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Abstract. We give an explicit description of the jointly invariant measures for the KPZ equation. These are
couplings of Brownian motions with drift, and can be extended to a process defined for all drift parameters

simultaneously. We term this process the KPZ horizon (KPZH). As a corollary of this description, we

resolve a recent conjecture of Janjigian, and the second and third authors by showing the existence of a
random, countably infinite dense set of directions at which the Busemann process of the KPZ equation is

discontinuous. This signals instability and shows the failure of the one force–one solution principle and

the existence of at least two extremal semi-infinite polymer measures in the exceptional directions. As the
inverse temperature parameter β for the KPZ equation goes to ∞, the KPZH converges to the stationary

horizon (SH) first introduced by Busani, and studied further by Busani and the third and fourth authors.

As β ↘ 0, the KPZH converges to a coupling of Brownian motions that differ by linear shifts, which is a
jointly invariant measure for the Edwards-Wilkinson fixed point.
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1. Introduction

1.1. Invariant measures of the KPZ equation. For t > s, consider the KPZ equation

∂th(t, x) =
1

2
∂xxh(t, x) +

β

2
(∂xh(t, x))

2 +W (t, x), h(s, x) = hs(x), (1.1)

with inverse temperature β > 0, initial condition hs at time s and space-time white noise W as driving
force (see Section 3.1). Classically, the solution to this equation is ill-posed, but formally, one can solve the
KPZ equation via the Cole-Hopf transformation h(t, x) = 1

β logZ(t, x), where Z solves the stochastic heat

equation (SHE) with multiplicative noise:

∂tZ(t, x) =
1

2
∂xxZ(t, x) + βZ(t, x)W (t, x), Z(s, x) = eβhs(x). (1.2)

Rigorous solutions to this equation have been discussed in [BC95, BG97, CD14, CD15]. Recently, great
progress has been made in understanding solutions of the KPZ equation in the work on Martin Hairer
[Hai13, Hai14] on regularity structures. Another perspective through paracontrolled distributions has been
studied in [GP17, PR19].

It is well-known that Brownian motion with diffusivity 1 and arbitrary drift is an invariant measure for
(1.1). The notion of invariance requires the caveat that invariance only holds up to a global height shift.
That is, we let h(t, x|B) denote the solution to (1.1) a time t > 0 with h(0, x) = B(x), where B is a Brownian
motion. Then,

{h(t, x|B)− h(t, 0|B) : x ∈ R} d
= B.

See [JRAS23] and the references therein for a detailed discussion of this height shift. Using the work of
[AKQ14a, AKQ14b, AJRS22], one can construct solutions to the KPZ equation with the same driving
noise W but started from different initial conditions. The present paper is concerned with jointly invariant
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measures, namely couplings of Brownian motions F 1, . . . , F k with different drifts such that on C(R)k we
have for all t > 0 the distributional invariance(

h(t, • |F 1)− h(t, 0|F 1), . . . , h(t, • |F k)− h(t, 0|F k)
) d
=
(
F 1( •), . . . , F k( •)

)
. (1.3)

The existence, uniqueness, and ergodicity of such jointly invariant measures, up to an asymptotic slope
condition, was established in [JRS22] (see Section 3.4 of that paper for a detailed discussion). We state this
condition as follows:

−∞ ≤ lim sup
x→−∞

F (x)

|x|
< λ = lim

x→∞

F (x)

x
if λ > 0

lim
x→−∞

F (x)

|x|
= |λ| > lim sup

x→∞

F (x)

x
≥ −∞ if λ < 0

−∞ ≤ lim sup
|x|→∞

F (x)

|x|
≤ 0 if λ = 0.

(1.4)

Our first theorem gives an explicit description of these measures.

Theorem 1.1. Let λ1 < · · · < λk be real. Let Y 1, . . . , Y k be independent two-sided Brownian motions with
diffusivity 1 and drifts λ1, . . . , λk, respectively. Set F 1

β = Y 1 and then for j = 2, . . . , k, define

exp
[
βF j

β(y)
]
= eβY

1(y) ·

∫
−∞<xj−1<···<x1<y

j−1∏
i=1

eβ(Y
i+1(xi)−Y i(xi))dxi

∫
−∞<xj−1<···<x1<0

j−1∏
i=1

eβ(Y
i+1(xi)−Y i(xi))dxi

.

Then, (F 1
β , . . . , F

k
β ) is distributed as the unique jointly stationary and ergodic measure for the KPZ equation

(1.1) such that, for 1 ≤ j ≤ k, each F j
β satisfies almost surely the asymptotic slope condition (1.4) for λ = λj.

In particular, F j
β is a two-sided Brownian motion with diffusivity 1 and drift λj.

In Section 2.3, we extend the measures of Theorem 1.1 to a process {Fλ
β }λ∈R, which we term the KPZ

horizon with inverse temperature β (KPZHβ for short, or sometimes simply KPZH). The path space of this
process is the Skorokhod space D(R, C(R)) of functions R → C(R) that are right-continuous with left limits.
C(R) is endowed with its Polish topology of uniform convergence on compact sets. The term KPZ horizon is
made in analogy to the stationary horizon (SH), which was first introduced by Busani in [Bus21] and studied
by Busani and the third and fourth authors in [SS23b, BSS22b, BSS22a, BSS23]. The KPZ fixed point is the
1 : 2 : 3 large-time scaling limit of the KPZ equation [QS23, Vir20, Wu23]. This is discussed more in Section
1.3. The SH gives the unique jointly invariant measure for the KPZ fixed point under the same asymptotic
slope conditions. In fact, as β ↗ ∞, the projections of KPZHβ on C(R,Rk) converge to the SH.

The description in Theorem 1.1 gives rise to the following description of the difference function for the
two jointly invariant measures.

Theorem 1.2. Let β > 0 and {Fλ
β }λ∈R be the KPZHβ. For λ1 < λ2 with λ = λ2 − λ1,

{Fλ2

β (y)− Fλ1

β (y) : y ≥ 0} d
= {β−1 log

(
1 +Xλ,βYλ,β(y)

)
: y ≥ 0}

where Xλ,β ∼ Gamma(λβ−1, β−2), independent of the process {Yλ,β(y) : y ≥ 0}. The law of this latter
process is given by

{Yλ,β(y) : y ≥ 0} d
=
{∫ y

0

exp
(√

2βB(x) + λβx
)
dx : y ≥ 0

}
,

where B is a standard Brownian motion.

Qualitatively, a key feature is that the extension to the full KPZH process inherently produces discontinuities:

Theorem 1.3. Let Fβ = {Fλ
β }λ∈R be the KPZHβ and Pβ its distribution on the space D(R, C(R)). Then,

Pβ-almost surely there exists a random countably infinite dense subset Λβ of R such that whenever x ̸= y,
α 7→ Fα

β (y)− Fα
β (x) is discontinuous at α = λ if and only if λ ∈ Λβ.
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1.2. Discontinuities of the Busemann process in the continuum directed random polymer. The
work of [AKQ14a, AKQ14b, AJRS22] constructs a four-parameter field {Zβ(t, y |s, x) : x, y ∈ R, s < t} on a
single probability space so that, for each s ∈ R and any initial data hs,

(t, y) 7→ 1

β

∫
R
eβhs(x)Zβ(t, y |s, x) dx

solves the SHE (1.2) at times t ∈ (s,∞) and agrees with the notion of solution from [BC95, BG97, CD14,
CD15]. This four-parameter family defines random probability measures QW

β on paths g : [s, t] → R from

(x, s) to (y, t) whose time-r distribution is given by

Q
(s,x)→(t,y)
β (g(r) ∈ dz) =

Zβ(t, y |r, z)Zβ(r, z |s, x)
Zβ(t, y |s, x)

dz for s < r < t.

In this sense, we say that Zβ is the partition function for the continuum directed random polymer (CDRP)

first introduced in [AKQ14a]. The measures Q
(s,x)→(t,y)
β extend in a Gibbsian sense to measures Q

(t,y)
β on

semi-infinite backward paths g : (−∞, t] → R rooted at (t, y). The Gibbs property is that, conditional on
the path passing through (s, x) at time s ∈ (−∞, t), the portion of the path between (t, y) and (s, x) is

distributed as Q
(s,x)→(t,y)
β . See [JRS22, Section 9] for a more precise definition and detailed discussion. The

infinite-path measure is said to be strongly λ-directed if

Q
(t,y)
β

(
lim

r→−∞

g(r)

|r|
= λ

)
= 1.

To study this collection of infinite-path measures, Janjigian and the second and third authors [JRS22]
constructed Busemann functions for the SHE. For a fixed λ ∈ R, these satisfy the almost sure locally uniform
limits [JRS22, Theorem 3.16]

bλβ(s, x, t, y) = lim
r→−∞

log
Zβ(s, x|r, zr)
Zβ(t, y |r, zr)

, (1.5)

simultaneously for all paths {zr : r < s ∧ t} that satisfy limr→−∞
zr
|r| = λ. Furthermore, the article [JRS22]

constructs the Busemann process

{bλ�
β (s, x, t, y) : (s, x, t, y) ∈ R4, λ ∈ R, � ∈ {−,+}}

on a single event of full probability. The sign parameter � ∈ {−,+} is a necessary ingredient of the

description. A fixed value λ ∈ R is almost surely not a discontinuity of this process, i.e. bλ−β ̸≡ bλ+β (Theorem

3.2(iv) below). But the existence of random discontinuities across the uncountably many values λ was left

open [JRS22, Open Problem 2]. In general, λ 7→ bλ−β (s, x, t, y) is left-continuous, while λ 7→ bλ+β (s, x, t, y) is
right-continuous. The set of exceptional directions at which jumps occur is defined by

Λbβ := {λ ∈ R : bλ−β (s, x, t, y) ̸= bλ+β (s, x, t, y) for some (s, x, t, y) ∈ R4}. (1.6)

The set Λbβ is exactly the set of directions where the semi-infinite Gibbs measure supported on λ-directed
paths is not unique [JRS22, Theorems 3.35, 3.38]. The Busemann process is a eternal solution to the KPZ
equation, meaning that started from any initial time, the Busemann process evolves forward in time via the
KPZ equation. When the Busemann process is discontinuous at λ, the one force–one solution principle fails
because there are two eternal solutions to the equation satisfying the same asymptotic slope conditions. This
is manifested in the dynamic programming principle proved in [JRS22] and recorded in the present paper as
Theorem 3.2(x). Theorem 3.5 of [JRS22], recorded as Theorem 3.2(v) in the present paper, established the
following dichotomy: either P(Λbβ = ∅) = 1 or P(Λbβ is countable and dense in R) = 1. Our next theorem
states that the latter is true.

Theorem 1.4. Let β > 0. Then, P(Λbβ = ∅) < 1.

Theorem 1.4 is a direct consequence of Theorems 1.1 and 1.3. In particular, we deduce from Theorem 1.1
that the KPZHβ is equal in law to the Busemann process for the SHE/KPZ equation (see Corollary 4.3).

The proof of the existence of discontinuities of the KPZHβ comes in Corollary 2.12. Our proof exploits
the explicit description of the distribution of Fλ

β (y) − F 0
β (y) given in Theorem 1.2. It would be interesting

to see if there is a proof of the condition above that uses softer properties of Busemann functions and can
be generalized to other models. However, as a counterexample, consider the deterministic approximation of
the Green’s function for the KPZ equation with β = 1 (see [JRS22, Section 1.5, Theorem 3.8])

H̃(t, y |s, x) = − t− s

24
− (y − x)2

2(t− s)
.
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In this setting, the Busemann function is equal to

b̃λ(s, x, t, y) = lim
r→−∞

H̃(t, y |r,−rλ)− H̃(s, x|r,−rλ) = (12λ2 − 1)(t− s)

24
+ (y − x)λ,

which is continuous in the parameter λ. Thus, any more general condition to prove the existence of dis-
continuities would need deeper information about the noise present in the model and cannot rely only on
curvature or strict convexity of the shape function.

1.3. High and low temperature limits of the KPZ horizon. The KPZ equation interpolates between
two so-called universality classes. This phenomenon follows from the explicit formulas calculated in [ACQ11]
and is explicitly noted in [Cor12, Theorem 1.1]. Setting β = 1 for simplicity (noting that the general equation
can be obtained from this one by scaling, see [Cor12, Equation (3)]), we let Z(T,X) = Z1(T,X |0, 0), and
set

FT (s) = P
(
logZ(T,X) +

X2

2T
+
T

24
≤ s
)
.

Theorems 1.1 and Corollary 1.2 of [Cor12] state that FT (s) does not depend on X and that

lim
T→∞

FT (2
−1/3T 1/3s) = FGUE(s), and lim

T↘0
FT (2

−1/2π1/4T 1/4(s− log
√
2πT )) = Φ(s),

where FGUE is the Tracy-Widom GUE distribution, and Φ is the standard Gaussian distribution. The Tracy-
Widom distribution is central to the KPZ universality class, while the Gaussian distribution is central to the
Edwards-Wilkinson class [EW82, Cor12]. On the KPZ side of things, much recent work has been devoted to
stronger convergence on the level of the process [QS23, Vir20, Wu23, DZ22a, DZ22b]. See Section 1.4.2 for
a more detailed discussion of the relevant literature.

The scaling relations for Zβ proved in [AKQ14b, AJRS22] (recorded in the present paper as Theorem

3.1) imply that Z(T, 0) = Z1(T, 0|0, 0)
d
= 1√

T
ZT 1/4(1, 0|0, 0). Hence, large times T correspond to high

inverse temperatures β, while short times T correspond to small values of β. In this same spirit, the results
of this section show that the KPZHβ interpolates between the jointly invariant measures in the KPZ and
Edwards-Wilkinson universality classes, seen in the limits as β ↗ ∞ and β ↘ 0, respectively.

We discuss here KPZHβ in relation to its earlier-introduced zero temperature counterpart, the stationary
horizon. The stationary horizon (SH) is a stochastic process G = {Gλ}λ∈R with path space D(R, C(R)).
Marginally, each C(R)-valued component Gλ is a Brownian motion with diffusivity

√
2 and drift 2λ. See

Appendix B for a formal definition of the SH.
Figure 1 shows a simulation of the KPZHβ for three different values of β, namely 0.1, 1, and 20. In each

case, we use the values λ = −5,−2.5, 0, 2.5, 5. For small β, we see the trajectories tend to look like affine
shifts of one another. For large β, the trajectories appear to stick very closely together in a neighborhood of
the origin. In fact, before the limit the paths do not actually touch outside the origin, but at β = ∞, each
pair of paths coincide in a nondegenerate interval around the origin.

The next theorem states that SH is the diffusive scaling limit of KPZHβ , for a fixed temperature, or
equivalently, the β ↗ ∞ limit of KPZHβ . We also see a more trivial limit as β ↘ 0. The mode of convergence
proved is on the level of finite-dimensional projections on the spaces C(R,Rk) for k ≥ 1. We conjecture that
a convergence on the Skorokhod space D(R, C(R)) should also hold, as is proved for exponential LPP in
[Bus21] and for the TASEP speed process in [BSS22a]. However, the topology of convergence on the space
D(R, C(R)) needs to be adjusted because the set of discontinuities for the prelimiting object is not isolated
in a compact window of space, as is the case in [Bus21, BSS22a]. We leave the investigation of tightness
on D(R, C(R)) to future work. The convergence of parts (i) and (ii) below are equivalent by the scaling
relations of 2.10(ii) followed by the change of variable γ 7→ γβ.

Theorem 1.5. Let {Gλ}λ∈R be the SH and {Fλ
β }λ∈R the KPZHβ. Fix two real parameters β > 0 and

α ∈ R. For any finite increasing vector λ1 < · · · < λk, {Gλi}1≤i≤k is the limit in distribution on C(R,Rk),
as γ → ∞, of the following two processes:

(i) {Fλi
γ (2 •)}1≤i≤k.

(ii)
{
γ−1Fα+γ−1λi

β (2γ2 •)− 2γα •

}
1≤i≤k

.

Furthermore, let B be a standard two-sided Brownian motion (diffusivity 1 and zero drift). Then as γ ↘ 0,
the processes in parts (i) and (ii) above converge in distribution, on C(R,Rk), to {B(2 •) + 2λi •}1≤i≤k.

For large γ > 0, the scaling in Item (ii) above fixes a temperature β and considers a direction perturbed
from the drift α. This is the scaling of the initial data in the convergence of the KPZ equation to the KPZ
fixed point, as in [QS23, Vir20, DZ22a, DZ22b, Wu23].
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Figure 1. KPZHβ for three inverse temperature values β = 0.1, 1, and 20 from top to bottom,
and in each frame for the drift values λ = −5 (pink), λ = −2.5 (green), λ = 0 (purple), λ = 2.5
(blue), and λ = 5 (red).
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Setting γ = 2−1/3T 1/3, the sequence in part (ii) becomes{
21/3T−1/3Fα+21/3T−1/3λi

β (21/3T 2/3 •)− 22/3T 1/3α •

}
1≤i≤k

,

which, as T → ∞, demonstrates the 1 : 2 : 3 scaling in convergence to the KPZ fixed point. There are only
two scaling parameters now because we are scaling initial data, so there is no time parameter. However, we
can in fact strengthen our result to a process-level convergence using the recent results of Wu [Wu23]. Let
L = {L(x, s; y, t) : x, y ∈ R, s < t} be the directed landscape (DL). For upper semicontinuous initial data
h : R → R ∪ {−∞} satisfying, for some a, b > 0, h(x) ≤ a + b|x| for all x ∈ R and h(x) > −∞ for some x,
define

hL(t, y|s, h) = sup
x∈R

{h(x) + L(x, s; y, t)}. (1.7)

Let hZβ
(t, y |s, f) be the solution of the KPZ equation (1.1) started at time s with initial data f :

hZβ
(t, y |s, f) = 1

β
log

∫
R
eβf(x)Zβ(t, y |s, x) dx. (1.8)

Corollary 1.6. Let β > 0, α, s ∈ R, and λ1 < · · · < λk. Then, as processes in C(R>s × R,Rk) equipped
with the uniform-on-compacts topology,{
21/3T−1/3

[
βhZβ

(Tt
β4
,
21/3T 2/3y

β2

∣∣∣ Ts
β4
, Fα+21/3T−1/3λi

β ( •)− α •

)
+
T (t− s)

24
− 2

3
log(

√
2T )

]
: (t, y) ∈ R>s × R

}
1≤i≤k

T→∞
=⇒ {hL(t, y |s,Gλi) : (t, y) ∈ R>s × R}1≤i≤k.

Furthermore, let {Bλ� : λ ∈ R,� ∈ {−,+}} be the Busemann process for the DL discussed in Appendix B.
Then, for any β > 0 and λ1 < · · · < λk, as processes in C(R4,Rk) equipped with the uniform-on-compacts
topology,{

21/3T−1/3
[
bβ2

1/3T−1/3λi

β

(Ts
β4
,
21/3T 2/3x

β2
,
T t

β4
,
21/3T 2/3y

β2

)
+
T (t− s)

24

]
: (x, s; y, t) ∈ R4

}
1≤i≤k

T→∞
=⇒ {Bλi(y,−t;x,−s) : (x, s; y, t) ∈ R4}1≤i≤k.

The temporal reflection in the process {Bλi(y,−t;x,−s) : (x, s; y, t) ∈ R4}1≤i≤k is a manifestation of the
fact that in [JRS22], the infinite paths travel south, while the infinite geodesics in [RV21] and [BSS22b] travel
north.

1.3.1. Jointly invariant measures for the Edwards-Wilkinson fixed point. In contrast with the γ → ∞ limit
to the SH and in light of the γ ↘ 0 limit in Theorem 1.5, it is natural to ask whether {B( •) + λi •}1≤i≤k is
a jointly invariant measure for the Edwards-Wilkinson fixed point [EW82, Cor12]. The Edwards-Wilkinson
fixed point is governed by the 1-dimensional additive stochastic heat equation ∂tu = 1

2uxx + W . It is
well-known that this equation, started from initial data f at time 0, is solved as

u(t, x|f) =
∫
R
ρ(t, x− y)f(y) dy +

∫ t

0

∫
R
ρ(t− s, x− y)W (ds dy). (1.9)

It is also well-known that the increments of two-sided Brownian motion B is invariant in time for u. That

is, u(t, • ;B)− u(t, 0;B)
d
= B. From (1.9) it follows that, for any appropriate function f : R → R and λ ∈ R,

u(t, x|f( •) + λ •) = u(t, x|f) + λx.

Hence, in the sense of (1.3), {B( •) + λ1 • , . . . , B( •) + λk •} is a jointly invariant measure for the SHE with
additive noise, where the common noise W drives the equation from the different initial conditions. Indeed,
this can be expected from Theorems 1.1 and 1.5, as the β ↘ 0 limit of (1.1) is precisely the additive SHE.

1.4. Methods and related literature.

1.4.1. Convergence of the O’Connell-Yor polymer to the SHE. The proof of Theorem 1.1 comes from first
showing that the KPZHβ describes jointly invariant measures for the semi-discrete O’Connell-Yor (OCY)
polymer introduced in [OY01]. We show that the KPZHβ satisfies certain distributional invariances under
scaling to initial data for the SHE. Then, we show that the KPZHβ is jointly invariant for the SHE and use
a uniqueness result from [JRS22] to conclude the proof.

The convergence step requires a substantial amount of nontrivial work. Convergence of the OCY polymer
(with the initial point fixed) to narrow wedge solutions of the SHE was established in the sense of finite-
dimensional distributions by Nica [Nic21]. In Section 3.2 of the present paper, we prove in full detail, using
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different methods than those in [Nic21], the convergence of the four-parameter field of the OCY polymer to
the Green’s function of the SHE (in the sense of finite-dimensional distributions) and prove convergence of
solutions from appropriate initial data.

Similar items to Lemmas 3.5, 3.8, 3.10, and Theorem 3.9 in Section 3 appeared in an unfinished manuscript
of Moreno Flores, Quastel, and Remenik [MFQR]. As no proofs for the precise results we need appears in the
literature, we provide them in Section 3. We develop several new ideas to allow us to complete the technical
details of these results. We believe that the results of Section 3 will provide valuable statements that were
not previously fully accessible to the community.

1.4.2. Stationary horizon and KPZ universality. SH was first constructed by Busani [Bus21] as the scaling
limit of the Busemann process of the exponential corner growth model. [Bus21] conjectured SH to be the
universal scaling limit of Busemann processes of models in the KPZ universality class. Shortly afterwards,
SH was independently discovered in the context of Brownian last-passage percolation by the third and fourth
authors [SS23b]. A brief introduction to the SH is given in Appendix B.

In [BSS22b, BSS22a, BSS23], the third and fourth authors, together with Busani, studied the role of SH
in the KPZ class and established further evidence of its universality:

(i) Given appropriate conditions on the asymptotic slope of the initial data, the SH is the unique multi-
type stationary distribution of the KPZ fixed point that evolves in the environment given by the directed
landscape.

(ii) As a consequence, the SH gives the distribution of the fixed-time-level Busemann process of the
directed landscape. In this representation, the parameter λ corresponds to the space-time slope of semi-
infinite geodesics.

(iii) The suitably scaled TASEP speed process introduced by [AAV11] converges to the SH. In the limit,
λ represents the scaled and centered values of the speed process. This suggests that SH is a general scaling
limit of multitype invariant distributions, beyond the Busemann functions of stochastic growth models.

(iv) A framework is given in the forthcoming work [BSS23] to show convergence to the SH under conditions
that are widely expected to hold in great generality. the conditions are convergence of the LPP model to
the DL, marginal convergence of a single Busemann function to Brownian motion with drift, and tightness
of exit point bounds from stationary initial conditions on the scale N2/3. As a corollary, it is shown that
the Busemann process for six solvable LPP models converge to the SH in the sense of finite-dimensional
distributions.

The high-level analogy between KPZHβ and SH is that they both describe unique jointly invariant dis-
tributions, KPZHβ for the KPZ equation and SH for the KPZ fixed point. Additionally, KPZHβ and SH
share certain properties. Both are couplings of Brownian motions with drift whose increments are ordered.
Both are translation-invariant and have a reflection symmetry (Theorem 2.10(i) and (iv)). However, the
two processes are not the same in law. One way to see this is Theorem 1.3). While the full SH process
λ 7→ Gλ ∈ C(R) has a dense set of discontinuities λ ∈ R, for given x < y the points of discontinuity of the
restricted process λ 7→ Gλ(y)−Gλ(x) are isolated. In contrast, for any x < y, the process λ 7→ Fλ

β (y)−Fλ
β (x)

contains the full countable dense set of discontinuities of the process λ 7→ Fλ
β ∈ C(R).

There has been much recent work on the convergence of the KPZ equation to the KPZ fixed point. This
was first accomplished in two independent works of Quastel and Sarkar [QS23] and Virág [Vir20]. Recently,
Wu [Wu23] proved that the Green’s function of the KPZ equation converges to the directed landscape.
Combined with the previous work of Das and Zhu [DZ22a, DZ22b], who showed localization of polymer
path measures in the CDRP, this establishes that the annealed polymer measures of the CDRP converge in
distribution to the geodesics of the DL (See [DZ22b, Theorem 1.9]).

1.4.3. One force–one solution. Most of the previous work on the one force–one solution principle was focused
on a fixed, nonrandom direction of space. Busemann functions and the one force–one solution principle have
been studied for the Burgers’ equation with discrete random forcing, both in compact and noncompact
settings [Sin91, GIKP05, IK03, Bak07, Kif97, DS05, Kif97, Bak13, BCK14, Bak16a, Bak16b, BK18, BL18,
BL19, HK03, DDG+22]. Specifically, in the works of Bakhtin and coauthors [Bak16b, BCK14, Bak16a,
Bak13, BL18, BL19], one sees analogous results for Busemann functions and semi-infinite geodesics–the zero
temperature analogue of semi-infinite polymer measures.

The first observation of random discontinuities of the Busemann process was completed by Fan and the
third author [FS20] for the exactly solvable exponential corner growth model. Across a single horizontal
edge, they showed that the Busemann process, indexed by the direction, can be described by a compound
Poisson process. Across all edges, the union of the discontinuities is countably infinite and dense. This result
was used in [JRAS23] to characterize the set of directions with non-unique semi-infinite geodesics as the
same as the set of discontinuities of the Busemann process.
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Similar studies were carried out for Brownian last-passage percolation (BLPP) by the third and fourth
authors [SS23b] and for the directed landscape (DL) [BSS22a] by Busani and the third and fourth authors.
Here, the characterization of exceptional directions of semi-infinite geodesics is exactly analogous to that
of [JRAS23], but additional non-uniqueness of initial segments of geodesics appears due to the continuum
setting in these models. As a result, new methods of proof were developed to achieve these results. The
studies [SS23b, BSS22b] used a description of the Busemann process for Brownian LPP developed in [SS23a]
and the remarkable fact that the Busemann process along a horizontal line for BLPP agrees with that of the
DL. Unlike the exponential corner growth model, the Busemann process for BLPP along a single horizontal
interval is not a compound Poisson process, nor does it have independent increments. Thus, obtaining an
explicit description of this process remains out of reach. However, the description of the process in terms of
coupled Brownian motions allows one to make some distributional calculations, which are enough to show
that the Busemann process along an interval, and indexed by the direction, is a step function.

The recent work [BFS23] studies the Busemann process for the inverse-gamma polymer and discovers
a similar explicit description as in [FS20]. However, the jumps of the Busemann process across a single
horizontal interval are now dense, unlike in the zero temperature case where they are isolated. Likewise,
the paper [JRS22] showed that, for the KPZ equation, if the set (1.6) is nonempty, the jumps are present
along each horizontal interval and are therefore dense. In the present work, we obtain a description of
the Busemann process for the SHE in terms of coupled Brownian motions with drift. Just as in the zero
temperature cases of BLPP and the DL, the process along a horizontal interval does not have an explicit
description that we know. However, we can compute the distribution of an increment of this process, and in
Corollary 2.12, we apply a condition that is developed in Lemma 2.11 to show the existence of jumps. Our
work demonstrates that the corresponding phenomenon in the work of [BFS23] is not simply a manifestation
of discrete lattice effects.

1.5. Organization of the paper. Section 2 constructs the KPZ horizon. The theory of the mappings that
define the projections of this process onto C(R,Rk) is developed in Section 2.1. In Section 2.3, we construct
the KPZH as a process of Brownian motions indexed by the drift λ ∈ R, and the remaining subsections
of Section 2 state properties of this process, including the proof of Theorem 1.2 in Section 2.5. In Section
2.6, we show the existence of discontinuities in the λ parameter. In Section 3, we begin by discussing the
necessary background on the stochastic heat equation from [AKQ14a, AJRS22, JRS22]. Then, we prove the
details needed for convergence of the O’Connell-Yor polymer to the stochastic heat equation, using input
tools from [MFQR] and [Nic21]. The paper culminates in the proofs of the main theorems in Section 4,
except for Theorem 1.2, which is proved earlier. The appendices contain some standard facts and inputs
from the literature.

1.6. Notation and conventions.

• Cpin(R) denotes the space of continuous functions f : R → R such that f(0) = 0.
• Increments of a single-variable function F are denoted by F (x, y) = F (y)−F (x). Increment ordering
between functions f, g : R → R: f ≤inc g if f(x, y) ≤ g(x, y) for all x < y, and f <inc g if
f(x, y) < g(x, y) for all x < y.

• For random variables X and Y and probability measures µ, X
d
= Y and X ∼ Y both mean that X

and Y are equal in distribution, and X ∼ µ means that X has probability distribution µ.
• Random variable X has the gamma distribution with shape parameter α > 0 and rate β > 0,

abbreviated X ∼ Gamma(α, β), if X has density function f(x) = Γ(α)−1βαxα−1e−βx on R+.
• A two-sided standard Brownian motion is a continuous random process {B(x) : x ∈ R} such that
B(0) = 0 almost surely and {B(x) : x ≥ 0} and {B(−x) : x ≥ 0} are two independent standard
Brownian motions on [0,∞).

• If B is a two-sided standard Brownian motion, then {cB(x) + µx : x ∈ R} is a two-sided Brownian
motion with diffusivity c > 0 and drift µ ∈ R.

• The complementary error function erfc is defined as erfc(x) = 2√
π

∫∞
x
e−u2

du.

• The heat kernel is ρ(t, x) = 1√
2πt

e−
x2

2t 1t>0 for (t, x) ∈ R2.

• Ranges of indices in vectors and sequences are abbreviated as in xm:n = (xm, xm+1, . . . , xn).
• The domain of pairs of space-time points with strictly ordered times is R4

↑ = {(s, x, t, y) ∈ R4 : s < t}.
• In a C(R)-valued stochastic process λ 7→ Y λ( •), the bullet marks the missing real variable: Y λ( •) =
(x 7→ Y λ(x)) ∈ C(R).

• Coordinatewise order on R2: (x, y) ≤ (a, b) means that x ≤ a and y ≤ b.



JOINTLY INVARIANT MEASURES FOR THE KARDAR-PARISI-ZHANG EQUATION 9

1.7. Acknowledgements. E. Sorensen wishes to thank Tom Alberts, Ofer Busani, Ivan Corwin, Sayan Das,
Yu Gu, Chris Janjigian, Mihai Nica, and Xuan Wu for helpful pointers to the literature and insightful discus-
sions. S. Groathouse and F. Rassoul-Agha were partially supported by National Science Foundation grants
DMS-1811090 and DMS-2054630. F. Rassoul-Agha was partially supported by MPS-Simons Fellowship grant
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2. Construction and properties of the KPZ horizon

2.1. Mappings defining finite-dimensional distributions. Let Cpin(R) denote the space of continuous
functions f : R → R satisfying f(0) = 0. For Y,B ∈ Cpin(R) satisfying

lim sup
x→−∞

Y (x)−B(x)

x
> 0, (2.1)

and for β > 0, define the following transformations:

Qβ(B, Y )(y) = β−1 log

∫ y

−∞
exp (β(B(x, y)− Y (x, y))) dx

Dβ(B, Y )(y) = Y (y) +Qβ(B, Y )(y)−Qβ(B, Y )(0),

Rβ(B, Y )(y) = B(y) +Qβ(B, Y )(0)−Qβ(B, Y )(y).

(2.2)

Iterate the mapping Dβ as follows:

D
(1)
β (Y ) = Y, and D

(n)
β (Y 1, Y 2, . . . , Y n) = Dβ(Y

1, D
(n−1)
β (Y 2, . . . , Y n)) for n ≥ 2. (2.3)

Given a Borel subset A ⊆ R, we define three state spaces of n-tuples of functions.

AA
n :=

{
Y = (Y 1, . . . , Y n) ∈ Cpin(R)n : for 1 ≤ i ≤ n, lim

x→−∞

Y i(x)

x
exists and lies in A

}
. (2.4)

Note that if the components of Z ∈ Cpin(R)n are Brownian motions with drifts in A, then Z ∈ AA
n almost

surely. Next, set

YA
n :=

{
Y = (Y 1, . . . , Y n) ∈ Cpin(R)n : for 1 ≤ i ≤ n, lim

x→−∞

Y i(x)

x
exists and lies in A,

and for 2 ≤ i ≤ n, lim
x→−∞

Y i(x)

x
> lim

x→−∞

Y i−1(x)

x

} (2.5)

and

XA
n :=

{
η = (η1, . . . , ηn) ∈ YA

n : ηi >inc η
i−1 for 2 ≤ i ≤ n

}
. (2.6)

The most common choices for A will be R>0 (to be used for the state space of invariant measures in the
O’Connell-Yor polymer) and R (to be used as the state space of invariant measures in the KPZ equation).
Section 7 of [SS23b] shows that these state spaces are Borel measurable subsets of the space C(R,Rn).

Next, define a transformationD
(n)
β on n-tuples of functions as follows. LetA ⊆ R. ForY = (Y 1, . . . , Y n) ∈

YA
n , the image η = (η1, . . . , ηn) = D

(n)
β (Y) ∈ XA

n is defined by

ηi = D
(i)
β (Y 1, . . . , Y i) for 1 ≤ i ≤ n. (2.7)

Lemma 2.4 below proves that D
(n)
β : YA

n → XA
n .

For a finite increasing real vector λ̄ = (λ1 < λ2 < · · · < λn), define the measure νλ̄ on YR
n as follows:

(Y 1, . . . , Y n) ∼ νλ̄ if Y 1, . . . , Y n are mutually independent and Y i is a Brownian motion with drift λi. Define

the measure µλ̄
β on XR

n as

µλ̄
β = νλ̄ ◦ (D(n)

β )−1. (2.8)

This is the key definition of the section. In each application of (2.7) the drifts satisfy λ1 < · · · < λi and so
the mappings are well-defined.
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We prove a series of lemmas about these measures. The first derives a formula for D
(n)
β (Y 1, . . . , Y n).

Once the first properties of the mappings and measures are established, some proofs go through just as they
do for zero temperature in [SS23b]. For such results, we provide the full details in Appendix A.

Lemma 2.1. Let Y 1, . . . , Y n ∈ Cpin(R) be such that all the following integrals are finite. Then, for n ≥ 2
and β > 0,

exp
[
βD

(n)
β (Y 1, . . . , Y n)(y)

]
= eβY

1(y) ·

∫
−∞<xn−1<···<x1<y

n−1∏
i=1

eβ(Y
i+1(xi)−Y i(xi))dxi

∫
−∞<xn−1<···<x1<0

n−1∏
i=1

eβ(Y
i+1(xi)−Y i(xi))dxi

. (2.9)

Furthermore,

exp
(
βRβ(Y

1, Y 2)(y)
)
=
eβY

2(y)
∫ 0

−∞ exp
[
β(Y 2(x)− Y 1(x)

]
dx∫ y

−∞ exp
[
β(Y 2(x)− Y 1(x)

]
dx

. (2.10)

Proof. We prove this by induction on n. We start with the base case n = 2. From (2.2),

exp
(
βDβ(Y

1, Y 2)(y)
)
=
eβY

2(y)
∫ y

−∞ exp
(
β(Y 1(x, y)− Y 2(x, y))

)
dx∫ 0

−∞ exp
(
β(Y 1(x, 0)− Y 2(x, 0))

)
dx

=
eβY

1(y)
∫ y

−∞ exp
(
β(Y 2(x)− Y 1(x))

)
dx∫ 0

−∞ exp
(
β(Y 2(x)− Y 1(x))

)
dx

.

(2.11)

The proof of (2.10) is analogous. Now, assume that (2.9) holds for n ≥ 2. Then,

exp
(
βD

(n)
β (Y 1, . . . , Y n)(y)

)
= exp

(
βDβ(Y

1, D
(n−1)
β (Y 2, . . . , Y n))(y)

)
=
eβY

1(y)
∫ y

−∞ exp
(
β(D

(n−1)
β (Y 2, . . . , Y n)(x1)− Y 1(x1)

)
dx1∫ 0

−∞ exp
(
β(D

(n−1)
β (Y 2, . . . , Y n)(x1)− Y 1(x1)

)
dx1

=
eβY

1(y)
∫ y

−∞
(
eβY

2(x1)
∫
−∞<xn−1<···<x2<x1

∏n−1
i=2 exp

[
β(Y i+1(xi)− Y i(xi))

]
dxi
)
e−βY 1(x1)dx1∫ 0

−∞
(
eβY 2(x1)

∫
−∞<xn−1<···<x2<x1

∏n−1
i=2 exp

[
β(Y i+1(xi)− Y i(xi))

]
dxi
)
e−βY 1(x1)dx1

=
eβY

1(y)
∫
−∞<xn−1<···<x1<y

∏n−1
i=1 exp

[
β(Y i+1(xi)− Y i(xi))

]
dxi∫

−∞<xn−1<···<x1<0

∏n−1
i=1 exp

[
β(Y i+1(xi)− Y i(xi))

]
dxi

.

The first equality used the definition of D(n), the second the n = 2 case, and in the third the induction
assumption. In the third equality, an integral over the set {−∞ < xn−1 < · · · < x2 < 0} was cancelled from
the numerator and the denominator. □

Lemma 2.2. Assume that (B, Y ) ∈ YR
2 with

lim
x→−∞

B(x)

x
= a < b = lim

x→−∞

Y (x)

x
.

Then,

lim
x→−∞

Rβ(B, Y )(x)

x
= a, and lim

x→−∞

Dβ(B, Y )(x)

x
= b.

Proof. By Lemma 2.1, it suffices to show that

lim
y→−∞

1

y
log

∫ y

−∞
eβ(Y (x)−B(x)) dx = β(b− a).

Fix ε > 0, and let y < 0 be such that xε < B(x)−ax < −xε and xε < Y (x)− bx < −xε for all x < y. Then,
for such y,

eβ(b−a+2ε)y

β(b− a+ 2ε)
=

∫ y

−∞
eβ(b−a+2ε)x dx ≤

∫ y

−∞
eβ(Y (x)−B(x)) dx ≤

∫ y

−∞
eβ(b−a−2ε)x dx ≤ eβ(b−a−2ε)y

β(b− a− 2ε)
.
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Taking the log of all sides and dividing by y yields

β(b− a− 2ε) ≤ lim inf
y→−∞

1

y
log

∫ y

−∞
eβ(Y (x)−B(x)) dx ≤ lim sup

y→−∞

1

y
log

∫ y

−∞
eβ(Y (x)−B(x)) dx ≤ β(b− a+ 2ε).

Sending ε↘ 0 completes the proof. □

Lemma 2.3. Let (B, Y ), (B, Y ′) ∈ YR
2 be such that Y ≤inc Y

′. Then, B <inc Dβ(B, Y ) ≤inc Dβ(B, Y
′). If

Y <inc Y
′, then Dβ(B, Y ) <inc Dβ(B, Y

′) as well.

Proof. Let x < y. We use Lemma 2.1 to write

exp[βDβ(B, Y )(x, y)] = eβB(x,y)

∫ y

−∞ eβ(Y (z)−B(z)) dz∫ x

−∞ eβ(Y (z)−B(z)) dz

= eβB(x,y)

(
1 +

∫ y

x
eβ(Y (z)−B(z)) dz∫ x

−∞ eβ(Y (z)−B(z)) dz

)
= eβB(x,y)

(
1 +

∫ y

x
eβ(Y (x,z)−B(x,z)) dz∫ x

−∞ eβ(Y (x,z)−B(x,z)) dz

)
.

All statements of the lemma now follow from the last equality. □

Lemma 2.4. For β > 0 and A ⊆ R, D(n)
β : YA

n → XA
n .

Proof. Let Y = (Y 1, . . . , Y n) and η = D
(n)
β (Y). From Lemma 2.2 and induction, it follows that for

1 ≤ i ≤ n,

lim
x→−∞

Y i(x)

x
= lim

x→−∞

ηi(x)

x
.

The fact that ηi−1 ≤inc ηi follows by induction. By Lemma 2.3, η2 = Dβ(Y
1, Y 2) ≥inc Y

1 = η1. Now, we
assume that

ηi = D
(i)
β (Y 1, . . . , Y i) ≥inc D

(i−1)
β (Y 1, . . . , Y i−1) = ηi−1.

We apply this assumption, replacing Y 1, . . . , Y i with Y 2, . . . , Y i+1 along with Lemma 2.3 to get

ηi+1 = D
(i+1)
β (Y 1, . . . , Y i+1) = Dβ(Y

1, D
(i)
β (Y 2, . . . , Y i+1))

≥inc Dβ(Y
1, D

(i−1)
β (Y 2, . . . , Y i)) = D

(i)
β (Y 1, . . . , Y i) = ηi. □

Lemma 2.5. Let β > 0 and λ1 < · · · < λk. Let λNi , β
N be sequences such that λNi → λi and βN → β as

N → ∞. Set λ̄N = (λN1 , . . . , λ
N
k ) and λ̄ = (λ1, . . . , λk). Then, µλ̄N

βN
→ µλ̄

β weakly as measures on C(R,Rk).

Proof. Realize the distributions in terms of (η1N , . . . , η
k
N ) ∼ µλ̄N

βN
and (η1, . . . , ηk) ∼ µλ̄

β , where (η
1
N , . . . , η

k
N ) =

D
(k)

βN (Z1
N , . . . , Z

k
N ) and (η1, . . . , ηk) = D

(k)
β (Y 1, . . . , Y k), and the Brownian motions (Z1

N , . . . , Z
k
N ) ∼ νλ̄

N

and

(Y 1, . . . , Y k) ∼ νλ̄ are coupled so that Zi
N (x) = Y i(x) + (λNi − λi)x. By (2.9),

ηjN (y) = Z1
N (y) +

1

βN
log

∫
−∞<xj−1<···<x1<y

j−1∏
i=1

exp
{
βN (Zi+1

N (xi)− Zi
N (xi))

}
dxi

− 1

βN
log

∫
−∞<xj−1<···<x1<0

j−1∏
i=1

exp
{
βN (Zi+1

N (xi)− Zi
N (xi))

}
dxi.

Dominated convergence applied to the integrals gives (η1N , . . . , η
k
N ) ⇒ (η1, . . . , ηk) in the sense of finite-

dimensional distributions. Each ηiN is a Brownian motion with drift λNi , so each marginal is tight in C(R).
Hence, the process (η1N , . . . , η

k
N ) is tight in C(R,Rk). □

For γ > 0 and α ∈ R define the mapping Tγ,α : C(R) → C(R) as

Tγ,αf(x) = γ−1f(γ2x) + αx.

Extend it to a mapping Tn
γ,α : C(R,Rn) → C(R,Rn) of n-tuples componentwise:

Tn
γ,α(f1, . . . , fn) = (Tγ,αf1, . . . , Tγ,αfn).

For α = 0 use the shorthand notation Tγ = Tγ,0 and Tn
γ = Tn

γ,0.
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Lemma 2.6. For β, γ > 0, α ∈ R, and Y 1, . . . , Y n such that the following are all finite, we have

Tγ,αD
(n)
β (Y 1, . . . , Y n) = D

(n)
βγ (T

n
γ,α(Y

1, . . . , Y n)), (2.12)

and

Tγ,αRβ(Y
1, Y 2) = Rβγ(T

2
γ,α(Y

1, Y 2)). (2.13)

Consequently, for λ̄ = (λ1 < · · · < λn),

µλ̄
β ◦ (Tn

γ,α)
−1 = µ

γλ̄+(α,...,α)
βγ . (2.14)

In particular,

µλ̄
β = µβ−1λ̄

1 ◦ (Tn
β )

−1 (2.15)

Remark. Equation (2.15) allows us to perform computations for β = 1 and extend to general β.

Proof. Equation (2.14) follows from (2.12) because, if (Y 1, . . . , Y n) ∼ νλ̄, then Tn
γ,α(Y

1, . . . , Y n) ∼ νγλ̄+(α,...,α).
We turn our attention to proving (2.12). To do so, we use Lemma 2.1. For y ∈ R,

Tn
γ,αD

(n)
β (Y 1, . . . , Y n)(y)

= γ−1Y 1(γ2y) + αy +
1

βγ
log

∫
−∞<xn−1<···<x1<γ2y

n−1∏
i=1

exp
(
β(Y i+1(xi)− Y i(xi))

)
dxi

− 1

βγ
log

∫
−∞<xn−1<···<x1<0

n−1∏
i=1

exp
(
β(Y i+1(xi)− Y i(xi))

)
dxi

= Tγ,αY
1(y) +

1

βγ
log

∫
−∞<wn−1<···<w1<y

n−1∏
i=1

exp
(
βγ(Tγ,αY

i+1(wi)− Tγ,αY
i(wi))

)
dwi

− 1

βγ
log

∫
−∞<wn−1<···<w1<0

n−1∏
i=1

exp
(
βγ(Tγ,αY

i+1(wi)− Tγ,αY
i(wi))

)
dwi

= D
(n)
βγ (T

n
γ,α(Y

1, . . . , Y n)),

where in the second equality, we made the change of variables xi = γ2wi, with the Jacobian term cancelling
in the difference of the logs of the two integrals. The proof of (2.13) is analogous. □

2.2. Consistency and invariance.

Lemma 2.7. Let λ̄ = (λ1 < λ2 < · · · < λn) ∈ Rn. If (η1, . . . , ηn) ∼ µλ̄
β, then for any subsequence

λi1 < · · · < λik , (η
i1 , . . . , ηik) ∼ µ

(λi1
,...,λik

)

β .

Proof. The proof follows just as the proof of Lemma 3.6(ii) in [SS23b]. The details are found in Appendix
A. □

Theorem 2.8. For an increasing vector λ̄ = (λ1, . . . , λn) of strictly positive drifts 0 < λ1 < · · · < λn, the

measure µλ̄
β is an invariant measure for the Markov chain on XR>0

n whose time m− 1 to time m transition

is defined as follows. Let (η1m−1, . . . , η
n
m−1) be the state at time m − 1, and let Bm be a standard two-sided

Brownian motion, independent of the Markov chain in the past. Then the state at time m is

(η1m, . . . , η
n
m) = (Dβ(Bm, η

1
m−1), . . . , Dβ(Bm, η

n
m−1)). (2.16)

Remark. The strictly positive drifts ensure that condition (2.1) is satisfied, and the transformations above
are well-defined almost surely.

Proof. This follows by an intertwining argument originating from [FM07] and completed in zero-temperature
LPP models in [FS20] and [SS23b]. The details may be found in Appendix A. □

2.3. Construction of the KPZ horizon. The Skorokhod space D(R, C(R)) consists of functions R →
C(R) that are right-continuous with left limits. C(R) is endowed with the topology of uniform convergence
on compact sets. A generic element of D(R, C(R)) is denoted by F = {Fλ}λ∈R, where F

λ ∈ C(R) for each λ.
The standard σ-algebra BD onD(R, C(R)) is generated by the projections πλ1,...,λk : D(R, C(R)) → C(R,Rk)
defined by πλ1,...,λk(F ) = (Fλ1 , . . . , Fλk) (See, for example, [Bil99, Sections 12-13] and [Sch73, Page 101].)

Recall the measures µλ̄
β defined in (2.8).
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Proposition 2.9. On the space (D(R, C(R)),BD), there exists a family of probability measures Pβ indexed
by the inverse temperature β > 0, satisfying the following properties. Let Fβ = {Fλ

β }λ∈R denote the random

element of D(R, C(R)) under the measure Pβ.

(i) For β > 0 and λ ∈ R, Fλ
β is a two-sided Brownian motion with diffusivity 1 and drift λ. In particular,

Pβ-almost surely, Fλ
β (0) = 0 for each λ ∈ R.

(ii) For β > 0 and an increasing vector λ̄ = (λ1 < · · · < λk) ∈ Rk of drifts, the C(R,Rk)-valued k-tuple

(Fλ1

β , . . . , Fλk

β ) has distribution µλ̄
β. Equivalently, in terms of projections, Pβ ◦ (πλ̄)−1 = µλ̄

β. In

terms of the mapping D
(k)
β and independent Brownian motions Y 1, . . . , Y k with drifts λ1 < · · · < λk,

(Fλ1

β , . . . , Fλk

β )
d
= (Y 1, D

(2)
β (Y 1, Y 2), . . . , D

(k)
β (Y 1, . . . , Y k)). (2.17)

The measure Pβ is the unique probability measure on D(R, C(R)) satisfying this finite-dimensional
marginal condition.

(iii) For β > 0, Pβ-almost surely, for all λ1 < λ2, F
λ1

β <inc F
λ2

β .

Remark. With a nod to the stationary horizon (SH) discussed above in Section 1.3, we call the process
{Fλ

β }λ∈R the KPZ horizon at inverse temperature β, abbreviated KPZHβ .

Proof. The construction follows a similar procedure as the construction of the SH in [Sor23] (we note here
that the SH was originally constructed as a limit of the Busemann process in exponential LPP in [Bus21]).

We start by recalling Lemma 2.7, which states that the measures µλ̄
β are consistent. Thus, for λ̄ = (λ1 <

· · · < λk), if (η
1, . . . , ηk) ∼ µλ̄, each ηi has distribution µλi

β , which is the law of a two-sided Brownian motion
with diffusion coefficient 1 and drift λi. By Kolmogorov’s extension theorem, there exists a unique measure

µQ
β on C(R)Q =

∏
Q C(R) under which, for {F̃α}α∈Q ∈ C(R)Q and any choice of ᾱ = (α1, . . . , αk) ∈ Qk with

α1 < · · · < αk, (F̃
α1 , . . . , F̃αk) ∼ µᾱ

β . In particular, under µQ
β each F̃α is a Brownian motion with drift α.

Because the measures µλ̄
β are supported on the sets XR

k of (2.6), we have that

µQ
β

(
F̃α1 <inc F̃

α2 ∀α1 < α2 ∈ Q
)
= 1. (2.18)

Hence, there is a full probability event for µQ
β , on which, for each λ ∈ R and x ∈ R, the limits

Fλ(x) := lim
Q∋α↘λ

F̃α(x) and Fλ− lim
Q∋α↗λ

F̃α(x) (2.19)

exist. By construction,

µQ
β (F

λ ≤inc F̃
α ∀λ ∈ R, α ∈ Q with α > λ) = 1. (2.20)

Then, on the event of (2.20), for A < a < b < B,

Fλ(A, a) + Fλ(b, B) ≤ F̃α(A, a) + F̃α(b, B),

or equivalently,

0 ≤ F̃α(a, b)− Fλ(a, b) ≤ F̃α(A,B)− Fλ(A,B),

implying that the convergence is uniform on compact sets. The same holds for limits from the left. By

monotonicity, µQ
β (F

λ− ≤inc F̃
λ ≤inc F

λ ∀λ ∈ Q) = 1. Additionally, uniform convergence ensures that, for

each λ ∈ R, Fλ− and Fλ are both Brownian motions with drift λ. Hence, for each λ ∈ Q,

µQ
β (F

λ− = F̃λ = Fλ) = 1.

In summary, we have defined a stochastic process {Fλ}λ∈R whose projection to the rationals agrees with

{F̃λ}λ∈Q under the measure µQ
β . Let λ1 < λ2 < λ3 be real, and choose rational values α1 < λ1 < α2 < λ2 <

α3 < λ3 < α4. Then,

Fα1 ≤inc F
λ1 ≤inc F

α2 ≤inc F
λ2 ≤inc F

α3 ≤inc F
λ3 ≤inc F

α4 . (2.21)

This implies that, µQ
β -almost surely, simultaneously for every λ ∈ R, the following limits exist uniformly on

compact sets, and they agree with the limits along rational directions.

Fλ = lim
α↘λ

Fα and Fλ− = lim
α↗λ

Fα.

Therefore, the process {Fλ}λ∈R lies in the space D(R, C(R)). Let Pβ be the pushforward of the measure

µQ
β to D(R, C(R)) under the map defined by (2.19). Without reference to the measure, we use {Fλ

β }λ∈R to
denote the process.
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We check that {Fλ}λ∈R satisfies the claims of the theorem. Item (i) follows from the uniform convergence
along rational directions. Item (ii) follows because for rational directions the finite-dimensional distributions

were defined to be µλ̄
β . The limits in (2.19) and the weak convergence of Lemma 2.5 extend this property

to all real directions. Since the σ-algebra on D(R, C(R)) is generated by the projections, uniqueness of
this process on D(R, C(R)) follows. To verify Item (iii) for real λ1 < λ2, pick rational α1, α2 such that

λ1 < α1 < α2 < λ2. Then (2.21) and (2.18) give Fλ1

β ≤inc F
α1

β <inc F
α2

β ≤inc F
λ2

β . □

2.4. Distributional invariances of the KPZH. We prove the following distributional invariances of
KPZHβ . Item (iv) below is not needed elsewhere in this paper, but it is included here for future use.

Theorem 2.10. For β > 0, let Fβ be the KPZHβ.

(i) Translation invariance: for each x ∈ R, {Fλ
β (x, x+ •)}λ∈R

d
= Fβ.

(ii) Scaling invariance: for each β > 0, γ > 0, and α ∈ R, {γ−1Fλ
β (γ

2 •) + α •}λ∈R
d
= {F γλ+α

γβ }λ∈R.

(iii) Stationarity of increments: for λ1 < λ2 < · · · < λn and λ⋆ ∈ R,

(Fλ2

β − Fλ1

β , . . . , Fλn

β − F
λn−1

β )
d
= (Fλ2+λ⋆

β − Fλ1+λ⋆

β , . . . , Fλn+λ⋆

β − F
λn−1+λ⋆

β ).

(iv) Reflection invariance: {F (−λ)−
β (− •)}λ∈R

d
= Fβ.

Proof. For λ1 < · · · < λk, by definition of the KPZHβ (Proposition 2.9(ii)),

(Fλ1

β , . . . , Fλk

β )
d
= (Y 1, Dβ(Y

1, Y 2), . . . , D
(k)
β (Y 1, . . . , Y k)), (2.22)

where Y 1, . . . , Y n are independent Brownian motions with drifts λ1, . . . , λn. It follows from Lemma 2.1 that

D
(k)
β (Y 1, . . . , Y k)(x, x+ y) = D

(k)
β (Y 1(x, x+ •), . . . , Y k(x, x+ •))(y), from which Item (i) follows. Item (ii)

follows from Lemma 2.6.
Now we note that Item (iii) follows from Item (ii): Setting γ = 1, we obtain

(Fλ1

β , . . . , Fλn

β )
d
= (Fλ1+λ⋆

β ( •)− λ⋆ • , . . . , Fλn+λ⋆

β − λ⋆ •),

so

(Fλ2

β − Fλ1

β , . . . , Fλn

β − F
λn−1

β )
d
= (Fλ2+λ⋆

β − Fλ1+λ⋆

β , . . . , Fλn+λ⋆

β − F
λn−1+λ⋆

β ).

Item (iv) follows from Theorem 3.2(iii) and Corollary 4.3, the first of which is proved in [JRS22] and the
second of which we prove later in this paper. One may notice that Item (i) also follows from Theorems
3.2(ii) and Corollary 4.3, but we have proved this item here to avoid circular logic because it is used to prove
Corollary 4.3. □

2.5. Difference of two functions (Proof of Theorem 1.2).

Proof of Theorem 1.2. Let Y 1, Y 2 be two independent Brownian motions with drifts λ1 < λ2. By (2.17) and
(2.9), as processes indexed by y ≥ 0,

eβ(F
λ2
β (y)−F

λ1
β (y)) d

=

∫ y

−∞ eβ(Y
2(x)−Y 1(x)) dx∫ 0

−∞ eβ(Y 2(x)−Y 1(x)) dx
= 1 +

∫ y

0
eβ(Y

2(x)−Y 1(x)) dx∫ 0

−∞ eβ(Y 2(x)−Y 1(x)) dx
. (2.23)

By the independence of Brownian increments, the numerator and the denominator of the last ratio in (2.23)

are independent. The process β(Y 2( •) − Y 1( •)) has the distribution of
√
2βB( •) + βλ • , where B is a

standard Brownian motion. The distribution of the denominator is computed in Lemma A.2 using results
from [Duf90]. □

2.6. Discontinuities of KPZH in the drift parameter.

Lemma 2.11. On a probability space (Ω,F ,P), let λ 7→ X(λ) be an increment-stationary, nondecreasing,
almost surely continuous process with E[X(1)−X(0)] <∞. Then, for every ε > 0,

lim
Z∋n→∞

nP(X(n−1)−X(0) > ε) = 0. (2.24)

Proof. Partition [0, 1] into disjoint intervals of length n−1, and let

Jε
n =

n∑
i=1

1{X(i/n)−X((i− 1)/n) > ε}.

By increment-stationarity, E[Jε
n] = nP(X(n−1) −X(0) > ε). By pathwise uniform continuity of X, Jε

n = 0
for large enough n. The bound εJε

n ≤ X(1)−X(0) and dominated convergence complete the proof. □
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Remark. The condition (2.24) appears in Chapter 12 of [Bre68] as a defining condition of Brownian motion.
The process we will apply this to is of a different nature, as it is nondecreasing and does not have independent
increments.

Corollary 2.12. For y ∈ R and β > 0, the process λ 7→ Fλ
β (y) is not almost surely continuous.

Proof. We may take y > 0 because for y < 0, Theorem 2.10(i) and Fλ
β (0) = 0 (Proposition 2.9(i)) implies

{Fλ
β (y)}λ∈R = {−Fλ

β (y, 0)}λ∈R
d
= {−Fλ

β (0,−y)}λ∈R = {−Fλ
β (−y)}λ∈R.

By the scaling relations of Theorem 2.10(ii), it suffices to take β = 1. We apply Lemma 2.11 to the process
λ 7→ Fλ

1 (y), which has stationary increments by Theorem 2.10(iii) and is strictly increasing by Proposition
2.9(iii). Since Fλ

1 is a Brownian motion with drift λ (Proposition 2.9(i)), we have E[F 1
1 (y))] = y < ∞.

Lemma 2.11 reduces the problem to showing that for some ε > 0,

lim inf
λ↘0

λ−1P(Fλ
1 (y)− F 0

1 (y) > ε) > 0.

In fact, we show that this is true for all ε > 0. For each λ > 0, let Xλ, Yλ(y) be the independent random

variables of Theorem 1.2 with β = 1 so that Fλ
1 (y)−F 0

1 (y)
d
= log(1+XλYλ(y)). Observe that for a standard

Brownian motion B,

Yλ(y)
d
=

∫ y

0

exp
(√

2B(x) + λx
)
dx >

∫ y

0

exp
(√

2B(x)
)
dx =: Y,

where Y is taken as a new random variable independent of Xλ. By formula 1.8.4 on page 612 of [BS02], Y
has a density function fY that is strictly positive on (0,∞). For ε > 0, let ε′ = eε − 1 > 0. Since Xλ ∼
Gamma(λ, 1),

P(Fλ
1 (y)− F 0

1 (y) > ε) = P(XλYλ(y) > ε′) ≥ P(XλY > ε′) = P(Xλ > ε′/Y )

=

∫ ∞

0

∫
ε′/w

fY (w)
1

Γ(λ)
xλ−1e−x dx dw ≥ 1

Γ(λ)

∫ ∞

0

∫
1∨(ε′/w)

fY (w)x
−1e−x dx dw =

Cε

Γ(λ)
,

where Cε is a positive constant. Thus, lim infλ↘0 λ
−1P(Fλ

1 (y) > ε) ≥ Cε > 0 because limλ↘0 λΓ(λ) = 1. □

3. The stochastic heat equation

This section collects the necessary background on the SHE and KPZ equation. Section 3.1 mainly sum-
marizes results from [AJRS22, JRS22]. Section 3.2 deals with convergence of the OCY polymer to the
SHE.

3.1. Green’s function and Busemann process of the SHE. We briefly describe the construction of
the four-parameter field Zβ( • , • | • , •) from [AKQ14a, AKQ14b, AJRS22]. We primarily adopt the notation
of [AJRS22] and [JRS22].

On an appropriate probability space (Ω,F ,P), a space-time white noiseW is a mean-zero Gaussian process
whose index set is L2(R2), with Lebesgue measure. It satisfies the almost sure linearity W (af + bg) =
aW (f) + bW (g) as well as the L2 isometry property:

E[W (f)W (g)] =

∫
R2

f(t, x)g(t, x) dt dx.

One immediate consequence is that, whenever A and B are disjoint, or more generally, their intersection has
Lebesgue measure 0, W (1A) and W (1B) are independent. As a point of notation, we often write

W (f) =

∫
R2

f(t, x)W (dt dx) =

∫
R2

f(t, x)W (t, x) dt dx,

where the second equality is formal because W is a random distribution and not defined pointwise.
We define Zβ as the following chaos expansion, where convergence holds in L2(P).

Zβ(t, y |s, x) =
∞∑
k=0

βk

∫
Rk

∫
Rk

k∏
i=0

ρ(ti+1 − ti, xi+1 − xi)

k∏
i=1

W (dti, dxi). (3.1)

Here, ρ(t, x) = 1√
2πt

e−
x2

2t 1(t > 0) is the heat kernel, and the conventions in the integrals are t0 = s, x0 =

x, tk+1 = t, and xk+1 = y. For f : R → R>0 with sufficient decay at ±∞, and t > s, define

Zβ(t, y |s, f) =
∫
R
Zβ(t, y |s, x)f(x) dx. (3.2)
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When the value of s is unspecified in (3.2), we take s = 0. Theorem 2.2 and Lemma A.5 of [AJRS22] prove
that, in the rigorous sense of solutions in [BC95, BG97, CD14, CD15], the process (3.2) solves the SHE
defined in (1.2), for strictly positive functions f = ehs satisfying∫

R
e−αx2

f(x) dx <∞

for all α > 0. In fact, solutions can be defined for a class of measures which are not necessarily absolutely
continuous with respect to Lebesgue measure, but in all applications of this paper, f(x) = eB(x)+λx, where B
is a Brownian motion, and λ ∈ R, so the necessary conditions are satisfied. We refer the reader to [AJRS22,
Appendix A] and the references therein for a more technical discussion on the solution of the SHE from
measure-valued initial data.

Theorem 3.1. [AJRS22, Proposition 2.3],[AKQ14a, Equation (18)] Let β > 0. Then the following distri-
butional equalities hold between random elements of C(R4

↑,R).

(i) (Shift invariance) For given u, z ∈ R, Zβ(t, y |s, x)
d
= Zβ(t+ u, y + z |s+ u, x+ z).

(ii) (Reflection invariance) Zβ(t, y |s, x)
d
= Zβ(t,−y |, s,−x).

(iii) (Rescaling) For given λ > 0, Zβ(t, y |s, x)
d
= λZβ/

√
λ(λ

2t, λy |λ2s, λx).
Furthermore,

(iv) There exists a constant C = Cβ so that for all t > s and x, y ∈ R,

E[Z2
β(t, y |s, x)] ≤ Cρ2(t− s, y − x).

We are particularly interested in the λ = β2 case of Theorem 3.1(iii), in which the distributional equality
becomes

Zβ(t, y |s, x)
d
= β2Z1(β

4t, β2y |β4s, β2x). (3.3)

Jointly with the Busemann functions, by appeal to the Busemann limits (1.5), we have this distributional
equality: {

bλ�
β (s, x, t, y), Zβ(t

′, y′ |s′, x′) : (s, x, t, y) ∈ R4, (s′, x′, t′, y′) ∈ R4
↑, λ ∈ R, � ∈ {−,+}

}
d
=
{
bλβ

−2�
1 (β4s, β2x, β4t, β2y), β2Z1(β

4t′, β2y′ |β4s′, β2x′) :

(s, x, t, y) ∈ R4, (s′, x′, t′, y′) ∈ R4
↑, λ ∈ R, � ∈ {−,+}

}
.

(3.4)

In the following theorems, we use (3.4) to transfer the statements for β = 1 from [JRS22] to general β > 0.
We introduce the following class of functions, named Fλ. Let f : R → (0,∞) be a Borel function that is
locally bounded. Then, for λ ∈ R, we say that f ∈ Fλ if

−∞ ≤ lim sup
x→−∞

log f(x)

|x|
< λ = lim

x→∞

log f(x)

x
if λ > 0

lim
x→−∞

log f(x)

|x|
= |λ| > lim sup

x→∞

log f(x)

x
≥ −∞ if λ < 0

−∞ ≤ lim sup
|x|→∞

log f(x)

|x|
≤ 0 if λ = 0.

(3.5)

Theorem 3.2. [JRS22, Theorems 3.1, 3.3, 3.5, 3.23, and Corollary 3.4] Let β > 0. Then, there exists a
stochastic process {bλ�

β (s, x, t, y) : s, x, t, y, λ ∈ R,� ∈ {−,+}} defined on the probability space (Ω,F ,P) and
satisfying the following properties. For this process, we define

Λbβ = {λ ∈ R : bλ−β (s, x, t, y) ̸= bλ+β (s, x, t, y) for some (s, x, t, y) ∈ R4}.

When λ /∈ Λbβ , we write bλβ = bλ−β = bλ+β .

(i) For each t, λ ∈ R, under P, the process y 7→ bλβ(t, 0, t, y) is a two-sided Brownian motion with
diffusivity β and drift λ.

(ii) (Shift) For r, z ∈ R, as processes in s, x, t, y, λ ∈ R, � ∈ {−,+},

bλ�
β (s, x, t, y)

d
= bλ�

β (s+ r, x+ z, t+ r, y + z).

(iii) (Reflection) As processes in s, x, t, y, λ ∈ R, � ∈ {−,+},

bλ�
β (s, x, t, y)

d
= b

(−λ)(−�)
β (s,−x, t,−y).

(iv) For each λ ∈ R, P(λ ∈ Λbβ ) = 0.
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(v) Either P(Λbβ = ∅) = 1 or P(Λbβ is countable and dense in R) = 1.

Furthermore, there exists an event of full probability on which the following hold:

(vi) For each λ ∈ R and � ∈ {−,+}, bλ�
β ∈ C(R4,R).

(vii) For all x < y, t, and α < λ,

bα−β (t, x, t, y) ≤ bα+β (t, x, t, y) < bλ−β (t, x, t, y) ≤ bλ+β (t, x, t, y).

More specifically, whenever λ ∈ Λbβ , b
λ−
β (t, x, t, y) < bλ+β (t, x, t, y), and consequently, for each a ̸= 0,

Λbβ = {λ ∈ R : bλ−β (0, 0, 0, a) ̸= bλ+β (0, 0, 0, a)}.

(viii) For all r, x, s, y, t, z, λ and all � ∈ {−,+},

bλ�
β (r, x, s, y) + bλ�

β (s, y, t, z) = bλ�
β (r, x, t, z).

(ix) For all s, x, t, y, λ and all � ∈ {−,+},

bλ−β (s, x, t, y) = lim
α↗λ

bα�
β (s, x, t, y), and bλ+β (s, x, t, y) = lim

α↘λ
bα�
β (s, x, t, y).

(x) For all t > r, all s, x, y, λ, and all � ∈ {−,+},

eb
λ�
β (s,x,t,y) =

∫
R
eb

λ�
β (s,x,r,z)Zβ(t, y |r, z) dz.

(xi) For all λ /∈ Λbβ and f ∈ Fλ, the following limit holds uniformly on compact sets of (s, x, t, y) ∈ R4:

lim
r→−∞

∫
R f(z)Zβ(t, y |r, z) dz∫
R f(z)Zβ(s, x|r, z) dz

= eb
λ
β(s,x,t,y).

For later use, we derive the following uniqueness result from Theorem 3.2.

Theorem 3.3. Let (f1, . . . , fk) be a coupling of initial data with fi ∈ Fλi
almost surely for i ∈ {1, . . . , k}.

If, for all t > 0, {
Zβ(t, • |efi

)

Zβ(t, 0|efi)

}
1≤i≤k

d
= {exp(f i)}1≤i≤k,

then

{exp(f i)}1≤i≤k
d
= {exp(bλi

β (0, 0, 0, • ))}1≤i≤k.

Remark. A stronger uniqueness property is true. The joint Busemann process is the unique stationary and
ergodic jointly invariant distribution for the KPZ equation under more general conditions on the asymptotic
slopes at ±∞. We refer the reader to Section 3.4 of [JRS22] for a more detailed discussion.

Proof. The r = s case of Theorem 3.2(x) along with the additivity of Theorem 3.2(viii) implies that

eb
λ�
β (t,0,t,y) =

∫
R e

bλ�
β (s,0,s,z)Zβ(t, y |s, z) dz∫

R e
bλ�
β (s,0,s,z)Zβ(t, 0|s, z) dz

, (3.6)

and Theorem 3.2(ii) implies that for all s < t,

exp(bλ�
β (t, 0, t, •))

d
= exp(bλ�

β (s, 0, s, •)). (3.7)

The s = t case of Theorem 3.2(xi) states that for λ /∈ Λbβ and f ∈ Fλ,

lim
r→−∞

∫
R f(z)Zβ(t, y |r, z) dz∫
R f(z)Zβ(t, 0|r, z) dz

= eb
λ
β(t,0,t,y),

uniformly on compact subsets of y ∈ R. Then, using (3.6), Theorem 3.2(iv), and the shift invariance of
Theorem 3.1(i), for any (deterministic or random) k-tuple of functions (f1, . . . , fk), so that, with probability
one, each f i ∈ Fλi

, as t→ ∞, we have the following distributional convergence on C(Rk,R):{
Zβ(t, • |efi

)

Zβ(t, 0|efi)

}
1≤i≤k

=⇒ {exp(bλi

β (0, 0, 0, •))}1≤i≤k

In particular, if for all t > 0, {
Zβ(t, • |efi

)

Zβ(t, 0|efi)

}
1≤i≤k

d
= {exp(f i)}1≤i≤k,

then {exp(f i)}1≤i≤k
d
= {exp(bλi

β (0, 0, 0, •))}1≤i≤k. □
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3.2. Convergence of the O’Connell-Yor polymer to SHE. In his section, we show convergence of the
O’Connell-Yor polymer to the Green’s function of the SHE (Theorem 3.9) and prove a convergence result for
the model started from initial data (Theorem 3.10). The O’Connell-Yor polymer (alternatively, the Brownian
polymer), first introduced in [OY01], is defined as follows. On a probability space (Ω,F , P ), let B = (Br)r∈Z
be a sequence of independent, two-sided standard Brownian motions. For (m,x) ≤ (n, y) ∈ Z × R, define
the path space

X(m,x),(n,y) := {(xm−1, xm, . . . , xn) ∈ Rn−m+2 : x = xm−1 ≤ xm ≤ · · · ≤ xn = y}.

For (x,m), (y, n) ∈ R× Z with m < n and x ≤ y, the point-to-point partition function is defined as

Zsd
β (n, y |m,x)(B) =

∫
X(m,x),(n,y)

exp

{
β

n∑
r=m

Br(xr−1, xr)

}
dxm:n−1. (3.8)

Throughout the paper, β > 0 is a positive inverse-temperature parameter. The superscript in Zsd
β stands for

semi-discrete. For m = n, define

Zsd
β (m, y |m,x)(B) = eβBm(x,y).

The argument B will often be omitted from the notation. From the definition, the Chapman-Kolmogorov
equation: namely that, for m < r ≤ n and x < y,

Zsd
β (n, y |m,x) =

∫ y

x

Zsd
β (n, y |r, w)Zsd

β (r − 1, w |m,x) dw. (3.9)

We also define a partition function with a boundary at level m = −1. For a random or deterministic
initial function f : R → R with f(x) → 0 sufficiently fast as x→ −∞, define, for n ≥ 0 and y ∈ R,

Zsd
β (n, y |f) =

∫ y

−∞
f(x)Zsd

β (n, y |0, x) dx. (3.10)

For n = −1, define Zsd
β (−1, y |f) = f(y).

Abbreviate the Poisson distribution as

q(n, y) = e−y y
n

n!
1((n, y) ∈ Z≥0 × R≥0). (3.11)

For integers n ≥ m, real numbers y ≥ x, and γ ∈ R>0, set

Yγ(n, y |m,x) = e−(y−x)− γ2

2 (y−x)Zsd
γ (n, y |m,x). (3.12)

Next, define

δk(n|m) = {m = n0 ≤ n1 ≤ · · · ≤ nk ≤ nk+1 = n : ni ∈ Z}, and

∆k(y |x) = {x = y0 < y1 < · · · < yk < yk+1 = y : yi ∈ R}.

Lemma 3.4. There exists a constant C > 0 so that, for all integers k > 0, n ≥ m, and all real numbers
y > x, whenever n ∈ δk(n|m) and y ∈ ∆k(y |x),

k∏
i=0

q2(ni+1 − ni, yi+1 − yi) ≤ Ckg(n,y)

:= Ck e
−2(y−x)22(n−m)

π(k+1)/2

k∏
i=0

(yi+1 − yi)
2(ni+1−ni)

[2(ni+1 − ni)]!
√
(ni+1 − ni) ∨ 1

.

(3.13)

Furthermore, for each n ∈ δk(n|m),∫
∆k(y |x)

g(n,y)

k∏
i=1

dyi =
22(n−m)[(n−m)!]2(y − x)kq2(n−m, y − x)

π(k+1)/2[2(n−m) + k]!

k∏
i=0

1√
(ni+1 − ni) ∨ 1

. (3.14)

Proof. From the definition, it follows that

k∏
i=0

q2(ni+1 − ni, yi+1 − yi) = e−2(y−x)
k∏

i=0

(yi+1 − yi)
2(ni+1−ni)

[(ni+1 − ni)!]2
, (3.15)

and Stirling’s approximation implies that for large n,

[n!]2 ∼ [2n]!
√
πn

22n
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In particular, there exists a constant C so that 1
[n!]2 ≤ C 22n

[2n]!
√
πn

for n ≥ 1. Inserting this bound into (3.15)

proves (3.13). The integral (3.14) is the computation of a Dirichlet integral after the change of variable

wi =
yi−yi−1

y−x . □

Lemma 3.5. For ε ≥ 0, for all integers n ≥ m and real numbers y ≥ x+ ε, the field Yγ(n, y |m,x) satisfies
the following Itô integral equation:

Yγ(n, y |m,x) =
∑

m≤k≤n

q(n−k, y−(x+ε))Yγ(k, x+ε|m,x)+γ
∫ y

x+ε

∑
m≤k≤n

q(n−k, y−w)Yγ(k,w |m,x) dBk(w),

(3.16)
where {Br}r∈Z are the i.i.d. Brownian motions that define Zsd

γ .

Remark. We observe that in the ε = 0 case, since Yγ(k, x|m,x) = 1(k = m), we obtain

Yγ(n, y |m,x) = q(n−m, y − x) + γ

∫ y

x

∑
m≤k≤n

q(n− k, y − w)Yγ(k,w |m,x) dBk(w).

This further implies that
E[Yγ(n, y |m,x)] = q(n−m, y − x). (3.17)

Proof. With Yγ(n, y |m,x) defined, let Ỹγ(n, y |m,x) denote the RHS of (3.16). We prove that Ỹγ(n, y |m,x) =
Yγ(n, y |m,x) by induction on n ≥ m. First, note that

Ỹγ(m, y |m,x) = q(0, y − x− ε)Yγ(m,x+ ε|m,x) + γ

∫ y

x+ε

q(0, y − w)Yγ(m,w |m,x) dBm(w)

= e−(y−x)− γ2

2 ε+γBm(x,x+ε) + γ

∫ y

x+ε

e−(y−x)− γ2

2 (w−x)+γBm(x,w) dBm(w)

= e−(y−x)+ γ2

2 x−γBm(x)
(
e−

γ2

2 (x+ε)+γBm(x+ε) + γ

∫ y

x+ε

e−
γ2

2 w+γBm(w) dBm(w)
)
,

so the equality Yγ(m, y |m,x) = Ỹγ(m, y |m,x) reduces to

e−
γ2

2 y+γBm(y) = e−
γ2

2 (x+ε)+γBm(x+ε) + γ

∫ y

x+ε

e−
γ2

2 w+γBm(w) dBm(w),

which follows from Itô’s formula. Now, assume that for some n > m, Ỹγ(n− 1, w |m,x) = Yγ(n− 1, w |m,x)
for all w ≥ x+ ε.

From the definition (3.12), the Chapman-Kolmogorov equation (3.9), and definition (3.12) again,

Yγ(n, y |m,x) = e−(y−x)− γ2

2 (y−x)

∫ y

x

Zsd
γ (n− 1, w |m,x)eγBn(w,y) dw

= e−(y−x)− γ2

2 (y−x)+γBn(y)

∫ y

x

Zsd
γ (n− 1, w |m,x)e−γBn(w) dw

= eγBn(y) · e−(1+ γ2

2 )y

∫ y

x

e(1+
γ2

2 )wYγ(n− 1, w |m,x)e−γBn(w) dw.

Let d denote differentiation in the real variable y, with x fixed. An application of Itô’s formula to the last
line above gives

dYγ(n, y |m,x) = [Yγ(n− 1, y |m,x)− Yγ(n, y |m,x)] dy + γYγ(n, y |m,x) dBn(y). (3.18)

Additionally, a simple computation shows

dq(n− k, y − x) = [q(n− 1− k, y − x)− q(n− k, y − x)] dy for n ∈ Z≥k and y ≥ x, (3.19)

where we set q(−1, w) = 0 by convention. Differentiate the right-hand side of (3.16) and apply (3.19) and
q(n, 0) = 1(n = 0) to obtain

dỸγ(n, y |m,x) =
∑

m≤k≤n

dq(n− k, y − (x+ ε))Yγ(k, x+ ε|m,x) + γ
∑

m≤k≤n

q(n− k, 0)Yγ(k, y |m,x) dBk(y)

+ γ

∫ y

x+ε

∑
m≤k≤n

dq(n− k, y − w)Yγ(k,w |m,x) dBk(w) (3.20)

= [Ỹγ(n− 1, y |m,x)− Ỹγ(n, y |m,x)] dy + γYγ(n, y |m,x) dBn(y). (3.21)
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In the first equality above, we have used the stochastic Leibniz rule (see for example, [Øks10, Equation
(6.2.25)]). Then, comparing (3.18) and (3.21), the induction hypothesis implies that the process

X(y) := Yγ(n, y |m,x)− Ỹγ(n, y |m,x)

satisfies dX = −Xdy. Since q(n, 0) = 1(n = 0), we observe further that Ỹγ(n, x+ε|m,x) = Yγ(n, x+ε|m,x)
for n ≥ m, so X has the initial condition X(x+ε) = 0. Thus, X(y) = 0 for all y ≥ x+ε, and Yγ(n, y |m,x) =
Ỹγ(n, y |m,x), as desired. □

We now use Lemma 3.5 to write Yγ as an infinite series of iterated stochastic integrals.

Lemma 3.6. Let q and Yγ be defined as in (3.11) and (3.12). For every n ≥ m and y ≥ x, Yγ(n, y |m,x)
can be written as the following L2(P)-convergent infinite sum

Yγ(n, y |m,x) =
∞∑
k=0

γkIk(n, y |m,x),

Ik(n, y |m,x) =
∑

δk(n|m)

∫
∆k(y |x)

k∏
i=0

q(ni+1 − ni, yi+1 − yi)

k∏
i=1

dBni(yi),

(3.22)

where, in the k = 0 case, we use this notation to mean I0(n, y |m,x) = q(n−m, y − x). Furthermore,

E[Yγ(n, y |m,x)2] =
∞∑
k=0

γ2kE[Ik(n, y |m,x)2], (3.23)

and there exists a universal constant C > 0 so that for all integers n ≥ m and k ≥ 0, and real numbers y ≥ x
and γ > 0,

E[Ik(n, y |m,x)2] ≤ Ckq2(n−m, y − x)(y − x)k
(n−m)k/2

(2(n−m) + k)kΓ((k + 1)/2)
. (3.24)

Proof. Picard iteration of (3.16) in Lemma 3.5 in the case ε = 0 gives the expansion (3.22), assuming that
the series is convergent. By independence of the Bk, the fact that Itô integrals have mean 0, and the Itô
isometry, we have that

E[Ik(n, y |m,x)Ij(n, y |m,x)] = δj=k

∑
δk(n|m)

∫
∆k(y |x)

k∏
i=0

q2(ni+1 − ni, yi+1 − yi)

k∏
i=1

dyi,

Hence, as long as the sum on the right-hand side of (3.23) is convergent, the expansion (3.22) is L2(P)
convergent, and (3.23) holds. For this, it suffices to show (3.24), and it further suffices to show them = x = 0
case by translation invariance. For shorthand notation, set Yγ(n, y) = Yγ(n, y |0, 0). Then, by Lemma 3.4
and Stirling’s approximation, there exists a constant C > 0 (possibly changing from line to line) so that

E[(Ik(n, y))2]
q2(n, y)

=
1

q2(n, y)

∑
δk(n)

∫
∆k(y)

k∏
i=0

q2(ni+1 − ni, yi+1 − yi)

k∏
i=1

dyi

≤ Ck 2
2n[n!]2yk

[2n+ k]!

∑
δk(n)

k∏
i=0

1√
(ni+1 − ni) ∨ 1

≤ Ckyk
n2n+122n

(2n+ k)2n+k+1/2

∑
δk(n)

k∏
i=0

1√
(ni+1 − ni) ∨ 1

≤ Ckyk
n2n+122n

(2n+ k)2n+k+1/2

∫
∆k(n)

k∏
i=0

1√
si+1 − si

k∏
i=1

dsi

= Ckyk
n2n+k/2+1/222n

(2n+ k)2n+k+1/2

∫
ti>0,

∑k
i=1 ti<1

k+1∏
i=1

1√
ti

k∏
i=1

dti

≤ Ckyk
nk/2

(2n+ k)kΓ((k + 1)/2)
.

Similar as before, the second-to-last equality is the change of variables ti =
si−si−1

n , and the last equality is

the computation of a Dirichlet integral and the observation that n2n+1/222n

(2n+k)2n+1/2 ≤ 1. □
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Lemma 3.7. Given a space-time white noiseW , one can couple the field of i.i.d. Brownian motions {Br}r∈Z
with W so that

Yγ(n, y |m,x) =
∞∑
k=0

γk
∫
Rk

∫
Rk

k∏
i=0

q(⌊ti+1⌋ − ⌊ti⌋, yi+1 − yi)

k∏
i=1

W (dti, dyi), (3.25)

where we define t0 = m, tk+1 = n, y0 = x, and yk+1 = y.

Proof. Given a space-time white noise W , we can define a field of i.i.d. two-sided Brownian motions {Br}r∈Z
by

Br(y) =

{
W (1([r, r + 1]× [0, y])) y ≥ 0

−W (1([r, r + 1]× [y, 0])) y < 0

Alternatively, we can use a single definition using the formal equality

Br(y) =

∫ y

0

dx

∫ r+1

r

dtW (t, x). (3.26)

From the definition of Br, we have the formal equality

dBr(x) = dx

∫ r+1

r

dtW (t, x). (3.27)

Now, with the Br defined in terms of W , we show that we can write Yγ as (3.25). Using (3.27), the k = 1
term in (3.22) can be written as

γ

∫ y

x

n∑
r=m

q(n− r, y − z)q(r −m, z − x) dBr(z)

= γ

∫ y

x

n∑
r=m

q(n− r, y − z)q(r −m, z − x) dz

∫ r+1

r

dtW (t, z)

= γ

∫ y

x

dz

n∑
r=m

∫ r+1

r

dt q(n− ⌊t⌋, y − z)q(⌊t⌋ −m, z − x)W (t, z)

= γ

∫ y

x

dz

∫ n+1

m

dt q(n− ⌊t⌋, y − z)q(⌊t⌋ −m, z − x)W (t, z)

= γ

∫
R
dz

∫
R
dt q(n− ⌊t⌋, y − z)q(⌊t⌋ −m, z − x)W (t, z),

and this matches the k = 1 term of (3.25). The last line follows because the integrand is 0 outside the
original bounds of integration. The general case follows using the same reasoning and induction. □

We prove an intermediate lemma for a scaled transition function. With q as in (3.11), set

pN (t, y |s, x) =
√
Nq
(
⌊tN⌋ − ⌊sN⌋, (t− s)N +

√
N(y − x)

)
and pN (t, y) = pN (t, y |0, 0). (3.28)

Lemma 3.8. The following hold.

(i) As N → ∞, pN (t, y |s, x) → ρ(t− s, y − x), pointwise, for x, y ∈ R and t > s.

(ii) For each t > 0, y ∈ R, α > 0, and integer M ≥ 1,

lim
N→∞

∫ t
√
N+y

−∞
eα|x|pMN (t, y |0, x) dx =

∫
R
eα|x|ρM (t, y − x) dx <∞. (3.29)

Proof. Item (i): The pointwise convergence pN (t, y |s, x) → ρ(t−s, y−x) is a simple application of Stirling’s
approximation. We prove the x = s = 0 case to avoid clutter, but the general case is entirely similar.

pN (t, y |s, x) =
√
Ne−N(t−s)+

√
N(y−x)

( (N(t− s) +
√
N(y − x))⌊tN⌋

(⌊tN⌋)!

)
∼

√
N√

2π⌊tN⌋
e−tN+⌊tN⌋+

√
Ny
( tN +

√
Ny

⌊tN⌋

)⌊tN⌋
∼ p(t, y),

(3.30)

where the last step follows from the Taylor expansion

⌊tN⌋ log
( tN +

√
Ny

⌊tN⌋

)
= ⌊tN⌋ log

(
1 +

tN +
√
Ny − ⌊tN⌋
⌊tN⌋

)
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= tN −
√
Ny − ⌊tN⌋ − ⌊tN⌋

2

( tN +
√
Ny − ⌊tN⌋
⌊tN⌋

)2
+O(N−1/2)

= tN −
√
Ny − ⌊tN⌋ − y2

2t
+O(N−1/2)

Item (ii): Recall the convention pN (t, y) = pN (t, y |0, 0). Changing variables, (3.29) is equivalent to

lim
N→∞

∫ t
√
N

−∞
eα|x+y|p2N (t,−x) dx =

∫
R
eα|x+y|ρ2(t,−x) dx

We prove this by showing separately that∫ t
√
N

−y

eα(x+y)pMN (t,−x) dx→
∫ ∞

−y

eα(x+y)ρM (t,−x) dx, (3.31)

and ∫ −y

−∞
e−α(x+y)pMN (t,−x) dx→

∫ −y

−∞
e−α(x+y)ρM (t,−x) dx. (3.32)

First, by completing the square and changing variables, we obtain∫ ∞

−y

eαxρM (t,−x) dx =

√
2teα

2t/(2M)

√
M(2πt)M/2

∫ ∞

√
M
2t (−y−αt

M )

e−u2

du

=
eα

2t/(2M)

2
√
M(2πt)(M−1)/2

erfc
(√M

2t
(−y − αt/M)

)
.

On the other hand,∫ t
√
N

−y

eαxpMN (t,−x) dx = NM/2

∫ t
√
N

−y

eαxe−M(tN−x
√
N ) (tN − x

√
N)M⌊tN⌋

(⌊tN⌋!)M
dx,

which, upon the transformation w = (tN − x
√
N)(α/

√
N +M), we obtain

N (M−1)/2eαt
√
N

(⌊tN⌋!)M (α/
√
N +M)M⌊tN⌋+1

∫ (tN+y
√
N)(α/

√
N+M)

0

e−wwM⌊tN⌋ dw (3.33)

=
N (M−1)/2eαt

√
N (M⌊tN⌋)!

(⌊tN⌋!)M (α/
√
N +M)M⌊tN⌋+1

γ(M⌊tN⌋+ 1, (tN + y
√
N)(α/

√
N +M))

(M⌊tN⌋)!
(3.34)

where γ(s, x) =
∫ x

0
e−uus−1 du is the lower incomplete gamma function. Tricomi [Tri50] showed that as

a → ∞, the function γ has the following asymptotic expansion that holds uniformly on compact subsets of
z (see also [Tem75]):

γ(a+ 1, a+ z(2a)1/2)

Γ(a+ 1)
∼ 1

2
erfc(−z) + o(1). (3.35)

Inserting this asymptotic into (3.33) and using Stirling’s approximation, we obtain∫ t
√
N

0

eαxpMN (t,−x) dx ∼ N (M−1)/2eαt
√
N (M⌊tN⌋)!

2(⌊tN⌋!)M (α/
√
N +M)M⌊tN⌋+1

erfc
(√M

2t
(−y − αt/M)

)
∼
N (M−1)/2eαt

√
N
√
2πM⌊tN⌋(M⌊tN⌋/e)M⌊tN⌋

2(2π⌊tN⌋)M/2
(⌊tN⌋/e)M⌊tN⌋M(α/

√
N +M)M⌊tN⌋ erfc

(√M

2t
(−y − αt/M)

)
∼ eαt

√
N

2
√
M(2πt)(M−1)/2

(
1 +

α

M
√
N

)M⌊tN⌋
∼ eα

2t/(2M)

2
√
M(2πt)(M−1)/2

erfc
(√M

2t
(−y − αt/M)

)
.

The last step comes from

tα
√
N −M⌊tN⌋ log

(
1 +

α

M
√
N

)
= tα

√
N −M⌊tN⌋

( α

M
√
N

− α2

2M2N
+ o(N−1)

)
=
α2t

2M
+ o(1).

This proves (3.31). The proof of (3.32) is similar: the left-hand side is transformed into an incomplete

gamma function via the transformation w = (M − α/
√
N)(Nt − x

√
N). In this case, we are left with a

gamma function minus an incomplete gamma function, and the asymptotic expansion (3.35) gives us the
needed asymptotics. □
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We introduce the scaled O’Connell-Yor polymer partition function, whose convergence to the fundamental
solution of SHE is proved next. For β > 0 and a sequence βN such that N1/4βN → β, define a scaling factor

ψN (s, t, x, y;βN ) =
√
N exp

(
−N

(
1 +

β2
N

2

)
(t− s)−

√
N
(
1 +

β2
N

2

)
(y − x)

)
(3.36)

and the scaled partition function

ZN (t, y |s, x) = ψN (s, t, x, y;βN )Zsd
βN

(
⌊tN⌋, tN + y

√
N
∣∣⌊sN⌋, sN + x

√
N
)
1{x ≤ (t− s)

√
N + y}

=
√
N YβN

(
⌊tN⌋, tN + y

√
N
∣∣⌊sN⌋, sN + y

√
N
)
.

(3.37)

We use representation (3.25) in terms of white noise for ZN (t, y |s, x) and then scale the white noise suitably
to relate ZN (t, y |s, x) to Zβ(t, y |s, x). This produces for each N a coupling of ZN (t, y |s, x) and Zβ(t, y |s, x)
on the probability space of the white noise. We show that in this coupling, their L2 distance converges to
zero.

For the next proofs, recall the standard fact from analysis known as the generalized dominated convergence
theorem: if fn → f a.e., |fn| ≤ gn → g a.e., and

∫
gn →

∫
g <∞, then

∫
fn →

∫
f .

Theorem 3.9. Fix β > 0 and a sequence βN such that N1/4βN → β. For each N we have a coupling of
ZN and Zβ on the probability space of the white noise so that this limit holds:

lim
N→∞

E
[ ∣∣ZN (t, y |s, x) − Zβ(t, y |s, x)

∣∣2 ] = 0 for each s < t and x, y ∈ R.

In particular, the weak convergence ZN (t, y |s, x) =⇒ Zβ(t, y |s, x) holds for each s < t and x, y ∈ R.

Remark. We sketch here how our result is consistent with that in [Nic21, Theorem 1.2]. An independent proof
follows. Ours gives the result for the four-parameter field, while [Nic21] handles the two-parameter case. A
change of coordinates is required to transfer between the two results, as shown in the discussion below. We
note that [Nic21, Theorem 1.2] is a more general result about partition functions for d nonintersecting paths,
while we only handle the d = 1 case. There, the semi-discrete partition function is rescaled by the Lebesgue
volume of the path space X(0,0),(n,x):

Z̃sd
β (n, x) =

n!

xn
Zsd
β (n, x|0, 0).

Theorem 1.2 of [Nic21] states that for any sequence βN with N1/4βN → β as N → ∞, we have the following
convergence in distribution as N → ∞:

Z̃sd
βN

(⌊tN + x
√
N⌋, tN) exp

(
−β

2
N

2
tN
)
=⇒ Zβ(t, x|0, 0)

ρ(t, x)
.

Furthermore, as a process indexed by (t, x) ∈ (0,∞) × R, the convergence holds in the sense of finite-
dimensional distributions, and there exists a coupling in which the convergence is in Lp for any p ≥ 1. Using
Stirling’s approximation, one can directly apply this result to show that, in the s = x = 0 case, the following
convergence holds in L2(P):

√
N exp

(
−N

(
1 +

β2
N

2

)
(t− s)

)
Zsd
βN

(
⌊tN + y

√
N⌋, tN

∣∣⌊sN + x
√
N⌋, sN

)
=⇒ Zβ(t, y |s, x). (3.38)

It is reasonable to think this would extend to general s < t and x, y ∈ R, but some additional justification
would be needed since the shift invariance does not immediately work through the floor functions. To see how
the result in Theorem 3.9 appears from (3.38), replace t with t− y√

N
and s with s− x√

N
, then replace x with

−x and y with −y and use the reflection invariance of Zβ (Theorem 3.1(ii)). To make this argument directly
rigorous, one would need to show uniform convergence on compact sets, or change the parameterization and
show that the chaos series still converges. We emphasize here that our proof below is self-contained, uses
different methods, and does not rely on the result of [Nic21], although the white noise coupling is the same.

Proof of Theorem 3.9. With ZN (t, y |s, x) from (3.37) and for a sequence βN with N1/4βN → β, Lemma 3.7
implies

ZN (t, y |s, x) =
√
NYβN

(
⌊tN⌋, tN + y

√
N
∣∣⌊sN⌋, sN + y

√
N
)

=
√
N

∞∑
k=0

βk
N

∫
Rk

∫
Rk

k∏
i=0

q(⌊ti+1⌋ − ⌊ti⌋, yi+1 − yi)W (dti, dyi),

where t0 = ⌊sN⌋, tk+1 = ⌊tN⌋, y0 = sN + x
√
N , and yk = tN + y

√
N . Now, consider the transformation

(ti, yi)1≤i≤k 7→ Φk((ti, yi)1≤i≤k) =
( ti
N
,
yi − ti√

N

)
1≤i≤k

. (3.39)
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This transformation alters the white noise, but multiplying by the square-root Jacobian term N3k/4, we have
the following distributional equality on the level of processes in (s, x, t, y) ∈ R4

↑ (note that the transformation

does not depend on the choice of s, x, t, y):

ZN (t, y |s, x) d
=

∞∑
k=0

(N1/4βN )kJN
k (t, y |s, x)

:=

∞∑
k=0

(N1/4βN )kN (k+1)/2

∫
Rk

∫
Rk

k∏
i=0

q
(
⌊Nti+1⌋ − ⌊Nti⌋, N(ti+1 − ti) +

√
N(yi+1 − yi)

) k∏
i=1

W (dti, dyi)

=

∞∑
k=0

(N1/4βN )k
∫
Rk

∫
Rk

k∏
i=0

pN (ti+1, yi+1 |ti, yi)
k∏

i=1

W (dti dyi) (3.40)

where pN is defined in (3.28), and we define t0 = s, tk+1 = t, y0 = x, and yk+1 = y. We recall that
N1/4βN → β. Since q(n, y) = 0 for n < 0 or y < 0, the integrand of the kth term in (3.40) is supported on
the set

Ak(N, s, t, y, x) :=
{
sN + x

√
N ≤ tiN + yi

√
N ≤ ti+1N + yi+1

√
N ,

and
⌊sN⌋
N

≤ ti ≤
⌊ti+1N⌋+ 1

N
, 1 ≤ i ≤ k

}
.

The chaos series (3.40) is the version of ZN (t, y |s, x) that we couple with the SHE through the common
white noise. It is compared with the chaos series (3.1) of Zβ :

Zβ(t, y |s, x) =
∞∑
k=0

βkJk(t, y |s, x) :=
∞∑
k=0

βk

∫
Rk

∫
Rk

k∏
i=0

ρ(ti+1 − ti, yi+1 − yi)

k∏
i=1

W (dti, dyi), (3.41)

where the integrand of the kth term is supported on the set ∆k(t|s) where s < ti < ti+1 for 1 ≤ i ≤ k. We
seek to show that for fixed (s, x, t, y) ∈ R4

↑, limN→∞ ∥ZN (t, y |s, x) − Zβ(t, y |s, x)∥L2(P) = 0. We note that
for any integer K0 ≥ 0,∥∥∥ZN (t, y |s, x)− Zβ(t, y |s, x)

∥∥∥
L2(P)

≤
K0∑
k=0

∥∥∥(N1/4βN )kJN
k (t, y |s, x)− βkJk(t, y |s, x)

∥∥∥
L2(P)

+
∥∥∥ ∞∑
k=K0+1

(N1/4βN )kJN
k (t, y |s, x)

∥∥∥
L2(P)

+
∥∥∥ ∞∑
k=K0+1

βkJk(t, y |s, x)
∥∥∥
L2(P)

.

(3.42)

Since the series for Zβ is almost surely convergent in L2(P), for any ε > 0, there exists K0 ≥ 0 so that∥∥∥ ∞∑
k=K0+1

βkJk(t, y |s, x)
∥∥∥
L2(P)

< ε. (3.43)

Then, by the L2(P) isometry property for white noise, reversing the transformation (3.39), and dividing by
the N3k/2 Jacobian term, we get∥∥∥JN

k (t, y |s, x)
∥∥∥2
L2(P)

=

∫
Rk

∫
Rk

k∏
i=0

[pN (ti+1, yi+1 |ti, yi)]2
k∏

i=1

dtidyi

= N−k/2+1
∑

δk(⌊tN⌋|⌊sN⌋)

∫
∆k(tN+y

√
N |sN+x

√
N)

k∏
i=0

q2(ni+1 − ni, yi+1 − yi)

k∏
i=1

dyi (3.44)

(3.24)

≤ CkN−k/2+1 q
2(⌊tN⌋ − ⌊sN⌋|(t− s)N + (y − x)

√
N)((t− s)N + (y − x)

√
N)k(⌊tN⌋ − ⌊sN⌋)k/2

(2(⌊tN⌋ − ⌊sN⌋) + k)kΓ((k + 1)/2)

≤ Ck[pN (t, y |s, x)]2

Γ((k + 1)/2)
≤ Ck

Γ((k + 1)/2)

where the constant C changes from line to line and depends on the fixed parameters x, y and s < t, but not
on N . The last inequality follows from the pointwise convergence pN (t, y |s, x) → ρ(t − s, y − x) (Lemma
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3.8(i)). Then, using orthogonality of each chaos for different values of k, there exists K0 sufficiently large so
that for all N ≥ 1,∥∥∥ ∞∑

k=K0+1

(N1/4βN )kJN
k (t, y |s, x)

∥∥∥2
L2(P)

=

∞∑
k=K0+1

(N1/4βN )2k∥JN
k (t, y |s, x)∥2L2(P)

≤
∞∑

k=K0+1

Ck

Γ((k + 1)/2)
< ε.

(3.45)

Then, combining (3.42),(3.43), and (3.45), and recalling that N1/4βN → β, the proof is complete once we
show that, for each k ≥ 0,

lim sup
N→∞

∥∥∥JN
k (t, y |s, x)− Jk(t, y |s, x)

∥∥∥
L2(P)

= 0.

When k = 0, this is simply the convergence of the nonrandom quantity [pN (t, y |s, x)]2 to ρ2(t − s, y − x),
which is Lemma 3.8(i). Thus, we take k ≥ 1 in the sequel. We again use the L2(P) isometry property of
white noise. That is,∥∥∥JN

k (t, y |s, x)− Jk(t, y |s, x)
∥∥∥2
L2(P)

=

∫
Rk

∫
Rk

(
k∏

i=0

pN (ti+1, yi+1 |ti, yi)−
k∏

i=0

ρ(ti+1 − ti, yi+1 − yi)

)2 k∏
i=1

dtidyi.

(3.46)

Recall that
∏k

i=0 pN (ti+1, yi+1 |ti, yi) is supported on the set Ak(N, s, t, y, x), while
∏k

i=0 ρ(ti+1−ti |yi+1−yi)
is supported on the set where ti+1 > ti for all i. By Lemma 3.8(i), the integrand in (3.46) converges to 0
Lebesgue-a.e. Expand the square, drop the cross term, and use (3.13) of Lemma 3.4 to conclude that the
integrand in (3.46) is bounded by a k-dependent constant times

Nk+1

π(k+1)/2
e−2[(t−s)N+(y−x)

√
N ]22(⌊tN⌋−⌊sN⌋)

k∏
i=0

((ti+1 − ti)N + (yi+1 − yi)
√
N)2(⌊ti+1N⌋−⌊tiN⌋)

[2(⌊ti+1N⌋ − ⌊tiN⌋)]!
√

(⌊ti+1N⌋ − ⌊tiN⌋) ∨ 1
(3.47)

+

k∏
i=0

ρ2(ti+1 − ti, yi+1 − yi) (3.48)

A Stirling’s approximation computation nearly identical to that in the proof of Lemma 3.8(i) shows that the
term in (3.47) converges pointwise to the term in (3.48). By the generalized dominated convergence theorem,
it then suffices to show that the integral over Ak(N, s, t, y, x) of the term in (3.47) converges as N → ∞ to∫

Rk

∫
Rk

k∏
i=0

ρ2(ti+1 − ti, yi+1 − yi)

k∏
i=1

dtidyi

=

√
t− s

2kπk/2
ρ2(t− s, y − x)

∫
Rk

1Bk

(
k∏

i=1

dti
1√
ti

)
1√

t− s−
∑k

i=1 ti

<∞,

(3.49)

where

Bk = {ti > 0, 1 ≤ i ≤ k,

k∑
i=1

ti < t− s}.

The equality above comes as follows. To compute the integral on the left in (3.49), write the integrand as

1

2k+1π(k+1)/2

k∏
i=0

1√
ti+1 − ti

k∏
i=0

1√
π(ti+1 − ti)

e
− (yi+1−yi)

2

ti+1−ti ,

and recognize the second product as a product of transition probabilities for a diffusivity 1√
2
Brownian

motion. Hence,∫
Rk

∫
Rk

k∏
i=0

ρ2(ti+1 − ti, yi+1 − yi)

k∏
i=1

dtidyi =
e−(y−x)2/(t−s)

2k+1π(k+1)/2
√
π(t− s)

∫
Rk

k∏
i=0

1(ti+1 > ti)√
ti+1 − ti

k∏
i=1

dti,

and one readily verifies that this agrees with (3.49). Next, reversing the transformation (3.39) just as in
(3.44) (and dividing by the N3k/2 Jacobian term), the integral over Ak(N, s, t, y, x) of the term in (3.47) is



26 SEAN GROATHOUSE, FIRAS RASSOUL-AGHA, TIMO SEPPÄLÄINEN, AND EVAN SORENSEN

equal to

N−k/2+1

π(k+1)/2
e−2[(t−s)N+(y−x)

√
N ]22(⌊tN⌋−⌊sN⌋)

×
∑

δk(⌊tN⌋|⌊sN⌋)

∫
∆k(tN+y

√
N |sN+x

√
N)

k∏
i=0

(yi+1 − yi)
2(ni−ni−1)

[2(ni+1 − ni)]!
√
(ni+1 − ni) ∨ 1

k∏
i=1

dti

(3.14)
=

N−k/2

π(k+1)/2

22(⌊tN⌋−⌊sN⌋)[(⌊tN⌋ − ⌊sN⌋)!]2((t− s)N + (y − x)
√
N)k[pN (t, y |s, x)]2

[2(⌊tN⌋ − ⌊sN⌋) + k]!

×
∑

δk(⌊tN⌋|⌊sN⌋)

k∏
i=0

1√
(ni+1 − ni) ∨ 1

(next by Stirling’s approximation and pN → ρ)

∼ N−(k−1)/2
√
t− s

2kπk/2
ρ2(t− s, y − x)

∑
δk(⌊tN⌋|⌊sN⌋)

k∏
i=0

1√
(ni+1 − ni) ∨ 1

=
N−(k−1)/2

√
t− s

2kπk/2
ρ2(t− s, y − x)

∑
mi≥0∑k+1

i=1 mi=⌊tN⌋−⌊sN⌋

k+1∏
i=1

1√
mi ∨ 1

=
N−(k−1)/2

√
t− s

2kπk/2
ρ2(t− s, y − x)

×
∫
Rk

1(ti > 0, 1 ≤ i ≤ k, tk+1 = ⌊tN⌋ − ⌊sN⌋ −
k∑

i=1

⌊ti⌋)
k+1∏
i=1

1√
⌊ti⌋ ∨ 1

k∏
i=1

dti

=

√
t− s

2kπk/2
ρ2(t− s, y − x)

∫
Bk(N)

(
k∏

i=1

dti

√
N

⌊tiN⌋ ∨ 1

)√
N

(⌊tN⌋ − ⌊sN⌋ −
∑k

i=1⌊ti⌋) ∨ 1
,

where the last integration is over the set

Bk(N) =
{
ti > 0, 1 ≤ i ≤ k,

k∑
i=1

⌊tiN⌋ ≤ ⌊tN⌋ − ⌊sN⌋
}
.

Comparing to (3.49), the proof is complete once we show that

lim
N→∞

∫
Rk

1Bk(N)

(
k∏

i=1

dti

√
N

⌊tiN⌋ ∨ 1

)√
N

(⌊tN⌋ − ⌊sN⌋ −
∑k

i=1⌊ti⌋) ∨ 1
(3.50)

=

∫
Rk

1Bk

(
k∏

i=1

dti
1√
ti

)
1√

t− s−
∑k

i=1 ti

. (3.51)

The proof is technical and lengthy, and is handled in Lemma 3.11 at the end of the section. □

Lemma 3.10. Let f : Ω×R → R>0 be a jointly measurable function, independent of Zsd
βN

and Zβ such that,
for some α > 0,

E[f(x)] ≤ eα|x| ∀x ∈ R.

For a sequence βN with N1/4βN → β > 0 and ZN (t, y |s, x) defined as in (3.37), under the coupling of
Theorem 3.9, the following convergence holds for each choice of y ∈ R and t > 0:

lim
N→∞

E
[ ∣∣∣∣ ∫ t

√
N+y

−∞
f(x)ZN (t, y |0, x) dx −

∫
R
f(x)Zβ(t, y |0, x) dx

∣∣∣∣ ] = 0. (3.52)

In particular, as N → ∞, the following weak convergence holds for finite-dimensional distributions of these
processes indexed by y ∈ R:{∫ t

√
N+y

−∞
f(x)ZN (t, y |0, x) dx : y ∈ R

}
=⇒

{∫
f(x)Zβ(t, y |0, x) dx : y ∈ R

}
.



JOINTLY INVARIANT MEASURES FOR THE KARDAR-PARISI-ZHANG EQUATION 27

Proof. We can integrate over the whole space R in the left integral in (3.52) because ZN (t, y |0, x) is defined
to be zero for x > t

√
N + y. Then, by independence and the growth assumption on f , we have

E
[∫

R
f(x)|ZN (t, y |0, x)− Zβ(t, y |0, x)| dx

]
=

∫
R
eα|x|E[|ZN (t, y |0, x)− Zβ(t, y |0, x)|] dx. (3.53)

By Theorem 3.9, we have, for each t > 0 and x, y ∈ R,

E[|ZN (t, y |0, x)− Zβ(t, y |0, x)|] ≤ E[|ZN (t, y |0, x)− Zβ(t, y |0, x)|2]1/2
N→∞−→ 0.

A consequence of (3.1), (3.17), and the choice of scaling is that E[ZN (t, y |0, x)] = pN (t, y |0, x) and E[Zβ(t, y |0, x)] =
ρ(t, y − x). Thus, the integrand on the right-hand side of (3.53) is bounded above by

eα|x|(pN (t, y − x) + ρ(t, y − x)).

Lemma 3.8(i)–(ii) implies that pN (t, y − x) → ρ(t, y − x) pointwise and that∫
R
eα|x|(pN (t, y − x) + ρ(t, y − x)) dx

N→∞−→
∫
R
2eα|x|ρ(t, y − x) dx <∞,

so the generalized dominated convergence theorem completes the proof. The finite-dimensional weak conver-
gence holds because finite linear combinations also satisfy the limit in (3.52), so the Cramér-Wold theorem
completes the proof. □

We conclude this section by completing the unfinished business of the proof of Theorem 3.9.

Lemma 3.11. The convergence of (3.50) to (3.51) holds.

Proof. For this, we break the set Bk(N) into two disjoint pieces,

B1
k(N) =

{
ti >

k + 1

N
∀ 1 ≤ i ≤ k and t− s−

k∑
i=1

ti >
2

N

}
and B2

k(N) = Bk(N) \B1
k(N).

We use the dominated convergence theorem to show that the integral over B1
k(N) converges to the desired

limit, and we argue separately that the integral over B2
k(N) goes to 0. First, observe that, Lebesgue a.e.,

1B1
k(N)

(
k∏

i=1

√
N

⌊tiN⌋ ∨ 1

)√
N

(⌊tN⌋ − ⌊sN⌋ −
∑k

i=1⌊tiN⌋) ∨ 1
→ 1Bk

(
k∏

i=1

1√
ti

)
1√

t− s−
∑k

i=1 ti

. (3.54)

Observe that, since x− 1 ≤ ⌊x⌋ ≤ x,

⌊tiN⌋ ∨ 1

N
≥ ti −

1

N
and

⌊tN⌋ − ⌊sN⌋ −
∑k

i=1⌊tiN⌋
N

≥ t− s−
k∑

i=1

ti −
1

N
,

and thus, for N large,

ti >
k + 1

N
=⇒ ti >

2

N
=⇒ ti −

1

N
>
ti
2
=⇒

√
⌊tiN⌋ ∨ 1

N
≤
√

2

ti
(3.55)

and

t− s−
k∑

i=1

ti >
2

N
=⇒

√
N

(⌊tN⌋ − ⌊sN⌋ −
∑k

i=1⌊tiN⌋) ∨ 1
≤
√

2

t− s−
∑k

i=1 ti
. (3.56)

Therefore,

1B1
k(N)

(
k∏

i=1

√
N

⌊tiN⌋ ∨ 1

)√
N

(⌊tN⌋ − ⌊sN⌋ −
∑k

i=1⌊tiN⌋) ∨ 1
≤ 1Bk

(
k∏

i=1

√
2

ti

)√
2

t− s−
∑k

i=1 ti
,

and the right-hand side is integrable over Rk (it is a constant multiple of the Dirichlet density). The
dominated convergence theorem now implies the convergence of integrals of the functions in (3.54).

We turn to showing the integral over B2
k(N) converges to 0. Observe first that on the set Bk(N),

t− s−
k∑

i=1

ti ≥
⌊tN⌋ − ⌊sN⌋ −

∑k
i=1⌊tiN⌋

N
− k + 1

N
≥ −k + 1

N
. (3.57)

From the first inequality of (3.57), we observe that, for all N , sufficiently large (depending on t, s),

ti ≤
k + 1

N
∀ 1 ≤ i ≤ k =⇒ t− s−

k∑
i=1

ti ≥
⌊tN⌋ − ⌊sN⌋

N
− k(k + 1)

N
− k + 1

N
>

2

N
. (3.58)
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Next, we break up the set B2
k(N) into 2k+1 − 2 disjoint sets determined by whether ti ≤ k+1

N for 1 ≤ i ≤ k

and by whether t− s−
∑k

i=1 ti ≤
2
N . The minus 2 comes because B1

k(N) is one of these possible sets, and

(3.58) eliminates another possibility. Enumerate these sets as {B2,j
k }1≤j≤2k+1−2. We show that the integral

over each B2,j
k converges to 0. We do this by considering four separate cases for B2,j

k . To avoid messy
calculations, we use the shorthand notation

Ijk(N) :=

∫
Rk

1B2,j
k (N)

(
k∏

i=1

dti

√
N

⌊tiN⌋ ∨ 1

)√
N

(⌊tN⌋ − ⌊sN⌋ −
∑k

i=1⌊ti⌋) ∨ 1
.

Case 1: 2 or more of the ti for 1 ≤ i ≤ k satisfy ti ≤ k+1
N : Without loss of generality, we say that, for

some ℓ ≥ 2, ti ≤ k+1
N for 1 ≤ i ≤ ℓ, and ti >

k+1
N for ℓ+ 1 ≤ i ≤ k. For ℓ+ 1 ≤ i ≤ k, we use the bound in

(3.55). We also make use of the following bounds which hold in general:√
N

⌊tiN⌋ ∨ 1
≤

√
N and

√
N

(⌊tN⌋ − ⌊sN⌋ −
∑k

i=1⌊ti⌋) ∨ 1
≤

√
N. (3.59)

Observe also that on Bk(N), for 1 ≤ i ≤ k, and all N sufficiently large,

0 < ti ≤
⌊tN⌋ − ⌊sN⌋+ 1

N
≤ t− s+ 1.

Then,

Ijk(N) ≤
√
N

(∫ (k+1)/N

0

√
N dt

)ℓ(∫ t−s+1

0

2√
u
du

)k−ℓ

≤ C(k, ℓ)N−(ℓ−1)/2 → 0.

Case 2: Exactly one of the ti for 1 ≤ i ≤ k satisfies ti ≤ k+1
N and t− s−

∑k
i=1 ti >

2
N : Without loss

of generality, we will say t1 ≤ k+1
N . We start similarly to the last case, but instead use the bound (3.56) for

the last term. In the following, the constant C > 0 depends on t− s and k and may change from line to line.

Ijk(N) ≤
√
N

∫
Rk

dt1

(
k∏

i=2

dti

√
2

ti

) √
2

t− s−
∑k

i=1 ti
1
(
0 < t1 <

k + 1

N
, ti > 0, 2 ≤ i ≤ k,

k∑
i=1

ti < t− s
)

≤ C
√
N

∫
Rk

dt1

(
k∏

i=2

dti

√
1

ti

) √
1

1−
∑k

i=1 ti
1
(
0 < t1 <

k + 1

(t− s)N
, ti > 0, 2 ≤ i ≤ k,

k∑
i=1

ti < 1
)

≤ C
√
NP

(
0 < X1 <

k + 1

(t− s)N

)
.

where P is the distribution of a random vector (X1, . . . , Xk+1) that is distributed according to the Dirichlet
distribution with parameter vector (1, 12 , . . . ,

1
2 ). The next step follows from X1 having a Beta distribution

with parameters (1, k2 ). Thus, for constants C1, C2 > 0 changing from term to term,

√
NP

(
0 < X1 <

k + 1

(t− s)N

)
= C1

√
N

∫ C2/N

0

(1− t)k/2−1 dt = C1

√
N(1− (1− C2/N)k/2) ≤ CN−1/2.

Case 3: ti >
k+1
N for 1 ≤ i ≤ k and t− s−

∑k
i=1 ti ≤

2
N : We use (3.55) and (3.59) to get the estimate

Ijk(N) ≤ C
√
N

∫
Rk

1B2,j
k (N)

k∏
i=1

dti

√
1

ti

for a constant C depending on k. Next, consider the following change of variable:

t̃1 =
k + 1

N
+ t− s−

k∑
i=1

ti, t̃i = ti, 2 ≤ i ≤ k. (3.60)

On the set B2,j
k , the assumption t− s−

∑k
i=1 ti ≤

2
N and (3.57) imply that 0 ≤ t̃1 ≤ k+3

N . Furthermore,

t− s−
k∑

i=1

t̃i = t1 −
k + 1

N
> 0.

In summary, the transformed vector lies in the set

B̃2,j
k (N) :=

{
0 < t̃1 ≤ k + 3

N
, t̃i > 0, 2 ≤ i ≤ k,

k∑
i=1

t̃i < t− s
}
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Putting this all together,

Ijk(N) ≤ C
√
N

∫
Rk

1B̃2,j
k
dt̃1

(
k∏

i=2

dt̃i
1√
t̃i

)√
1

t− s−
∑k

i=1 t̃i +
k+1
N

≤ C
√
N

∫
Rk

1B̃2,j
k
dt̃1

(
k∏

i=2

dt̃i
1√
t̃i

)√
1

t− s−
∑k

i=1 t̃i
.

The asymptotics of the integral can now be reduced to the computation of a beta probability, just as in the
previous case.

Case 4: Exactly one of the ti for 1 ≤ i ≤ k satisfies ti ≤ k+1
N and t− s−

∑k
i=1 ti ≤

2
N . Without loss

of generality, we will say that t2 ≤ k+1
N . Then, using the bounds (3.59) for i = 1, 2 and the last factor, then

(3.55) for 3 ≤ i ≤ k,

Ijk(N) ≤ CN3/2

∫
Rk

1Bj,2
k (N)dt1dt2

k∏
i=3

dti√
ti
.

Making the same change of variables (3.60) as in the previous case,

Ijk(N) ≤ CN3/2

∫ (k+3)/N

0

dt1

∫ (k+1)/N

0

dt2

(∫ t−s+1

0

1√
u
du

)k−2

≤ CN−1/2 → 0,

where the last k− 2 integrals may be taken from 0 to t− s+1 for sufficiently large N by the same reasoning
as in Case 1. This concludes all cases. □

4. Proofs of the main theorems

4.1. Characterization and regularity of the Busemann process. We now turn to proving Theorem
1.4. To do this, we prove invariance of the KPZHβ for the SHE. Then, we use the uniqueness result from
[JRS22] (recorded as Theorem 3.3) to show that KPZHβ describes the Busemann process. Corollary 2.12
gives the existence of discontinuities. We first prove an intermediate invariance result for the O’Connell-Yor
polymer.

Proposition 4.1. Let β > 0, and let Fβ = {Fλ
β }λ∈R be the KPZHβ. Let B0, B1, . . . be a sequence of i.i.d.

Brownian motions, independent of Fβ and defining the partition function (3.8) for m,n ≥ 0. Then, for
0 < λ1 < · · · < λk, we have this distributional equality on C(R)k:{

Zsd
β (n, • |eβF

λi
β )

Zsd
β (n, 0|eβF

λi
β )

}
1≤i≤k

d
= {exp

(
βFλi

β ( •)
)
}1≤i≤k. (4.1)

Proof. We prove this by induction. For n = 0, λ > 0, and y ∈ R,

Zsd
β (0, y |eβF

λ
β ) =

∫ y

−∞
eβF

λ
β (x)Zβ(0, y |0, x) dx =

∫ y

−∞
exp
(
β(Fλ

β (x) +B0(x, y))
)
dx,

and therefore, for 0 < λ1 < · · · < λk,{
Zsd
β (0, y |eβF

λi
β )

Zsd
β (0, 0|eβF

λi
β )

: y ∈ R

}
1≤i≤k

=

{
eβB0(y)

∫ y

−∞ exp
(
β(Fλi

β (x)−B0(x))
)
dx∫ 0

−∞ exp
(
β(Fλi

β (x)−B0(x))
)
dx

: y ∈ R

}
1≤i≤k

(2.9)
=
{
exp
(
βDβ(B0, F

λi

β )(y)
)}

1≤i≤k
.

By Theorem 2.8, this has the same distribution as {exp(βFλi

β )}1≤i≤k.

Now, assume the invariance (4.1) holds for some n ≥ 0. Then,

Zsd
β (n+ 1, y | exp(βFλ

β )) =

∫ y

−∞
eβF

λ
β (x)Zsd

β (n+ 1, y |0, x) dx

(3.9)
=

∫ y

−∞

∫ y

x

exp
(
β(Fλ

β (x) +Bn+1(w, y))
)
Zsd
β (n,w|0, x) dw dx

=

∫ y

−∞

∫ w

−∞
exp
(
β(Fλ

β (x) +Bn+1(w, y))
)
Zsd
β (n,w|0, x) dx dw

(3.10)
=

∫ y

−∞
exp
(
βBn+1(w, y)

)
Zsd
β (n,w | exp(βFλ

β )) dw.



30 SEAN GROATHOUSE, FIRAS RASSOUL-AGHA, TIMO SEPPÄLÄINEN, AND EVAN SORENSEN

Then,

{
Zsd
β (n+ 1, y |eβF

λi
β )

Zsd
β (n+ 1, 0|eβF

λi
β )

: y ∈ R

}
1≤i≤k

=


eβBn+1(y)

∫ y

−∞

Zsd
β (n,w |eβF

λi
β )

Zsd
β (n,0|eβF

λi
β )

e−βBn+1(w) dw

∫ 0

−∞

Zsd
β (n,w |eβF

λi
β )

Zsd
β (n,0|eβF

λi
β )

e−βBn+1(w) dw

: y ∈ R


1≤i≤k

d
=

{
eβBn+1(y))

∫ y

−∞ eβF
λi
β (w)e−βBn+1(w) dw∫ 0

−∞ eβF
λi
β (w)e−βBn+1(w) dw

: y ∈ R

}
1≤i≤k

(2.11)
=

{
eβD(Bn+1,F

λi
β )
}
1≤i≤k

d
= {eβF

λi
β }1≤i≤k.

The first distributional equality is the induction assumption and the second one Theorem 2.8. □

Let the fundamental solution Zβ of SHE be defined as in (3.1), and recall the definition with initial data
(3.2).

Theorem 4.2. Let β > 0, and let Fβ be the KPZHβ, defined on the probability space (Ω,F ,P) and indepen-
dent of the SHE Green’s function Zβ. Let t > 0 and real λ1 < · · · < λk. Then,{

Zβ(t, • |0, eβF
λi
β )

Zβ(t, 0|0, eβF
λi
β )

}
1≤i≤k

d
= {exp(βFλi

β ( •))}1≤i≤k. (4.2)

Proof. For N ∈ N and 1 ≤ i ≤ k, set µN
i = (λi +

β
2 )N

−1/4 + β−1N1/4 and βN = N−1/4β. Let N be large

enough so that µN
i > 0 for i ∈ {1, . . . , k}. By (4.1), for every n ≥ 1,{

Zsd
βN

(n, • | exp(βNF
µN
i

βN
))

Zsd
βN

(n, 0| exp(βNF
µN
i

βN
))

}
1≤i≤k

d
= {exp(βNF

µN
i

βN
)}1≤i≤k.

Then, we have that{
exp(−(

√
N + β2/2)y)

∫ tN+y
√
N

−∞ exp(βNF
µN
i

βN
(x))Zsd

βN
(tN, tN + y

√
N |0, x) dx∫ tN

−∞ exp(βNF
µN
i

βN
(x))Zsd

βN
(tN, tN |0, x) dx

: y ∈ R

}
1≤i≤k

d
=
{
exp
(
βNF

µN
i

βN
(tN, tN + y

√
N)− (

√
N + β2/2)y

)
: y ∈ R

}
1≤i≤k

d
=
{
exp
(
βNF

µN
i

βN
(y
√
N)− (

√
N + β2/2)y

)
: y ∈ R

}
1≤i≤k

d
=
{
exp
(
βFλi

β (y)
)
: y ∈ R

}
1≤i≤k

.

(4.3)

where the second equality follows from shift invariance (Theorem 2.10(i)), and the third equality follows
from the scaling relations of Theorem 2.10(ii). For t > 0 and x, y ∈ R, set

ψN (t, x, y) =
√
N exp

(
−
(
N +

β2
√
N

2

)
t−

(√
N +

β2

2

)
(y − x)

)
so that, for our choice of βN , ψN (t, x, y) = ψN (0, t, x, y;βN ), where the latter was defined in (3.36). By a

change of variable from x to
√
Nx, the first line of (4.3) is equal to{√

N exp(−(
√
N + β2/2)y)

∫ t
√
N+y

−∞ exp(βNF
µN
i

βN
(x
√
N))Zsd

βN
(tN, tN + y

√
N |0, x

√
N) dx

√
N
∫ t

√
N

−∞ exp(βNF
µN
i

βN
(x
√
N))Zsd

βN
(tN, tN |0, x

√
N) dx

: y ∈ R

}
1≤i≤k

=

{∫ t
√
N+y

−∞ e
βNF

µN
i

βN
(x

√
N)−(

√
N+β2/2)x

ψN (t, x, y)Zsd
βN

(tN, tN + y
√
N |0, x

√
N) dx∫ t

√
N

−∞ e
βNF

µN
i

βN
(x

√
N)−(

√
N+β2/2)x

ψN (t, x, 0)Zsd
βN

(tN, tN |0, x
√
N) dx

: y ∈ R

}
1≤i≤k

d
=

{∫ t
√
N+y

−∞ exp(βFλi

β (x))ψN (t, x, y)Zsd
βN

(tN, tN + y
√
N |0, x

√
N) dx∫ t

√
N

−∞ exp(βFλi

β (x))ψN (t, x, 0)Zsd
βN

(tN, tN |0, x
√
N) dx

: y ∈ R

}
1≤i≤k

.

where the distributional equality follows from the scaling of Theorem 2.10(ii), similarly as is done in (4.3).
Lemma 3.10 implies that the above converges to, in the sense of finite dimensional distributions on C(R,Rk),
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to {∫
R exp(βFλi

β (x))Zβ(t, y |0, x) dx∫
R exp(βFλi

β (x))Zβ(t, 0|0, x) dx
: y ∈ R

}
1≤i≤k

=

{
Zβ(t, y |0, eβF

λi
β )

Zβ(t, 0|0, eβF
λi
β )

: y ∈ R

}
1≤i≤k

. (4.4)

In the application of the Lemma, f(x) = eβF
λi
β (x) for which the condition E[f(x)] ≤ eα|x| follows immediately.

Tightness follows because the distribution of the process does not depend on N by (4.3). Then, by comparing
(4.3) and (4.4), for each t ≥ 0,{

Zβ(t, • |0, eβF
λi
β )

Zβ(t, 0|0, eβF
λi
β )

}
1≤i≤k

d
= {exp(βFλi

β )}1≤i≤k. □

Corollary 4.3. Let β > 0. Then, the following distributional equality holds as processes in D(R, C(R)):

{b(βλ)+β (0, 0, 0, •)}λ∈R
d
= {βFλ

β }λ∈R.

Proof. The invariance of Theorem 4.2 and the uniqueness of Theorem 3.3 establish that for λ1 < · · · < λk,

{b(βλi)+
β (0, 0, 0, •)}1≤i≤k

d
= {βFλi

β }1≤i≤k.

The choice of factors of β comes by comparing drifts, using Proposition 2.9(i) and Theorem 3.2(i). The
equality of processes in the path space D(R, C(R)) follows by the uniqueness of Proposition 2.9(ii). □

Proof of Theorem 1.1. The description of the measures used in the theorem comes from Lemma 2.1 and
the definition of the finite-dimensional marginals of the KPZHβ in Proposition 2.9(ii). Uniqueness follows
directly from Corollary 4.3 and the uniqueness in Theorem 3.3. In handling the factor of β, we recall that
we define solutions to the KPZ equation as in (1.8) as

hZβ
(t, y |s, f) = 1

β
log

∫
R
eβf(x)Zβ(t, y|s, x) dx. □

Proof of Theorem 1.3. By Corollary 2.12, the KPZHβ is not almost surely continuous. Corollary 4.3 gives
the equality of the Busemann process and the KPZHβ . By Theorem 3.2(v), the set of discontinuities Λβ is
countable and dense in R with probability 1. The presence of the discontinuities for the process λ 7→ Fλ

β (x, y)

is Theorem 3.2(vii) (originally proved in [JRS22]). This completes the proof. □

Proof of Theorem 1.4. This is a direct consequence of Corollary 4.3 and Theorem 1.3. □

4.2. Limits as β ↗ ∞ and β ↘ 0.

Proof of Theorem 1.5. We first prove the limit as β ↗ ∞: Proposition 2.9(ii) implies that, for λ1 < · · · <
λk, (Fλ1

β , . . . , Fλk

β ) ∼ µλ1,...,λk

β . By Lemma 2.1, we can describe this distribution as (Fλ1

β , . . . , Fλk

β )
d
=

(η1β , . . . , η
k
β), where for independent Brownian motions Y 1, . . . , Y k with drifts λ1, . . . , λk, η

1
β = Y 1, and for

2 ≤ n ≤ k,

ηnβ (y) = Y 1(y) + β−1 log

∫
−∞<xn−1<···<x1<y

n−1∏
i=1

exp
[
β(Y i+1(xi)− Y i(xi))

]
dxi

− β−1 log

∫
−∞<xn−1<···<x1<0

n−1∏
i=1

exp
[
β(Y i+1(xi)− Y i(xi))

]
dxi.

By the convergence of the Lβ norm as β ↗ ∞, the zero-temperature limit β → ∞ converts the polymer free
energy into last-passage percolation. Therefore, on a single event of full probability, simultaneously for each
y ∈ R and n ∈ {2, . . . , k},

lim
β↗∞

ηnβ (y) = Y 1(y) + sup
−∞<xn−1≤···≤x1≤y

{ n−1∑
i=1

(Y i+1(xi)− Y i(xi))

}

− sup
−∞<xn−1≤···≤x1≤0

{ n−1∑
i=1

(Y i+1(xi)− Y i(xi))

}
.

Lemma B.3 and Definition B.1 imply that, in the sense of finite-dimensional distributions on C(Rk,R),

(η1β(2 •), . . . , ηkβ(2 •))
β↗∞
=⇒ (Gλ1 , . . . , Gλk).

Tightness holds because each component in the prelimit is a Brownian motion with a fixed drift.
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For each β, the process in Item (ii) has the same distribution as the process in Item (i) by the scaling
relations of Theorem 2.10(ii).

Now, we prove the convergence as β ↘ 0. By Theorem 1.2, as processes in y > 0,

Fλ2

β (y)− Fλ1

β (y)
d
= β−1 log(1 +Xλ,βYλ,β(y)) = log

(
1 +

β−1Xλ,βYλ,β
β−1

)β−1

, (4.5)

where λ := λ2 − λ1, Xλ,β has the Gamma distribution with shape λβ−1 and rate β−2, and

Yλ,β(y) =

∫ y

0

exp(
√
2βB(x) + λβx) dx (4.6)

where B is a standard Brownian motion. For fixed λ, y > 0, couple the Yλ,β(y) together with a single
Brownian motion B using (4.6). Note that for β < 1,∫ y

0

exp(
√
2βB(x) + λβx) dx ≤

∫ y

0

exp(
√
2|B(x)|+ λx) dx,

and the right-hand side is finite almost surely. By dominated convergence, Yλ,β(y) converges almost surely
to y as β ↘ 0. Next, the random variable Xλ,β/β has mean λ and variance λβ, so for any ε > 0, by
Chebyshev’s inequality,

lim
β↘0

P
(
|β−1Xλ,β − λ| > ε

)
= 0. (4.7)

Hence, there exists a coupling of copies ofXλ,β (which we may keep independent of Yλ,β(y)) so thatXλ,β → λ
almost surely as β ↘ 0. In the product space, using (4.5), β−1 log(1 +Xλ,βYλ,β(y)) converges almost surely
to λy. Therefore, for each ε > 0 and y > 0,

lim sup
β↘0

P(|Fλ2

β (y)− Fλ1

β (y)− (λ2 − λ1)y| > ε) = 0.

The result also holds for y < 0 by Theorem 2.10(ii) because {Fλ
β (y)}λ∈R = {−Fλ

β (y, 0)}λ∈R
d
= {−Fλ

β (0,−y)}λ∈R.

Now, let λ1 < . . . < λk and {yi,j : 2 ≤ i ≤ k, 1 ≤ j ≤ Ji} be a finite collection of points in R. By a simple
union bound, for each ε > 0, we have

lim sup
β↘0

P
(

sup
2≤i≤k,1≤j≤Ji

|Fλi

β (yi,j)− Fλ1

β (yi,j)− (λi − λ1)yi,j | > ε
)
= 0.

Since the marginal distribution of Fλ1

β does not change as β ↘ 0 (a Brownian motion with drift λ1), it
follows by Slutsky’s Theorem that, in the sense of finite-dimensional distributions,

(Fλ1

β (2 •), . . . , Fλk

β (2 •))
β↘0
=⇒ (B(2 •) + 2λ1 • , B(2 •) + 2λ2 • , . . . , B(2 •) + 2λk •),

where B is a standard Brownian motion. Convergence on C(Rk) follows because the marginal distribution
of each component on the left-hand side is a Brownian motion with drift λi and therefore is tight. □

Proof of Corollary 1.6. Given Theorem 1.5, we follow a similar procedure to the proof of [Wu23, Corollary
1.9]. The only needed change is that the joint distribution of the initial data changes with T . LetHβ = logZβ .
Recalling the definition (1.8) of solutions to the KPZ equation, we observe that

21/3T−1/3

[
βhZβ

(Tt
β4
,
21/3T 2/3y

β2
;
Ts

β4
, Fα+21/3T−1/3λi

β ( •)− α •

)
+
T (t− s)

24
− 2

3
log(

√
2T )

]

= 21/3T−1/3 log

∫
R

1

21/3T 2/3
exp

(
βFα+β21/3T−1/3λi

β (x)− βαx+Hβ

(Tt
β4
,
21/3T 2/3y

β2

∣∣∣Ts
β4
, x
)
+
T (t− s)

24

)
dx

= 21/3T−1/3 log

∫
R
β−2 exp

(
βFα+β21/3T−1/3λi

β

(21/3T 2/3

β2
x
)
− 21/3T 2/3αx

β

+Hβ

(Tt
β4
,
21/3T 2/3y

β2

∣∣∣Ts
β4
,
21/3T 2/3x

β2

)
+
T (t− s)

24

)
dx

d
= 21/3T−1/3 log

∫
R
exp

(
βFα+β21/3T−1/3λi

β

(21/3T 2/3

β2
x
)
− 21/3T 2/3αx

β

+H1

(
Tt, 21/3T 2/3y

∣∣∣Ts, 21/3T 2/3x
)
+
T (t− s)

24

)
dx
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= 21/3T−1/3 log

∫
R
exp

(
2−1/3T 1/3

[
β21/3T−1/3Fα+β21/3T−1/3λi

β

(21/3T 2/3

β2
x
)
− 22/3T 1/3αx

β

+ 21/3T−1/3H1

(
Tt, 21/3T 2/3y

∣∣∣Ts, 21/3T 2/3x
)
+

21/3T 2/3(t− s)

24

])
dx

= 21/3T−1/3 log

∫
R
exp
(
2−1/3T 1/3[F i

T (x) +HT (t, y |s, x)]
)
dx

where the distributional equality is theorem 3.1(iii), and we define

FT
i (x) = β21/3T−1/3Fα+β21/3T−1/3λi

β

(21/3T 2/3

β2
x
)
− 22/3T 1/3αx

β

HT (t, y|s, x) = 21/3T−1/3H1

(
Tt, 21/3T 2/3y

∣∣∣Ts, 21/3T 2/3x
)
+

21/3T 2/3(t− s)

24

hTi (t, y) = 21/3T−1/3 log

∫
R
exp
(
2−1/3T 1/3[F i

T (x) +HT (t, y |s, x)]
)
dx.

Note that {FT
i }1≤i≤k and HT := {HT (t, y|s, x) : t > s, x, y ∈ R} are independent by assumption. We

observe that F i
T is a Brownian motion with diffusion

√
2 and drift 2λi; hence its law does not depend

on T . By [Wu23, Theorem 1.6], HT converges to L in C(R4
↑,R). By [QS23, Vir20], for each i, hTi :=

{hTi (t, x;FT
i ) : t > s, x ∈ R} converges in distribution on C(R>s,R) to the KPZ fixed point hL(t, y; s,G

λi) :=
supx∈R{Gλi(x) + L(x, s; y, t)}. Hence, this sequence is tight in C(R>s × R,Rk). All together, the sequence(

{F i
T }1≤i≤k,HT , {hTi }1≤i≤k

)
(4.8)

is tight on C(R,Rk)× C(R4
↑,R)× C(R>s × R,R). Let

({Gλi}1≤i≤k,L, {gi}1≤i≤k) (4.9)

be a subsequential limit. We may write the first component {Gλi}1≤i≤k and the second as L because we
know the SH and DL are, respectively, the law of the limits of the first and second component. by the

weak convergence of hTi , we also know that, marginally, for each i, gi
d
= hL( • , • ; s,Gλi). By Skorokhod

representation ([Dud89, Thm. 11.7.2], [EK86, Thm. 3.1.8]), there exists a coupling of (4.8) and (4.9) where,
as T → ∞, convergence holds in the sense of uniform convergence on compact sets. Now, we follow the
procedure of [Wu23]. We observe that for fixed t > s and y ∈ R, with probability one,

hL(t, y;G
λi) = sup

x∈R
{Gλi(x) + L(x, 0; y, t)}

= lim
M→∞

sup
|x|≤M

{Gλi(x) + L(x, 0; y, t)}

= lim
M→∞

lim
T→∞

21/3T−1/3 log

∫ M

−M

exp
(
2−1/3T 1/3[F i

T (x) +HT (t, y |s, x)]
)
dx

≤ lim
M→∞

lim
T→∞

21/3T−1/3 log

∫
R
exp
(
2−1/3T 1/3[F i

T (x) +HT (t, y |s, x)]
)
dx = gi(t, y).

Hence, since we already established hL(t, y;G
λi)

d
= gi(t, y), there exists an event of probability one on which,

for 1 ≤ i ≤ k, all (t, y) ∈ Q>s×Q, hL(t, y;G
λi)

d
= gi(t, y). Equality on R>s×R follows on this full probability

event by continuity.
We next turn to the convergence of the Busemann process. It suffices to show that, for each r ∈ R, the

following distributional convergence holds, in the sense of uniform convergence on compact sets.{
21/3T−1/3

[
bβ2

1/3T−1/3λi

β

(Ts
β4
,
21/3T 2/3x

β2
;
Tt

β4
,
21/3T 2/3y

β2

)
+
T (t− s)

24

]
: (x, s; y, t) ∈ R4

r

}
T→∞
=⇒ {Bλi(y,−t;x,−s) : (x, s; y, t) ∈ R4

r}1≤i≤k,

where we use the shorthand notation R4
r = R × R>r × R × R>r. By the dynamic programming principle

and additivity of the Busemann process (Theorem 3.2(viii),(x)) as well as the relation between Busemann
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process and the KPZH (Corollary 4.3), for s, t > r,

b
(βλ)+
β (s, x, t, y) = b

(βλ)+
β (r, 0, t, y)− b

(βλ)+
β (r, 0, s, x)

= log

∫
R
eb

(βλ)+
β (r,0,r,z)Zβ(t, y |r, z) dz − log

∫
R
eb

(βλ)+
β (r,0,r,z)Zβ(s, x|r, z) dz

d
= βhZβ

(t, y |r, Fλ
β )− βhZβ

(s, x; |r, Fλ
β ),

(4.10)

where the distributional equality holds as processes in λ× (x, s; y, t) ∈ R× R4
r.

Similarly, by the additivity and evolution of the Busemann process from Theorem B.4, along with the

distributional equalities L(x, s; y, t) d
= L(y,−t;x,−s) (Lemma B.5) and the distributional equality between

Busemann functions and the SH (Theorem B.4(v)), for s, t > r,

Bλ+(y,−t;x,−s) = Bλ+(y,−t; 0,−r)− Bλ+(x,−s; 0,−r)

= sup
z∈R

{L(y,−t; z,−r) + Bλ+(z,−r; 0,−r)}

− sup
z∈R

{L(x,−s; z,−r) + Bλ+(z,−r; 0,−r)}

d
= sup

z∈R
{Gλ(z) + L(z, r; y, t)} − sup

z∈R
{Gλ(z) + L(z, r;x, s)}

= hL(t, y |r,Gλ)− hL(s, x|r,Gλ),

(4.11)

where, again, the distributional equality holds as processes in λ × (x, s; y, t) ∈ R × R4
r. Here, we have also

used the independence of the Busemann process at time −r and the DL for times less than −r (Theorem
B.4(iv)). Comparing (4.10) to (4.11) and using the first part of the theorem in the α = 0 case, we get{

21/3T−1/3
[
bβ2

1/3T−1/3λi

β

(Ts
β4
,
21/3T 2/3x

β2
,
T t

β4
,
21/3T 2/3y

β2

)
+
T (t− s)

24

]
: (x, s; y, t) ∈ R4

r

}
1≤i≤k

d
=

{
21/3T−1/3

[
hZβ

(Tt
β4
,
21/3T 2/3x

β2
| Tr
β4
, βF 21/3T−1/3λi

β

)
+
T (t− r)

24
− 2

3
log(

√
2T )

− hZβ

(Ts
β4
,
21/3T 2/3y

β2
| Tr
β4
, βF 21/3T−1/3λi

β

)
− T (s− r)

24
+

2

3
log(

√
2T )

]
: (x, s; y, t) ∈ R4

r

}
1≤i≤k

T→∞
=⇒

{
hL(t, y |r,Gλi)− hL(s, x|r,Gλi) : (x, s; y, t) ∈ R4

r

}
1≤i≤k

d
= {Bλi(y,−t;x,−s) : (x, s; y, t) ∈ R4

r}1≤i≤k. □

Appendix A. Queues and the O’Connell-Yor polymer

Recall the transformations Qβ , Dβ , Rβ defined in (2.2). We state one of the main theorems from [OY01].
Their theorem is stated for β = 1. The statement for general β > 0 follows from Lemma 2.6 since

Dβ(B, Y ) = TβD1(T
2
β−1(B, Y )), and Rβ(B, Y ) = TβR1(T

2
β−1(B, Y )).

Theorem A.1. [OY01, Theorem 5] Let B and Y be independent two-sided Brownian motions with drift so
that the drift of Y is strictly larger than the drift of B. Let β > 0, and let Qβ , Dβ , Rβ be defined as in (2.2).

Then, (Rβ(B, Y ), Dβ(B, Y ))
d
= (B, Y ), and for each y ∈ R, {Dβ(Y,B)(x), Rβ(Y,B)(x) : −∞ < x ≤ y} is

independent of {Qβ(x) : x ≥ y}.

Lemma A.2. Let B be a standard two-sided Brownian motion, and let β, λ > 0. Then,(∫ 0

−∞
e
√
2βB(x)+λβx

)−1

∼ Gamma(λβ−1, β−2).

Proof. Theorem 4.4 in [Duf90] (also Equation 1.8.4(1) on page 612 4 of [BS02]) states that for γ, σ > 0,(∫ ∞

0

e−σB(x)−γx dx
)−1 ∼ Gamma(2γσ−2, 2σ−2)
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(as a caution, we note that [Duf90] parameterizes the Gamma distribution by shape and scale, so the result
is stated there with scale σ2/2). Observe that∫ 0

−∞
e
√
2βB(x)+λβx =

∫ ∞

0

e
√
2βB(−x)−λβx d

=

∫ ∞

0

e−
√
2βB(x)−λβx,

and so the result follows upon substituting σ =
√
2β and γ = λβ. □

The remainder of this appendix contains the omitted proofs from Section 2.1, along with some additional
lemmas. These follow similarly as for zero temperature in [FS20] and [SS23a], with the exception of the first
lemma below.

Lemma A.3. Let β > 0 and let Y 2, Y 1, B1 be so that the following are well-defined. Set B2 = Rβ(Y
1, B1).

Then,

Dβ(Dβ(B
1, Y 1), Dβ(B

2, Y 2)) = D
(3)
β (B1, Y 1, Y 2). (A.1)

Proof. Written out fully, the statement reads

Dβ(Dβ(B
1, Y 1), Dβ(Rβ(B

1, Y 1), Y 2)) = D
(3)
β (B1, Y 1, Y 2).

By applying Lemma 2.6 to each of the operations D and R, this is equivalent to

TβD1(D1(Tβ−1B1, Tβ−1Y 1), D1(R1(Tβ−1B1, Tβ−1Y 1), Tβ−1Y 2)) = TβD
(3)
1 (Tβ−1B1, Tβ−1Y 1, Tβ−1Y 2).

Hence, it suffices to prove the β = 1 case. For this, we drop the subscript in the mappings D,R, and D(3).
We make repeated use of Lemma 2.1. By (2.9),

exp
(
D(3)(B1, Y 1, Y 2)(y)

)
=
eB1(y)

∫
−∞<w<x<y

exp
(
Y 1(x)−B1(x) + Y 2(w)− Y 1(w)

)
dx dw∫

−∞<w<x<0
exp
(
Y 1(x)−B1(x) + Y 2(w)− Y 1(w)

)
dx dw

. (A.2)

We turn to the left-hand side of (A.1) for β = 1. We repeatedly use the n = 2 case of Lemma 2.1 as follows:

exp
[
D(D(B1, Y 1), D(B2, Y 2))(y)

]
=
eD(B1,Y 1)(y)

∫ y

−∞ eD(B2,Y 2)(x)−D(B1,Y 1)(x) dx∫ 0

−∞ eD(B2,Y 2)(x)−D(B1,Y 1)(x) dx

=
eB

1(y)
∫ y

−∞ eY
1(x)−B1(x) dx∫ 0

−∞ eY 1(x)−B1(x) dx
· Iy
I0
,

(A.3)

where

Iy =

∫ y

−∞
eB

2(x)−B1(x)

∫ x

−∞ eY
2(w)−B2(w) dw

∫ 0

−∞ eY
1(w)−B1(w) dw∫ 0

−∞ eY 2(w)−B2(w) dw
∫ x

−∞ eY 1(w)−B1(w) dw
dx

=

∫ y

−∞
eY

1(x)−B1(x)

(∫ 0

−∞ eY
1(w)−B1(w) dw

)2(∫ x

−∞ eY 1(w)−B1(w) dw
)2
∫ x

−∞ eY
2(w)−B2(w) dw∫ 0

−∞ eY 2(w)−B2(w) dw
dx

=

∫ y

−∞
eY

1(x)−B1(x)

(∫ 0

−∞ eY
1(w)−B1(w) dw

)2(∫ x

−∞ eY 1(w)−B1(w) dw
)2
∫ x

−∞ eY
2(w)−Y 1(w)

∫ w

−∞ eY
1(z)−B1(z) dz dw∫ 0

−∞ eY 2(w)−Y 1(w)
∫ w

−∞ eY 1(z)−B1(z) dz dw
dx.

Therefore, Iy/I0 = I ′y/I
′
0, where

I ′y =

∫ y

−∞
eY

1(x)−B1(x)

∫ x

−∞
∫ w

−∞ exp
(
Y 2(w)− Y 1(w) + Y 1(z)−B1(z)

)
dz dw(∫ x

−∞ eY 1(w)−B1(w) dw
)2 dx. (A.4)

Comparing (A.2), (A.3), and (A.4), to prove (A.1), it suffices to show that for each y ∈ R,∫ y

−∞
eY

1(x)−B1(x) dx

∫ y

−∞
eY

1(x)−B1(x)

∫ x

−∞
∫ w

−∞ eY
2(w)−Y 1(w)+Y 1(z)−B1(z) dz dw(∫ x

−∞ eY 1(w)−B1(w) dw
)2 dx

=

∫
−∞<w<x<y

eY
1(x)−B1(x)+Y 2(w)−Y 1(w) dx dw.

(A.5)

On the left-hand side of (A.5), integrate by parts in the second dx integral over (−∞, y] with

dv = eY
2(x)−B1(x)

(∫ x

−∞
eY

1(w)−B1(w) dw
)−2

, u =

∫ x

−∞

∫ w

−∞
eY

2(w)−Y 1(w)+Y 1(z)−B1(z) dz dw.



36 SEAN GROATHOUSE, FIRAS RASSOUL-AGHA, TIMO SEPPÄLÄINEN, AND EVAN SORENSEN

Then the left-hand side of (A.5) equals∫ y

−∞
eY

1(x)−B1(x) dx ·

[
−
(∫ x

−∞
eY

1(w)−B1(w) dw
)−1

∫ x

−∞

∫ w

−∞
eY

2(w)−Y 1(w)+Y 1(z)−B1(z) dz dw

∣∣∣∣∣
y

x=−∞

+

∫ y

−∞

(∫ x

−∞
eY

1(x)−B1(x) dx
)−1

∫ x

−∞
eY

2(x)−Y 1(x)+Y 1(z)−B1(z) dz dx

]

=

∫ y

−∞
eY

1(x)−B1(x) dx

∫ y

−∞
eY

2(x)−Y 1(x) dx−
∫ y

−∞

∫ w

−∞
eY

2(w)−Y 1(w)+Y 1(z)−B1(z) dz dw

=

∫
(x,w)∈(−∞,y)2

eY
1(x)−B1(x)+Y 2(w)−Y 1(w) dx dw

−
∫
−∞<x<w<y

eY
1(x)−B1(x)+Y 2(w)−Y 1(w) dx dw.

One readily sees that the last right-hand side above equals the right-hand side of (A.5). □

Lemma A.4. Let n ≥ 2, and let (B1, Y 1, . . . , Y n) be such that the following operations are well-defined.
Let β > 0. For 2 ≤ j ≤ n, define Bj = Rβ(B

j−1, Y j−1). Then, for 1 ≤ k ≤ n− 1,

D
(n+1)
β (B1, Y 1, . . . , Y n) = D

(k+1)
β

(
Dβ(B

1, Y 1), . . . , Dβ(B
k, Y k), D

(n−k+1)
β (Bk+1, Y k+1, . . . , Y n)

)
. (A.6)

We note that the case k = n− 1 of Lemma A.4 gives us

D
(n+1)
β (B1, Y 1, . . . , Y n) = D

(n)
β (Dβ(B

1, Y 1), . . . , Dβ(B
n, Y n)). (A.7)

Proof of Lemma A.4. Equation (A.1) gives us the statement for n = 2. Assume, by induction, that the
statement is true for some n− 1 ≥ 2. We will show the statement is also true for n. We first prove the case
k = 1. Using (A.1) in the second equality below,

D
(2)
β (Dβ(B

1, Y 1), D
(n)
β (B2, Y 2, . . . , Y n))

= Dβ(Dβ(B
1, Y 1), Dβ(B

2, D
(n−1)
β (Y 2, . . . , Y n)))

= Dβ(B
1, Dβ(Y

1, D
(n−1)
β (Y 2, . . . , Y n)))

= Dβ(B
1, D

(n)
β (Y 1, . . . , Y n))

= D
(n+1)
β (B1, Y 1, . . . , Y n).

Now, let 2 ≤ k ≤ n− 1. Then, by definition of D(k+1) and the induction assumption,

D
(k+1)
β (Dβ(B

1, Y 1), . . . , Dβ(B
k, Y k), D

(n−k+1)
β (Bk+1, Y k+1, . . . , Y n))

=Dβ(Dβ(B
1, Y 1), D

(k)
β (Dβ(B

2, Y 2), . . . , Dβ(B
k, Y k), D

(n−k+1)
β (Bk+1, Y k+1, , . . . , Y n)))

=Dβ(Dβ(B
1, Y 1), D

(n)
β (B2, Y 2, . . . , Y n)) = D

(2)
β (Dβ(B

1, Y 1), D
(n)
β (B2, Y 2, . . . , Y n)).

The lemma now follows from the k = 1 case. □

The multiline process is a discrete-time Markov chain on the state space Y(a,∞)
n of (2.5), where a ∈ R.

The analogous process is defined in a discrete setting for particle systems in [FM07], for lattice last-passage
percolation in [FS20], and in zero temperature BLPP in [SS23b]. Starting at time m − 1 in state Ym−1 =

Y = (Y 1, Y 2, . . . , Y n) ∈ Y(a,∞)
n the time m state is given as

Ym = Y = (Y
1
, Y

2
, . . . , Y

n
) ∈ Yn

is defined as follows. Let B ∈ Cpin(R) satisfy

lim
x→−∞

x−1B(x) = a.

First, set B1 = B, and Y
1
= Dβ(Y

1, B1). Then, iteratively for i = 2, 3, . . . , n:

Bi = Rβ(B
i−1, Y i−1), and Y

i
= Dβ(B

i, Y i). (A.8)

Lemma A.5. The mapping (A.8) is well-defined on the state space Y(a,∞)
n .
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Proof. This follows from Lemma 2.2: By induction, each Bi satisfies

lim
x→−∞

Bi(x)

x
= a.

Therefore, since Y ∈ Y(a,∞)
n , for 1 ≤ i ≤ n,

lim sup
x→∞

Y i(x)−Bi(x)

x
> 0. □

Theorem A.6. At each step of the evolution of the multiline process, take the driving function B to be an
independent standard, two-sided Brownian motion with drift a ∈ R. For each λ̄ = (λ1, . . . , λn) ∈ Rn

>0 with

a < λ1 < · · · < λn, the measure νλ̄ on Y(a,∞)
n is invariant for the multiline process (A.8)

Proof. Assuming that Y = (Y 1, . . . , Y n) ∈ YR>0
n are i.i.d. Brownian motions with drifts λ1, . . . , λn, we must

show that the same is true for Y
1
, . . . , Y

n
. By Theorem A.1, Y

1
= Dβ(B

1, Y 1) is a two-sided Brownian
motion with drift λ1, independent of B2 = Rβ(B

1, Y 1), which is a two-sided Brownian motion with drift

a. Hence, the random paths Y
1
, B2, Y 2, . . . , Y n are mutually independent. We iterate this process as

follows: Assume, for some 2 ≤ k ≤ n− 1, that the random paths Y
1
, . . . , Y

k−1
, Bk, Y k, . . . , Y n are mutually

independent, where for 1 ≤ i ≤ k− 1, Y
i
is a Brownian motion with drift λi. Applying Theorem A.1 again,

Y
k
= Dβ(B

k, Y k) is a two-sided Brownian motion with drift λk, independent of B
k+1 = Rβ(B

k, Y k), which

is a two-sided Brownian motion with zero drift. Since (Y
k
, Bk+1) is a function of (Bk, Y k), it follows that

Y
1
, . . . , Y

k
, Bk+1, Y k+1, . . . , Zn are mutually independent, completing the proof. □

Proof of Lemma 2.7 (Consistency of the measures). It suffices to show that if (η1, . . . , ηn) has distribution

µλ1,...,λn

β , then

(η1, . . . , ηi−1, ηi+1, . . . , ηn) ∼ µ
λ1,...,λi−1,λi+1,...,λn

β .

Let Y = (Y 1, . . . , Y n) ∼ νλ̄ and η = D
(n)
β (Y) so η = (η1, . . . , ηn) ∼ µλ̄

β .

For i = n, the statement is immediate from the definition of the map D
(n)
β . Next, we show the case i = 1.

For 2 ≤ j ≤ n, by (A.7), we may write

D
(j)
β (Y 1, . . . , Y j) = D

(j−1)
β (Dβ(Ỹ

1, Y 2), Dβ(Ỹ
2, Y 3), . . . , Dβ(Ỹ

j−1, Y j)),

where Ỹ 1 = Y 1, and for i > 1, Ỹ i = R(Ỹ i−1, Y i). Then (η2, . . . , ηn) = D
(n−1)
β (Ŷ 2, . . . , Ŷ n), where Ŷ i =

Dβ(Ỹ
i−1, Y i) for 2 ≤ i ≤ n. By Theorem A.6, Ŷ 2, . . . , Ŷ n are independent, completing the proof in the case

i = 1. Using the definition of D
(j)
β (2.3), for i < j ≤ n,

D
(j)
β (Y 1, . . . , Y j) = Dβ(Dβ(Y

1, Dβ(Y2, · · ·Dβ(Y
i−1, D

(j−i+1)
β (Y i, . . . , Y j)) · · · ). (A.9)

We apply (A.7), just as in the i = 1 case, to obtain

D
(j−i+1)
β (Y i, . . . , Y j)

= D
(j−i)
β (Dβ(Ỹ

i, Y i+1), . . . , Dβ(Ỹ
j−1, Y j)) = D

(j−i)
β (Ŷ i+1, . . . , Ŷ j), (A.10)

where, Ỹ i = Y i, and for j > i, Ỹ j = R(Ỹ j−1, Y j). For j > i, we define Ŷ j = Dβ(Ỹ
j−1, Y j). Then, by (A.9)

and (A.10), when i < j ≤ n,

D
(j)
β (Y 1, . . . , Y j) = D

(j−1)
β (Y 1, . . . , Y i−1, Ŷ i+1, . . . , Ŷ j),

and thus,

(η1, . . . , ηi−1, ηi+1, . . . , ηn) = D
(n−1)
β (Y 1, . . . , Y i−1, Ŷ i+1, . . . , Ŷ n). (A.11)

By Theorem A.6, Ŷ i+1, . . . , Ŷ n are independent Brownian motions with drifts λi+1, . . . , λn. These random

paths are functions of Y i, . . . , Y n,so the paths functions Y 1, . . . , Y i−1, Ŷ i+1, . . . , Ŷ j are also independent.
Thus, by (A.11),

(η1, . . . , ηi−1, ηi+1, . . . , ηn) ∼ µ(λ1,...,λi−1,λi+1,...,λn). □

Proof of Theorem 2.8. Let Y ∼ νλ̄. Let η = D
(n)
β (Y) so that η ∼ µλ̄

β . Then, for Brownian motion B, let SB
β

denote the mapping of a single evolution step of Y according to the multiline process (A.8) and T B
β denote
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the mapping of a single evolution step of η according to the Markov chain (2.16). By definition of D
(k)
β and

Equation (A.7),

[T ,B
β (η)]k =Dβ(η

k, B) = Dβ(B
1, D

(k)
β (Y 1, . . . , Y k)) = D

(k+1)
β (B1, Y 1, . . . , Y k)

=D
(k)
β (Dβ(B

1, Y 1), Dβ(B
2, Y 2), . . . , Dβ(B

k, Y k))

=D
(k)
β ([SB

β (Y)]1, [SB
β (Y)]2, . . . , [SB

β (Y)]k) = [D
(n)
β (SB

β (Y))]k.

Therefore, T B
β (η) = D

(n)
β (SB

β (Z)), and because η = D(n)(Z), we have

T B(D(n)(Y)) = D(n)(SB(Y)).

Theorem A.6 implies that SB
β (Y)

d
= Y ∼ νλ̄. Therefore, T B

β (η)
d
= D

(n)
β (Y) ∼ µλ̄. □

Appendix B. Stationary horizon and the directed landscape

The stationary horizon (SH) was first introduced by Busani in [Bus21] and was later studied by Busani
and the third and fourth authors in [SS23b, BSS22b, BSS22a]. We refer to those articles for a more complete
description. Analogously to how the KPZHβ describes the jointly invariant measures for the O’Connell-Yor
polymer and the KPZ equation, it was proved in [SS23b, BSS22b] that the SH describes the jointly invariant
measures for Brownian last-passage percolation and the KPZ fixed point. Jointly invariant measures for the
KPZ fixed point are made precise through the coupling with the directed landscape. See [MQR21, DOV22,
QS23, Vir20, DV21, Wu23] for more on the KPZ fixed point and directed landscape. We briefly describe the
needed definition and facts about the SH, DL, and the KPZ fixed point here.

The directed landscape (DL) is a random continuous function L : R4
↑ → R. By convention, we switch the

ordering of space-time coordinates to L(x, s; y, t) (in contrast to the ordering in Zβ(t, y |s, x)). Given the
DL, we can construct the KPZ fixed point started from time s as

hL(t, y|s, h) = sup
x∈R

{h(x) + L(x, s; y, t)}, t > s, y ∈ R.

SH is constructed with the zero-temperature counterparts of the mappings of Section 2.1. We denote
these with the same letters but without the β subscript. For functions that satisfy Y (0) = B(0) = 0 and
lim supx→−∞ Y (x)−B(x) = −∞, define

D(B, Y )(y) = B(y) + sup
−∞<x≤y

{Y (x)−B(x)} − sup
−∞<x≤0

{Y (x)−B(x)}. (B.1)

As in (2.3), iterate the mapping D as follows:

D(1)(Y ) = Y, and D(n)(Y 1, Y 2, . . . , Y n) = D(Y 1, D(n−1)(Y 2, . . . , Y n)) for n ≥ 2.

A mapping D(n) : YR
n → XR

n is defined as follows: the image η = (η1, . . . , ηn) = D(n)(Z) ∈ Xn is defined for
Y = (Y 1, . . . , Y n) ∈ YR

n by

ηi = D(i)(Y 1, . . . , Y i) for 1 ≤ i ≤ n.

For λ̄ = (λ1 < · · · < λn), we define the measure µλ1,...,λn (again without the β subscript) as

µλ̄ = νλ̄ ◦ (D(n))−1.

Definition B.1. The stationary horizon {Gµ}µ∈R is a process with paths in D(R, C(R)). Its law is char-
acterized as follows: For real numbers λ̄ = (λ1 < · · · < λk), the k-tuple (Gλ1 , . . . , Gλk) ∈ C(R)k has

distribution µλ̄ ◦ (T̃ k
2 )

−1, where T̃2 is the mapping C(R)k → C(R)k defined by

T̃ k
2 (f1, . . . , fk)(x) = (f1(2x), . . . , fk(2x)).

In this definition, we multiply by a factor of 2 so that the marginal distributions are Brownian motions
with diffusivity

√
2. This is the correct parameterization for invariance under the KPZ fixed point.

Lemma B.2 ([Bus21], Theorem 1.2; [SS23b], Theorems 3.6(iii), 5.4). For c > 0 and ν ∈ R,

{cGc(µ+ν)(c
−2x)− 2νx : x ∈ R}µ∈R

d
= {Gµ(x) : x ∈ R}µ∈R.

Lemma B.3 ([SS23b], Lemma 7.2, and see Appendix D in [SS23a]). For Y = (Y 1, . . . , Y n), define

AY
n (x) = sup

−∞<xn−1≤···≤x1≤x

{ n∑
i=1

Y i(xi)− Y i−1(xi)
}
.

Then, if AY
n (0) is finite, for n ≥ 2,

D(n)(Y 1, Y 2, . . . , Y n)(x) =Y 1(x) +AY
n (x)−AY

n (0).
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The following states properties of the Busemann process for the DL from [BSS22b]. For a single direction
λ, these properties were previously established in [RV21].

Theorem B.4. [BSS22b, Theorems 5.1–5.2] On the probability space (Ω,F ,P) of the directed landscape L,
there exists a process

{Bλ�(p; q) : λ ∈ R, � ∈ {−,+}, p, q ∈ R2}
satisfying the following properties. All the properties below hold on a single event of probability one, simul-
taneously for all directions λ ∈ R, signs � ∈ {−,+}, and points p, q ∈ R2, unless otherwise specified.

(i) (Continuity) As an R4 → R function, (x, s; y, t) 7→ Bλ�(x, s; y, t) is continuous.

(ii) (Additivity) For all p, q, r ∈ R2, Bλ�(p; q) + Bλ�(q; r) = Bλ�(p; r). In particular, Bλ�(p; q) =
−Bλ�(q; p) and Bλ�(p; p) = 0.

(iii) (Backwards evolution as the KPZ fixed point) For all x, y ∈ R and s < t,

Bλ�(x, s; y, t) = sup
z∈R

{L(x, s; z, t) + Bλ�(z, t; y, t)}. (B.2)

(iv) (Independence) For each T ∈ R, these processes are independent:

{Bλ�(x, s; y, t) : λ ∈ R, � ∈ {−,+}, x, y ∈ R, s, t ≥ T}

and {L(x, s; y, t) : x, y ∈ R, s < t ≤ T}.

(v) (Distribution along a time level) For each t ∈ R, the following equality in distribution holds between
random elements of the Skorokhod space D(R, C(R)):

{Bλ+( • , t; 0, t)}λ∈R
d
=
{
Gλ( •)

}
λ∈R,

where G is the stationary horizon.

We also make use of the following symmetry of the directed landscape.

Lemma B.5. [DV21, Proposition 14.1] The directed landscape satisfies the following symmetry

{L(x, s; y, t) : (s, x, t, y) ∈ R4
↑}

d
= {L(y,−t;x,−s) : (s, x, t, y) ∈ R4

↑}.
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