case B™ = B"". In this case, (5.15) and (5.17) in [70]
imply that this cocycle coincides with the one obtained in the first paragraph of this remark, when applying
Theorem 4.5 to the unrestricted-length RWRE. Furthermore, by (4.15), ¢ = 0 implies Al (t) = mt and, by
the observation following (4.15), m is also in the superdifferential of A'. This forces m € {A*(—1),0}. Thus,
in the transient nestling cases, the points ¢t € (—1,0) for which ¢ = 0 correspond precisely to the points in
the interval left of 0 where Al is linear (see Figures 2.1B and 2.1C). In the non-nestling case, there exists
a unique such ¢, which is the sole point in (—1,0) where Al and A! intersect. See Figure 2.1D.

We conclude this remark with a high-level explanation of the significance of the unique intersection point
mentioned at the end of the previous paragraph. Let ty € (—1,0) denote this point. By the maximum
entropy principle (see [59, Section 5.3] for a similar application), conditioning the RWRE on {7_, < oo}
and taking n — o0 causes the path measure to converge almost surely to the Doob h-transformed RWRE
tilted by the cocycle B, with m = —A'(—1). But since B = B™, Lemma 1.6 and Theorem 5.17 in [70]
along with another application of the maximum entropy principle imply that this tilted RWRE corresponds
exactly to conditioning the original RWRE on having the asymptotic velocity ¢o. Succinctly, if we condition
the walk on the (zero probability) event {X,, — —oo}, it will proceed ballistically with velocity ¢. A

Remark 4.8. Our construction shows that the claim in Theorem 4.5(d) continues to hold if independence is
replaced by mixing. That is, if o{(V (Tyw, 2))zer, : v € A} and o{(V(Tyw, 2))ser 4 : v € A’} mix under P at
rate 7, when A, A’ = 7Z¢ are separated by distance k, then U{BA’ﬂ’m(x, y,0):xel,y—zeGh,(B,m)e DA}
and o{V(T,w, 2) : 2 € Ra,v € I'} mix at the same rate ry, if I < Z? and I’ = I'§ are separated by distance
k. See [12] for a definition and basic properties of the strong mixing rate between o-algebras. A

We prove the theorem towards the end of the section. For a high-level summary of the ideas, see Section
1.1 in the introduction. We begin by defining a few objects and proving a few bounds. Assume the hypotheses
of the above theorem for the rest of this section.

For a face A € A and a pair (8,m) € Dg, me Wy n (7Ai’usc(§) for some ¢ € 1i A\{0}. Define @, h € R in
the following way:

If either Condition 3.2(b) or 3.2(c) holds, then 0 ¢ U4. [37, Lemma A.1] implies that there exists a vector
w such that u-z > 0 for all z€ R4. Then u-& > 0. Define u = u/(u- &) and h = u — m.
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If instead Condition 3.2(a) holds, then 0 € U4 and by the definition of D4 (above (3.8)), we have that
AP(€) # 0 and hence A?(¢) < 0. Also by Remark 3.6, A?(¢) > —oo. Define 4 = T and h = 1Agf§()5)m
Note that @ - £ = e & =1 sincem ¢ = Aiusc(f) = AP(¢) by Lemma A.1.

With the above definitions, we can now consider that throughout the proof, each A € A and (8, m) € D4
are accompanied by &, 4, and h that satisfy these properties:

m=1u—h,
u-&=1,
(4.16) -z >0 forall z€e R4, if either Condition 3.2(b) or 3.2(c) holds, and
h = (1 —AP(€))a, if Condition 3.2(a) holds.
Let
(4.17) Ry =) |z-1

zeER

and take R > Ry. For x € Z% and t € R, we introduce the following slab at u-level t of width R,
Lagzt=Lazi(R 1) = {(veZl:v—zxeGrandt<v-u<t+ R}

Note that if y € Z¢ with y —x € G4, then La . = L., We abbreviate La s = L. For 8 < o0, z € Z,
t >z -1, and € = 0 define the (regularized) tilted point-to-level partition function

UEL.A @, t
Above, the regularization by introducing e|v|; in the exponent is there solely to ensure finiteness.

Recall the convention that Zf’v = 0 if there are no admissible paths from x to v. Hence, the above sum
is only over sites v that are accessible from z, i.e., v —x € gj‘. Since £ - u = 1 there exists a z € R4 such
that z -4 > 0. Since z-u < R and « - U < t, there is at least one v € L 4 5, which is reachable from z. The
corresponding free energy is

ABe, 1 ABe
i) (w) = BlongJ (t) (w).
At zero temperature, define

FAGO@) = swp (FEW) +h- (0= a)).
VEL A,z t
Recall the convention that F,, = —oo if there are no admissible paths from z to v, meaning that v is not
considered in the supremum.
Condition 3.2 guarantees that F:‘(f)s( ) is finite and integrable, which we now show.

Lemma 4.9. If 8 = w0 or Condition 3.2(b) or (c) is satisfied, take € = 0. If f < o0 and Condition 3.2(a)
holds, take € > 0. Then, for each Ae A, x € Z%, B € (0,0], and t > x - 4,

A,
[Fw(fe

] < o0.

Proof. Let A,z,B,¢, and t be as in the statement. Choose y such that y € L4+ and y — x € gj‘. The
hypothesis on ¢ and the definition of R ensure that such a y exists. For such y, let x(., be an admissible
path with g = « and x,, = y. Then for § € (0,0), we have
1
A(ﬁ € log Z Zﬁveﬂh(vfm)fe\v\l > B log(Zaé’yeﬁh-(yfz)fsly\l)7 and

VEL Azt

FAN0 = FY 4 he (y — ).

Recall that F©, > %log Z}, and then bound

, _
IE[B log Zgy] Z [log p(zis1 — i) — E[V(Tw, 2511 — 2:)]] > —00.
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For the upper bound, first consider the case Where Condition 3.2(a) is satisfied so that V(w,z) > 0 for
all z € R 4. Then for all v such that v —z € QA, 8 v = Em[ —BY " V(Tx;w i1 —Xo) l{T <OO}] < 1. Recall

that AP (¢) <0 and h = (1 — A?(€))4. Then, with the convention that C is a chameleon constant that may
change line-to-line,

A,B,e h-(v—x)—e|v|1 AP (&))a-v—Bh-z—e|v]1
F0 = BlOg Z meeﬁ (v—z)—elvh < — log Z BOA=A"(§))t-v—p |v]
VEL A 5.t VEL A,z ¢t
]. _AB — cx—e|vly 1 —E|V|1
E 2 PUAH Ot R)=pha—clvls — (1 _ AP(€))(t+ R) —h-z + — log 2 e—clvl
VEL A ot veZ
1 0
<SA-AEN(t+R) —h-z+ 3 log (C > kdefk)
k=0
1 0
<SA-AE)t+R) —h-z+ 3 log (0 > eEk/2>
k=0
(4.18) <A =A%)+ R)—h-z+ p  og(Ce™),

where the last bound applies for e sufficiently small. At zero temperature, the equivalent bound is

F:}(vg?ﬁ: sup (F(w) +h-(v—x)) < sup (1—AP(E)v-a—h-x)

VEL A 2t VEL A 4.t
(4.19) <A-=AE)(t+R)—h-x.

Next, assume that either Condition 3.2(b) or (c¢) holds. Then 0 ¢ U4 and there exists a 6 > 0 such that
forall z € Ry, 42 >0 > 0. For v € Layt, all paths from z to v have length at least (t — z - u)R™*
since R > },__p |z @f. Similarly all paths have length at most (t + R —z - 0)d~1 since z - @ = § for all
ze R4 Let £ = ((t) = |(t+ R—x-0)0*| be the maximum possible length. Let L4, be the finite set
of v € L4, which are reachable from . The cardinality of L Azt is bounded above by Cr? for some fixed
constant C' > 0 depending only on the dimension d and R 4.

Suppose Condition 3.2(b) holds so that V(w, z) = ¢ for some ¢ € R and all z € R 4. Then,

1 o
FA B0 _ log Z Zgﬂjeﬁh*(vfm) _ E log Z E, [ Byt V(Txiw,XH_lei)l{TU<OO}]e[3h<(v7z)
UGLAL t 'UGLA,m,t

(v 1 o
<w}]eﬁh (v—2) < Blog Z Bl +Bh-(v—z)

vEL Azt VEL A 4.t

N
|
5
R
s}
™
=~
S
B

1
<Le| + = log CL* + max h-(v—2)

5 UEL_Amyt
1

(4.20) < Lle| + = log CL* + ¢d max |h;| - max |z].
B 1<i<d ZER A

1<i<d
The last line follows since v is at most ¢ steps from x. At zero temperature, the equivalent bound is
A,00,0
Fly7 = sup (B, +h-(v—2))< sup (fe|+h-(v—uz))
VEL A 4.t VEL A 2t
(4.21) < /L] + éd max |h | - max | 2.
1<z<d
Lastly, suppose Condition 3.2(c) is satisfied. Then in the positive temperature case,

1 1 @ 1
FABO— ﬁlog Z Zﬁ@eﬁh'” < Blog(Oéd max Zﬁveﬁh'“) < max flogeBEfvﬂ*Bh'”jLBlogCﬁd

(®)
" VEL Azt vEL Azt veL Azt

1
( ) (t—z-a)R~1 <kg(t+R @)1 Ug?i)i t( z,v,k U) 3 0og
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Similarly, in the zero temperature case,

(4.23) FAX0 <

[ee}
< max max (F + h-v).
x,(t) (t—z-0)R-1<k<(t+R—z-0)5~1 UEZAYth( 0,k )

x

The bound now follows since E[F* ] < o for each of the finitely many k and v because V= (w, 2) € L(PP)

z,v,k

for each z € R 4. O

For each t > max{z - 4, (x + y) - u} and £ = 0, the free energy satisfies an approximate shift-covariance
property, which is exact if € = 0. For 8 € (0, 00), start by writing

1 1
Fﬁ&-’i,?t) (w) = —log Z Zf_’_ym(w)eﬁh-(vfz*y)*s‘v‘l I lOg Z Zfﬂ)_y(Tyw)eﬁh-(ufzfy)fs\v\l
2 VEL A,z 4y, t g VEL A wiy.t
1
(4.24) = —log Z 78 (Tyw)ePh o) =elvuls,

B

Using the bounds —e|v|; —elyl1 < —e|v + y|1 < —¢|v|1 + €ly|1, we see that

VEL A & t—y-a

(4.25)

A, AB, elyli
FHZ;)(“’)_Fz,(tﬁf(y.a))(TyW) < g

If p = o0 and € = 0, this shift-covariance is exact:

FAe0 (w)=sup (FS,_, (Tyw)+h-(v—z—y))

t €T, v—
z+y,(t) velamiys Y

(4.26) =  sup  (FL(Tw)+h-(v—1)=FA20 (T,w).

eLgnt o ,(t—(y-a))
For Ae A, (3,m)€Dy,e >0,teR,xeZ? and z € R4, define

A8, Afe _ pAS,
(4.27) Bl M w,w 4 2) = FADT = FL00, —h

if t >max{z -, (r+2) U:2€Ra} and Bgf‘s’ﬁ’m(sc,x + z) = 0 otherwise.

'Z,

Lemma 4.10. Let A € A, (3,m) € Dy, and ¢ > 0. Then P-almost surely for all x € Z¢ and t >
max{x~ﬁ,(x+z)~ﬁ:z€7€A},

(4.28) Z p(2) exp {—BBfa’ﬁ’m(:c, x+z) — PV (Thw, z)} =1 i< and
2ER 4
(4.29) min {B;“f@”"(a;, v+ 2) + V(Tow, z)} —0 iff =
ZER A ’
Proof. The desired equations essentially come from the one-step decomposition of Z:‘&f)’e. Take A, 5, m, ¢, z,

and ¢ as in the statement. Recall that L 4.+ = LA z42+ if 2€ R4. Then
Z p(z) exp{—/)’B{f‘E’B’m(x, x+z)— BV (Tw, z)}

2ER A

= Z p(2) exp{—ﬂ(ﬁ‘;}(’g’E - F;if:ft) —h-2) =BV (Tw,z)}
ZER A

= Z p(2) exp{log Z4<, —log Z:\Ef)’a + Bh-z— BV(Tw, z)}

z+2z,(t)
ZER A

A, B,e\ — z— ww,z) 7 AB,
=(Zz,(f)€) ' Z p(z)et =V )Zm+i,?t)

ZER A

A, B,e\— z— LW,
=(Zz,(f)€) ! Z P(Z‘)@Bh BV (Tow2)

zZER A
To—1

> Z eBh(v—a—z2)—¢€|vlx | [exp{—,@ Z V(Tx,w, Xit1 — Xi>}1{,rv<go}]

VEL A w2t i=0

Ty—1
= (Z;‘}f)ﬁ)fl Z eBh(v—r)—elv]y Z p(2) E, [exp{—ﬂ Z V(Tx,w, Xiy1 — Xi)}l{-rv<oo} ‘ Xi=z+ Z]

VEL A ot 2ER A i=0
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Ty—1
= (Zﬁ&fje)_l Z Phv—a)—elli g [exp{—ﬁ Z V(Tx,w, Xi11 — Xi)}l{,rv<oo}]
vEL Azt i=0

ABiey—1 7 ABe _
=(Z ) 24y =1

The fifth equality above comes from the Markov property. The recovery property (4.28) is proved. For the
zero temperature case, write

min {Bgf‘g’oo’m(m, z+z2) + V(Tw, z)}

2ER A
. A,00,0 A,00,0
= min {F550 — FAT0 b2 4 V(T 7))
k—1
= min {F;‘(’;C’O — sup sup  sup {f Z V(Ty,w,xiz1 —x;) + h- (v—mfz)} —h-z+V(wa,z)}
ZERAL T veLawtze k2150 P L D0

k—1
= F;‘(,glo — max sup sup sup {— Z V(Ty,w,xiv1 —x;) + h-(v— x)}
i=0

ZERAvEL Azt k22 4 KE
x1=z$2j
k—1

= F;‘(ﬁ‘;%o — sup sup sup {— Z V(Ty,w,xiz1 —x;) + h-(v— x)}

5 ’UGLA,I,t k=1 ro;keii Y i=0
_ 1A,0,0 A,00,0
= ~n =0
The recovery property (4.29) is proved. O

The next lemma gives some information about where the minimum in (4.29) is attained.

Lemma 4.11. Let A € A and let m be such that (00,m) € Dy. Then P-almost surely, for any finite set
AcZ and any t > max{z-u,(x+2)-U:x € A ze Ry}, there exists y € A and z € R4 such that y+z ¢ A
and V(Tyw, z) + BZf‘dOO’m(y7 y+z)=0.

Proof. Take A and ¢ as in the statement, 2 € A and € > 0. Let v € L 4 ,; be such that

A @) e < Fo() + h- (v = 2) < FA5 ().

Take a path z¢., = zo.,(e) € X2, such that

T,V

[

-
FPw) —e <= Y V(Tow,wit1 — 7:) < F, ().
1=0

Note v ¢ A by the definition of t. Let k = k(¢) = min{i € [0,n — 1] : 241 ¢ A}, y = y(e) = xp, and
z = 2(g) = Tp41 — xk. Since FS (w) + Ff, (w) < F5,(w) for all v € L g4, we have F. (w) +h-(y —x) +

Fy’i‘(’:)o’o(w) < F:}(’f?’o(w). Thus,

n—1
Er (W) +h-(y—x)+ F;(’g)’o(w) —2e < F;}(’f;’o(w) —2e< — Z V(Tyw, iz — i) + h- (v —2)
i=0

|
—

<F$y(w)+h~(y—z)f V(Ty,w,xiv1 —x;) + h- (v —1y),

i

Il
=

which implies

n—1
F;}(’:)O’O(w) —2< - 2 V(Ty,w,ip1 —x;) + h-(v—1y).
i=k



30 S. GROATHOUSE, C. JANJIGIAN, AND F. RASSOUL-AGHA

Thus,

V(Tyw,2) + By "™ (y,y + 2) = V(Tyw, 2) + F0 = FATS — bz

< V(Tyw, z) + F;}(’S)’O —FS W —h-(v—y—2)—h-z

n—1
< F;?(,:)o,o + Z V(Ty,w,zip1 —x;) —h-(v—1y) < 2e.
i=k
Since A and R 4 are finite, we can find a subsequence ¢; — 0 and y € A, z € Ry, such that y(e;) =
y € Aand z(g;) = z € Ry for all j. Applying the above with ¢ = ¢; and taking j — oo shows that
V(Tyw,z)+ B;flo’oo’m(y, y + z) < 0. The claim follows from this and (4.29). O

Next, we develop bounds on the limiting free energy. Recall the definition of Ry in (4.17). If necessary,
enlarge the slab width to satisfy R > 2Ry.

Lemma 4.12. If 8 = o0 or Condition 3.2(b) or (c) is satisfied, take e = 0. If 8 < o0 and Condition 3.2(a)
holds, take € > 0. Then, for any a < b,

‘€|15 . 1 . A.B,e — Afe
o 155 < hm CE[nf FEO) < T JEL s B <
and, P-almost surely,
(4 31) 1— |£|718 < lim i inf F.A;B,E < m l su F.A,B,E <1
. ﬁ B n—ooo N a<s<b 0,(n+s) = n—ow n aésib 0,(n+s) =~

Proof. Tt will be convenient in this and the following paragraph to modify our notation to include the width

of the slab, writing F;‘(’gfa R) when this width is R. With this notation, we see that if ' > R, then s <t <

t+ R < s+ R and Fé{f,fz) < F(;‘}(’i’;,). Thus, for any s € [a,b],n+ta<n+s<n+s+R<n+a+(R+b—a)

A,B, A,B,
and, therefore, sup,<, <, Fo,(gfs,R) < FO,(i-ia,R-&-b—a)'
Similarly, for any s € [a, b], take j = |[2R~!(s—a)]|, which satisfies n+s < n+a+jR/2 < n+a+(j+1)R/2 <
n+s+Rand 0<j <2R Y(b—a)+ 1. Therefore,
. A,B.e . A,B.e
ag;fsb F0=(”+37R) = je[O,QR*Ilr(lérfla)Jrl]r\Z Fov("+“+jR/2’R/2)'
The upshot is that, modulo increasing or decreasing the size of R, it is enough to prove the claims of the
lemma for a fixed s € R, without taking suprema or infima over s € [a,b]. In the rest, we will go back to
omitting the width of the slab from the free energy notation.
Fix s € R. We will show that for each s € R, we have, P-almost surely,

I€he _ . 1 ape — 1 ape
(432) b= 5 S nh_% p o S i D Fo Gy S L

This then proves (4.31), as explained in the above two paragraphs.

We start with the lower bound. Write £ = ZzeRA b.z with coefficients b, > 0. For n € Zx¢ let b, , =
[(n +s)b,] if z-@ > 0 and b, = [(n + s)b,| otherwise. Let v, = >, cx by .2 Note that v,/n — & as
n — o0. Since £ - U = 1,

n+s=(n+s) 2 b,z U< v, -u<(n+s) Z b,z U+ Z |z -4l <n+s+R.
ZER A 2ER A ZER A

Thus, vy, € L4 n+s for all n and
ZpABe — log Z Zg’veﬁhm—ef\vh > —log Zg,vn + Bh-v lv ‘15.

0,(n+s)
K n/B VEL A,n+s n/B nﬁ

Since @ — h € AAG™(¢) and € -0 = 1, by Lemma A.1, AP(€) = AS™°(€) = (W —h)-€ =1 — h-¢. Taking

n — oo and applying (2.8), we obtain, P-almost surely,

[€he _ 1 |€]1e
B B

1
lim ~Foinig 2 MO b6~
n—
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The equivalent result at zero temperature is
lim FA(OC+O) lim —(FM +hov,)=A*P(E)+h-£=1.
n—oo 1 n—oo 1
Next, we derive the almost sure upper bound. Recall that we are now working with a fixed s. The

upper bound (2.7) implies that, with P-probability one, there exists ng = ng(w,e) such that whenever
v]1 - [t]eo = o,

1
7 los Zg, < AC(0) +

Also note that since @ — h € aAf(“SC(g), for v e Lan+s
A" () S A€ + (v—€)-(@—h)=v-(G—h)<n+s+R—v-h.

—Juls.

2p

For n = ng,

1 A,B,e 1 B ﬁh v—e|v|
HFO,(TI-"-S) - % log Z ZO v 1

VEL A n+s
< Llog Y L@ onu—hl2
np
VEL A n+ts
< i log Z eﬁ(n+s+R7v~h)+ﬂh-v7€\v\1/2
np
UELA,7L+S
n+s+R 1 _
< — —Blog 2 e clvh/2
vEZ
AR G 3 ple=h2) — 1,
n nﬁ n—o0
k=0
The equivalent bound at zero temperature is
1 1 1 1
EF;}(?J;(L) =— sup (Fg,+h-v)<= sup (AQ™(w)+1+h-v)< ﬁ(n+s+R+ 1) — L

n UELA,n,+s n UELA,n+s

Now we turn to proving (4.30). As explained at the beginning of the proof, it is enough to prove that for
each s e R,

€

(4.33) 1— |5ﬁ1 < lim nE[FA(fj )< Iim nE[Ff‘(»gjs)] <1
We first prove the upper bound. For this, we consider the three cases in Condition 3.2.

If Condition 3.2(a) or (b) is satisfied, then the upper bound in (4.33) follows from the bounds (4.18-4.21),
the upper bound in (4.32), and Fatou’s Lemma.

Suppose now that Condition 3.2(c) holds. Without any loss of generality, we can assume 9 > R. Let
flw) = max,er,, V™ (w,2) + max,er , |h - z|. Then, with the notation ¢ = ¢(n + s) as introduced above
(4.19), the bounds in (4.22) and (4.23) give

1 480 1 ‘ 1 d
—FOC <= max max (Fo, +h-v)+ —logCl
n 0,(n+s) N (n+s)R-1<k<(n+s+R)5—! UEZ‘A.’()',,L+S( 0,v,k ) nﬂ g
1 -1
4.34 < —  max f(Ty,w) + —log cee,
(4.34) M o€ (RA>,€20 w) nf

where it is understood that in the zero temperature case, the last term on the right-hand side is 0. In the
second inequality, we used the fact that f is non-negative, and hence the sum of shifts of f does not get
smaller if we add more terms, and the maximum does not get smaller if we drop the requirement that the
endpoint v € L 4 5,+s. We will bound the first term on the right-hand side using lattice animal bounds.

A subset S of Z¢ is said to be connected if, for any two points in S, there exists a nearest-neighbor path
in S that connects them. Given n € Z~g, a connected subset of Z¢ that has cardinality n is called a lattice
animal of size n. Let S, denote the set of lattice animals of size n. Let B = {0,1,2,...,79 — 1}%. Then
{roy + B : y € Z9} is a disjoint tiling of Z9.
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Consider a path o, € X§(R4). Let yo,...,y¢ € Z% and ug,...,up € B be (the unique points) such
that x = royr + ux for each 0 < k < £. Tt must be that |yri+1 — Yrleo < 1, since 9 > R. Although y;
and yr11 might not be nearest neighbors, we can fill in with at most d — 1 intermediate points to obtain a
nearest-neighbor sequence. In total, we start with ¢+ 1 points then add at most ¢(d — 1) more. The resulting
sequence may have repetitions and fewer than ¢d + 1 points, but it will be contained in a lattice animal
S € Spay1- Since the path zg., does not repeat points, the pairs (yg, uy) are distinct. Therefore,

/-1 -1
Z f(Tka) = Z f(TToyk+Ukw) < Z SI%&X 2 f(T?”oeruw)'
k=0 =0 J- R e

We have thus shown that

1
n xg. egliai(RA) ];of ) S Z S’é%?d)il Z f Tr0y+uw)-
Since {f(Tyyy+uw) : y € Z} are i.i.d. and f € LI(P) for some ¢ > d, [52, Theorem 1.1] implies that the
right-hand side converges both almost-surely and in L!(IP). This, the upper bound (4.34), the upper bound
n (4.32), and Fatou’s Lemma imply the upper bound in (4.33) and, therefore, the upper bound in (4.30) is
proved.
We finish the proof by arguing for the lower bound in (4.33). We work out the case of a positive tem-
perature, with the case of zero temperature being similar. Observe that for any n € Z-q and u,v € Z? such
that v —ue G4 n D,,

28 (@) = By[e PRV X X0 o | < B, e VT XX |

u,v,n

< E [ /BZTU ' (TXkW)Xk+1_Xk)1{T1,<OO}:| = Zﬁ,v(w)'

To justify the first inequality note that if 0 ¢ U, then X,, = v implies 7, = n while if 0 € U, then Condition
3.2(a) must hold, in which case X,, = v implies V(Tx,w, Xp+1 — Xx) = 0 for all & < n and, therefore,
e—BZZ;lU V(Tx)w, Xi41—Xk) <1.

Take any ¢ > 0 such that £/t € U4. Let 2,,(§/t) be the path defined in [58, (2.1)]. Note that this path
has increments in R 4 and satisfies @, ({/t) € G4 N Dy, for all n € Z~o and Z,,(§/t)/n — £/t as n — oo. This
and £ - @& = 1 imply that there exists a subsequence m,, such that &, (§/t) € La n+s for all n large enough.
Thus, for n large enough,

1 Ape 1 8 Bhu—clo| 1 8 Bh - &, (§/1) — |Zm, (§/1)]12
F0 (ns) = % log EL§ Zg € L> % log ZO,a”cmn € T B
v ,n+s
1 %] th:mn(g/t) — |j7mn(£/t)‘15
= @ log ZO Fmn, (€/8) 0, + nﬁ .

By [58, Theorem 2.2] (and [26, Theorem 2.4] for the zero temperature case), m~'F/

0,&m (£/t),m converges

both almost surely and in L'(P), as m — co. Furthermore, dividing
n+s< Ty, (&) - U<n+s+R

by m,, and taking n — oo implies that m,/n — t as n — o0. Thus, (nf8)~ 1F§m (€/tym
almost surely and in L!(IP), as n — oo. This allows us to apply Fatou’s Lemma and deduce the lower bound

n (4.33) from the one in (4.32), completing the proof of the lemma. O

converges both

For each n € Z~, let (U, )nez., be a sequence of independent random variables, independent of everything
else, and such jhat for each n, U, is unifor@ly distributed on [0, n]. Denote the distribution of this sequence
by U and let P = P® U with expectation E. Define P, . to be the distribution of

( {B;}‘im(x,x+z) cAe A (B,m) EDA,erd,zeRA})
induced by P on (Q, ).

Lemma 4.13. If 5 = oo or Condition 3.2(b) or (c) is satisfied, take ¢ = 0. If B < oo and Condition 5.2(a)
holds, take € > 0. Then, the family {P, . :n € Z=q} is tight.
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Proof. Take z € Z% and z € R 4. Let tg = max{0,z-14, (z+2)-1: 2z € R4} Recall that BA’B M+ z) =0
whenever 0 < ¢t < ¢y. Then for n > t;, use the approximate shift-covariance properties (4 25) and (4.26) to
obtain

E[By 2" (@, 2 + 2)]
1

=— f E[Bff’m(am x4+ 2)|ds
n to ’

(" A8, A8,
*L ]E[F ,(5)6 Fw+z fb)*h Z]d
0

n
L (" o pABe ABre (n—to)h-z ¢
< HLO E[F 0,(s—z-q) F7(g (r+z)ﬁ)] d8—7+3(|$|1+|$+2|1)
1 " A,B.e 1 n—zi A,B.e (n—to)hz 13
=— | E|F ds — — E|F, ds — —— + —
nJ;o [ 0,(s— xu)] § nJ;O—z‘ﬁ [ 0,(s— xu)] § n B(‘.’L‘|1+‘$+Z| )
_1m A,B e 1 [t AB.e (n—to)h-z ¢
- ﬁjn_zﬁE[F 0,(s— mu)] ds_ﬁ to—z-ﬁE[F 0,(s— a:u)] ds — n +B(‘x|l+‘x+z|1)
1 — i 1 to—x-U —ta)h -
(4.35) = fj JE[FA(QjS)] ds — ff E[FA(SB)E] gs - (nZth-z = (Jh + |z + 2h).
N J_(z+z)a ' N Jtg—(z+2)a ' n s
In the above computation, we use the convention that if b < a, then SZ = — SZ When g = o, we take ¢ = 0,

and the last term is understood to be zero.
On the event {U,, > to}, (4.28) and (4.29) imply that

(4.36) Bé ﬁem(x,x +2) = =V (Tpw,2) + B ogp(z) = VT (Tyw, 2) + B log p(2).
Again when 8 = o0, the last term is understood to be 0. Then,
[!Béim (x,z+ 2 H = [!Béim (x,z + z)’l{Un > to}]
=E[B2" (@,2 + 2)1{U, > to}] — 2E[min{0, BY".™ (z, 2 + 2)} 1{U, > to}]
[BA b (@ + z)] - ZE[min{O, Béfs’m(x, T+ z)}l{Un > to}]

=E

1 —x-U _A,@ 1 to—x'ﬁ AB

— E|Fy s ds——f E|F75 | ds
o I vish EEE iy

N

(4.37)
n %(\mh o+ 2[1) + 2E[VF (w, 2)] — 28~ log p(2).

All the terms on the right-hand side except the first are trivially uniformly bounded in n. The first term
on the right-hand side is also bounded in n by (4.33). This proves the claimed tightness. O

If 8 = w0 or Condition 3.2(b) or (c) is satisfied, then let Py (with expectation Ey) be any weak sub-
sequential limit point of P, o. Otherwise, for each 0 < ¢ < 1, let P, (with expectation E.) denote any
weak subsequential limit point in n of P,, .. Recall that BA%™ (2,2 + 2) is the (A, 3,m, z, z)-coordinate
of & e Q. By (4.36) we have that P, .-almost surely, for all A € A, (8,m) € D4, v € Z¢, and z € R4,
BAB™ (g x4 2) = —|V(Tyw, 2)| + B~ 1logp( ).

Use (4.37), Fatou’s Lemma, and the upper bound in (4.30) to obtain

—z-U to—z-U
E.[|BAYP™ (2,2 + 2)|] < lim 1(J E[Fh0c ds — 1 f ) E[FV5] ds — (n=to)h-2 Z)
t

n—oo N —(z+2)-4d 0,(n+s) n o—(z+z)-4 ,(s) n
€ _
+ 5(\1’I1 + [z + 2[1) + 2E[|V (w, 2)|] — 287 log p(2)
(4.38) <m-z+— (\x|1 + |z + 2|1) + 2E[|V (w, 2)|] — 267 logp(2).
The family {P.:0 <e <1} is therefore tight. Slrnllarly, using Fatou’s Lemma with (4.35) and (4.30) gives
(4.39) E.[BAP™(z, o +z2) | <T-z—h-z+ — (\m|1+|x+z|) m-z+ — (\x|1+|m+z|)



34 S. GROATHOUSE, C. JANJIGIAN, AND F. RASSOUL-AGHA

Let P denote any weak subsequential limit point of P, as & — 0 in (0,1]. If 8 = oo or Condition 3.2(b)
or (c) is satisfied, then take P = Py.

Lemma 4.14. P is T-invariant.

Proof. Let x,y € Z%, and z € R 4. Using (4.25) we get

2¢|y)y
B

Fix y € Z%. Let a > 0, £ € Z~g, and take f to be a bounded, a-Lipschitz continuous function of any
£ coordinates of 0. These coordinates can be faces A, vectors m, inverse temperatures B, vertices x, or
increments z. Let to be large enough so that to > max{y-u,z-a, (v +z) S +y) U, (z+y+z)u:ze RA}
where the maximum goes over all of the at most ¢ values of the x € Z¢ coordlnates on which f depends. Let
(ne k) kez., be the subsequence along which P, . converges weakly to P.. Let €; — 0 be the sequence along

(4.40) B{f‘s’ﬁ’m(x +y,x+y+2zT yw)— Bf_’g"gfg(a:, T+ z,w)| <

which P_; converges weakly to P. Then using continuity of fy, we have
E[f © Ty] = 1Lm EEj [f o Ty] = JILH(}O kh—{go Enk,ej [f © Ty]

= lim lim Enks [f(Tyw, {BAP™(x +y, 2 +y + 2)})]

Jj—00 k—

1
= lim lim ((’)(n,;l) + Tka
t

Jj—00 k—0o0

ng
E[f (Tyw {BAD (x4 g, +y + 2,0)})] ds)
0

mn
= lim lim if kE[f(w,{B;‘}gf’m(x+y,x+y+z7T,yw)})] ds

J—00 k—00 N,

= lim lim —J {E[f(w, (BT (2,2 + z,0)})] + alO(B7 e lyh) } ds

§—00 k—o0 T, STYE]

lim lim Lnk qu[ f(w {BAﬂm(:r z+ z,w)})]ds

J—0 k—0 N 0o—y-il

= lim lim ifm E[f(w {BAﬂm(x,x—i-z,w)})] ds = lim lim E,, . [f] = E[f].
to

j—0 k—00 N Jj—0 k—0o0

On the fourth line, we used the T-invariance of P. On the fifth line, we used (4.40) and that f is an a-
Lipschitz continuous function of £ coordinates of w. The first equality on the last line follows because the
integrals differ by at most 2|y - @|sup | f|. O

We are now ready to prove the main theorem of this section.

Proof of Theorem 4.5. For each n € Z~g, ¢ = 0, and A € &, P,, .(mq(®) € A) = P(w € A). Since mq(®) is
continuous, taking n — o0 and € — 0 shows that P too has this property, for all closed sets A and hence also
for all Ae &. Part (a) is proved.

Take z,y € Z% with y — x € g;. Consider a path o, € X, , of some length k € Z>(. For any t large
enough that ¢t > z; -0 for all 0 < i < k,

k—1
.Aﬁ, A, B,e A,B,e A,B,e A,B,e
Z Bj (Tiyxit1) = Z;) (FI ) FmHl,(t) —h- (i1 — )) F (1) Fy w h-(y—x).

Thus, for any pair of paths zo.x, z(.. € Xz, P-almost surely, on the event
{Un > " =max{z; - 0,27 - 0:0<i<k0<j<k}}

we have
k'—1

O AL, A,
Z BUnﬂa $“$i+1 Z BU ﬂam H—l)

From this, we get

k—1 k-1

Pn’a{igo BAP (@i, 2i41) = i;) BAS™ (], $z+1)} >P{U, > C”}n_)—gol.
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Since the event on the left-hand side is closed and P is a weak limit point of P,, ., we conclude that the

event has P-probability one. Similarly, for any n € Z-q and & > 0, Bé b () =0, P-almost surely and

hence BAP™ (z, 1) = 0, P-almost surely, for any 2 € Z%. Consequently, there is a T-invariant event @0 with
]@(ﬁo) = 1 such that for all & € ﬁo, AeA, (B,m) e Dy, and x,y € Z¢ with y —z € Gh BAS™ (g 2.0) =0
and

k—1
(4.41) BA’B’m(x,y,@) = 2 BA”B’m(:ci,:EiH,@)

i=0
has the same value for all paths zo., € Xy 4.

For each z € R4 and z € Z%, set B4 (z, 2 — 2,0) = —BAP#™(x — z,2,0). This definition is consistent
with the one above when it also happens to be that —z € g;. With this definition we have that the right-hand
side of (4.41) has the same value for all paths zq., with k € Zso, 20 =z, 2 =y, and 2,11 —x; € R4 U (—R4)
for 0 < i < k — 1. Therefore, one can use the right-hand side of (4.41) to define BA%™(x,y,&) for all
z,y € Z with y —x € G4 and @ € QO With this definition, we have the cocycle property (4.10), for all
wer, (B,m) € Dy, and u,z,y € Z% such that z —u,y — z € G4.

The covariance property (4.9) holds, for all & € Q and v, z,y € Z with y —x € R 4 simply by the definition
of the shift 7.. Then the definition (4.41) ensures that this holds for all & € Qo and v, z,y € Z? such that
y — x € G4, without the restriction y — z € R 4.

Using a similar argument as above one deduces from (4 28) and (4.29) and passing n — o0 and € — 0
that there exists a T-invariant event (o < Qo with P(QCOC) = 1 such that (4.11) and (4.12) hold for all
we QCOC, reZ? and (8,m) € Dy. Part (b) is proved.

Next, we prove part (c ) By (4.36) we have that P-almost surely, for all A € A, (8,m) € Dy, v € Z4%, and
zeRA,BABm(a?$+z —|V(Tpw, 2)| + B~ log p(2).

Recall the vector m(BA Bm) from (4.3). Using (4.11-4.12) and applying Fatou’s Lemma to (4.38-4.39)
we get that BA#: M (z, 2 + z) is integrable under P and that

(4.42) —E[|V(Tyw, 2)|] + B8 logp(z) < IE[BAﬂm(ac x4+ z)] <m-z.

This implies that IAE[m(BAﬁ’m) ¢(J<m-(foral e A In particular, E[ (BAB™) €] <m - & = AB(€).

By the variational formula [37, (2.8)], —A#(¢) = —m(BA#™). ¢, P-almost surely. Hence m(BA#m). ¢ =
AB(¢), P-almost surely. Since £ € ri A, we can scale £ by a positive constant to obtain a direction in
rild 4, apply [62, Theorem 6.9], and rescale back to £ to obtain constants a, > 0 for z € R4, such that
£= ZZGRA a,z. Then P-almost surely,

Z a,z-m(BAP™) = m(BAP™) ¢ = AP(¢) Z a,z - m.
ZER A 2€R A
Taking the expectation and rearranging, we obtain

Z a-(m -z — E[m(BA%™)] - 2) = 0.

2ER A

By (4.42), E[m(BA#™)]. 2 < m - z for each z € R 4, so each term in the sum is non-negative. Therefore
each term is exactly 0. Since a, > 0, it must be that I@[m(BA’B’m)] -z =m -z for each z € R 4. Since
m and IAE[m(BA’B ] are vectors of the linear subspace generated by the steps z € R 4, this implies that
m = E[m(BA#™)], and part (c) follows.

It remains to prove part (d) of the theorem. Recall the definitions of 5 and I3 in (4.7) and (4.8). Observe
that the distribution of

({V(va,z) tz€Ra,ve Iz}, {BA’B’m(x,:E +2z,0):xel,ze€Ra,(B,m)e DA})
under P comes from taking subsequential limits of the distribution of
(4.43) ({V(va,z) z€Ra,velg}, {BAﬁm(:L’,x +z,w):xel,ze€Ra,(B,m)e DA}>

under P, first taking n — oo then ¢ — 0. Note that the hypotheses of part (d) of the theorem imply
that the two collections in (4.43) are independent. The independence claim comes then from the fact that



36 S. GROATHOUSE, C. JANJIGIAN, AND F. RASSOUL-AGHA

if {(V(Tow, 2))zer, v € 7%} are independent under P, then the two families in the above display are
independent under P. The proof of Theorem 4.5 is complete. |

The same argument that gives (4.12) from (4.29) proves the following lemma using Lemma 4.11.

Lemma 4.15. Suppose the assumptions of Theorem 4.5 hold. There exists a T-invariant event Qo with
(QO) =1 such that for all & € QO, each face A€ A, m such that (c0,m) € Dy, and any finite set A = 79,
there exist a y € A and a z € R4 such thaty + 2z ¢ A and V(T w, z) + BA*™(y,y + 2) = 0.

We close this section with a result showing a version of weak continuity of covariant cocycles For A€ A

let QA = Q x RZ *Ra equipped with the product topology and its Borel o-algebra, GA For w e QA, let
w(@) be the projection to its  coordinate w and let BA(z,x + 2,&) be the (z, z)-coordinate of &.

Lemma 4.16. Fiz a face A € A. Suppose that V~(w, z) € L*(P) for each z € Ra. Let (8,m) be such
that B € (0,00], Ai’usc is deterministic and finite on A, and there exists a § € (ri. A)\{0} such that m €
Wan 8A5"USC(§). Let 5, € (0, 0] and m,, € 8Ai"’usc(ri A) be such that 8, — 8 and m, — m. For each n, let
BPnmn be an LY(P) shift-covariant (3,-recovering cocycle on A which satisfies the conclusions of Theorem
4.5(b) and (c). Then there is a subsequence {ny}p=1 such that BPmx™nx converges weakly to a random
variable B®™ on (Q, &), which also satisfies the conclusions of Theorem 4.5(b) and (c) on A.

Proof. Let 8, — B, m, — m, and BP»™ be as in the statement. Recovery implies that for z € Z¢
and z € A, BPn (2,20 + 2) = V(w(ﬁ;@),z) — B, log p(2); combining this with convergence of the mean
vectors m,, — m, we see that the distributions of (w, B#n™) e Q under P are tight. Let P be a weak limit
along a subsequence {ng}r=1. Then, we can repeat the proof of Theorem 4.5(c) to show that, under P, the
coordinate projection B4 (x,z + z) is integrable with mean m - z. The covariance property (4.9) and cocycle
property (4.10) hold for each B#»™n and are inherited in the limit since coordinate projections and shifts
are continuous in the product topology.
Define the function f : (0, 0] x RZ'XRa — R by

F(8,B) = {élogZzenAW)exp{ﬁB(x,HZ) V(w(T:@),2)} i fe(0,0),
’ f(e0, B) = —minzer , (B(z,z + 2) + V(w(T.), 2))-

Note that f is continuous on (0, c0] x RZJXRA, including at 8 = oo.
Thus, the recovery properties (4.11) and (4.12) that Bmx™nx satisfy for each k can be transferred to B4
by applying Skorohod’s representation theorem. O

5. SEMI-INFINITE PATH MEASURES

We begin by defining semi-infinite polymer measures from a shift-covariant recovering cocycle. Throughout
this section, (Q, &, P, {T, : x € Z9}) satisfies the general stationary setting described in the first paragraph
of Section 2.2. We note that the extended space (€, 8,P, (T, : x € Z%) from Theorem 4.5 satisfies these
hypotheses. We switch to this case in Section 6 where we prove Theorem 3.14.

Definition 5.1. Let B be an L'(P) T-covariant 3-recovering cocycle on a face A € A (possibly C itself). For
roeZ 0 < <0, and w e Q such that (4.1) is satisfied for all x € 72, define Qf.(’)B’“’ to be the probability
measure on Xy (R.A) that is the distribution of the Markov process Xo.oo with transition probability from

xeZ% tox+z, 2€ Ry, given by

p(z)efBB(r,erz,w)*BV(Tzw’Z).

For a subset A — Z%, let P4 be the set of all probability measures on A, with the convention that Py = @
Zd
Definition 5.2. A tie-breaker is an element t € (HACR PA) . A covariant tie-breaker is a measurable
Zd
function t: Q — (HACR PA) that is covariant: for any x,z € Z% and A c R, thw =t .4

Definition 5.3. Let B be an L*(P) T-covariant oo-recovering cocycle on a face A € A (possibly C itself).
For xy € 7%, w € Q such that (4.2) is satisfied for all x € Z%, and a tie-breaker t define Q;O(J’B’t’“’ to be the
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probability measure on X, (R.4) that is the distribution of the Markov process Xo.oo with transition probability
from x € Z to x + z, 2 € R4, given by t, a(z), where

A={2eRa:B(z,z+ 2w)+ V(Tw,z) =0}.

Ezample 5.4. Let S denote the set of bijections from R to {1,...,|R|}. One natural way to define a covariant
tie-breaker is by taking a covariant measurable function 3 : Q — SZ* and setting t; 4 to be a Dirac mass at

the step in A that has the lowest 3¥-value. In this case, the probability measure Q;‘%B L% is a Dirac mass on
a single semi-infinite path in X, (R 4), which is the path that out of = follows the increment that satisfies
B(z,z + z,w) + V(Tyw, z) = 0 and uses the ranking given by 3, to break the tie if there are multiple such
increments. A

In the next theorem, we will use a condition to guarantee the transience of semi-infinite geodesic paths at
zero temperature.

Condition 5.5. Given a face A € A (possibly C itself) and an co-recovering cocycle B on the face A, assume
that P-almost surely, for any finite set A < 7%, there exist a y € A and a z € R4 such that y + 2z ¢ A and
V(Tyw,z) + B(y,y + z) = 0.

Remark 5.6. This condition is necessary for transience at zero temperature since a set A violating the
condition acts as a trap from which the semi-infinite path cannot exit, Qf’B 44 _almost surely. We will show
in Lemma 5.15 below that the converse is also true. Hence, this condition is, in fact, equivalent to having
transient paths. A

Remark 5.7. Lemma 5.17 below shows that co-recovering cocycles that violate the above condition may exist.
Nevertheless, by Lemma 4.15, Condition 5.5 is always satisfied for the cocycles BA#™ that we construct in
Theorem 4.5. A

The following theorem shows that the measures Q7% are consistent with both the restricted-length and
unrestricted-length point-to-point measures. It also relates these measures to the Green’s function (3.7). As
the next result is a precursor to Theorem 3.14, it may be helpful to consult the statement and discussion
around that theorem to contextualize the notation below.

Theorem 5.8. Fix a face A€ A (possibly C itself). Assume V satisfies Conditions 3.2 and 3.5 on A. Let
B be an L*(P) T-covariant B-recovering cocycle on the face A. There exists a T-invariant event Qp < Q
with P(Qp) = 1 such that for all w € Qp, the following hold.

(a) (Consistency with Qg,;’) If B < o, for all non-negative integers j < k < n, points u,x,y € Z with
r—u andy—x in gj\, Tk € Xu,y with j = min{0 < i < k:x; = x}, and xp., € XZik(RA), then
(5.1) Qg’B’w(XO:Ty-k—n—k = T | T < Ty < 00, Xo.r, = xO:j7X'ry:7—y+n—k = Thun)
= Qg’B,w(XTJ:Ty = Tj:k ‘Tx STy < OO) = Qg:;j(XOn, = xj:k)~

(b) (Consistency with g(z,y).) If B < o0, then for each x,y € Z% such that y —x € G},

0
8,B,w — T,
(52) E% Y L, | = gy,
n=0
Hence, if x # v,
QP Bw a 9(z,y)
(53) e [Z 1{Xn=y} Ty < OO] = Bw
n=0 Zw:y
¢) (Consistency with Bw ) IfB < o, for all non-negative integers j < k < n, points u,z,y € Z%
z,y,n
such that t —ue Dj(Ra) and y —x € Di_j(R.A), Toj € ngg, Tjp € X;’;, and Ty, € Xg_k(RA),

Qﬁ’B’w(XO:n = T0:n |X0:j = xO:jan:n = xk:n) = Q§7B7w<Xj:k = Tj:k | X] =T, Xk = y)
= QY i (Xok—j = Tjuk)-

(d) If B = oo, for each x € Z¢ and tie-breaker t, Qf’B’t"” is supported on a set of semi-infinite geodesics
rooted at x and having increments in R 4.

(5.4)
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(e) If B < oo, then for each x € 79,
Q2P (all limit points of X, /n are contained in Uan(B),A) =1.
Similarly, if f = o0, then for each x € Z and tie-breaker t,
QPB4 (all limit points of X,/n are contained in ngl(B),A) =1.

Furthermore, we have the following.

(f) If B < o, then for any (and hence all) x € 72, QPP {| X, |1 — o0} = 1 P-almost surely if and only
if either A # Ag or both A = Ag and Condition 3.8 holds.

(g) If B = o and Condition 5.5 is satisfied, then there exists a covariant tie-breaker t such that for
P-almost every w and for every x € Z¢, QB4 {|X, |, — o} = 1.

(h) For B e (0,0), if QuP* (| X,|1 — o) = 1, P-almost surely, then for P-almost every w, for all x € 7,

ngBv“’(XOZOO 1s directed into .7:51(3)’,4) =1L

Similarly, for p = o0 and a covariant tie-breaker t, if Qg’B’t"”(|Xn|1 — ) = 1, P-almost surely,
then for P-almost every w, for all x € 72,

QQ’B”"W(XO:OO is directed into ]:51(13),,4) = 1.

Remark 5.9. If we consider a restricted-length model with V' satisfying Conditions 3.3 and 3.5, then we can
use the space-time cocycles from Remark 4.6 to define semi-infinite polymer measures that are consistent
with the restricted-length point-to-point polymer measures. Unlike the measures in the above theorem,
these polymer measures are not necessarily consistent with the unrestricted-length point-to-point polymer
measures. A

We will prove the various claims in the above theorem as separate lemmas, beginning with the consistency
with the finite-path measures.

Lemma 5.10. Fiz a face A € A (possibly C itself). Let 0 < B < oo and B be an L*(P) T-covariant (-
recovering cocycle on A. Take w € Q such that (4.1) holds for all x ezd. Then for all non-negative integers
j <k <mn, points u,x,y € Z¢ with v —u € gj andy—xEQ}, 2ok € Xy py with j = min{0 <i < k:z;, =z},
and Ty, € X375 (Ra), (5.1) holds.

Proof. Take 8, B,w, j, k,n,u, z,y, To., as in the statement. Let 7, , = inf{k > 7, : X}, = y} where inf @ = c0.
Note that {7, < 7,} is in the stopped o-algebra corresponding to the stopping time 7,: for any integer ¢ > 0,
{m=tin{m<nl={m=thn{ry=tleo(X;: k<t).

In the second equality of the next computation, use the fact that on the event {r, < 7,}, 7, = 7,,. In the
third equality, use the above measurability observation and the strong Markov property. In the second-to-last
equality, use the cocycle property. We have

Qg’B’w(XTz:Ty =T | Te < Ty < 0)
Qg’B’“’(Tx <7y <0, X7 r, = Tjik)

QQ’B’“(Tm <7y < 0)

B
Qg 7W(Tac < Ty, Toy < OOaXTm:TI,y = xj:k)

Q57B7w(7—z < Ty Tayy < 0)

B QPB(r, < 7,)Q0 P (r, < 0, Xo.r, = Tj:k)

Qg’B’w(Tw < Ty)Q&B’w(Ty < )

x

i
leofo Zﬁ ex® Hf:ol P(Tip1 — ﬂi)e—ﬁB(WMﬂiH,w)—ﬂV(meﬂTHl—m)
= 0:k€X, , + 1=

—BB(z,y, k—1 — BV (Ty. wyzis1—x;
e By T p(air — wy)e PV (Teiowinimmi)

k—1 _ e _ R,
H = p(zip1 — z4)e BB(zi,xit1,w) =BV (Te,w,xit1—2;)

e=BBwyw) 78w

ng;)(Xo:ry = Tjik)-
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Similarly,
B,w
Qﬂ (XO Ty tn—k = T0o:n | T;E Ty < 0 XO e -rOij'ry:Ty-H’L—k = xk:n)

B,
Qg 'w(Ty < OonO:Ty-ﬁ-n—k = xj:n)

- QY P(ry <00, Xy iy 4nb = Thin)
L QYP(r, < w0, X, = 1) QP (Xom—k = Tken)
QU (ry < 0)Qy P (Xom—t = Thin)
- Qf’B"“(Ty < 0, Xo.r, = Tj:k)
QI < o0)
= QY (Xour, = Tjuk),
where the last equality comes from the previous calculation. O

Lemma 5.11. Fir a face A € A (possibly C itself). Fiz 0 < 3 < o and let B be an L'(P) T-covariant
B-recovering cocycle on A. For each x,y € Z% such that y — x € G, (5.2) and (5.3) hold.

Proof. Take B, B, x,y as in the statement. First, use the cocycle property to obtain

Qg:va(Xn — y) _ Z n p Tiy1 — fE ﬂB(w’LPT’L‘Fl) BV(TI W, Tj41— 11) — Zﬁ"-’ —,BB(w,y).

z,y, n€
x0: neX

Sum over n to obtain (5.2):

B.Bw [ X o0
B [Z 1{Xn:y}] Z ﬁ B 2 fifn —BB(z,y) _ g(x’y)efﬁB(m,y)'
n=0 =0 —0

Similarly, if x # vy,

o0 n—1
(5.5) QB B, “(ry < ) 2 Z 1_[ p(zis1 — xi)e_ﬁB(fDi7Zi+1)_BV(TmiUJ7I7L+1_wi) _ Zg’,;e—BB(Ly).
n=0 o, X"  i=0
Combining the two previous displays, we obtain (5.3). O

We next show consistency with the restricted-length finite quenched polymer measures.

Lemma 5.12. Fiz a face A € A (possibly C itself). Fix 0 < 8 < o and let B be an L'(P) T-covariant
B-recovering cocycle on A. Take w € Q such that (4.1) holds for all x € Zd For j, k: n € Zsg with j <k <n,
w,x,y € Z% such that x—u € Dj(Ra) and y—x € Dy_;(Ra), zo;j € X9, x5 € X2K  and 4., € XJ7F(RA),
(5.4) holds.

w,z’ T,y

Proof. Take 8, B,w, j, k,n,u,x,y, and xg., as in the statement. Using the Markov property and the cocycle
property,

Qﬁ)B7w(X0:n = X0:n | X(]:j = mO:j»Xk:n = xk:n)
_ Q57B,w(XO:n = x[):n)
Q5737w(X0:j = xO:j7Xk::n = xk:n)

. ngB’w(XO:j xO:j)Qg’B,w(XO!k—j = xj:k)Q'f’B’w(XO:n—k = xk:n)

BBw(x . _ NOPBY (X, = B.Bw(x _
Q7 (Xo:j = w05) Q7 (Xi—y = ¥)Qy 7 (Xon—k = Thon)
1) plaiss — e PP 0mun )=V (T ==

S ent [Tl P(rers — mo)e PER )=V (Tt

k—j €8z y

e~ BB(z,y,w) Hf;]l P(%‘H _ .’E) =BV (Ty,w,xiy1—x4)

—BB(x,y,w) 7w
e (z,y,w )Z k—j

=Q:6yk j(XOk J_$Jk> (]
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Now we work out the consistency in the zero temperature case. Recall that the definition of the quenched
measures, in this case, requires a tie-breaker t.

Lemma 5.13. Fiz a face A € A (possibly C itself). Let B be an L*(P) T-covariant oo-recovering cocycle
on A. Let w e Q be such that (4.2) is satisfied for all x € Z<. Then, for each x € 72, for any tie-breaker t,
Qf’B’t"” is supported on a set of semi-infinite geodesics rooted at x and having increments in R 4.

Proof. The measure Qf’B 4% only allows steps z € R4, so the paths stay within « + A. Next, observe that
Qf’B’t"”—almost surely, B(X;, X;+1) = —V(Tx,w, X;+1 — X;) for all i € Z=y. We will show that this implies
that Xo.o is a geodesic.

Let zg.00 € Xz (R .4) be a semi-infinite path such that B(x;, z;41) = =V (Ty,w, 41 — x;) for each i € Zxo.
Let 0 < j <k, neZ-gy, and yo.,, € XZ]% Using the cocycle and recovery properties,

k=1 k=1
- Z V(Tow, xis1 — x;) = Z B(wi,wi+1) = B(xj, zy)
i=j i=j

1 n—1
B(yiayi-ﬁ-l) = — Z V(Tyiwayi-ﬁ-l - le)
0 =0

n

-
Il

Since this holds for all lengths n and all paths yo., from x; to xx, x;.. is a geodesic from z; to x. Since
this holds for all 0 < j < k, 2.« is a semi-infinite geodesic rooted at x. O

Now that the consistency properties have been proven, we turn to directedness. We first address the
question of transience versus recurrence of the semi-infinite polymers. Recall that Uy is the unique face of U
that contains 0 in its relative interior and that Rg = R n Up.

Lemma 5.14. Fiz a face A€ A (possibly C itself). Assume (3.4) holds and B € (0,0). Let B be an L(P)
T-covariant B-recovering cocycle on A. The following are equivalent:
(i) PEither A # Ag or both A = Ag and Condition 3.8 holds.
(ii) There exists an x € Z% such that P-almost surely Q25 {|X, |, — w0} = 1.
(iit) P-almost surely, for all x € Z¢, Q2B {|X,|; — o} = 1.
Proof. Note that (ii) and (iii) are equivalent due to the shift-invariance of P and the shift-covariance of B.
We, therefore, fix an x € Z? and prove that (i) is equivalent to (ii) with this choice of z.
From (5.2) and a standard fact about time-homogeneous Markov chains, we see that the Markov chain

Qf’B’“’ is recurrent if and only if g(x,2z) = 00. Let o1 be the time of first return of X,, to the starting point:
o1 =inf{k > 1: X} = Xo}. Lemma 6.2 in [37] gives

1 1
5.6 T,Tr) = n < .
(5.6) 9(z, ) 1-F, [efﬁzzlzg V(Tka,xkﬂka)l{al < oo}] P.(o1 = o)

If the reference random walk Pg is transient, then the above implies that g(z,z) < o and, therefore, the
Markov chain Qﬁ’B “ is transient. This includes the case A # Ag because, in that case, R4\Ro # &, and
once the reference random walk takes a step in R 4\Ro, it will never return to its starting point.

Suppose that Pg is recurrent and, in particular, A = Ag. Assume Condition 3.8 holds. We will prove
that, P-almost surely, QQ’B *“ is again transient, for all = € Z.

Without loss of generality, let = 0. By Condition 3.8, with P-probability one, there exist y € QIO,
20 € Ro, and € > 0 such that V(T,w, 20) > e. [37, Lemma 3.4] shows that y can be written as y = >, » 7.2
with 7, € Zs¢ and 7y, < C|y|; for all z € Rg and a finite positive constant C'. Use this to obtain an admissible
path yg.,, from 0 to y of length n = ZzeRO v < C|Ro| - |lyl1. Next, we will extend this path to obtain a loop
from 0 to 0. Let y,+1 = vy + z9. Then, use the same argument to construct a path vy, 1., from y + 2y to
0, with length m —n — 1 < C’'|Ro| - lyl1. Then yg..,, is a loop which starts at 0, travels to y, takes a step
to y + zo, and returns to 0. The length m < Ci|y|1, where C; = (C + C")|Ro| + 1. Let x = min,er, p(2).
Then, Po(Xo.m = Yoim) = kC1lYlL

For the loop constructed in the above paragraph,

m—1
exp{—ﬁ 2 V(Ty,w, yit1 — y,)} < exp{—BV(T,w, 20)} < e 7°.
i=0



GENERALIZED BUSEMANN FUNCTIONS FOR RWRP 41

On the other hand, for any loop ¥;., from 0 to 0,
-1
exp{~8 Y, V(Tywyhr — 4} <1
i=0
because V(T,w, z) = 0 for all v € G and z € Ro. Therefore,

B¢ P20 VI Xien X010 | < Po(Xon # Yon) + € Po (X = youn)
=1—(1—e ") Po(Xoum = youm) < 1 — (1 — e o)1
Using (5.6), we see that P-almost surely,
g(0,0) < K—Clly\l(l — e P!

and Qg’B’w is transient.

If, on the other hand, Condition 3.8 is violated, then with positive P-probability, V(T,w,z) = 0 for all
Yy € Q;O and z € R 4. On this event, Qg’B’w—almost surely, V(Tx,w, Xk+1 — Xg) = 0 for all k € Z>( and
(5.6) gives g(0,0) = (1 — Pg(o; < 00))~! = c0. The lemma is proved. O

Lemma 5.15. Fiz a face A € A (possibly C itself). Assume (3.4) holds and B = 0. Let B be an L'(IP)
T'-covariant co-recovering cocycle on A. Assume B satisfies Condition 5.5. Then there exists a covariant
tie-breaker t such that, P-almost surely, for any x € Z¢, Qf’B’t’w{|Xn|1 — oo} = 1.

Before we prove the lemma, we need a definition and an intermediate result. Given an co-recovering
cocycle B on a face A € A we will say that z and y in Z¢ communicate, and will write  «~~ v, if there
exist paths zo., € X (R 4) and yo.r € Xy 2(RA), k. L € Z~, such that V(T,,w, ziv1 —x;) = B(xs, xi41) =0
and V(T,,w,yj+1 — y;) = B(y;,yj+1) = 0 for all integers i € [0,k — 1] and j € [0,£ — 1]. Note that «~ is
symmetric and transitive, but it is not necessarily reflexive. Namely, x <~ x holds if and only if there is a
non-empty admissible loop from x to = along which V' and B vanish. In other words, x does not communicate
with itself if and only if it does not communicate with any site y € Z?. We will call such a site non-essential
and the sites that do communicate with themselves essential. Hence, <~~~ is an equivalence relation on the
set of essential sites.

Lemma 5.16. Fiz a face A € A (possibly C itself). Assume (3.4) holds and 8 = 0. Let B be an co-recovering
cocycle on A. If there exists a path g € X};’ with x € Z¢ and k € Z~q, such that

(5.7) V(Ty,w,xit1 — x;) + B(xi,x,01) =0 for all integers i € [0,k — 1],
then x is essential.

Proof. Sum (5.7) over i and use the cocycle property and B(x, z) = 0 to get that Zi:ol V(T,,w,zit1—x;) = 0.
Next, observe that the steps of the loop zg., are all in Rg. By (3.4), we get that V(T,,w, 2,41 —x;) =0
along the loop, which, in turn, implies that B(x;,x;+1) = 0 along the loop. Consequently, <~ x, and the
lemma is proved. O

Proof of Lemma 5.15. We begin by defining the covariant tie-breaker. To this end, fix a bijection 3 from R
to {1,...,|R|}. For any non-essential point = and subset A < R, we define t, 4 as a Dirac mass at the step
in A that has the minimum j value.

Fix another bijection 3 from Z? to Z~. If 2 is an essential point, then let A be its equivalence class. We
treat first the case where A is finite. Consider the pairs (y, z) that appear in Condition 5.5 for this set A.
Among these pairs, choose the ones where y has the smallest 3’ value. If there are multiple such pairs, select
the unique pair with the lowest 3 value for z.

Next, for a set C' © R containing z, we define t, ¢ as a Dirac mass at z. If z ¢ C, let t, ¢ be a Dirac mass
at the point in C' with the lowest 3 value.

To define the tie-breaker at points in A\{y}, we first construct a spanning tree of A as follows. We start
by selecting the point u € A\{y} with the smallest 3’ value among all such points. We then choose the first
step z1 € Ro of an admissible path from « to y that remains entirely within A and avoids u after leaving it.
If there are multiple choices for z;, we select the one with the smallest 3 value.
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We continue by selecting the first step zo € Rg of an admissible path from u + z; to y that remains
entirely within A, does not visit u, and avoids u + z; after leaving it. We iterate this process until we reach
y, constructing a path from u to y that forms a branch of the spanning tree.

Next, we select a point v in A that is not on the just constructed path and that has the smallest 3’ value
among all such points. We then construct a path from v to y, similarly to how we constructed the path
from w to y, except that if this second path intersects with the first one, we stop its construction at the
intersection point. We continue this process until we have exhausted all points in A, resulting in a spanning
tree of A with all paths leading to the root y.

For a point w € A, let z1 € Rg be the first step on the path from u to y in the spanning tree constructed
above. If C' © R and z; € C, define t,, ¢ to be a Dirac mass at z;. Otherwise, we define t, ¢ to be a Dirac
mass at the element in C' with the smallest 3 value. Note that this second case is irrelevant because we know
that V(Tyw, z1) + B(u,z1) = 0.

Next, consider the case when A is infinite. In this scenario, we will construct a spanning forest that
contains semi-infinite coalescing paths. We will provide a brief overview of the construction, as it is similar
to the one described above for the case of a finite A.

We begin by selecting the point u € A with the smallest 3’ value. Since A is infinite, we can find a sequence
of points z,, € A such that |z,|; > n for each n. For every n, there exists an admissible path from u to x,,
that does not return to u after leaving it. By restricting to a subsequence n; if necessary, we can ensure that
all paths from u to x,; pass through the same step z; € Ro. If there are multiple options, we choose the 21
with the smallest 3 value.

Continuing the construction, we obtain a semi-infinite path that starts at u, remains entirely within A,
and contains no loops. Once this path is constructed, we select a point v € A that is not on the path and
construct another semi-infinite path that remains within A. If this second path intersects with the first one,
we stop its construction at that intersection point. We repeat this process until all points in A have been
exhausted.

Using the spanning forest we constructed, we define the tie-breaker t, for points x € A similarly to when
A is finite.

The shift-covariance of t is immediately evident from the construction and the shift-covariance of B.
Additionally, the construction guarantees the following properties hold with Qf’B L9_probability one:

(i) If Xo.c enters a finite equivalence class A, it will exit A without forming a loop inside it.
(ii) Once Xo.o exits an equivalence class A, it cannot return to A because doing so would create a loop
that remains entirely within A.
(iii) If Xg.oc enters an infinite equivalence class A, it remains within A and does not form any loops inside

A.

(iv) By Lemma 5.16, the path does not form loops that include non-essential points.

These properties imply that, almost surely, under Q;O’B b Xo.0 does not revisit any previously visited
points, and as a result, |X,|; tends to infinity. O

Lemma 5.17. Assume A € A is such that 0 € 1iliy. Fix an w € Q. Assume that V(T,w,z) = 0 for all
vE Gy and z € Ry. Assume that there exist a k € Z~o and a loop xo.;, € Xé)o with V(Ty,w, ;41 —2;) = 0 for
each i € [0,k). Then B(z,y) = F%(w) — F55(w), 2,y € Ga, is an w-recovering cocycle. For any tie-breaker
t,

Qg‘f’BW{V(TXiw, Xis1— Xi) =0 forallic Z;O} ~1.

Remark 5.18. This lemma shows that Condition 5.5 is violated when, with positive probability, a loop zg.x
as in the statement of the lemma exists and there is a finite set of sites y € G4 for which there exist an
l € Z~o and a path yp., € Xfm, such that V(T,w, yi+1 —y;) = 0 for each i € [0, ¢). This situation can arise in
various scenarios, including the standard first-passage percolation model described in Example 2.5(1), when
the edge weights are i.i.d. and non-negative, and there exists a positive probability of encountering a zero
edge weight. Nevertheless, Lemma 4.15 asserts that even in such cases, Condition 5.5 remains valid for the

specific cocycles BA#™ constructed in Theorem 4.5. A
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Proof of Lemma 5.17. The cocycle property is immediate from the definition of B. For the recovery property,
write
min {B(z,z + z) + V(Tyw, 2)} = F,o(w) — max {F | o(w) — V(T,w, 2)}
2€R A ’ 2€R A ’
k—1
= o) —max swp sup {3 (V(Trw i —2:) ~ V(Thw,2)

2€R k :
AkELzo woneXf . o im0

k—1
= F5(w) — sup  sup Z (—V(Ty,w,miv1 — x4)).
k€Z>0 20.1€X} o i=0
The right-hand side vanishes when x # 0 because, to go from z to 0, the path needs at least one step, and
therefore, the supremum over k£ > 0 is the same as the supremum over k > 0, which gives Ffo (w). When
x = 0, both terms on the right-hand side vanish because of the assumptions that the potential is non-negative
(and hence both terms are suprema of non-positive quantities) and that there exists an admissible loop from
0 to 0, of length at least one, which has a total weight of zero. Either way, the right-hand side vanishes, and
B is an oo-recovering cocycle.
To see the second claim first note that Definition 5.3 implies that for any tie-breaker t,

(5.8) QSO’B’W{B(XZ-,XHQ V(Tx,w, Xig1 — X;) = 0 for all i € Z;O} ~ 1.
Take k € Z>o and € > 0. There exists a path Y, € X’;(’kL’O with L € Z>j, and

L—1

DV (Tyew, Y5 = Y7) = FR, o(w) — €.

j=k

Rearranging and using the definition of B, we get
L—1
B(Xg,0)+ > V(Tysw, Y, —Yf) <e.
j=k
Together with (5.8), the cocycle property, and B(0,0) = 0, this gives that Q?)O’B’t’w—almost surely,
k—1 L-1
D IVI(Txw, Xigr = Xi) + D, V(Tyew, Vi —YF) <e.
i=0 j=Fk
Since the potential is non-negative, this implies
k—1
0< Z V(TXiw7Xi+1 — Xz) <e.
i=0
Taking ¢ — 0 and using again the fact that the potential is non-negative gives that V(Tx,w, X;41 — X;) =0
for all ¢ € [0, k). Since k was arbitrary, the lemma is proved. O

Now, we address the directedness of the cocycle polymer measures. Recall the set .7-'51 (B),A defined in
(3.5).
Theorem 5.19. Assume the setting of Theorem 5.8. Let B be a [-recovering cocycle on the face A with
m(B) as in (4.3). If f = oo, then let t be a covariant tie-breaker and, for the purpose of this theorem,
abbreviate Qg’B’w = g’B’t’w. Assume that Qg’B’w{\th — oo} = 1, P-almost surely. Then P-almost surely
for any x € 74,
Qg’B’“’ (XO;OO 18 directed into }—51(3),,4) =1.

Proof. By the T-covariance of B and the T-invariance of P, we can take z = 0 without any loss of generality.
Fix k > 0. Let

Fonyan = {6 A ¢l = 1and 3¢ € Fy, ) 4 with [¢ =€l < &},
Note that P-almost surely, for any ¢ € A, m(B) - ¢ = A?(¢) by [37, Theorem 2.14]. Since m(B) - ¢ is
continuous on all of A, A? is continuous on ri.A, and Ai’usc is the unique continuous extension of Ai to all
of A, we conclude that m(B) - ¢ > Ai’usc(o. Therefore, with P-probability one, for all ¢ € A with [¢]; = 1,



44 S. GROATHOUSE, C. JANJIGIAN, AND F. RASSOUL-AGHA
C¢ .7: ). A implies m(B) - ¢ > Ai’usc(g“) Since {¢ € A\]: (B).Ax © |¢[1 =1} is a compact set and 1\67usc
is contlnuous on A, we see that
inf {m(B) - ¢ = AL™(Q) 1 C e AFL ) e WitD [Cl1 = 1} >0,
P-almost surely.
Fix any d € (0,1). The above implies that there exists a deterministic £ > 0 such that
us . o
]p{m(B) FC— ARTE(C) 2 32 VC € A\FL 5y 4 with [C1 = 1} >1-3.

The shape theorem for B [38, Theorem B.3] implies that there exists an Ly > 0 such that for any L > Lg
we have

. )
]P’{B(O,y) >m(B) -y —elyly Yy with |y|; = L} >1-— 3

Applying (2.7) to ng we get that there exists an L > Lo such that

usc N 5
P{nggAi’ (y) +elylr Yy with |y|s >L1} >1_§_
Putting all of the above together, we get

(5.9) P{F(iy = B(0,y) < —elyly ¥y with [yl > Ly and - | e AFL AK} ~1-6.

At zero temperature Lemma 5.13 implies that, almost surely, Xj.,, is an unrestricted-length geodesic,
so F’x. = iy "V (Tx,w, Xig1 — X;) = Z?:Ol B(X;,X;y1) = B(0,X,). This and the assumption that

| Xn|1 — o, QOO B:w_almost surely, imply that on the event in the above probability we have

Qoon

. X,
(5.10) &7 {3mo - B € Fopyan =m0} = 1.

To derive this at positive temperature, first observe that from (5.5),
- B,
Zg,ye BOY) — Qg Yy < 0).

Thus, we have

IF’{ gyB,w(Ty <o) < e Pelvl vy with lyl1 = L1 and € A\}"ﬂ(B) An} >1-0.

[y |
Again, since | X, |1 — o0, ij’B “_almost surely, Borel-Cantelli implies that on the event in the above proba-
bility, (5.10) holds again.
Taking 6 — 0 implies that (5.10) is a full P-probability event. This, in turn, implies that

{0 (Ko st o Ty 1) 1)

where fi(B)’A,H is the closure of .7-"51(3)’“4’1{. Since fi( is closed, (.~ F, B)}A’n = fi(B),A. Taking
x — 0 in the above display finishes the proof.

Next, we turn to the question of determining the possible limit points of X,,/n under the polymer measure.
We achieve this by proving a large deviation principle. Fix a face A € A. For each £ € Uy n Q%, let
{yn (&) }nez~, be a path with yo(§) = 0, yn (&) — yn—1(§) € Ra for all n € Z~q, and yy; = kj¢ for all k € Z>o
and some j = j(&) € Z~o.

Lemma 5.20. Fiz 3 € (0,0] and A € A. Assume Condition 3.5 holds. Let B be an L*(P) T-covariant
B-recovering cocycle on the face A. For P-a.e. w, all subsets K < R?, and all § > 0, if f < o0,

T~ log Fo [e*BB(OvXn)*ﬁ TS V(T X=X 10X, Ine K A uA}]

n—ow n

< sup T LlogHg [e—BB(OXn)—ﬂZZZol V(T wXin=X01(x, — yn(ﬁ)}]

ceQinKsnlUy PPN
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where K5 = {¢ e R?: 3¢ € K with |¢ — {'|y < 6}. If B = o,

— 1 — 1

I e s o = PO < 200 A i = BO (D)
Proof. We follow the strategy of the proof of Lemma 2.9 in [58]. Let R = max{|z]1 : 2 € Ra}. Order
Rij as {z1,...,2m} and for each of these z; let Z; € RA\RE‘l be as in Condition 3.5. If Rij = @, then set
m =1 and take any z; € R4. Let € € (0,0/(4R|R4l)). Let j be an integer with j > max{1£22|R|, (2¢)7'}.
Because (mj) 'D,,;(R.4) is finite, there exists an integer b such that yx, = kb€ for all k € Zs( and
€ € (mj)" Dy (Ra).

Next, we construct a path from each x € D,(R4) n nK to a multiple of a point {(n,z) € Kz N

(mj) "' Dyn;(R4). To do this, start by writing z = >} a,z where each a, € Z>o and )| a, =n. Let
kn

= 12298 and 5" = [12%5-]. Then

a, s,(zn) a, ns(zn) a, 1 1
I EC SR
n 7 n ja, n 1+ 2 J

2ER A 2ER A

\

Similarly,

Summing over z, we get

€ 1 |R| 1 1 ) 0

5.11 <1- - = <1-= W <1- < < —.
(5:11) 1+2e 1+2¢ jZE;ASZ 1+2 ~ 2R[R4| - 2R

Also,

2 1 1
In"ta, — j_lsg")| < max{%(l 1T 25), 3} < 2e.
Thus,
G175 X e =5 3 (0 Jas)] <R B 1) e < 2Rl <
J 2ER A ni J 2ER A n ! 2ER A 2

Define

. n,xr)=7,g Sy 'z + m- -7 S Zi-
(5.13) En,a) =570 3 sWed Y m (1570 Y sz

2ER A 1=1 2ER A

(5.11) and (5.12) imply that &(n,z) € K5 N (mj) ' D,;(R.4) and the path that takes ms™ z-steps for each
2z € R4 then (j — ZzeRA sg")) Z;-steps, for each i € {1,...,m}, is an admissible path that takes a total of
myj steps to go from 0 to mjé(n, ).

Consider next the following admissible path starting at the origin 0. It begins by taking a, z-steps for

each z € R 4, leading to the point x. Next, the path takes (mknsgn) —a) z-steps for each z € R 4. Then, it

proceeds with (k,j — ZZGRA knsgn)) z;-steps, for each 7 € {1,...,m}. This entire path is admissible because,
first, mk, s = m - (“;3;)" . (11%25)71 = a, and second, as previously observed, k,j = 3. ks
The above path consists of a total of k,mj steps and ends at k,mjé(n,z). Notably, the last k,mj —n
steps give an admissible path from z to k,mj&(n,z). For each i € {1,...,m}, the number of Z; steps in the
path is at least
. -1 (n) (1 + 28)71 e 13 - 1
ki (1-371 3 50 2 mj T2 MO

ZER A

Let ¢, = [£2] so that (£, — 1)b < k,, < £,b. Repeating the steps of the path below (5.13) that goes from 0
to mj&(n, ), one gets a path that goes from k,mj&(n, z) to £,bmj&(n,z). This requires repeating each step
£pb—Fk, < btimes. Thus, the number of steps to go from x to £,bmjé(n, z) is ry, = (knmj—n)+(Lpb—k,)mj =
£,bmj —n. Since b is a function solely dependent on mj and independent of n,

(14 2e)n

LS (?-l-l)bmj—né (7,+1)m]+bm]—n=25n+(b+1)mj < 3en
mj
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for all m = no with ng depending on a mj and €. Denote the steps we constructed to go from x to £,,bmj&(n, x)
by (u1,...,u,,) and denote by u(n,x) the path that starts at 0 and takes these exact steps.
We are ready to estimate:

Li0g Eo [e*f’B@X W=BEIL V(I Xen—X)1(X, /n e KmL{A}]
n

_ l log Z Eo 433(0 )=B Yy V(Tx,w, X1 —X; )l{X = 1;}]
a:eDn(RA)mnK B
< max LlogB [ePEO@=BNI V(Tx e XXX, — x}] | Clogn
wED,L('RA)mnK n L n
< max log B | e~ #BOnbmié(n2)—p 55 V(ITx0 X =XD 10X = 40 Z 1 o = uny }]
€D, (RA)NNK T L ’ 'n T
g min ()4 max DB LamiE(n.2)
n ZER A €D, (RA)NnK n
Tn—1
(S Clogn
+ D I(I712aj(nnK n Z vt Titus 4w W, Uiy 1) +
< 1 E [ —BB(0.LnbmjE(na)) =AY TV (Txyw X =X) 1 (X, - — f, bmjé(n, ]
xeDn?’/l%aAX)mnK n 08 =o { Enbm mjg(n l‘)}
- = log min p(z) + max BB, tubmjE(n, v))
2ER A meDn(RA)mnK n
Clogn
+ max Z vt Titus 4w W, Uig1) + ng :

€D, (RA)AnK T i

Above, we used the notation Z;;1 = X;,1 — X; and took the convention that an empty sum is 0. Hence,
r+u + ...+ u; =x when i = 0.

We now explain why all of the quantities on the right-hand side converge to 0 when we send n — oo and
then € — 0. Since &(n,z) € Ks 0 (mj) 1Dypj(Ra) € Q4 A Ks nUa and ye, pmj(E(n, x)) = Lbmi&(n, z), we
have that for n large enough, the first maximum on the right-hand side is bounded above by

(1+3) sup  lim E log Eo [ ABOX)=BN V(Txw X=X 1 (X, — yn(ﬁ)}] '
eQINKsnlUya MR T

For the second term, use r, < 3en. By the shape theorem for cocycles, [38, Theorem B.3], in the limit, the

next maximum is bounded in absolute value by 5(1 + 3¢)3cR|m(B)|1, where m(B) is the random vector

which satisfies (4.3). The last term goes to 0.

For the third maximum, notice that the particular order of the steps in u(n,z) does not matter to this
point. For each i € {1,...,m}, the ratio of z; steps to Z; steps is at most r,,/(m~'ne) < 3m. So order the
steps of u(n,z) in this way. First, alternate between z; steps and z; steps in such a way that there are no
more than 3m consecutive z; steps. Continue this process until we have exhausted all z; steps and their

corresponding k,,j (1 —j7t ZZGRA sﬁ")) z1 steps. Repeat this procedure for 7 = 2,...,m. It is important to

note that if Z; = Zz; for some distinct ¢ and 7', we only exhaust the corresponding number of Z; steps when
we exhaust the z; steps, leaving the Z;; steps to be paired with the z; steps.

Next, choose an ordering for the set R A\Rij, denoted as {z],...,2.}. Continue ordering the steps of
u(n,z) by using all of the z{ steps first, followed by the 2z} steps, and so on for the remaining steps. Note
that this includes (mkns(;) —az,) Z; steps, for each 7 € {1,...,m} from the first part of the path from z to
knmj&(n, x), which have not been used in the above part of the procedure, when we exhausted the z; steps.

Recall that 7T, is the identity map for all z € R{. Using the above ordering, we may bound

rp—1 rn—l
1 IR al
max — VI (Togus + w0y Up 1) < max max max V (Tysksw, 2)
€D, (RA)AnK N =0 N zeD,(Ra)nnK yezx+u(n,z) zE'RA\'R‘d
m Tn—1
3m X
+ Z — max max 2 VH(Tyskzw, 2i)-

i N zeD, (Ra)nnK yex+u(n,z) =0
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Since V' (w,z) € L. r, for all z€ R4 and VT (w,2;) € L3, r,, for each i € {1,...,m}, the right-hand side
converges to 0 when we take n — o0 and then £ — c0.
At zero temperature, the equivalent estimate is

1
- a FF —— B(0,
ﬂmeDn{%f)ﬁnK( 0,z,n ( 33))

Tn—1
1 n
< — Fr - V(Tyiw w, W, U — B(0,4,bmj&(n,
n acEDnI(lillgjf)mnK( 0,z,n Zgo ( +ug o tu W, U +1) ( mjg(n J})))
B(z, tybmjé(n, r)) 17! +
+ meDnI(I’IleE()nnK n + meDnI(I%E()nnK n 1;0 VI (Togur 4o bus W5 Ui 1)
1 . .
< e max (FS bmien.a) umi — B0, Labmié(n, )
B(x, b,bmj&(n, x 17t
+ max ( i€, 2)) + max - 2 VH(Tpguy b, Wy Wit 1)-
z€D,(RA)NnK n €D, (RA)ANK N 0

The two terms on the last line converge to 0 after sending n — o0 and £ — 0, as in the positive temperature
case. The term in the second-to-last line is bounded above by

— 1,
(430 sw T 2 (FS 0 = BO.9a(6)):
N 5N

Take ¢ — 0. O

Recall the restricted-length limiting quenched point-to-point free energy A2 in (2.4), its restriction Aires

res

to the face A, and the upper semicontinuous regularization Ai‘g‘; Define
_ [Bm(B) - £ = BAGNI(E) if € ela,

Ip(§) = ' )
o¢) otherwise.

Theorem 5.21. Assume the setting of Theorem 5.8 with f < o0. There exists an event Qp < Q with
P(Qp) = 1 such that for each w € Qp, the distribution of X, /n under Qf’B’w satisfies a large deviation
principle with rate function Ig. This means the following bounds hold

(5.14) @nil log Q%B« (X, /ne K) < —gin}f{ I(C) for closed K < R and
n— €

(5.15) lim n~tlog Q%P (X, /ne0) = — Cing I5(C) for open O c R%.
n—ao0 €

Proof. We follow the strategy of the proof of [58, Theorem 4.1]. First, observe that for y — = € g;, using
the cocycle property, we get
Qf’B"“(Xn —y) = Z p(xo'n)e—ﬁ Sy Bmimig1,w)—B Y0y V(Te,w,mi 11— )
Io;nexgyy
— ¢ PBEYw) Z p(ZZ?O:n)efﬁ Sio VI(To;wmig1—wi)

T0:n€XY

(516) = efﬁB(zvva)Zﬁaw

z,y,n’
Then using [38, Theorem B.3] and Theorem 2.17, we have for P-almost every w, for any sequence z,, €
D, (RA) + x, n € Zxg, such that x,,/n — £ € riliy as n — o0,
1 " 1 1 "
E log Q§787 (Xn = -Tn) = —ﬁﬂB(m,xn,w) + E IOg Zﬂ’ — _Bm(B) g + BA&EZZ(g) = _IB(g)'

T,Lp,Mn
T n—o0

Let O < R? be an open set. Take £ € O nrild4 and take z,, as above. Then z, € nO for all n large
enough and

1 1
lim = log Q)% (X,/ne0) > lim —logQYP* (X, =z,) = —I5(§).

n—oo 1 n—oo T
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By Theorem 2.17, Ig is continuous on U 4 and, therefore, the bound, in fact, holds for all £ € O n U 4. This
bound also holds trivially for £ € O\(U4). Take the supremum over all £ € O to get (5.15).
Next, Lemma 5.20 says that for P-almost every w, for any closed set K < R? and 6 > 0, for any x € Z¢,

X —_— n—1
lim flog QB B“’( " e K) = lim flogEo[efﬁB(O’X")*BZF0 V(Txiw’xi“*xi)l{—" e K mL{A}]
n—o0 1, n n—o0 1, n

< sup  lim — log QPP (X = ya(€))

(5.17) EeQIAK sl PPN
= - f 1 <— inf I .
fEer:I}(g NUA B (g) fEIé?ﬁUA B (6)

Since (5.17) holds for all 6 > 0, K5 n U4 is compact and decreases to K n U4 as 0 decreases to 0, and
since Ip is lower semicontinuous, we obtain the bound

X,
4 B8,B,w < % . _ _
T S log QP (e K) < —lim inf I5(€) = — it In(€) = - inf In(6) O

We are now ready to prove Theorem 5.8.

Proof of Theorem 5.8. Parts (a), (b), (¢), (d), (f), (g), and (h) were proved in Lemmas 5.10, 5.11, 5.12, 5.13,
5.14, 5.15, and Theorem 5.19, respectively. Next, we will prove part (e) in the positive temperature case.
Write the complement Rd\ui (B),A 35 & countable union of non-decreasing compact sets K;. Explicitly,

we define
={veR?: |v|; <jand d(’UZ/[ m(B )= J)

Then in fact Rd\Z/{i(B) A= U;O=1 K, where A is the interior of the set A < RY.

We now show that for each j, Q7% (X, /n has no limit points in KJ) = 1. From the large deviation
principle in Theorem 5.21,

Tim n—t logQg’B’w(X"/n € Kj) < —Cirg 15(¢).
€

The rate function I5(¢) = 0 precisely when ¢ € L{i(BLA. Because K is compact, K; Rd\ufl(B%A, and
Ip is continuous, we see that —infecx, Ip(¢) < 0. Therefore Q2P+ (X,/n € K;) is summable in n, and by
Borel-Cantelli, Q7% (X, /n e K for only finitely many n) = 1. Therefore, X,,/n has no limit points in I%j,
Q4B _almost surely.

Then by a union bound in J, since K; are non-decreasing, we see Qﬁ B _almost surely, X,,/n has no limit
points in U = RAY” m(B) A So we conclude that Q25 (X,, is directed into U (B )AA) =1.

Lastly, we prove part (e) in the zero temperature case. For any sequence ,, € D,,(R4) + 2, n € Z~g, such
that z,,/n — £ € rildq as n — o0, the cocycle and recovery properties imply that n~! B(z, xn) >nlF®

T,Tp,M"

The shape theorem [38, Theorem B.3] and Theorem 2.17 give that m(B) - & = AJ57(§), for all € € rildy.

The continuity of Aﬁ o extends this inequality to all £ € Ua.
Consider X,, under Q%4 Using n ' B(z, X,,) = n‘ngoX n» the shape theorem [38, Theorem B.3],

and Theorem 2.17, we get m(B)-( < A?X (€), for any limit point ¢ of X,,/n. Combined with the inequality

above, we see m(B) - ¢ = AZ'17(¢), which then implies that ¢ € U ) 4. O

6. PROOF OF THEOREM 3.14

Apply Theorem 4.5 to obtain, for each A € A, (8,m) € Dy, and = € Z%, the Ll(@) T-covariant, (-
recovering cocycle BA#™(z, 4, &) on A with mean IE[m(BA”@’m)] m. Next, apply Theorem 5.8 to obtain
the semi-infinite path measures Qf’B’BAﬁ‘m’&’ for triples (A, 8,m) with 8 < co. For the triples (A, o0, m),
Lemma 4.15 verifies that Condition 5.5 holds for B4*™  Therefore, Theorem 5.8 produces the measures
Qb B A’w’m’t":’, where t is the tie-breaker mentioned in part (g) of the theorem. We will abbreviate this
family of measures as {Qf’ﬁ’m’@ c:Ae A (B,m) e Dy,xeZd}). Let Qo = Qeoe N ﬂAeA7(B,m)eDA Qpasm,
where QCOC is the full-probability event from Theorem 4.5(b) and Q pAsm are the full-probability events
from Theorem 5.8. Then the measures Q;‘l’ﬁ e satisfy the consistency properties in parts (a), (b), (c¢), and
(d), for all & € Q.
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By parts (f), (g), and (h) of Theorem 5.8, we have that under the conditions of Theorem 3.14(e), for all
x e Z? andwer,

QAPMEA X, |1 — 0} = QPP X, is directed into fi(BA,B,m)} =1.

(Recall that Lemma 4.15 verifies that Condition 5.5 holds for B4*™.) By Theorem 5.8(¢), for all x € Z¢
and @ € Qg,
Qf’ﬁ’m’“’{all limit points of X,,/n are contained in Uﬁl(BAﬁ,m)} =1.

By Theorem 5.8(c) and (3.8), E[m(BA5™)] = m € ext(W4 N 6AZ’HSC(§)) for some & € ri A. By Lemma 4.4,

m(BAP™) e Wy n 6AB’“SC(§) P-almost surely. It must be then that m = E[m(BA#™)] = m(BAﬁ my,
P-almost surely by the definition of an extreme point. So there exists a T-invariant event of P- probablhty
one, on which U (BABm) = UQ’A and f (BABm) = fi 4 Let ler be the intersection of this event with QO
All the claims of the theorem are now Verlﬁed but with the quenched measures being measurable functions
of @.

It remains to construct the family of measures on the original space 2, using a standard argument in
measure theory. To this end, recall that mq is the projection from Q to Q. By [11, Example 10.4.11], there
exist a T-invariant Borel set ¢, < Q and a family of regular conditional distributions p,(-) = P(-| 75" (w))

such that P(Qeg) = 1 and p,, (75" (w)) = 1 for all w € Qpee. For P-ace. w e Q, p,(Qaiy) = 1 since
f o (Qatie) P(dw) = P(Quir) = 1

Define the event Qqiy = Qyeg N {w € Q2 : 11(Q0) = 1}. Then P(Qqiy) = 1. For each w € Qqj, uw(ﬁg (w) N

ler) = 1, so there exists & € Qo such that 7o () = w. For each w € Qqj;, define QA Brmow QA B Thig
family satlsﬁes all the desired claims. O

APPENDIX A. BASIC CONVEX ANALYSIS AND LINEAR ALGEBRA FACTS

In this short appendix, we recall some convex analysis facts and prove some lemmas that are of use to us.

For a convex set K, A is called a face of K if for all {,n€ K and ¢t € (0,1), t£ + (1 — t)n € A implies that
&,m € A. The intersection of faces is a face. K itself is a face, and, by [62, Corollary 18.1.3], all other faces
are contained in the relative boundary of K. Extreme points are the zero-dimensional faces. If £ € A can be
written as a convex combination of 7, € K then n,{ € A. The relative interiors of the non-empty faces of
K form a partition of K by [62, Theorem 18.2]. Thus, every £ € K has a unique face K¢ such that § € ri K.
If K is in the convex set (respectively convex cone) generated by a set R, then by [62, Theorem 18.3] a face
A of K is in the convex set (convex cone) generated by R n A.

Lemma A.1 (Euler’s homogeneous concave function theorem). Let X and Y be real vector spaces with a
bilinear function {-,-y: X x Y — R. Let f : X — [—00,0) be a proper, concave, positively 1-homogeneous
function. The superdifferential at x € X is

of(x) ={yeY:Yue X, f(u) < f(z) + {u—z,y)}.
Forxe X andye Y, if ye of(x) then f(x) = {x,y).

Proof. Let z € X and y € ) such that y € df(z). Let A > 0 and v = Az. By homogeneity,

A=Df(@) = f(u) = f(z) < Cw,y) — (@, 9) = (A= 1)z, ).
With A < 1, this implies f(x) = (x,y). With A\ > 1, this implies f(x) < {(x,y). Therefore, f(z) = (x,y). O

Lemma A.2. Letde Z-y and R < Z¢. The following are equivalent:
(a) For any z,y € Z¢ with y — x € G, all paths in X, have the same length.
(b) There exists a vector i € R? such that -z = 1 for all z € R.

Proof. Suppose (b) holds. Then any path xq., € X, , satisfies (y —x)-u = Zf o (Tig1 — x;) -4 = k. Thus,
(a) holds.

Now suppose (a) holds. Let V denote the linear span of R. Let k € [1,d] be the dimension of this vector
space and let z1,...,2, € R be a basis for it. Augment this set to a basis {21,..., 2x, Zkt1,. .., 24} of RY,
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where zg11,...,2q are also integer vectors. Let A be the unique invertible linear transformation such that
Az; = e; for 1 < i < d. In the standard basis, the matrix of A is the inverse of the matrix B = [z1,..., z4];
hence this matrix has rational entries.

Take z € R. There is a unique set of numbers {ay,...,ax} such that z = Zle a;z;. Applying A gives
Az = Zle a;e;. Since the left-hand side has rational coordinates, we get that a; is rational for 1 < i < k.
Let n € Z~g be such that na; € Z for all i < k.

Since nz + Y¥_ nayz = Y, naj z, (a) implies that n + Y+, na; = Y | na;, which implies that
Zle a; = 1. Consequently, we have z — z; = Zfzz ai(z; — z1). We have thus shown that the linear span
of {z — 21 : z € R} has dimension at most & — 1. As this is a subspace of V and V has dimension %, there
exists a vector @' € V\{0} that is orthogonal to z — z1 for all z € R. This implies that @' - z = @’ - 2’ for all
z,2" € R. Denote this common number by c. If ¢ = 0, then @’ is perpendicular to all z € R and is hence
perpendicular to V. However, then @’ is perpendicular to itself, and thus @’ = 0. This contradicts the choice
of @ and proves that ¢ # 0. Taking @ = ¢~ 14’ satisfies (b). O

Let R < Z% and C = {ZzeR b,z : b, € R+}. Fix a face A of C and let G4 be the subgroup of Z4+!

generated by {(z,1): z€ R4}. Let gff) be the group generated by {z — 2’ : 2,2’ € R4}. Take zp € R4 and
for j € Z let gfj) =Jzp + gff). Note that gfj) does not depend on the choice of zg.

Lemma A.3. We have B _
Ga = J{C@ ) :2e g}

jez
Proof. If x € gﬁf), then z = Zle(zi — z;) for some z1,...,2,21,..., 2, € R and, consequently,
k
<$, 0> = Z«Z“ 1> - <Z:’ 1>) €EGa.
i=1

If j € Z, then B
<ij + 1'7]> = <.’[,0> +j<ZOa 1> € g.A~
For the other direction, take x € Z? and j € Z such that (x, j) € G 4. Then

k l
@) = Y D= YD,

for some z1,...,25,2],...,2) € Ra and k, { € Zx( with k — ¢ = j. From this, we get
k ¢ ‘
l‘:ZZi+£Zofk207ZZ;+j20€gg). O
im1 i=1

—[3,usc

Proof of (4.15). Note that m € 0A%  (({, 1)) is equivalent to having

—B,usc —f,usc

tA7 (G 1)) = A7 (&) sm- (10— &) + et — 1)
for all ( e’ and t > 0. Rearranging and reverting back to restricted-length gives

HAZTE(Q) = m- (=) S AGTE(E) —m - — e
Taking t — 0 and ¢t — oo gives
AGE(Q) —m - ¢ < e S AGRE(€) —m - €,
for all ¢ e ’. This gives
e = A (€) —m ¢

and implies that m is in the superdifferential at £ of the concave function that is equal to Ai’usc on U’ and
is set to —oo outside U’. O

We close this section the proof of an observation made just prior to Theorem 2.15.

Lemma A.4. Fiz x € C and let A be the unique face of C for which x € ri A. Let xg., be any path with
x9g=0,2,=x,and z; =x; —x;_ 1 €R fori=1,...,n. Thenxz;€ A for alli=0,...,n.
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Proof. We begin by noting that 0 € A. If C # R?, then C is polyhedral ([62, Theorem 19.1]), i.e. equal to the
intersection of finitely many closed half-spaces whose boundary hyperplanes pass through the origin. The
facets of such a set are obtained by intersecting with these hyperplanes and so in particular 0 € A.

Next, denote by S the set of steps z; —x;—1 = z; € R, i = 1,...,n used in this path. By definition, z lies
in the relative interior of the convex hull of nS, which is a convex set in C. Because z lies in the relative
interior of the face A, it follows from [62, Theorem 18.1] that the convex hull of n.S is a subset of A. For
eachi=1,...,n, x; is a convex combination of 0 and points in n.S, so x; € A for all such 1. O

APPENDIX B. GIBBS CONSISTENCY

In this appendix, we discuss the Gibbs consistency of the various polymer measures to place our re-
sults within the framework of Gibbs specifications and solutions to the Dobrushin-Landford-Ruelle (DLR)
equations.

As stated in the next lemma, the restricted-length finite path measures are consistent in the sense of
conditioning, indicating that this family forms a Gibbs specification. See Section 2.4 in [38].

Lemma B.1. For j. k,n € Z=o with j < k <n, for u,v,z,y € Z% such that x —u € Dj,y—x€Dy_j;, and

0, ik k,
V=Y €Dy g, and for B € (0,0), we Q, xo; € Xp), x5 € X5, and oy, € X307,

Qg:ﬁn(Xo:n = 20w | Xoyj = T0j, Xken = Thin) = Qﬁ;ﬁn(ijk- =a| Xj =2, X =y)

= Qg:;k_]‘(XO:k—j = xj:k)~

Proof. Let j,k,n,u,z,y,v,B,w be as in the statement. Let xq.; € ngc, Tjik € Xg’;, and xg., € X’;Z Then

Qg:‘:,n(XO:n = Z0:p | Xo:j = T0ij5 Xkn = Thin)
- Qg:;n(XO:n = To.p)
- QY (X0 = o, Xken = Then)
[1720 p(wis — mi)e PV (Tmwain e
o p(@igy — ay)e PV Tnwaamed z0w, | T  p(wigy — ai)e PV (Trwin =)
[T, plwiy — @i)e PV Trwwin—e)

i=j
B,w
Zw,y,k*j

= QY i (Xok—j = juk).

Similarly,
Qﬁjf,n(Xj:k =2k | Xj=0,Xp =y) = Qf:;f,k_j(Xo:k—j = Tj.k). O

Let U be the convex hull of R, with rii/ denoting its relative interior. The next result shows that the
unrestricted-length finite path measures are also Gibbs consistent if 0 ¢ .

Lemma B.2. Assume 0 ¢ U. Let € (0,0), we Q, and u,v,z,y € Z¢ such that x — u,y — x,v —y € GT.
Let x., € Xy, such that x; = x and xy, =y for some 0 < j < k <n. Then,

Qg:;)(XO:TU = To:n | XOZT;D = x01j7XTyZTU = zk:n) = ngg (XTJ:Ty = Tj:k ‘Tac < Ty < OO)
= Qgi;j (XOZTy = wj:k)~
Proof. Assume 0 ¢ U and let 8 € (0,0), w € , and u,v,z,y € Z¢ such that 2 — u,y — z,v —y € G.

Let zg., € Xu,v such that z; = z and x, = y. Since there are no loops and y — x € G, it must be that
0 < j < k < n. Furthermore, on the event {7, < o0, 7, < o0}, it must be that 7, < 7, < 7, for otherwise we
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can construct a loop. Then,
Qg,’ﬁ(Xo:rv = 20:n | Xo:r, = T0:j5 Xryiry = Thin)
Qﬁ’w(Xo-rv = T0:n)
Q o (Xo:r, = T0:j, Xryiry, = Thin)
15 plaic1 — 1)
i o s P(ig1 — i)e PV Tmioswiva=i) 7 [Ti2 klp(l"iﬂ — z;)e PV (Te;wmip1—2i)

BV (T iw,zH_lfmi)

efﬁV(Tziw,mprlfa:i)

k—
Hz =j p(xl+l - xl)e
Zﬁ’

Y

Q (XO Ty T )

Similarly,
QLS (Xryim, = Tjut | 7o < 7y < 0)

Q (1o <7y <0, X7 ) = Tji)

Q o (T2 < 7y < 0)
| ZBS 1) plas — eV T 73
- Z0e 70y 70
[T plwiy — @y)e PV Trwmen o
- o
= QY (Xoir, = Tjik)- U

The measures Qf:j are not consistent in general if 0 € U/, but they are asymptotically consistent as
|v]1 — o0. To see this, we introduce some more notation and definitions. Let * — u,y — x,v —y € G with
y # v. Define the partition functions

. = 1 X
Zﬁ::(Tz < mln{Ty7Tv}) = Ey [ ALz V(Txy X Xl)1{Tm<oo,'rx<min{‘ry,7'v}}] and

Z28¥(r, <7,) = E, [ B VTx e Xin—Xoq,

<00,Ty < 'rv}:|

Take j < k in Z and z;,, € X2% such that z; ¢ {y,v} for all integers i € [j, k) and ), = y. Then,
VAR (12 < min{r,, 7, })e -8z} V(Tzriw’mi+17xi)257ﬁ)
Z

Qu 1;( Teimy = Ljiky Tx = j7 Ty = k)

whereas,
Qu’:(TI < Ty < Tv) Q (XO:kfj = xj:k)
ZBw(r, < mln{Ty,Tv})Zf;?‘;’(Ty < Tv)Zgy’;J e B V(Ta,w,mivn—ai)

Vs Zey

Thus, we do not get exact consistency, since Zﬁ*“’(ry < 7y) /Zﬁ @ is not equal to 1 until we take |v|; — 0.
When 0 ¢ U, this issue is resolved since when v — y € G* having 7, < o implies 7, < 7,

It is shown in Theorem 3.14 above that there exist measures on semi-infinite paths that are consistent
with the point-to-point measures in the sense that

Q57W(X71:Ty Tjug | Tw S Ty < 0) = Q o (Xo:r, = Tju1)-

At zero temperature, the consistency properties become the followmg facts about geodesics. Given a
geodesic q.,, for any integers 0 < j < k < n, x;.;, optimizes the passage time among all paths in Xy En
in the restricted-length case, and among all paths in X, ;, in the unrestricted-length case. The questlon
about the existence of semi-infinite polymer measures becomes one of the existence of restricted-length or,
respectively, unrestricted-length semi-infinite geodesics. These are semi-infinite admissible paths x¢.,, with
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the property that for all integers 0 < j < k, x;.;, is a restricted-length or, respectively, an unrestricted-length
geodesic from z; to xy.

APPENDIX C. SHAPE THEOREMS

In this appendix, we prove the shape theorems which were stated in Section 2.3. These results play a key
role in the body of the paper when we prove the duality between the Busemann function mean vector and
the direction of the associated Gibbs measure.

Proof of Theorem 2.15. The finiteness of Ai comes from [37, Theorem 3.10], after adjusting their proof as
in Lemma 5.20 to accommodate our weaker Condition 3.5. As a finite concave function, Ai is continuous
on the convex open set ri.A. Lower semicontinuity implies that Ai is bounded below (with a bound that
can depend on w), uniformly over any bounded subset of A. Then [62, Theorem 10.3] implies that Ai has a
unique continuous extension from the relative interior to the whole of A. The general argument on page 726
of [58] shows that this extension agrees with the upper semicontinuous regularization. (In [58], the argument
is made for functions on U, but it works word for word for functions on .A.)

The second inequality in (2.8) is implied by (2.7). The argument for both the first inequality in (2.8) and
for (2.7) follows the proof of [37, Theorem 3.10], with minor modifications that we will highlight. Consider
the following two cases. In Case 1, assume that with positive probability there exists an € > 0 and a sequence
T, € gj such that |x,|; — o0 and Féwn — Ai’usc(xn) > elap|y for all n. In Case 2, assume that with positive
probability there exists a £ € A with |¢|; = 1 and a sequence z,, € G} such that |z,|; — 00, z,/|z,]|1 — &,
and
(C.1) || T Fy

0,z

—AP(¢) < —¢ for all n.

In the first case, we can follow the approach in [37] and extract a subsequence (which we denote as x,, again)
such that z,/|z,|1 converges to some £ € A. Since AZ’USC is continuous on .4 we have

(C.2) |xn|f1Fgwn — Ai’usc(f) >¢/2 for all n large enough.

Now, in either case, follow the argument in [37, Theorem 3.10], specifically below their equation (3.10),
adjusting it as shown in the proof of Lemma 5.20 to accommodate our weaker Condition 3.5. Following this
adjusted argument, we reach the conclusion that P-almost surely, on the event where either (C.1) holds or
(C.2) holds, we have

o + AP(€) < lim |z TVFY, < Tm |aa| LES, < AP (5 +e Zz) + e,
n— 00 B n—0 o 2R A
where €5 > 0 is arbitrary, and €; > 0 can be chosen to be arbitrarily small, depending on 5. Take ¢; — 0
then €5 — 0 and use the facts that AP (f +e1 ZzeRA z) = Aﬁ’“sc (5 +e ZZeRA z) and Afi’usc is continuous
on A to get that
M) < lim foa B, < T [ea| R, < AL,

n—0o0

which contradicts both (C.1) and (C.2). This proves the desired inequalities. The ergodicity claim is already
in Theorem 3.10 of [37]. The theorem is proved. O

Proof of Theorem 2.17. Write the restricted-length model as an unrestricted-length model as in Remark
2.2. Then the conditions on V' in the statement of the theorem imply that V" satisfies the hypotheses
of Theorem 2.15 and, as explained in Remark 3.19, K%usc(@,t)) = tAg’,tlf;(C/t) forall ( e Aand t > 0
with ¢/t € U'. Applying (2.7) and (2.8) to the unrestricted-length model gives (2.9) and (2.10) for the
restricted-length model. The ergodicity of P under {T, : z € R4} is equivalent to its ergodicity under
{T.1y : (2,1) € Ry}, which by Theorem 2.15 implies that K%usc is deterministic on A and, therefore, in

this case, AZ’,urs(fs is deterministic on I/’. O
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APPENDIX D. RELATIONSHIP BETWEEN RESTRICTED AND UNRESTRICTED-LENGTH

We prove a theorem relating the restricted-length and unrestricted-length limiting free energies in the
directed setting where 0 ¢ U/. This connection is also known to hold in the case of the standard first-passage
percolation model. See [45, Equation (2.37)]. It is natural to expect that our theorem continues to hold
under appropriate hypotheses when the model has loops, i.e., 0 € . We leave this for future work.

Theorem D.1. Fiz a face A € A (possibly C itself). Assume 0 ¢ Uy, Conditions 3.2 and 3.5 hold on A,
and P is ergodic under {T,, : x € G4}. Then for each B € (0,0] and ¢ € (ri A)\{0},

(D.1) AP(€) = sup {sAB:15¢(¢/5)}, and the supremum is achieved.

§/SEMA
Proof. For each ( € U and n € Z~g, define the lattice point Z,(¢) as in [58, (2.1)]. The point Z,(¢)
approximates n¢. In particular, z,,({)/n — ¢ as n — o0, and if ¢ € Uy, then Z,(¢) € D, (R.A)-

For the lower bound, note that there are no loops since 0 ¢ Uy4. Let £ € (11.A)\{0}. For any s > 0 such
that £/s € rild 4,

log ZO I[an (f/ ) IOg 2 0 I[an(f/q) k / 1 gZO ILS”J(E/Q) [s‘nJ

The equivalent bound at zero temperature is n~ FOx oy (€/9) =>n- F0 on (€/5).15n)" Take limits, apply
Theorems 2.15 and 2.17, and take the supremum over s > 0 to get

(D.2) AL(E) = AG™(©) = sup {sAes(&/s)) = sup {5 (€/s))-
f/sseiUA £/SEZ/IA

For the upper bound, first note that by [37, Lemma A.1] there exist a 7 € R? and a § > 0 such that
Uu-z226>0 for all z € R4. Any admissible path from 0 to x,, must take at least |z, |; min.cr_, |2|;* steps
and at most 6~ 'x,, - U steps. Thus, for n large enough, the number of steps is between en and Cn, for some
finite positive constants C' = C(§) and e = £(§). For such n, we have

1 1 Tag, —1
~log Zg,,, = logBe[e #Risb Ve Xm0, )]
1 ZOO —BY IV (T, w, X141 — X,
— EIOg EO[@ 521:0 ( XWXt 1)1{Tmn:k}1{xk:mn}]
< l log E Zﬁ )
n 0,2,k

en<k<Cn

<  max flongm k—&- logCn

en<k<Cnn
The equivalent bound at zero temperature is
~Fy, < max fF
0.an = en<k<Cnn 0k

In either case, let ky, € [en,Cn] be the integer that achieves the maximum. Then

Log  _ha 1o

n
On = 7 o N0

n
Take a subsequence such that k,, /n converges to some t € [e, C]. In particular, k, — 0 and z,,/k, — &/t € Un
as n — 00. Take n — o0 along this subsequence and apply Theorems 2.15 and 2.17 to get

NA©) < IAZTE(E/) < sup sATE(E/s).
§/sela

Together with the lower bound (D.2) we get that the inequalities above are, in fact, all equalities. O
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Remark D.2. Theorem 3.14 shows that the set Z/{i’ 4 must be non-empty. One can see this directly if one

first proves the relationship in (D.1) on A. Indeed, if m € éAi’uSC({) for £ € (ri. A)\{0}, then m & = Ai’usc(f),
and using (D.1), one would get

m € = My"(€) = AL (6) = sAL e (¢/5)
for some s > 0 with ¢/s € U4. Therefore, Aﬂii‘; (&/s) =m-&/s, and Z/lfi,A is non-empty. A
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