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AMS Short Course on Random Growth Models
This two-day course will take place on Monday and Tues-
day, January 2 and 3, before the Joint Meetings actually 
begin. It is co-organized by Michael Damron, Georgia 
Institute of Technology, Firas Rassoul-Agha, University 
of Utah, and Timo Seppäläinen, University of Wiscon-
sin–Madison. The speakers also include Ivan Corwin, 
Columbia University; Jack Hanson, CUNY; and Philippe 
Sosoe, Harvard University.

The objective of the course is to give an overview of re-
cent exciting progress in the study of a class of stochastic 
growth models called first- and last-passage percolation 
(FPP and LPP). The issues involve limit shapes, geodesics, 
and fluctuations. 

Stochastic growth models have been studied since the 
1960s and have their roots in theoretical physics and 
biology. Such systems describe the behavior of growing 
interfaces, the spread of bacterial colonies, traffic and 
queues in tandem, and random paths in a random poten-
tial. Studies of these models have led to exciting new math-
ematical phenomena. The order of magnitude of stochastic 
fluctuations and their limit laws differ from those in the 
classical Gaussian central limit theorem. Instead we find 
limit laws from random matrix theory, which is becoming 
the paradigm for describing complex dependencies.

Much progress has been made in a few exactly solv-
able special cases of the random growth models. Out of 
this effort has arisen a new distinct subject, integrable 
probability, with a deep algebraic component. However, 
thus far the tools of integrable probability apply only in 
the exactly solvable setting where special structures are 
present. On the broader class of models, researchers have 
had success with approaches that combine probability 
with ideas of a functional analytic and geometric nature. 
Examples include the use of concentration of measure 
and Busemann functions to study geodesics and prove  

fluctuation bounds, and curvature bounds in the deriva-
tion of the Kardar-Parisi-Zhang (KPZ) scaling relation. 

The goal of the course is to survey these recent break-
throughs. The course is intended for a broad audience: 
from graduate students and researchers in probability 
to mathematicians interested in an introduction to the 
topic. For a light introduction to the subject, the reader 
is invited to turn to the accompanying article “Random 
Growth Models” on page 1004.

Introduction to Random Growth Models  
(2 lectures)
Michael Damron, Georgia Institute of Technology

Random growth models come from physics and biol-
ogy and describe, for instance, the 
motion of interfaces or the spread 
of infections. Mathematically, they 
give interesting examples of nontra-
ditional limiting behavior: whereas 
independent statistical trials follow 
Gaussian laws, infection times in 
growth models can be related to 
eigenvalues of random matrices, 
and the Tracy-Widom distribution. 
Two main examples are first-passage percolation 
(FPP) and directed last-passage percolation (LPP). In these 
models an infection is set on a d-dimensional lattice and 
spreads across edges of this lattice according to nonnega-
tive (random) passage times (te) on the edges in FPP and 
on the vertices in LPP. In the first case the infection takes 
a path of minimal passage time, whereas in the second it 
takes a directed path of maximal passage time. An infec-
tion started at a site x takes time T(x, y) to infect y, and 
at time t an infection started at the origin has occupied a 
region B(t) of the lattice.

In this course we will present some of the main areas 
of study for these percolation models, including exis-
tence and properties of limiting shapes, fluctuations 
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and second-order behavior for infection times, scaling 
exponents, connections to Busemann functions from 
geometry, and exactly solvable systems from integrable 
probability. These two introductory lectures will focus on 
basic probability needed for the course and the first topic 
above, convergence of the rescaled infected region B(t)/t to 
a limiting shape B as t−∞. This limiting shape B depends 
on the distribution of the passage times (te), but due to 
its being defined using the subadditive ergodic theorem 
(and not the usual ergodic theorem), it is known explicitly 
only in a handful of solvable cases. Even basic conjectured 
properties, such as the shape being nonpolygonal (proved 
however in LPP) and having differentiable boundary, are 
generally not verified. However, recently advances have 
been made characterizing these shapes via variational 
formulas.

After discussing limiting shapes, we will move to the 
convergence rate to the limit and its representation in 
terms of random and nonrandom errors. These errors are 
connected to the geometry of optimal infection paths, or 
geodesics. For example, it is believed that the symmetric 
difference between B(t)/t and B has width of order tς–1 for 
a dimension-dependent exponent ς, whereas the geodesic 
from x to y should deviate from the straight line connect-
ing these points by ||x–y ||ξ for an exponent ξ, related to 
ς by ς=2ξ–1.
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Infinite Geodesics, Asymptotic Directions, 
and Busemann Functions

Jack Hanson, The City College of New York
In the model of first-passage per-

colation (FPP) on the d-dimensional 
lattice, a finite geodesic between 
vertices x and y is a path from x to 
y of minimal weight; equivalently, it 
is an optimizing path for the metric 
T (x, y). Finite geodesics can also be 
seen as paths through which the 
infection spreads in the model’s 

growth process. An infinite geodesic is an infinite path 
whose finite subpaths are finite geodesics. There are many 
natural questions about the structure of infinite geode-
sics, including the number of distinct infinite geodesics, 
whether they are asymptotically confined to sectors or 
allowed to backtrack significantly, and whether a doubly   

infinite geodesic (“bigeodesic”) can exist. These questions 

are closely related to the properties of finite geodesics 

between distant points.

Much can be said about these questions under an 

unproven curvature assumption on the model’s limiting 

shape B, for instance, that every infinite geodesic has an 

asymptotic direction. Busemann functions were brought to 

the model as a tool for proving similar statements under 

minimal assumptions. Busemann functions allowed the 

first proof that there exist more than two disjoint infinite 

geodesics without any unverified assumptions. They also 

shed light on the questions of directedness and bigeode-

sics mentioned above, as well as coexistence properties 

of competing infections.

Generally, Busemann functions take the form B(x,y)= 

limk−∞[T(x ,zk)–T (y,zk)] for some sequence (zk) of lattice 

points, for instance, the sequence of points lying along an 

infinite geodesic. B(x ,y) encodes the relative favorability 

of the points x and y for infecting zk for k large, and so 

the asymptotic behavior of B governs the regions through 

which geodesics to (zk) prefer to pass. We will discuss the 

limiting behavior of Busemann functions and its relation-

ship to the limiting behavior of geodesics to the points 

zk. We also will discuss the existence of the limit defining 

B and techniques for handling these existence questions.
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Concentration in First-Passage Percolation
Philippe Sosoe, Harvard University

In first-passage percolation (FPP) 
the passage time from the origin 
to vertex x is defined as T (0,x) = 
minγ∑e∈γ  te, the minimal passage
time of paths γ that connect 0 to 
x. te is the random passage time
attached to edge e of the lattice.
The order of fluctuations of T(0,
x) for ||x ||1»1 has been the sub-
ject of intense investigation. It is
believed that the variance of the

passage  t ime  g rows  as  | |x | | 1
2ζ ,  f o r  some

ς>0. In two dimensions, the exponent ς  is expected to be 
typical of the Kardar-Parisi-Zhang (KPZ) universality class 
ς=1/3. This relation has been confirmed rigorously for 
some special models of last-passage percolation, but it 
remains mysterious in the case of first-passage percola-
tion. In general dimension the fluctuations are even less 
understood. There are no widely accepted conjectures for 
the value of the exponent ς  that governs the growth of the 
variance or for its behavior as the dimension increases to 
infinity. In addition, little is known about lower bounds 
for the variance.

This lecture discusses known bounds on the order 
of the fluctuations in FPP in Zd, for general dimension 
d, focusing on variants of two main results: first, expo-
nential concentration on a linear scale for the passage 
times, as was proved by Kesten. This was later improved 
to Gaussian concentration by Talagrand using his theory 
of concentration of measure. After reviewing some basic 
probabilistic tools, we will explain how Kesten and Ta-
lagrand’s results now follow from standard methods in 
concentration inequalities.

Second, we will present an upper bound of order ||x ||1/
log ||x ||1 for the variance of T(0,x). Such a bound was first 
derived by Benjamini, Kalai, and Schramm (BKS) for Ber-
noulli edge weights. The BKS result was generalized to 
other edge weight distributions, first by Benaïm-Rossignol 
and then by Damron, Hanson, and Sosoe.

Although it is expected to be far from the truth, this 
sublinear upper bound remains the best known to date. 
We will explain how it follows by supplementing standard 
concentration results with the key observation from the 
original BKS paper that individual edge weight variables 
have small influence on the overall passage time.
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Busemann Functions, Geodesics, and the 
Competition Interface for Directed Percolation

Firas Rassoul-Agha, University 
of Utah
 In the planar directed last-

passage percolation model (LPP) 
independent and identically dis-
tributed random weights ω x

are put on the vertices of the 
square lattice. Only paths that 
take up or right steps are con-
sidered. The weight (or passage 
time) of a path γ is the sum 

of the weights at the sites it traverses: T (γ)=∑x∈γωx.
The last-passage time T(x,y)=maxγT (γ) from x to y is the
maximal passage time of all upright paths connecting 
x and y. A path between x and y is a geodesic if it has 
maximal weight. Directed LPP has the advantage over 
undirected FPP in that in the planar case there are exactly 
solvable cases that provide a window to the deeper proper-
ties of the entire class of models.

Several different much-studied stochastic models can 
be formulated in this last-passage language: (i) the corner 
growth model, which is a randomly growing cluster on the 
lattice; (ii) queues in series; and (iii) one of the most fun-
damental interacting particle systems, namely, TASEP, or 
the totally asymmetric simple exclusion process. By letting 
two infections from different seeds compete for space, the 
growth model can be turned into a model of competition.

In this talk we show how the Busemann function limit 
can be proved with the help of results from queueing 
theory. As is the case for first-passage percolation, these 
Busemann functions carry information about the large- 
scale behavior of the system. They provide equations for 
the limiting shape function g(x)=limn−∞n−1T(0,nx) and can 
be used to prove existence, uniqueness, and coalescence 
of geodesics under mild regularity assumptions on the 
limiting shape. Busemann functions can also be used to 
study the interface between the two growing infections.

The special solvable case is the one whose vertex 
weights are exponentially or geometrically distributed 
Then the probability distribution of the Busemann func-
tions becomes fairly explicit. This leads to a number of 
precise results, such as closed-form expressions for the 
limit shape function g and for the limiting angle of the 
competition interface.

References
[1] E. Cator and L. P. R. Pimentel, Busemann functions and equilib-

rium measures in last passage percolation models, Probab. Theory 
Relat. Fields 154 (2012), no. 1–2, 89–125. MR2981418

[2] _________, Busemann functions and the speed of a second class
particle in the rarefaction fan, Ann. Probab. 41 (2013), no. 4,
2401–2425. MR3112921

[3] P. A. Ferrari and L. P. R. Pimentel, Competition interfaces and
second class particles, Ann. Probab. 33 (2005), no. 4, 1235–1254.
MR2150188 (2006e:60141)

[4] N. Georgiou, F. Rassoul-Agha, and T. Seppäläinen, Station-
ary cocycles and Busemann functions for the corner growth
model, Probab. Theory Relat. Fields (2016), 1–46.

Firas Rassoul-AghaPhilippe Sosoe

http://www.ams.org/mathscinet-getitem?mr=2883392
http://www.ams.org/mathscinet-getitem?mr=3405617
http://www.ams.org/mathscinet-getitem?mr=3286463
http://www.ams.org/mathscinet-getitem?mr=3112921
http://www.ams.org/mathscinet-getitem?mr=2981418
http://www.ams.org/mathscinet-getitem?mr=1221154
http://www.ams.org/mathscinet-getitem?mr=2150188
http://www.ams.org/mathscinet/search/publdoc.html?arg3=&co4=AND&co5=AND&co6=AND&co7=AND&dr=all&pg4=AUCN&pg5=TI&pg6=PC&pg7=ALLF&pg8=ET&r=1&review_format=html&s4=&s5=competition%20interfaces%20and%20second%20class%2A&s6=&s7=&s8=All&vfpref=html&yearRangeFirst=&yearRangeSecond=&yrop=eq


AMS Short Course

	 Notices of the AMS	1090

[3] E. Cator and P. Groeneboom, Second class particles and cube root 
asymptotics for Hammersley’s process, Ann. Probab. 34 (2006),
no. 4, 1273–1295. MR2257647

[4] I. Corwin, Kardar-Parisi-Zhang universality, Notices Amer. Math.
Soc. 63 (2016), no. 3, 230–239. MR3445162

[5] T. Seppäläinen, Scaling for a one-dimensional directed
polymer with boundary conditions, Ann. Probab. 40 (2012),
no. 1, 19–73. MR2917766. Corrected version available at arxiv.
org/abs/0911.2446

KPZ Fluctuations in Exactly Solvable Models 
Ivan Corwin, Columbia University

Some random growth models 
admit concise and exact formu-
las describing expectations of 
various observables of interest. 
These models and their solvabil-
ity spring from certain algebraic 
structures such as representation 
theory and quantum integrable 
systems. By studying these ex-
amples, we are able to gain predic-
tions for the universal behaviors of a much wider class of 
random growth models, the so-called Kardar-Parisi-Zhang 
(KPZ) universality class. 

We will touch on some of the models discussed ear-
lier in the short course and on some new ones, such as 
directed last-passage percolation, positive temperature 
directed polymers, the (totally) asymmetric simple ex-
clusion process, the KPZ stochastic partial differential 
equation, and others. We sketch a proof of the asymptotic 
fluctuation scaling and statistics for one of these models 
and indicate how this generalizes to the broader class.
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Registration
There are separate fees to register for this Short Course. 
Advanced registration fees for members are US$112;  
nonmembers US$170; and students/unemployed or 
emeritus members US$60. These fees are in effect until 
December 20, 2016. If you choose to register on-site, 
the fees for members are US$146; nonmembers US$200, 
and students/unemployed or emeritus members US$81. 
Advanced registration starts on September 6, 2016. 
On-site registration will take place on Monday, Janu- 
ary 2, 2017, at a location to be announced.
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Stationary Versions and Fluctuation Exponents 
for Exactly Solvable Models
Timo Seppäläinen, University of Wisconsin–Madison

The planar random growth models 
discussed in this course are expected 
to be members of the Kardar-Parisi-
Zhang (KPZ) universality class. This 
means that on large scales the sto-
chastic fluctuations of these systems 
obey the same laws, regardless of the 
particular details of the models, as 
long as the random passage times out 
of which the models are built do not 
behave too wildly. At the crudest level 
we measure the order of magnitude 
of fluctuations in terms of fluctuation exponents relative 
to the size of the system. To take a basic example, let 
Sn = X1+···+Xn be a random walk with independent and 
identically distributed mean zero increments Xk. Then the 
mean square of Sn satisfies . Thus on 
average Sn grows at rate n1/2; in other words, the fluctua-
tion exponent is 1/2.

The KPZ class has different exponent values: the pas-
sage time T(0,nx) is expected to have fluctuations of order 
n1/3, and the distance at which spatial correlations occur 
is supposed to be of order n2/3. At the level of genuine 
universality this remains a mathematical conjecture. How-
ever, among directed growth models in two dimensions 
there are special exactly solvable ones where fortuitous 
coincidences of combinatorics and probability permit 
rigorous derivation of these exponents. The oldest such 
is the corner growth model with exponentially distributed 
passage times on the lattice vertices. One manifestation of 
the exact solvability is the existence of tractable stationary 
versions of the models. Stationarity means that the prob-
ability laws are suitably invariant under lattice transla-
tions. Stationarity allows us to capture long-term behavior.

The exponent 2/3 appears when we ask about the fluc-
tuations of the geodesics. Macroscopically, at the level of 
deterministic law of large numbers limits, the optimal path 
from 0 to x is a straight line. At the microscopic level, the 
optimal random path from 0 to nx is expected to fluctuate 
in a band of width of order n2/3 around its straight line 
limit. This we can also partially prove in exactly solvable 
models.
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