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Abstract
We give an explicit description of a family of jointly invariant measures of the KPZ
equation singled out by asymptotic slope conditions. These are couplings of Brow-
nian motions with drift, and can be extended to a cadlag process indexed by all real
drift parameters. We name this process the KPZ horizon (KPZH). As a corollary, we
resolve a recent conjecture by showing the existence of a random, countably infinite
dense set of drift values at which the Busemann process of the KPZ equation is discon-
tinuous. This signals instability, and shows the failure of the one force–one solution
principle and the existence of at least two extremal semi-infinite polymer measures
in the exceptional directions. The low-temperature limit of the KPZH is the station-
ary horizon (SH), the unique jointly invariant measure of the KPZ fixed point under
the same slope conditions. The high-temperature limit of the KPZH is a coupling
of Brownian motions that differ by linear shifts, which is jointly invariant under the
Edwards–Wilkinson fixed point.
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1 Introduction

1.1 Invariant measures of the KPZ equation

For t > s, consider the KPZ equation

∂t h(t, x) = 1

2
∂xxh(t, x) + β

2
(∂xh(t, x))2 + W (t, x), h(s, x) = hs(x), (1.1)

with inverse temperature β > 0, initial condition hs at time s and space-time white
noise W as driving force. Classically, this equation is ill-posed, but formally, one can
solve the KPZ equation via the Cole-Hopf transformation h(t, x) = 1

β
log Z(t, x),
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Jointly invariant measures for the...

where Z solves the stochastic heat equation (SHE) with multiplicative noise:

∂t Z(t, x) = 1

2
∂xx Z(t, x) + βZ(t, x)W (t, x), Z(s, x) = eβhs (x). (1.2)

Rigorous solutions to this equation have been discussed in [15, 16, 24, 25]. Recently,
great progress has been made in understanding solutions of the KPZ equation in the
work on Martin Hairer [41, 42] on regularity structures. Another perspective through
paracontrolled distributions has been studied in [40, 55].

It is well-known that Brownian motion with diffusivity 1 and arbitrary drift is an
invariant measure for (1.1). The notion of invariance requires the caveat that invariance
only holds up to a global height shift. That is, if we let h(t, x |B) denote the solution
to (1.1) at time t > 0 when h(0, x) = B(x) is a Brownian motion, then,

{h(t, x |B) − h(t, 0|B) : x ∈ R} d= B.

See [47] and the references therein for a detailed discussion of this height shift. Using
the work of [1–3], one can construct solutions to the KPZ equation with the same
driving noise W but started from different initial conditions. The present paper is
concerned with jointly invariant measures, namely couplings of Brownian motions
F1, . . . , Fk with different drifts such that, on C(R)k , we have for all t > 0 the
distributional invariance

(
h(t, •|F1) − h(t, 0|F1), . . . , h(t, •|Fk) − h(t, 0|Fk)

) d= (F1(•), . . . , Fk(•)
)
.

(1.3)

The existence, uniqueness, and ergodicity of such jointly invariant measures, up to an
asymptotic slope condition, was established in [46] (see Section 3.4 of that paper for
a detailed discussion). We state this condition as follows:

−∞ ≤ lim sup
x→−∞

F(x)

|x | < λ = lim
x→∞

F(x)

x
if λ > 0

lim
x→−∞

F(x)

|x | = |λ| > lim sup
x→∞

F(x)

x
≥ −∞ if λ < 0

−∞ ≤ lim sup
|x |→∞

F(x)

|x | ≤ 0 if λ = 0.

(1.4)

Our first theorem gives an explicit description of these measures.

Theorem 1.1 Let λ1 < · · · < λk be real. Let Y 1, . . . ,Y k be independent two-sided
Brownian motions with diffusivity 1 and drifts λ1, . . . , λk , respectively. Set F1

β = Y 1
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S. Groathouse et al.

and then for j = 2, . . . , k define F j
β through

exp
[
βF j

β (y)
] = eβY 1(y) ·

∫

−∞<x j−1<···<x1<y

j−1∏

i=1

eβ(Y i+1(xi )−Y i (xi ))dxi

∫

−∞<x j−1<···<x1<0

j−1∏

i=1

eβ(Y i+1(xi )−Y i (xi ))dxi

, y ∈ R.

Then, (F1
β , . . . , Fk

β ) is distributed as the unique jointly stationary and ergodicmeasure

for the KPZ equation (1.1) such that, for 1 ≤ j ≤ k, each F j
β satisfies almost surely the

asymptotic slope condition (1.4) for λ = λ j . In particular, F
j

β is a two-sided Brownian
motion with diffusivity 1 and drift λ j .

In Sect. 2.3, we extend the measures of Theorem 1.1 to a process {Fλ
β }λ∈R, which

we name theKPZ horizonwith inverse temperature β (KPZHβ for short, or sometimes
simply KPZH). The path space of this process is the Skorokhod space D(R,C(R)) of
functions R → C(R) that are right-continuous with left limits. C(R) is endowed with
its Polish topology of uniform convergence on compact sets. The term KPZ horizon is
introduced in analogy to its zero-temperature counterpart, the stationary horizon (SH),
introduced by Busani in [20] and studied by Busani and the third and fourth authors in
[21–23, 60]. The KPZ fixed point is the large-time scaling limit of the KPZ equation
under the 1 : 2 : 3 scaling [56, 65, 66]. This is discussed more in Sect. 1.3 below.
The SH gives the unique jointly invariant measure of the KPZ fixed point under the
same asymptotic slope conditions (1.4). This picture is completed by the convergence,
as β ↗ ∞, of the projections of KPZHβ on C(R, R

k) to those of SH (Theorem 1.5
below).

Theorem 1.1 gives rise to the following description of the difference of two
marginals of KPZH.

Theorem 1.2 Let β > 0 and {Fλ
β }λ∈R be the KPZHβ . For λ1 < λ2 with λ = λ2 −λ1,

{Fλ2
β (y) − Fλ1

β (y) : y ∈ R} d=
{
β−1 log

(∫ y
−∞ exp

(√
2βB(x) + λβx

)
dx

∫ 0
−∞ exp

(√
2βB(x) + λβx

)
dx

)
: y ∈ R

}
.

In particular,

{Fλ2
β (y) − Fλ1

β (y) : y ≥ 0} d= {β−1 log
(
1 + Xλ,βYλ,β(y)

) : y ≥ 0}

where Xλ,β ∼ Gamma(λβ−1, β−2), independent of the process {Yλ,β(y) : y ≥ 0}.
The law of this latter process is given by

{Yλ,β(y) : y ≥ 0} d=
{∫ y

0
exp
(√

2βB(x) + λβx
)
dx : y ≥ 0

}
,
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Jointly invariant measures for the...

where B is a standard Brownian motion.

The analogous description of the process {Fλ2
β (y) − Fλ1

β (y) : y ≤ 0} can be obtained
through the symmetry in Theorem 2.11(iv). Qualitatively, a key feature of the descrip-
tion of these increments is that the extension to the full KPZH process inherently
produces discontinuities:

Theorem 1.3 Let Fβ = {Fλ
β }λ∈R be the KPZHβ and Pβ its distribution on the space

D(R,C(R)). Then, Pβ -almost surely there exists a random countably infinite dense
subset �β of R such that whenever x �= y, α �→ Fα

β (y) − Fα
β (x) is discontinuous at

α = λ if and only if λ ∈ �β .

1.2 Discontinuities of the Busemann process in the continuum directed random
polymer

The work of [1–3] constructs a strictly positive, continuous four-parameter random
field {Zβ(t, y |s, x) : x, y ∈ R, s < t} on an appropriate probability space of the
white noise so that, for each s ∈ R and suitable initial data hs ,

(t, y) �→
∫

R

eβhs (x)Zβ(t, y |s, x) dx

solves the SHE (1.2) at times t ∈ (s,∞) and agrees with the notion of solution
from [15, 16, 24, 25]. This four-parameter field defines random probability measures
Q(s,x)→(t,y)

β on paths g : [s, t] → R from (x, s) to (y, t) whose time-r distribution is
given by

Q(s,x)→(t,y)
β (g(r) ∈ dz) = Zβ(t, y |r , z)Zβ(r , z |s, x)

Zβ(t, y |s, x) dz for s < r < t .

In this sense, we say that Zβ is the partition function for the continuum directed

random polymer (CDRP) first introduced in [2]. Themeasures Q(s,x)→(t,y)
β extend in a

Gibbsian sense to measures Q(t,y)
β on semi-infinite backward paths g : (−∞, t] → R

rooted at (t, y). The Gibbs property is that, conditional on the path passing through
(s, x) at time s ∈ (−∞, t), the portion of the path between (t, y) and (s, x) is dis-
tributed as Q(s,x)→(t,y)

β . See [46, Section 9] for a more precise definition and detailed
discussion. The infinite-path measure is said to be strongly λ-directed if

Q(t,y)
β

(
lim

r→−∞
g(r)

|r | = λ

)
= 1.

To study this collection of infinite-path measures, Janjigian and the second and
third authors [46] constructed Busemann functions for the SHE. For a fixed λ ∈ R,
these satisfy the almost sure locally uniform limits [46, Theorem 3.16]

bλ
β(s, x, t, y) = lim

r→−∞ log
Zβ(s, x |r , zr )
Zβ(t, y |r , zr ) , (1.5)

123



S. Groathouse et al.

simultaneously for all paths {zr : r < s ∧ t} that satisfy limr→−∞ zr|r | = λ. Further-
more, the article [46] constructs the Busemann process

{bλ�

β (s, x, t, y) : (s, x, t, y) ∈ R
4, λ ∈ R, � ∈ {−,+}} (1.6)

on a single event of full probability. The sign parameter � ∈ {−,+} is a necessary
ingredient of the construction. In general, λ �→ bλ−

β (s, x, t, y) is left-continuous,

while λ �→ bλ+
β (s, x, t, y) is right-continuous. A fixed value λ ∈ R is almost surely

not a discontinuity of this process, that is,

P(bλ−
β = bλ+

β ) = 1 ∀λ ∈ R. (1.7)

(See Theorem 3.2(iv) below.) But the existence of random discontinuities across the
uncountably many values λ was left open [46, Open Problem 2]. Define the set of
exceptional directions at which jumps occur as

�bβ := {λ ∈ R : bλ−
β (s, x, t, y) �= bλ+

β (s, x, t, y) for some (s, x, t, y) ∈ R
4}.
(1.8)

The set �bβ is exactly the set of directions λ at which the semi-infinite Gibbs
measure supported on λ-directed paths is not unique [46, Theorems 3.35, 3.38]. The
Busemann process is an eternal solution to the KPZ equation, meaning that started
from any initial time, the Busemann process evolves forward in time via the KPZ
equation.When theBusemannprocess is discontinuous atλ, theone force–one solution
principle fails because there are two eternal solutions to the equation satisfying the
same asymptotic slope conditions. This is manifested in the dynamic programming
principle proved in [46] and recorded in the present paper as Theorem 3.2(v). Theorem
3.5 of [46], recorded as Theorem 3.2(v) in the present paper, established the following
dichotomy: either P(�bβ = ∅) = 1 or P(�bβ is countable and dense in R) = 1. Our
next theorem resolves this question.

Theorem 1.4 Let β > 0. Then, P(�bβ is countable and dense in R) = 1.

Theorem 1.4 is equivalent to Theorem 1.3. In particular, we deduce from Theo-
rem 1.1 that the KPZHβ is equal in law to the marginal of the Busemann process
(1.6) obtained by fixing s = t and x = 0 (see Corollary 4.3). The presence of the
discontinuity set for any interval of space is derived from the earlier work [46].

The proof of the existence of discontinuities of theKPZHβ comes in Corollary 2.13.
Our proof exploits the explicit description of the distribution of Fλ

β (y) − F0
β (y) given

in Theorem 1.2. It would be interesting to see if there is a proof of the condition above
that uses softer properties of Busemann functions and can be generalized to other
models. However, as a counterexample, consider the deterministic approximation of
the Green’s function for the KPZ equation with β = 1 (see [46, Section 1.5, Theorem
3.8])

H̃(t, y |s, x) = − t − s

24
− (y − x)2

2(t − s)
.
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In this setting, the Busemann function is equal to

b̃λ(s, x, t, y) = lim
r→−∞ H̃(t, y |r ,−rλ) − H̃(s, x |r ,−rλ)

= (12λ2 − 1)(t − s)

24
+ (y − x)λ,

which is continuous in the parameter λ. Thus, any more general condition to prove the
existence of discontinuities would need deeper information about the noise present in
the model and cannot rely only on curvature or strict convexity of the shape function.

1.3 High and low temperature limits of the KPZ horizon

The KPZ equation interpolates between two so-called universality classes. This phe-
nomenon was first mathematically observed from explicit formulas calculated in [5]
and is explicitly noted in [26, Theorem 1.1]. Setting β = 1 for simplicity (noting that
the general equation can be obtained from this one by scaling, see [26, Equation (3)]),
we let Z(T , X) = Z1(T , X |0, 0), and set

FT (s) = P
(
log Z(T , X) + X2

2T
+ T

24
≤ s
)
.

Theorem 1.1 and Corollary 1.2 of [26] state that the probability above does not depend
on X and gives these long and short time limits:

lim
T→∞ FT (2−1/3T 1/3s) = FGUE(s) and

lim
T↘0

FT (2−1/2π1/4T 1/4(s − log
√
2πT )) = �(s), (1.9)

where FGUE is the Tracy-Widom GUE distribution, and � is the standard Gaussian
distribution. The Tracy-Widom distribution is central to the KPZ universality class,
while the Gaussian distribution is central to the Edwards–Wilkinson class [26, 35]. On
the KPZ side of things, much recent work has been devoted to stronger convergence
on the level of the process [27, 28, 56, 65, 66]. See Sect. 1.4.3 for a more detailed
discussion of the relevant literature.

The scaling relations for Zβ proved in [1, 3] (recorded in the present paper as

Theorem 3.1) imply that Z(T , 0) = Z1(T , 0|0, 0) d= 1√
T
ZT 1/4(1, 0|0, 0). Hence,

large times T correspond to high inverse temperatures β, while short times T cor-
respond to small values of β. In this same spirit, the results of this section show
that the KPZHβ interpolates between the jointly invariant measures in the KPZ and
Edwards–Wilkinson universality classes, seen in the limits as β ↗ ∞ and β ↘ 0,
respectively.

Figure1 shows a simulation of the KPZHβ for three different values of β, namely
0.1, 1, and 20. In each case, we use the drift values λ = −5,−2.5, 0, 2.5, 5. For
small β, the trajectories tend to look like affine shifts of one another. For large β, the
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trajectories appear to stick very closely together in a neighborhood of the origin. In
fact, before the limit the paths do not actually touch outside the origin, but at β = ∞,
each pair of paths coincide in a nondegenerate interval around the origin.

As already touched upon above, the next Theorem 1.5 establishes the low-
temperature/long-time limit of KPZHβ as its zero-temperature counterpart, the
stationary horizon. The stationary horizon (SH) is a stochastic process G = {Gλ}λ∈R
with path space D(R,C(R)). Marginally, eachC(R)-valued componentGλ is a Brow-
nian motion with diffusivity

√
2 and drift 2λ. See Appendix Appendix B for a precise

definition of the SH. As β ↘ 0 we see a simple limit from the EW class, as we remark
below in Sect. 1.3.1, and one that is consistent with the short-time limit in (1.9).

The mode of convergence proved is weak convergence of projections on the spaces
C(R, R

k) for k ≥ 1. We expect that convergence on the full path space D(R,C(R))

also holds, as is proved for exponential LPP in [20] and for the TASEP speed process
in [21]. However, the topology of convergence on the space D(R,C(R)) needs to be
adjusted because the set of discontinuities for the prelimiting object is not isolated in
a compact window of space, as is the case in [20, 21]. We leave the investigation of
tightness on D(R,C(R)) to future work. The convergence of parts (i) and (ii) below
are equivalent by the scaling relations of Theorem 2.11(ii) followed by the change of
variable γ �→ γβ.

Theorem 1.5 Let {Gλ}λ∈R be theSH (defined inAppendixB) and {Fλ
β }λ∈R theKPZHβ .

Fix two real parameters β > 0 and α ∈ R. For any finite increasing vector λ1 < · · · <

λk , {Gλi }1≤i≤k is the limit in distribution on C(R, R
k), as γ → ∞, of the following

two processes:

(i) {Fλi
γ (2 •)}1≤i≤k .

(ii)
{
γ −1Fα+γ −1λi

β (2γ 2 •) − 2γα•
}

1≤i≤k
.

Furthermore, let B be a standard two-sided Brownian motion (diffusivity 1 and zero
drift). Then as γ ↘ 0, the processes in parts (i) and (ii) above converge in distribution,
on C(R, R

k), to {B(2•) + 2λi •}1≤i≤k .

For large γ > 0, the scaling in Item (ii) above fixes a temperature β and considers
a direction perturbed from the drift α. This is the scaling of the initial data in the
convergence of the KPZ equation to the KPZ fixed point, as in [27, 28, 56, 65, 66].

Setting γ = 2−1/3T 1/3, the sequence in part (ii) becomes

{
21/3T−1/3Fα+21/3T−1/3λi

β (21/3T 2/3•) − 22/3T 1/3α•
}

1≤i≤k
,

which, as T → ∞, demonstrates the 1 : 2 : 3 scaling in convergence to the KPZ
fixed point. There are only two scaling parameters now because we are scaling initial
data, so there is no time parameter. However, we can in fact strengthen our result to a
process-level convergence using the recent results ofWu [66]. LetL = {L(x, s; y, t) :
x, y ∈ R, s < t} be the directed landscape (DL). For upper semicontinuous initial
data h : R → R ∪ {−∞} satisfying, for some a, b > 0, h(x) ≤ a + b|x | for all x ∈ R
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Fig. 1 KPZHβ for three inverse
temperature values β = 0.1, 1,
and 20 from top to bottom, and
in each frame for the drift values
λ = −5 (pink), λ = −2.5
(green), λ = 0 (purple), λ = 2.5
(blue), and λ = 5 (red) (colour
figure online)
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and h(x) > −∞ for some x , define the KPZ fixed point by

hL(t, y|s, h) = sup
x∈R

{h(x) + L(x, s; y, t)}. (1.10)

Let hZβ (t, y |s, f ) be the solution of the KPZ equation (1.1) started at time s with
initial data f :

hZβ (t, y |s, f ) = 1

β
log
∫

R

eβ f (x)Zβ(t, y |s, x) dx . (1.11)

Corollary 1.6 Let β > 0, α, s ∈ R, and λ1 < · · · < λk . Then, as processes in
C(R>s × R, R

k) equipped with the uniform-on-compacts topology,

{
21/3T−1/3

[
βhZβ

( T t
β4 ,

21/3T 2/3y

β2

∣∣
∣
T s

β4 , F
α+21/3T−1/3λi
β (•) − α•

)
+ T (t − s)

24
− 2

3
log(

√
2T )

]
:

(t, y) ∈ R>s × R

}

1≤i≤k

T→∞�⇒ {hL(t, y |s,Gλi ) : (t, y) ∈ R>s × R}1≤i≤k .

Furthermore, let {Bλ� : λ ∈ R, � ∈ {−,+}} be the Busemann process for the DL
discussed in Appendix Appendix B. Then, for any β > 0 and λ1 < · · · < λk , as
processes in C(R4, R

k) equipped with the uniform-on-compacts topology,

{
21/3T−1/3

[
b
β21/3T−1/3λi
β

( T s
β4 ,

21/3T 2/3x

β2 ,
T t

β4 ,
21/3T 2/3y

β2

)
+ T (t − s)

24

]
: (x, s; y, t) ∈ R

4
}

1≤i≤k

T→∞�⇒ {Bλi (y, −t; x,−s) : (x, s; y, t) ∈ R
4}1≤i≤k .

The temporal reflection in the process {Bλi (y,−t; x,−s) : (x, s; y, t) ∈ R
4}1≤i≤k

is a manifestation of the fact that in [46], the infinite paths travel south, while the
infinite geodesics in [57] and [22] travel north.

1.3.1 Jointly invariant measures for the Edwards–Wilkinson fixed point

In contrast with the γ → ∞ limit to the SH and in light of the γ ↘ 0 limit in Theorem
1.5, it is natural to ask whether {B(•) + λi •}1≤i≤k is a jointly invariant measure for
the Edwards–Wilkinson fixed point [26, 35]. The Edwards–Wilkinson fixed point is
governed by the 1-dimensional additive stochastic heat equation ∂t u = 1

2uxx + W . It
is well-known that this equation, started from initial data f at time 0, is solved as

u(t, x | f ) =
∫

R

ρ(t, x − y) f (y) dy +
∫ t

0

∫

R

ρ(t − s, x − y)W (ds dy). (1.12)

It is also well-known that the increments of two-sided Brownian motion B is invariant
in time for u. That is, u(t, •; B) − u(t, 0; B)

d= B. From (1.12) it follows that, for any
appropriate function f : R → R and λ ∈ R,

u(t, x | f (•) + λ•) = u(t, x | f ) + λx .
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Hence, in the sense of (1.3), {B(•)+λ1•, . . . , B(•)+λk •} is a jointly invariant measure
for the SHE with additive noise, where the common noiseW drives the equation from
the different initial conditions. Indeed, this can be expected from Theorems 1.1 and
1.5, as the β ↘ 0 limit of (1.1) is precisely the additive SHE.

1.4 Methods and related literature

1.4.1 The O’Connell-Yor polymer and intertwining

The proof of Theorem 1.1 comes from first showing that the KPZHβ describes jointly
invariant measures for the semi-discrete O’Connell-Yor (OCY) polymer introduced
in [53]. We show that the KPZHβ satisfies certain distributional invariances under
scaling to initial data for the SHE. Then, we show that the KPZHβ is jointly invariant
for the SHE and use a uniqueness result from [46] to conclude the proof.

The proof of invariance of the KPZH for the O’Connell-Yor polymer comes from
an intertwining argument that was originally developed for TASEP in [38]. The main
idea is to find the invariant measure for a different Markov chain with a more tractable
invariant distribution, then prove that this simpler process intertwines with the process
of interest via mappings from queuing theory. Since then, [37] adapted this method
to discrete last-passage percolation, [60] extended this to the semi-discrete model of
Brownian last-passage percolation, and [14] extended this to the positive temperature
inverse-gamma polymer. The present paper is the first to extend this method to a
positive temperature semi-discrete model. While one can take limits of the positive
temperature model to get the zero temperature model, the opposite direction is not a
straightforward task. The key inputs needed to complete the intertwining argument
in this setting are found in Sect. 2.1. Other details of the argument that bear close
resemblance to previous work are relegated to Appendix A.

The convergence step to the SHE requires a substantial amount of nontrivial work.
Convergence of the OCY polymer (with the initial point fixed) to narrow wedge solu-
tions of the SHE was established in the sense of finite-dimensional distributions by
Nica [51]. In Sect. 3.2 of the present paper, we prove in full detail, using differentmeth-
ods than those in [51], the convergence of the four-parameter field of the OCYpolymer
to the Green’s function of the SHE (in the sense of finite-dimensional distributions)
and prove convergence of solutions from appropriate initial data.

Similar items to Lemmas 3.5, 3.8, 3.10, and Theorem 3.9 in Sect. 3 appeared in
an unfinished manuscript of Moreno Flores, Quastel, and Remenik. As no proofs for
the precise results we need appear in the literature, we provide them in Sect. 3. We
develop several new ideas to complete the technical details of these results. This work
in Sect. 3 may have independent interest.

1.4.2 Discontinuities of the Busemann process and one force–one solution principle

At this point it is reasonable to expect that discontinuities appear universally in the
Busemann processes of 1+1 dimensional KPZ models on noncompact spaces. As
evidence for this, a dense set of discontinuities has been established in discrete, semi-
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discrete and fully continuous settings, in both positive and zero temperature, and in the
putative universal limit (DL). An overview of this recent development appears later in
this section.

The one force–one solution principle (1F1S) states that, for a given realization of
the driving noise and a given value of the conserved quantity in a stochastically forced
conservation law, there is a unique eternal solution that is measurable with respect to
the history of the noise. That the failure of 1F1S is associated with the discontinuities
of the Busemann process has now been observed in both discrete and continuous
settings [14, 45–47].

Busemann functions and the one force–one solution principle have been studied in
the past for the Burgers equation with discrete random forcing, both in compact and
noncompact settings [6–13, 31, 32, 39, 43, 44, 49, 49, 61]. Specifically, in the works
of Bakhtin and coauthors [7–10, 12, 13], one sees analogous results for Busemann
functions and semi-infinite geodesics, which are the zero-temperature counterpart of
semi-infinite polymer measures. The failure of 1F1S did not arise in this earlier work
because the focus was on a fixed, nonrandom value of the conserved quantity. As
mentioned above in (1.7), there are no fixed discontinuities. This is a general fact
about polymer models with differentiable limit shapes.

We give a brief summary of the history. The first observation of random discon-
tinuities of the Busemann process was completed by Fan and the third author [37]
for the exactly solvable exponential corner growth model. Across a single horizon-
tal edge, they showed that the Busemann process, indexed by the direction, can be
described by a compound Poisson process. Across all edges, the union of the discon-
tinuities is countably infinite and dense. This result was used in [47] to characterize
the set of directions with non-unique semi-infinite geodesics as the same as the set of
discontinuities of the Busemann process.

Similar studies were carried out for Brownian last-passage percolation (BLPP) by
the third and fourth authors [60] and for the directed landscape (DL) [21] by Busani
and the third and fourth authors. Here, the characterization of exceptional directions
of semi-infinite geodesics is exactly analogous to that of [47], but additional non-
uniqueness of initial segments of geodesics appears due to the semi-discrete setting
in these models. As a result, new methods of proof were developed to achieve these
results. The studies [22, 60] used a description of the Busemann process for Brownian
LPP developed in [60] and the remarkable fact that the Busemann process along a
horizontal line for BLPP agrees with that of the DL. Unlike in the exponential corner
growth model, the drift-indexed Busemann process of BLPP along a single horizontal
interval is not a compound Poisson process, nor does it have independent increments.
Thus, obtaining a full description of this process remains an open problem. However,
the characterization of the process in terms of coupledBrownianmotions permits some
distributional calculations, enough to show that the drift-indexed Busemann process
along an interval is a step function.

The recent work [14] studies the Busemann process for the inverse-gamma polymer
and discovers a similar explicit description as in [37]. However, the jumps of the
Busemann process across a single horizontal interval are now dense, unlike in the zero
temperature case where they are isolated. Likewise, the paper [46] showed that, for the
KPZ equation, if the set (1.8) is nonempty, the jumps are present along each horizontal

123



Jointly invariant measures for the...

interval and are therefore dense. In the present work, we obtain a description of the
Busemann process for the SHE in terms of coupled Brownian motions with drift. But,
just as in the zero-temperature cases of BLPP and the DL, the drift-indexed process
along a horizontal interval does not have an explicit description thatweknow.However,
we can compute the distribution of an increment of this process. Then in Corollary
2.13, we apply a novel condition developed in Lemma 2.12 to show the existence
of jumps. Our work demonstrates that the corresponding phenomenon in [14] is not
simply a manifestation of discrete lattice effects.

1.4.3 Stationary horizon and KPZ universality

SH was first constructed by Busani [20] as the scaling limit of the Busemann process
of the exponential corner growth model. [20] conjectured SH to be the universal
scaling limit of Busemann processes of models in the KPZ universality class. Shortly
afterwards, SH was independently discovered in the context of Brownian last-passage
percolation by the third and fourth authors [60]. A brief introduction to the SH is given
in Appendix Appendix B.

In [21–23], the third and fourth authors, together with Busani, studied the role of
SH in the KPZ class and established further evidence of its universality:

(i) Given appropriate conditions on the asymptotic slope of the initial data, the SH is
the unique multi-type stationary distribution of the KPZ fixed point (1.10) that evolves
in the environment given by the directed landscape.

(ii) As a consequence, the SH gives the distribution of the fixed-time-level Buse-
mann process of the directed landscape. In this representation, the parameter λ

corresponds to the space-time slope of semi-infinite geodesics.
(iii) The suitably scaled TASEP speed process introduced by [4] converges to the

SH. In the limit, λ represents the scaled and centered values of the speed process. This
suggests that SH is a general scaling limit of multitype invariant distributions, beyond
the Busemann functions of stochastic growth models.

(iv) A framework is given in the work [23] to show convergence to the SH under
conditions that are expected to hold in great generality. These conditions are (a) con-
vergence of the point-to-point LPP process to the DL, (b) marginal convergence of
individual Busemann functions to Brownian motion with drift, and (c) tightness of
exit points on the scale N 2/3 under stationary boundary conditions. As an application
of the general framework, it is shown that the Busemann process of six solvable LPP
models converge to the SH in the sense of finite-dimensional distributions.

The high-level analogy between KPZHβ and SH is that they both describe unique
jointly invariant distributions, KPZHβ for the KPZ equation and SH for the KPZ
fixed point. Additionally, KPZHβ and SH share certain properties. Both are couplings
of Brownian motions with drift whose increments are ordered. Both are translation-
invariant and have a reflection symmetry (Theorem 2.11(i) and (iv)). However, the
two processes are not the same in law. One way to see this is Theorem 1.3). While the
full SH process λ �→ Gλ ∈ C(R) has a dense set of discontinuities λ ∈ R, for given
x < y the points of discontinuity of the restricted process λ �→ Gλ(y) − Gλ(x) are
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isolated. In contrast, for any x < y, the process λ �→ Fλ
β (y)− Fλ

β (x) contains the full

countable dense set of discontinuities of the process λ �→ Fλ
β ∈ C(R).

There has been much recent work on the convergence of the KPZ equation to the
KPZ fixed point. This was first accomplished in two independent works of Quastel
and Sarkar [56] and Virág [65]. Recently, Wu [66] proved that the Green’s function of
the KPZ equation converges to the directed landscape. Combined with the previous
work of Das and Zhu [27, 28], who showed localization of polymer path measures in
the CDRP, this establishes that the annealed polymer measures of the CDRP converge
in distribution to the geodesics of the DL (See [28, Theorem 1.9]).

1.5 Organization of the paper

Sect. 2 constructs the KPZ horizon. The mappings that define the projections of this
process onto C(R, R

k) are developed in Sect. 2.1. In Sect. 2.3, we construct the KPZH
as a process of Brownian motions indexed by the drift λ ∈ R. The remaining subsec-
tions of Sect. 2 establish properties of this process, including the proof of Theorem 1.2
in Sect. 2.5. In Sect. 2.6, we show the existence of discontinuities in the λ parameter.
The main technical Sect. 3 begins with background on the stochastic heat equation
from [1, 2, 46]. Then we prove the weak-noise limit of the O’Connell-Yor polymer
to the stochastic heat equation. The paper culminates in the proofs of the main the-
orems in Sect. 4, except for Theorem 1.2, which is proved earlier. The invariance of
KPZH under the KPZ equation is established through the limit from OCY to SHE. A
uniqueness theorem for invariant distributions completes the characterization of the
Busemann process as KPZH. Appendix A contains additional technical proofs for the
queuing mappings. Appendix B contains the necessary background information for
the stationary horizon.

1.6 Notation and conventions

• Cpin(R) denotes the space of continuous functions f : R → R such that f (0) = 0.
• Increments of a single-variable function F are denoted by F(x, y) = F(y)−F(x).
Increment ordering between functions f , g : R → R: f ≤inc g if f (x, y) ≤
g(x, y) for all x < y, and f <inc g if f (x, y) < g(x, y) for all x < y.

• For random variables X and Y and probability measures μ, X
d= Y and X ∼ Y

both mean that X and Y are equal in distribution, and X ∼ μ means that X has
probability distribution μ.

• Random variable X has the gamma distribution with shape parameter α > 0 and
rate β > 0, abbreviated X ∼ Gamma(α, β), if X has density function f (x) =
�(α)−1βαxα−1e−βx on R+.

• A two-sided standard Brownian motion is a continuous random process {B(x) :
x ∈ R} such that B(0) = 0 almost surely and {B(x) : x ≥ 0} and {B(−x) : x ≥ 0}
are two independent standard Brownian motions on [0,∞).

• If B is a two-sided standard Brownian motion, then {cB(x) + μx : x ∈ R} is a
two-sided Brownian motion with diffusivity c > 0 and drift μ ∈ R.
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• The complementary error function erfc is defined as erfc(x) = 2√
π

∫∞
x e−u2 du.

• The heat kernel is ρ(t, x) = 1√
2π t

e− x2
2t 1t>0 for (t, x) ∈ R

2.
• Ranges of indices in vectors and sequences are abbreviated as in xm:n =

(xm, xm+1, . . . , xn).
• The domain of pairs of space-time points with strictly ordered times is R

4↑ =
{(s, x, t, y) ∈ R

4 : s < t}.
• In a C(R)-valued stochastic process λ �→ Y λ(•), the bullet marks the missing real
variable: Y λ(•) = (x �→ Y λ(x)) ∈ C(R).

• Coordinatewise order on R
2: (x, y) ≤ (a, b) means that x ≤ a and y ≤ b.

2 Construction and properties of the KPZ horizon

2.1 Mappings defining finite-dimensional distributions

LetCpin(R) denote the space of continuous functions f : R → R satisfying f (0) = 0.
For Y , B ∈ Cpin(R) satisfying

lim sup
x→−∞

Y (x) − B(x)

x
> 0, (2.1)

and for β > 0, define the following transformations:

Qβ(B,Y )(y) = β−1 log
∫ y

−∞
exp (β(B(x, y) − Y (x, y))) dx

Dβ(B,Y )(y) = Y (y) + Qβ(B,Y )(y) − Qβ(B,Y )(0),

Rβ(B,Y )(y) = B(y) + Qβ(B,Y )(0) − Qβ(B,Y )(y).

(2.2)

Iterate the mapping Dβ as follows:

D(1)
β (Y ) = Y , and D(n)

β (Y 1, Y 2, . . . , Yn) = Dβ(Y 1, D(n−1)
β (Y 2, . . . ,Yn)) for n ≥ 2. (2.3)

Given a Borel subset A ⊆ R, we define three state spaces of n-tuples of functions.

AA
n :=

{
Y = (Y 1, . . . , Yn) ∈ Cpin(R)n : for 1 ≤ i ≤ n, lim

x→−∞
Y i (x)

x
exists and lies in A

}
.

(2.4)

Note that if the components of Z ∈ Cpin(R)n are Brownian motions with drifts in A,
then Z ∈ AA

n almost surely. Next, set

Y A
n :=

{
Y = (Y 1, . . . , Yn) ∈ Cpin(R)n : for 1 ≤ i ≤ n, lim

x→−∞
Y i (x)

x
exists and lies in A,

and for 2 ≤ i ≤ n, lim
x→−∞

Y i (x)

x
> lim

x→−∞
Y i−1(x)

x

}

(2.5)
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and

X A
n :=

{
η = (η1, . . . , ηn) ∈ Y A

n : ηi >inc ηi−1 for 2 ≤ i ≤ n

}
. (2.6)

The most common choices for A will be R>0 (to be used for the state space of
invariant measures in the O’Connell-Yor polymer) and R (to be used as the state space
of invariant measures in the KPZ equation). Section 7 of [60] shows that these state
spaces are Borel measurable subsets of the space C(R, R

n).
Next, define a transformation D(n)

β on n-tuples of functions as follows. Let A ⊆ R.

For Y = (Y 1, . . . ,Yn) ∈ Y A
n , the image η = (η1, . . . , ηn) = D(n)

β (Y) ∈ X A
n is

defined by

ηi = D(i)
β (Y 1, . . . ,Y i ) for 1 ≤ i ≤ n. (2.7)

Lemma 2.4 below proves that D(n)
β : Y A

n → X A
n .

For a finite increasing real vector λ̄ = (λ1 < λ2 < · · · < λn), define the measure
νλ̄ on YR

n as follows: (Y 1, . . . ,Yn) ∼ νλ̄ if Y 1, . . . ,Yn are mutually independent and

Y i is a Brownian motion with drift λi . Define the measure μλ̄
β on XR

n as

μλ̄
β = νλ̄ ◦ (D(n)

β )−1. (2.8)

This is the key definition of the section. In each application of (2.7) the drifts satisfy
λ1 < · · · < λi and so the mappings are well-defined.

We prove a series of lemmas about these measures. These measures and their
properties have analogues in zero temperature (see [20, 22, 60]), but their extensions
to positive temperature require a different perspective and the proofs are different. The
first result below derives a formula for D(n)

β (Y 1, . . . ,Yn). Once the first properties of
the mappings and measures are established, some proofs go through just as they do
for zero temperature in [60]. For such results, we provide the full details in Appendix
Appendix A.

Lemma 2.1 Let Y 1, . . . ,Yn ∈ Cpin(R) be such that all the following integrals are
finite. Then, for n ≥ 2 and β > 0,

exp
[
βD(n)

β (Y 1, . . . , Yn)(y)
] = eβY

1(y) ·

∫

−∞<xn−1<···<x1<y

n−1∏

i=1

eβ(Y i+1(xi )−Y i (xi ))dxi

∫

−∞<xn−1<···<x1<0

n−1∏

i=1

eβ(Y i+1(xi )−Y i (xi ))dxi

. (2.9)

Furthermore,

exp
(
βRβ(Y 1,Y 2)(y)

) = eβY 2(y)
∫ 0
−∞ exp

[
β(Y 2(x) − Y 1(x)

]
dx

∫ y
−∞ exp

[
β(Y 2(x) − Y 1(x)

]
dx

. (2.10)
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Proof We prove this by induction on n. We start with the base case n = 2. From (2.2),

exp
(
βDβ(Y 1,Y 2)(y)

) = eβY 2(y)
∫ y
−∞ exp

(
β(Y 1(x, y) − Y 2(x, y))

)
dx

∫ 0
−∞ exp

(
β(Y 1(x, 0) − Y 2(x, 0))

)
dx

= eβY 1(y)
∫ y
−∞ exp

(
β(Y 2(x) − Y 1(x))

)
dx

∫ 0
−∞ exp

(
β(Y 2(x) − Y 1(x))

)
dx

.

(2.11)

The proof of (2.10) is analogous. Now, assume that (2.9) holds for n ≥ 2. Then,

exp
(
βD(n)

β (Y 1, . . . ,Yn)(y)
)

= exp
(
βDβ(Y 1, D(n−1)

β (Y 2, . . . ,Yn))(y)
)

=
eβY

1(y) ∫ y−∞ exp
(
β(D(n−1)

β (Y 2, . . . , Yn)(x1) − Y 1(x1)
)
dx1

∫ 0
−∞ exp

(
β(D(n−1)

β (Y 2, . . . , Yn)(x1) − Y 1(x1)
)
dx1

=
eβY

1(y) ∫ y−∞
(
eβY

2(x1)
∫
−∞<xn−1<···<x2<x1

∏n−1
i=2 exp

[
β(Y i+1(xi ) − Y i (xi ))

]
dxi
)
e−βY 1(x1)dx1

∫ 0
−∞
(
eβY 2(x1)

∫
−∞<xn−1<···<x2<x1

∏n−1
i=2 exp

[
β(Y i+1(xi ) − Y i (xi ))

]
dxi
)
e−βY 1(x1)dx1

=
eβY

1(y) ∫−∞<xn−1<···<x1<y
∏n−1

i=1 exp
[
β(Y i+1(xi ) − Y i (xi ))

]
dxi

∫
−∞<xn−1<···<x1<0

∏n−1
i=1 exp

[
β(Y i+1(xi ) − Y i (xi ))

]
dxi

.

The first equality used the definition of D(n), the second the n = 2 case, and in the
third the induction assumption. In the third equality, an integral over the set {−∞ <

xn−1 < · · · < x2 < 0} was cancelled from the numerator and the denominator.

Lemma 2.2 Assume that (B,Y ) ∈ YR

2 with

lim
x→−∞

B(x)

x
= a < b = lim

x→−∞
Y (x)

x
.

Then,

lim
x→−∞

Rβ(B,Y )(x)

x
= a, and lim

x→−∞
Dβ(B,Y )(x)

x
= b.

Proof By Lemma 2.1, it suffices to show that

lim
y→−∞

1

y
log
∫ y

−∞
eβ(Y (x)−B(x)) dx = β(b − a).

Fix ε > 0, and let y < 0 be such that xε < B(x)−ax < −xε and xε < Y (x)−bx <

−xε for all x < y. Then, for such y,

eβ(b−a+2ε)y

β(b − a + 2ε)
=
∫ y

−∞
eβ(b−a+2ε)x dx
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≤
∫ y

−∞
eβ(Y (x)−B(x)) dx ≤

∫ y

−∞
eβ(b−a−2ε)x dx ≤ eβ(b−a−2ε)y

β(b − a − 2ε)
.

Taking the log of all sides and dividing by y yields

β(b − a − 2ε) ≤ lim inf
y→−∞

1

y
log
∫ y

−∞
eβ(Y (x)−B(x)) dx

≤ lim sup
y→−∞

1

y
log
∫ y

−∞
eβ(Y (x)−B(x)) dx ≤ β(b − a + 2ε).

Sending ε ↘ 0 completes the proof.

Lemma 2.3 Let (B,Y ), (B,Y ′) ∈ YR

2 be such that Y ≤inc Y ′. Then, B <inc Dβ(B,Y )

≤inc Dβ(B,Y ′). If Y <inc Y ′, then Dβ(B,Y ) <inc Dβ(B,Y ′) as well.

Proof Let x < y. We use Lemma 2.1 to write

exp[βDβ(B,Y )(x, y)] = eβB(x,y)

∫ y
−∞ eβ(Y (z)−B(z)) dz
∫ x
−∞ eβ(Y (z)−B(z)) dz

= eβB(x,y)
(
1 +

∫ y
x eβ(Y (z)−B(z)) dz

∫ x
−∞ eβ(Y (z)−B(z)) dz

)
= eβB(x,y)

(
1 +

∫ y
x eβ(Y (x,z)−B(x,z)) dz

∫ x
−∞ eβ(Y (x,z)−B(x,z)) dz

)
.

All statements of the lemma now follow from the last equality.

Lemma 2.4 For β > 0 and A ⊆ R, D(n)
β : Y A

n → X A
n .

Proof Let Y = (Y 1, . . . ,Yn) and η = D(n)
β (Y). From Lemma 2.2 and induction, it

follows that for 1 ≤ i ≤ n,

lim
x→−∞

Y i (x)

x
= lim

x→−∞
ηi (x)

x
.

It remains to show ηi−1 <inc ηi , which we prove by induction. By Lemma 2.3,
η2 = Dβ(Y 1,Y 2) >inc Y 1 = η1. Now, we assume that

ηi = D(i)
β (Y 1, . . . ,Y i ) >inc D(i−1)

β (Y 1, . . . ,Y i−1) = ηi−1.

Weapply this assumption, replacingY 1, . . . ,Y i withY 2, . . . ,Y i+1 alongwith Lemma
2.3 to get

ηi+1 = D(i+1)
β (Y 1, . . . ,Y i+1) = Dβ(Y 1, D(i)

β (Y 2, . . . ,Y i+1))

>inc Dβ(Y 1, D(i−1)
β (Y 2, . . . , Y i )) = D(i)

β (Y 1, . . . ,Y i ) = ηi .
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Lemma 2.5 Let β > 0 and λ1 < · · · < λk . Let λN
i , βN be sequences such that

λN
i → λi and βN → β as N → ∞. Set λ̄N = (λN

1 , . . . , λN
k ) and λ̄ = (λ1, . . . , λk).

Then, μλ̄N

βN
→ μλ̄

β weakly as measures on C(R, R
k).

Proof Realize the distributions in terms of (η1N , . . . , ηkN ) ∼ μλ̄N

βN
and (η1, . . . , ηk) ∼

μλ̄
β ,where (η1N , . . . , ηkN ) = D(k)

βN (Z1
N , . . . , Zk

N ) and (η1, . . . , ηk) = D(k)
β (Y 1, . . . ,Y k),

and the Brownian motions (Z1
N , . . . , Zk

N ) ∼ νλ̄N
and (Y 1, . . . ,Y k) ∼ νλ̄ are coupled

so that Zi
N (x) = Y i (x) + (λN

i − λi )x . By (2.9),

η
j
N (y) = Z1

N (y) + 1

βN
log
∫

−∞<x j−1<···<x1<y

j−1∏

i=1

exp
{
βN (Zi+1

N (xi ) − Zi
N (xi ))

}
dxi

− 1

βN
log
∫

−∞<x j−1<···<x1<0

j−1∏

i=1

exp
{
βN (Zi+1

N (xi ) − Zi
N (xi ))

}
dxi .

Dominated convergence applied to the integrals gives (η1N , . . . , ηkN ) ⇒ (η1, . . . , ηk)

in the sense of finite-dimensional distributions. Each ηiN is a Brownian motion with
drift λN

i , so each marginal is tight in C(R). Hence, the process (η1N , . . . , ηkN ) is tight
in C(R, R

k).

For γ > 0 and α ∈ R define the mapping Tγ,α : C(R) → C(R) as

Tγ,α f (x) = γ −1 f (γ 2x) + αx .

Extend it to a mapping T n
γ,α : C(R, R

n) → C(R, R
n) of n-tuples componentwise:

T n
γ,α( f1, . . . , fn) = (Tγ,α f1, . . . , Tγ,α fn).

For α = 0 use the shorthand notation Tγ = Tγ,0 and T n
γ = T n

γ,0.

Lemma 2.6 For β, γ > 0, α ∈ R, and Y 1, . . . ,Yn such that the following are all
finite, we have

Tγ,αD
(n)
β (Y 1, . . . ,Yn) = D(n)

βγ (T n
γ,α(Y 1, . . . ,Yn)), (2.12)

and

Tγ,αRβ(Y 1,Y 2) = Rβγ (T 2
γ,α(Y 1,Y 2)). (2.13)

Consequently, for λ̄ = (λ1 < · · · < λn),

μλ̄
β ◦ (T n

γ,α)−1 = μ
γ λ̄+(α,...,α)
βγ . (2.14)
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In particular,

μλ̄
β = μ

β−1λ̄
1 ◦ (T n

β )−1 (2.15)

Remark Equation (2.15) allows us to perform computations for β = 1 and extend to
general β.

Proof (2.14) follows from(2.12) because, if (Y 1, . . . ,Yn) ∼ νλ̄, thenT n
γ,α(Y 1, . . . ,Yn)

∼ νγ λ̄+(α,...,α). We turn our attention to proving (2.12). To do so, we use Lemma 2.1.
For y ∈ R,

T n
γ,αD

(n)
β (Y 1, . . . , Yn)(y)

= γ −1Y 1(γ 2y) + αy + 1

βγ
log
∫

−∞<xn−1<···<x1<γ 2 y

n−1∏

i=1

exp
(
β(Y i+1(xi ) − Y i (xi ))

)
dxi

− 1

βγ
log
∫

−∞<xn−1<···<x1<0

n−1∏

i=1

exp
(
β(Y i+1(xi ) − Y i (xi ))

)
dxi

= Tγ,αY
1(y) + 1

βγ
log
∫

−∞<wn−1<···<w1<y

n−1∏

i=1

exp
(
βγ (Tγ,αY

i+1(wi ) − Tγ,αY
i (wi ))

)
dwi

− 1

βγ
log
∫

−∞<wn−1<···<w1<0

n−1∏

i=1

exp
(
βγ (Tγ,αY

i+1(wi ) − Tγ,αY
i (wi ))

)
dwi

= D(n)
βγ (T n

γ,α(Y 1, . . . , Yn)),

where in the second equality, we made the change of variables xi = γ 2wi , with the
Jacobian term cancelling in the difference of the logs of the two integrals. The proof
of (2.13) is analogous.

Lemma 2.7 Let β > 0 and let Y 2,Y 1, B1 : R → R be so that the following are
well-defined. Set B2 = Rβ(Y 1, B1). Then,

Dβ(Dβ(B1,Y 1), Dβ(B2,Y 2)) = D(3)
β (B1,Y 1,Y 2). (2.16)

Proof Written out fully, the statement reads

Dβ(Dβ(B1,Y 1), Dβ(Rβ(B1,Y 1),Y 2)) = D(3)
β (B1,Y 1,Y 2).

By applying Lemma 2.6 to each of the operations D and R, this is equivalent to

TβD1(D1(Tβ−1B1, Tβ−1Y 1), D1(R1(Tβ−1B1, Tβ−1Y 1), Tβ−1Y 2))

= TβD
(3)
1 (Tβ−1B1, Tβ−1Y 1, Tβ−1Y 2).
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Hence, it suffices to prove the β = 1 case. For this, we drop the subscript in the
mappings D, R, and D(3). We make repeated use of Lemma 2.1. By (2.9),

exp
(
D(3)(B1,Y 1,Y 2)(y)

)

= eB1(y)
∫
−∞<w<x<y exp

(
Y 1(x) − B1(x) + Y 2(w) − Y 1(w)

)
dx dw

∫
−∞<w<x<0 exp

(
Y 1(x) − B1(x) + Y 2(w) − Y 1(w)

)
dx dw

.
(2.17)

We turn to the left-hand side of (2.16) for β = 1. We repeatedly use the n = 2 case of
Lemma 2.1 as follows:

exp
[
D(D(B1, Y 1), D(B2, Y 2))(y)

] = eD(B1,Y 1)(y) ∫ y−∞ eD(B2,Y 2)(x)−D(B1,Y 1)(x) dx
∫ 0
−∞ eD(B2,Y 2)(x)−D(B1,Y 1)(x) dx

= eB
1(y) ∫ y−∞ eY

1(x)−B1(x) dx
∫ 0
−∞ eY 1(x)−B1(x) dx

· Iy
I0

,

(2.18)

where

Iy =
∫ y

−∞
eB

2(x)−B1(x)

∫ x
−∞ eY

2(w)−B2(w) dw
∫ 0
−∞ eY

1(w)−B1(w) dw
∫ 0
−∞ eY 2(w)−B2(w) dw

∫ x
−∞ eY 1(w)−B1(w) dw

dx

=
∫ y

−∞
eY

1(x)−B1(x)

(∫ 0
−∞ eY

1(w)−B1(w) dw
)2

(∫ x
−∞ eY 1(w)−B1(w) dw

)2

∫ x
−∞ eY

2(w)−B2(w) dw
∫ 0
−∞ eY 2(w)−B2(w) dw

dx

=
∫ y

−∞
eY

1(x)−B1(x)

(∫ 0
−∞ eY

1(w)−B1(w) dw
)2

(∫ x
−∞ eY 1(w)−B1(w) dw

)2

∫ x
−∞ eY

2(w)−Y 1(w)
∫ w
−∞ eY

1(z)−B1(z) dz dw
∫ 0
−∞ eY 2(w)−Y 1(w)

∫ w
−∞ eY 1(z)−B1(z) dz dw

dx .

Therefore, Iy/I0 = I ′
y/I

′
0, where

I ′y =
∫ y

−∞
eY

1(x)−B1(x)

∫ x
−∞

∫ w
−∞ exp

(
Y 2(w) − Y 1(w) + Y 1(z) − B1(z)

)
dz dw

(∫ x
−∞ eY 1(w)−B1(w) dw

)2 dx .

(2.19)

Comparing (2.17), (2.18), and (2.19), to prove (2.16), it suffices to show that for each
y ∈ R,

∫ y

−∞
eY

1(x)−B1(x) dx
∫ y

−∞
eY

1(x)−B1(x)

∫ x
−∞

∫ w
−∞ eY

2(w)−Y 1(w)+Y 1(z)−B1(z) dz dw
(∫ x

−∞ eY 1(w)−B1(w) dw
)2 dx

=
∫

−∞<w<x<y
eY

1(x)−B1(x)+Y 2(w)−Y 1(w) dx dw.

(2.20)
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On the left-hand side of (2.20), integrate by parts in the second dx integral over
(−∞, y] with

dv = eY
2(x)−B1(x)

(∫ x

−∞
eY

1(w)−B1(w) dw

)−2

,

u =
∫ x

−∞

∫ w

−∞
eY

2(w)−Y 1(w)+Y 1(z)−B1(z) dz dw.

Then the left-hand side of (2.20) equals

∫ y

−∞
eY

1(x)−B1(x) dx ·
[
−
(∫ x

−∞
eY

1(w)−B1(w) dw

)−1

∫ x

−∞

∫ w

−∞
eY

2(w)−Y 1(w)+Y 1(z)−B1(z) dz dw

∣
∣∣∣

y

x=−∞

+
∫ y

−∞

(∫ x

−∞
eY

1(x)−B1(x) dx

)−1 ∫ x

−∞
eY

2(x)−Y 1(x)+Y 1(z)−B1(z) dz dx

]

=
∫ y

−∞
eY

1(x)−B1(x) dx
∫ y

−∞
eY

2(x)−Y 1(x) dx

−
∫ y

−∞

∫ w

−∞
eY

2(w)−Y 1(w)+Y 1(z)−B1(z) dz dw

=
∫

(x,w)∈(−∞,y)2
eY

1(x)−B1(x)+Y 2(w)−Y 1(w) dx dw

−
∫

−∞<x<w<y
eY

1(x)−B1(x)+Y 2(w)−Y 1(w) dx dw.

One readily sees that the last right-hand side above equals the right-hand side of (2.20).

2.2 Consistency and invariance

With the needed inputs from Sect. 2.1, the following results follow analogously as for
zero temperature in [60, 62]. The key technical input for both of these results is Lemma
2.7 above, whose proof is much different than in zero temperature (see [60, Lemma
7.6]). The full proofs of the following two results are found in Appendix Appendix A.

Lemma 2.8 Let λ̄ = (λ1 < λ2 < · · · < λn) ∈ R
n. If (η1, . . . , ηn) ∼ μλ̄

β , then for any

subsequence λi1 < · · · < λik , (η
i1 , . . . , ηik ) ∼ μ

(λi1 ,...,λik )

β .

Theorem 2.9 For an increasing vector λ̄ = (λ1, . . . , λn) of strictly positive drifts
0 < λ1 < · · · < λn, the measure μλ̄

β is an invariant measure for the Markov chain on

XR>0
n whose timem−1 to timem transition is definedas follows. Let (η1m−1, . . . , η

n
m−1)
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be the state at time m − 1, and let Bm be a standard two-sided Brownian motion,
independent of the Markov chain in the past. Then the state at time m is

(
η1m, . . . , ηnm

)
=
(
Dβ

(
Bm, η1m−1

)
, . . . , Dβ

(
Bm, ηnm−1

))
. (2.21)

Remark The strictly positive drifts ensure that condition (2.1) is satisfied, and the
transformations above are well-defined almost surely.

2.3 Construction of the KPZ horizon

The Skorokhod space D(R,C(R)) consists of functions R → C(R) that are right-
continuouswith left limits.C(R) is endowedwith the topologyof uniformconvergence
on compact sets. A generic element of D(R,C(R)) is denoted by F = {Fλ}λ∈R, where
Fλ ∈ C(R) for each λ. The standard σ -algebra BD on D(R,C(R)) is generated
by the projections πλ1,...,λk : D(R,C(R)) → C(R, R

k) defined by πλ1,...,λk (F) =
(Fλ1, . . . , Fλk ) (See, for example, [17, Sections 12-13] and [58, Page 101].) Recall
the measures μλ̄

β defined in (2.8).

Proposition 2.10 On the space (D(R,C(R)),BD), there exists a family of probability
measures Pβ indexed by the inverse temperature β > 0, satisfying the following
properties. Let Fβ = {Fλ

β }λ∈R denote the random element of D(R,C(R)) under the
measure Pβ .

(i) For β > 0 and λ ∈ R, Fλ
β is a two-sided Brownian motion with diffusivity 1 and

drift λ. In particular, Pβ -almost surely, Fλ
β (0) = 0 for each λ ∈ R.

(ii) For β > 0 and an increasing vector λ̄ = (λ1 < · · · < λk) ∈ R
k of drifts,

the C(R, R
k)-valued k-tuple (Fλ1

β , . . . , Fλk
β ) has distribution μλ̄

β . Equivalently,

in terms of projections, Pβ ◦ (πλ̄)−1 = μλ̄
β . In terms of the mapping D(k)

β and

independent Brownian motions Y 1, . . . ,Y k with drifts λ1 < · · · < λk ,

(
Fλ1

β , . . . , Fλk
β

)
d=
(
Y 1, D(2)

β

(
Y 1,Y 2

)
, . . . , D(k)

β

(
Y 1, . . . ,Y k

))
. (2.22)

The measure Pβ is the unique probability measure on D(R,C(R)) satisfying this
finite-dimensional marginal condition.

(iii) For β > 0, Pβ -almost surely, for all λ1 < λ2, F
λ1
β <inc Fλ2

β .

Remark With a nod to the stationary horizon (SH) discussed above in Sect. 1.3, we call
the process {Fλ

β }λ∈R the KPZ horizon at inverse temperature β, abbreviated KPZHβ .

Proof The construction follows a similar procedure as the construction of the SH in
[62] (we note here that the SH was originally constructed as a limit of the Busemann
process in exponential LPP in [20]).We start by recalling Lemma 2.8, which states that
the measuresμλ̄

β are consistent. Thus, for λ̄ = (λ1 < · · · < λk), if (η1, . . . , ηk) ∼ μλ̄,

each ηi has distribution μ
λi
β , which is the law of a two-sided Brownian motion with
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diffusion coefficient 1 and drift λi . By Kolmogorov’s extension theorem, there exists a
unique measure μ

Q

β on C(R)Q =∏
Q
C(R) under which, for {F̃α}α∈Q ∈ C(R)Q and

any choice of ᾱ = (α1, . . . , αk) ∈ Q
k with α1 < · · · < αk , (F̃α1, . . . , F̃αk ) ∼ μᾱ

β . In

particular, under μ
Q

β each F̃α is a Brownian motion with drift α.

Because the measures μλ̄
β are supported on the sets XR

k of (2.6), we have that

μ
Q

β

(
F̃α1 <inc F̃α2 ∀α1 < α2 ∈ Q

) = 1. (2.23)

Hence, there is a full probability event for μ
Q

β , on which, for each λ ∈ R and x ∈ R,
the limits

Fλ(x) := lim
Q�α↘λ

F̃α(x) and Fλ− lim
Q�α↗λ

F̃α(x) (2.24)

exist. By construction,

μ
Q

β

(
Fλ ≤inc F̃α ∀λ ∈ R, α ∈ Q with α > λ

)
= 1. (2.25)

Then, on the event of (2.25), for A < a < b < B,

Fλ(A, a) + Fλ(b, B) ≤ F̃α(A, a) + F̃α(b, B),

or equivalently,

0 ≤ F̃α(a, b) − Fλ(a, b) ≤ F̃α(A, B) − Fλ(A, B),

implying that the convergence is uniform on compact sets. The same holds for limits
from the left. By monotonicity, μ

Q

β (Fλ− ≤inc F̃λ ≤inc Fλ ∀λ ∈ Q) = 1. Addi-

tionally, uniform convergence ensures that, for each λ ∈ R, Fλ− and Fλ are both
Brownian motions with drift λ. Hence, for each λ ∈ Q,

μ
Q

β

(
Fλ− = F̃λ = Fλ

)
= 1.

In summary, we have defined a stochastic process {Fλ}λ∈R whose projection to the
rationals agrees with {F̃λ}λ∈Q under the measure μ

Q

β . Let λ1 < λ2 < λ3 be real, and
choose rational values α1 < λ1 < α2 < λ2 < α3 < λ3 < α4. Then,

Fα1 ≤inc Fλ1 ≤inc Fα2 ≤inc Fλ2 ≤inc Fα3 ≤inc Fλ3 ≤inc Fα4 . (2.26)

This implies that, μ
Q

β -almost surely, simultaneously for every λ ∈ R, the following
limits exist uniformly on compact sets, and they agree with the limits along rational
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directions.

Fλ = lim
α↘λ

Fα and Fλ− = lim
α↗λ

Fα.

Therefore, the process {Fλ}λ∈R lies in the space D(R,C(R)). Let Pβ be the push-

forward of the measure μ
Q

β to D(R,C(R)) under the map defined by (2.24). Without

reference to the measure, we use {Fλ
β }λ∈R to denote the process.

We check that {Fλ}λ∈R satisfies the claims of the theorem. Item (i) follows from
the uniform convergence along rational directions. Item (ii) follows because for ratio-
nal directions the finite-dimensional distributions were defined to be μλ̄

β . The limits
in (2.24) and the weak convergence of Lemma 2.5 extend this property to all real
directions. Since theσ -algebra on D(R,C(R)) is generated by the projections, unique-
ness of this process on D(R,C(R)) follows. To verify Item (iii) for real λ1 < λ2,
pick rational α1, α2 such that λ1 < α1 < α2 < λ2. Then (2.26) and (2.23) give
Fλ1

β ≤inc Fα1
β <inc Fα2

β ≤inc Fλ2
β .

2.4 Distributional invariances of the KPZH

We prove the following distributional invariances of KPZHβ . Item (iv) below is not
needed elsewhere in this paper, but it is included here for future use.

Theorem 2.11 For β > 0, let Fβ be the KPZHβ .

(i) Translation invariance: for each x ∈ R, {Fλ
β (x, x + •)}λ∈R

d= Fβ .

(ii) Scaling invariance: for eachβ > 0, γ > 0, andα ∈ R, {γ −1Fλ
β (γ 2•)+α•}λ∈R

d=
{Fγ λ+α

γβ }λ∈R.

(iii) Stationarity of increments: for λ1 < λ2 < · · · < λn and λ� ∈ R,

(
Fλ2
β − Fλ1

β , . . . , Fλn
β − F

λn−1
β

)
d=
(
Fλ2+λ�

β − Fλ1+λ�

β , . . . , Fλn+λ�

β − F
λn−1+λ�

β

)
.

(iv) Reflection invariance:

{
F (−λ)−

β (− •)

}

λ∈R
d= Fβ , where

F (−λ)−
β = lim

α↗λ
F (−α)

β

Proof For λ1 < · · · < λk , by definition of the KPZHβ (Proposition 2.10(ii)),

(
Fλ1

β , . . . , Fλk
β

)
d=
(
Y 1, Dβ

(
Y 1,Y 2

)
, . . . , D(k)

β

(
Y 1, . . . ,Y k

))
, (2.27)

whereY 1, . . . ,Yn are independentBrownianmotionswith driftsλ1, . . . , λn . It follows
fromLemma 2.1 that D(k)

β (Y 1, . . . ,Y k)(x, x+y) = D(k)
β (Y 1(x, x+•), . . . , Y k(x, x+

•))(y), from which Item (i) follows. Item (ii) follows from Lemma 2.6.
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Now we note that Item (iii) follows from Item (ii): Setting γ = 1, we obtain

(
Fλ1

β , . . . , Fλn
β

)
d=
(
Fλ1+λ�

β (•) − λ�•, . . . , Fλn+λ�

β (•) − λ�•

)
,

so

(
Fλ2

β − Fλ1
β , . . . , Fλn

β − Fλn−1
β

)
d=
(
Fλ2+λ�

β − Fλ1+λ�

β , . . . , Fλn+λ�

β − Fλn−1+λ�

β

)
.

Item (iv) follows from Theorem 3.2(iii) and Corollary 4.3, the first of which is
proved in [46] and the second of which we prove later in this paper. One may notice
that Item (i) also follows from Theorems 3.2(ii) and Corollary 4.3, but we have proved
this item here to avoid circular logic because it is used to prove Corollary 4.3.

2.5 Difference of two functions (Proof of Theorem 1.2)

Proof of Theorem 1.2 Let Y 1,Y 2 be two independent Brownian motions with drifts
λ1 < λ2. By (2.22) and (2.9), as processes indexed by y ∈ R,

eβ(F
λ2
β (y)−F

λ1
β (y)) d=

∫ y
−∞ eβ(Y 2(x)−Y 1(x)) dx
∫ 0
−∞ eβ(Y 2(x)−Y 1(x)) dx

= 1 +
∫ y
0 eβ(Y 2(x)−Y 1(x)) dx

∫ 0
−∞ eβ(Y 2(x)−Y 1(x)) dx

.

(2.28)

The process β(Y 2(•) − Y 1(•)) has the distribution of
√
2βB(•) + βλ •, where B is a

standard two-sided Brownian motion. When only considering the process for y ≥ 0,
by the independence of Brownian increments, the numerator (as a process in y ≥ 0)
and the denominator of the last ratio in (2.28) are independent. The distribution of the
denominator is computed in Lemma A.2 using results from [34].

2.6 Discontinuities of KPZH in the drift parameter

Lemma 2.12 On a probability space (�,F , P), let λ �→ X(λ) be an increment-
stationary, nondecreasing, almost surely continuous process with E[X(1) − X(0)] <

∞. Then, for every ε > 0,

lim
Z�n→∞ nP(X(n−1) − X(0) > ε) = 0. (2.29)

Proof Partition [0, 1] into disjoint intervals of length n−1, and let

J ε
n =

n∑

i=1

1{X(i/n) − X((i − 1)/n) > ε}.
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By increment-stationarity, E[J ε
n ] = nP(X(n−1) − X(0) > ε). By pathwise uniform

continuity of X on [0, 1], J ε
n = 0 for large enough n. The bound εJ ε

n ≤ X(1) − X(0)
and dominated convergence complete the proof.

Remark The condition (2.29) appears in Chapter 12 of [19] as a defining condition
of Brownian motion. The process we will apply this to is of a different nature, as it is
nondecreasing and does not have independent increments.

Corollary 2.13 For y ∈ R and β > 0, the process λ �→ Fλ
β (y) is not almost surely

continuous.

Proof We may take y > 0 because for y < 0, Theorem 2.11(i) and Fλ
β (0) = 0

(Proposition 2.10(i)) implies

{
Fλ

β (y)

}

λ∈R
=
{

− Fλ
β (y, 0)

}

λ∈R
d=
{

− Fλ
β (0,−y)

}

λ∈R
=
{

− Fλ
β (−y)

}

λ∈R
.

By the scaling relations of Theorem 2.11(ii), it suffices to take β = 1. We apply
Lemma 2.12 to the process λ �→ Fλ

1 (y), which has stationary increments by Theorem
2.11(iii) and is strictly increasing by Proposition 2.10(iii). Since Fλ

1 is a Brownian
motion with drift λ (Proposition 2.10(i)), we have E[F1

1 (y))] = y < ∞. Lemma 2.12
reduces the problem to showing that for some ε > 0,

lim inf
λ↘0

λ−1
P

(
Fλ
1 (y) − F0

1 (y) > ε

)
> 0.

In fact, we show that this is true for all ε > 0. For each λ > 0, let Xλ,Yλ(y) be the

independent random variables of Theorem 1.2 with β = 1 so that Fλ
1 (y) − F0

1 (y)
d=

log(1 + XλYλ(y)). Observe that for a standard Brownian motion B,

Yλ(y)
d=
∫ y

0
exp
(√

2B(x) + λx
)
dx >

∫ y

0
exp
(√

2B(x)
)
dx =: Y ,

where Y is taken as a new random variable independent of Xλ. By formula 1.8.4 on
page 612 of [18], Y has a density function fY that is strictly positive on (0,∞). For
ε > 0, let ε′ = eε − 1 > 0. Since Xλ ∼ Gamma(λ, 1),

P(Fλ
1 (y) − F0

1 (y) > ε) = P(XλYλ(y) > ε′) ≥ P(XλY > ε′) = P(Xλ > ε′/Y )

=
∫ ∞

0

∫

ε′/w
fY (w)

1

�(λ)
xλ−1e−x dx dw ≥

1

�(λ)

∫ ∞

0

∫

1∨(ε′/w)

fY (w)x−1e−x dx dw = Cε

�(λ)
,

where Cε is a positive constant. Thus, f v lim infλ↘0 λ−1
P(Fλ

1 (y) > ε) ≥ Cε > 0
because limλ↘0 λ�(λ) = 1.
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3 Stochastic heat equation

This section collects the necessary background on the SHE and KPZ equation. Sec-
tion3.1 mainly summarizes results from [1, 46]. Section3.2 deals with convergence
of the OCY polymer to the SHE.

3.1 Green’s function and Busemann process of the SHE

We briefly describe the construction of the four-parameter field Zβ( •, • | •, •) from
[1–3]. We primarily adopt the notation of [1] and [46]. In the following, we give a
brief overview of white noise. Some standard references are [48, 52].

On an appropriate probability space (�,F , P), a space-time white noise W is a
mean-zero Gaussian process whose index set is L2(R2), with Lebesgue measure. It
satisfies the almost sure linearity W (a f + bg) = aW ( f ) + bW (g) as well as the L2

isometry property:

E[W ( f )W (g)] =
∫

R2
f (t, x)g(t, x) dt dx .

One immediate consequence is that, whenever A and B are disjoint, or more generally,
their intersection has Lebesgue measure 0, W (1A) and W (1B) are independent. As a
point of notation, we often write

W ( f ) =
∫

R2
f (t, x)W (dt dx) =

∫

R2
f (t, x)W (t, x) dt dx,

where the second equality is formal becauseW is a randomdistribution and not defined
pointwise.

We can also define multiple white noise integrals, as in [52, Section 1.1.2], denoted

Ik( f ) =
∫

Rk

∫

Rk
f (t1, . . . , tk, x1, . . . , xk)

k∏

i=1

W (dti , dxi ).

These satisfy E[Ik( f )I j (g)] = 0 for k �= j (orthogonality), and

E[Ik( f )2] ≤ ‖ f ‖2L2(Rk×Rk)
. (3.1)

Equality holds if we replace f with the symmetrization of f , but in general, we have
an inequality (see [52, Section 1.1.2]).

We defineZβ as the following chaos expansion, where convergence holds in L2(P).

Zβ(t, y |s, x) =
∞∑

k=0

βk
∫

Rk

∫

Rk

k∏

i=0

ρ(ti+1 − ti , xi+1 − xi )
k∏

i=1

W (dti , dxi ). (3.2)
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Here, ρ(t, x) = 1√
2π t

e− x2
2t 1(t > 0) is the heat kernel, and the conventions in the

integrals are t0 = s, x0 = x, tk+1 = t , and xk+1 = y. For f : R → R>0 with
sufficient decay at ±∞, and t > s, define

Zβ(t, y |s, f ) =
∫

R

Zβ(t, y |s, x) f (x) dx . (3.3)

When the value of s is unspecified in (3.3), we take s = 0. Theorem 2.2 and Lemma
A.5 of [1] prove that, in the rigorous sense of solutions in [15, 16, 24, 25], the process
(3.3) solves the SHE defined in (1.2), for strictly positive functions f = ehs satisfying

∫

R

e−αx2 f (x) dx < ∞

for all α > 0. In fact, solutions can be defined for a class of measures which are
not necessarily absolutely continuous with respect to Lebesgue measure, but in all
applications of this paper, f (x) = eB(x)+λx , where B is a Brownian motion, and
λ ∈ R, so the necessary conditions are satisfied. We refer the reader to [1, Appendix
A] and the references therein for a more technical discussion on the solution of the
SHE from measure-valued initial data.

Theorem 3.1 [1, Proposition 2.3], [2, Equation (18)] Let β > 0. Then
the following distributional equalities hold between random elements of C(R4↑, R).

(i) (Shift invariance) For given u, z ∈ R, Zβ(t, y |s, x) d= Zβ(t + u, y + z |s +
u, x + z).

(ii) (Reflection invariance) Zβ(t, y |s, x) d= Zβ(t,−y |, s,−x).

(iii) (Rescaling) For given λ > 0,Zβ(t, y |s, x) d= λZβ/
√

λ(λ
2t, λy |λ2 s, λx).

Furthermore,

(iv) There exists a constant C = Cβ so that for all t > s and x, y ∈ R,

E[Z2
β(t, y |s, x)] ≤ Cρ2(t − s, y − x).

We are particularly interested in the λ = β2 case of Theorem 3.1(iii), in which the
distributional equality becomes

Zβ(t, y |s, x) d= β2Z1(β
4t, β2y |β4s, β2x). (3.4)

Jointly with the Busemann functions, by appeal to the Busemann limits (1.5), we have
this distributional equality:

{
bλ�

β (s, x, t, y), Zβ(t ′, y′ |s′, x ′) : (s, x, t, y) ∈ R
4, (s′, x ′, t ′, y′) ∈ R

4↑, λ ∈ R, � ∈ {−,+}}

d= {bλβ−2
�

1 (β4s, β2x, β4t, β2y), β2Z1(β
4t ′, β2y′ |β4s′, β2x ′) :

(s, x, t, y) ∈ R
4, (s′, x ′, t ′, y′) ∈ R

4↑, λ ∈ R, � ∈ {−,+}}. (3.5)
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In the following theorems, we use (3.5) to transfer the statements for β = 1 from
[46] to general β > 0. We introduce the following class of functions, named Fλ. Let
f : R → (0,∞) be a Borel function that is locally bounded. Then, for λ ∈ R, we say
that f ∈ Fλ if

−∞ ≤ lim sup
x→−∞

log f (x)

|x | < λ = lim
x→∞

log f (x)

x
if λ > 0

lim
x→−∞

log f (x)

|x | = |λ| > lim sup
x→∞

log f (x)

x
≥ −∞ if λ < 0

−∞ ≤ lim sup
|x |→∞

log f (x)

|x | ≤ 0 if λ = 0.

(3.6)

Theorem 3.2 [46, Theorems 3.1, 3.3, 3.5, 3.23, and Corollary 3.4] Let β > 0. Then,
there exists a stochastic process {bλ�

β (s, x, t, y) : s, x, t, y, λ ∈ R, � ∈ {−,+}}
defined on the probability space (�,F , P) and satisfying the following properties.
For this process, we define

�bβ = {λ ∈ R : bλ−
β (s, x, t, y) �= bλ+

β (s, x, t, y) for some (s, x, t, y) ∈ R
4}.

When λ /∈ �bβ , we write b
λ
β = bλ−

β = bλ+
β .

(i) For each t, λ ∈ R, under P, the process y �→ bλ
β(t, 0, t, y) is a two-sided

Brownian motion with diffusivity β and drift λ.
(ii) (Shift) For r , z ∈ R, as processes in s, x, t, y, λ ∈ R, � ∈ {−,+},

bλ�

β (s, x, t, y)
d= bλ�

β (s + r , x + z, t + r , y + z).

(iii) (Reflection) As processes in s, x, t, y, λ ∈ R, � ∈ {−,+},

bλ�

β (s, x, t, y)
d= b(−λ)(−�)

β (s,−x, t,−y).

(iv) For each λ ∈ R, P(λ ∈ �bβ ) = 0.
(v) Either P(�bβ = ∅) = 1 or P(�bβ is countable and dense in R) = 1.

Furthermore, there exists an event of full probability on which the following hold:

(i) For each λ ∈ R and � ∈ {−,+}, bλ�

β ∈ C(R4, R).
(ii) For all x < y, t , and α < λ,

bα−
β (t, x, t, y) ≤ bα+

β (t, x, t, y) < bλ−
β (t, x, t, y) ≤ bλ+

β (t, x, t, y).

More specifically, whenever λ ∈ �bβ , b
λ−
β (t, x, t, y) < bλ+

β (t, x, t, y), and
consequently, for each a �= 0,

�bβ = {λ ∈ R : bλ−
β (0, 0, 0, a) �= bλ+

β (0, 0, 0, a)}.

123



Jointly invariant measures for the...

(iii) For all r , x, s, y, t, z, λ and all � ∈ {−,+},

bλ�

β (r , x, s, y) + bλ�

β (s, y, t, z) = bλ�

β (r , x, t, z).

(iv) For all s, x, t, y, λ and all � ∈ {−,+},

bλ−
β (s, x, t, y) = lim

α↗λ
bα�

β (s, x, t, y), and bλ+
β (s, x, t, y) = lim

α↘λ
bα�

β (s, x, t, y).

(v) For all t > r , all s, x, y, λ, and all � ∈ {−,+},

eb
λ�

β (s,x,t,y) =
∫

R

eb
λ�

β (s,x,r ,z)Zβ(t, y |r , z) dz.

(vi) For all λ /∈ �bβ and f ∈ Fλ, the following limit holds uniformly on compact
sets of (s, x, t, y) ∈ R

4:

lim
r→−∞

∫
R
f (z)Zβ(t, y |r , z) dz

∫
R
f (z)Zβ(s, x |r , z) dz = eb

λ
β(s,x,t,y)

.

For later use, we derive the following uniqueness result from Theorem 3.2.

Theorem 3.3 Let ( f 1, . . . , f k) be a coupling of initial data with fi ∈ Fλi almost
surely for i ∈ {1, . . . , k}. If, for all t > 0,

{
Zβ(t, •|e f i )

Zβ(t, 0|e f i )

}

1≤i≤k

d= {exp( f i )}1≤i≤k,

then

{exp( f i )}1≤i≤k
d= {exp(bλi

β (0, 0, 0, •))}1≤i≤k .

Remark A stronger uniqueness property is true. The joint Busemann process is the
unique stationary and ergodic jointly invariant distribution for the KPZ equation under
more general conditions on the asymptotic slopes at±∞.We refer the reader to Section
3.4 of [46] for a more detailed discussion.

Proof The r = s case of Theorem 3.2(v) along with the additivity of Theorem 3.2(iii)
implies that

eb
λ�

β (t,0,t,y) =
∫
R
eb

λ�

β (s,0,s,z)Zβ(t, y |s, z) dz
∫
R
eb

λ�

β (s,0,s,z)Zβ(t, 0|s, z) dz
, (3.7)

and Theorem 3.2(ii) implies that for all s < t ,

exp(bλ�

β (t, 0, t, •))
d= exp(bλ�

β (s, 0, s, •)). (3.8)
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The s = t case of Theorem 3.2(vi) states that for λ /∈ �bβ and f ∈ Fλ,

lim
r→−∞

∫
R
f (z)Zβ(t, y |r , z) dz

∫
R
f (z)Zβ(t, 0|r , z) dz = eb

λ
β(t,0,t,y)

,

uniformly on compact subsets of y ∈ R. Then, using (3.7), Theorem 3.2(iv), and
the shift invariance of Theorem 3.1(i), for any (deterministic or random) k-tuple of
functions ( f 1, . . . , f k), so that, with probability one, each f i ∈ Fλi , as t → ∞, we
have the following distributional convergence on C(Rk, R):

{
Zβ(t, •|e f i )

Zβ(t, 0|e f i )

}

1≤i≤k
�⇒ {exp(bλi

β (0, 0, 0, •))}1≤i≤k

In particular, if for all t > 0,

{
Zβ(t, •|e f i )

Zβ(t, 0|e f i )

}

1≤i≤k

d= {exp( f i )}1≤i≤k,

then {exp( f i )}1≤i≤k
d= {exp(bλi

β (0, 0, 0, •))}1≤i≤k .

3.2 Convergence of the O’Connell-Yor polymer to SHE

In his section, we show convergence of the O’Connell-Yor polymer to the Green’s
function of the SHE (Theorem 3.9) and prove a convergence result for the model
started from initial data (Theorem 3.10). The O’Connell-Yor polymer (alternatively,
the Brownian polymer), first introduced in [53], is defined as follows. On a probability
space (�,F , P), let B = (Br )r∈Z be a sequence of independent, two-sided standard
Brownian motions. For (m, x) ≤ (n, y) ∈ Z × R, define the path space

X(m,x),(n,y) := {(xm−1, xm, . . . , xn) ∈ R
n−m+2 : x = xm−1 ≤ xm ≤ · · · ≤ xn = y}.

For (x,m), (y, n) ∈ R×Zwithm < n and x ≤ y, the point-to-point partition function
is defined as

Z sd
β (n, y |m, x)(B) =

∫

X(m,x),(n,y)

exp

{
β

n∑

r=m

Br (xr−1, xr )

}
dxm:n−1. (3.9)

Throughout the paper, β > 0 is a positive inverse-temperature parameter. The super-
script in Z sd

β stands for semi-discrete. For m = n, define

Z sd
β (m, y |m, x)(B) = eβBm (x,y).
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The argument B will often be omitted from the notation. From the definition, the
Chapman-Kolmogorov equation holds: namely that, for m < r ≤ n and x < y,

Z sd
β (n, y |m, x) =

∫ y

x
Z sd

β (n, y |r , w)Z sd
β (r − 1, w |m, x) dw. (3.10)

We also define a partition function with a boundary at level m = −1. For a random
or deterministic initial function f : R → R with f (x) → 0 sufficiently fast as
x → −∞, define, for n ≥ 0 and y ∈ R,

Z sd
β (n, y | f ) =

∫ y

−∞
f (x)Z sd

β (n, y |0, x) dx . (3.11)

For n = −1, define Z sd
β (−1, y | f ) = f (y).

Abbreviate the Poisson distribution as

q(n, y) = e−y y
n

n! 1((n, y) ∈ Z≥0 × R≥0). (3.12)

For integers n ≥ m, real numbers y ≥ x , and γ ∈ R>0, set

Yγ (n, y |m, x) = e−(y−x)− γ 2

2 (y−x)Z sd
γ (n, y |m, x). (3.13)

Next, define

δk(n |m) = {m = n0 ≤ n1 ≤ · · · ≤ nk ≤ nk+1 = n : ni ∈ Z}, and

�k(y |x) = {x = y0 < y1 < · · · < yk < yk+1 = y : yi ∈ R}.
Lemma 3.4 There exists a constant C > 0 so that, for all integers k > 0, n ≥ m, and
all real numbers y > x, whenever n ∈ δk(n |m) and y ∈ �k(y |x),

k∏

i=0

q2(ni+1 − ni , yi+1 − yi ) ≤ Ckg(n, y)

:= Ck e
−2(y−x)22(n−m)

π(k+1)/2

k∏

i=0

(yi+1 − yi )
2(ni+1−ni )

[2(ni+1 − ni )]!
√

(ni+1 − ni ) ∨ 1
.

(3.14)

Furthermore, for each n ∈ δk(n |m),

∫

�k (y | x)
g(n, y)

k∏

i=1

dyi = 22(n−m)[(n − m)!]2(y − x)kq2(n − m, y − x)

π(k+1)/2[2(n − m) + k]!
k∏

i=0

1
√

(ni+1 − ni ) ∨ 1
. (3.15)
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Proof From the definition, it follows that

k∏

i=0

q2(ni+1 − ni , yi+1 − yi ) = e−2(y−x)
k∏

i=0

(yi+1 − yi )2(ni+1−ni )

[(ni+1 − ni )!]2 , (3.16)

and Stirling’s approximation implies that for large n,

[n!]2 ∼ [2n]!√πn

22n

In particular, there exists a constantC so that 1
[n!]2 ≤ C 22n

[2n]!√πn
forn ≥ 1. Inserting this

bound into (3.16) proves (3.14). The integral (3.15) is the computation of a Dirichlet
integral after the change of variable wi = yi−yi−1

y−x .

Lemma 3.5 For ε ≥ 0, for all integers n ≥ m and real numbers y ≥ x + ε, the field
Yγ (n, y |m, x) satisfies the following Itô integral equation:

Yγ (n, y |m, x) =
∑

m≤k≤n

q(n − k, y − (x + ε))Yγ (k, x + ε |m, x)

+γ

∫ y

x+ε

∑

m≤k≤n

q(n − k, y − w)Yγ (k, w |m, x) dBk(w),(3.17)

where {Br }r∈Z are the i.i.d. Brownian motions that define Z sd
γ .

Remark We observe that in the ε = 0 case, since Yγ (k, x |m, x) = 1(k = m), we
obtain

Yγ (n, y |m, x) = q(n − m, y − x) + γ

∫ y

x

∑

m≤k≤n

q(n − k, y − w)Yγ (k, w |m, x) dBk(w).

This further implies that

E[Yγ (n, y |m, x)] = q(n − m, y − x). (3.18)

Proof With Yγ (n, y |m, x) defined, let Ỹγ (n, y |m, x) denote the RHS of (3.17). We
prove that Ỹγ (n, y |m, x) = Yγ (n, y |m, x) by induction on n ≥ m. First, note that

Ỹγ (m, y |m, x) = q(0, y − x − ε)Yγ (m, x + ε |m, x)

+ γ

∫ y

x+ε

q(0, y − w)Yγ (m, w |m, x) dBm(w)

= e−(y−x)− γ 2

2 ε+γ Bm (x,x+ε)

+ γ

∫ y

x+ε

e−(y−x)− γ 2

2 (w−x)+γ Bm (x,w) dBm(w)
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= e−(y−x)+ γ 2

2 x−γ Bm (x)
(
e− γ 2

2 (x+ε)+γ Bm (x+ε)

+ γ

∫ y

x+ε

e− γ 2

2 w+γ Bm (w) dBm(w)
)
,

so the equality Yγ (m, y |m, x) = Ỹγ (m, y |m, x) reduces to

e− γ 2

2 y+γ Bm (y) = e− γ 2

2 (x+ε)+γ Bm (x+ε) + γ

∫ y

x+ε

e− γ 2

2 w+γ Bm (w) dBm(w),

which follows from Itô’s formula. Now, assume that for some n > m, Ỹγ (n −
1, w |m, x) = Yγ (n − 1, w |m, x) for all w ≥ x + ε.

From the definition (3.13), the Chapman-Kolmogorov equation (3.10), and defini-
tion (3.13) again,

Yγ (n, y |m, x) = e−(y−x)− γ 2

2 (y−x)
∫ y

x
Z sd

γ (n − 1, w |m, x)eγ Bn(w,y) dw

= e−(y−x)− γ 2

2 (y−x)+γ Bn(y)
∫ y

x
Z sd

γ (n − 1, w |m, x)e−γ Bn(w) dw

= eγ Bn(y) · e−(1+ γ 2

2 )y
∫ y

x
e(1+ γ 2

2 )wYγ (n − 1, w |m, x)e−γ Bn(w) dw.

Let d denote differentiation in the real variable y, with x fixed. An application of Itô’s
formula to the last line above gives

dYγ (n, y |m, x) = [Yγ (n − 1, y |m, x) − Yγ (n, y |m, x)] dy + γYγ (n, y |m, x) dBn(y).
(3.19)

Additionally, a simple computation shows

dq(n − k, y − x) = [q(n − 1 − k, y − x) − q(n − k, y − x)] dy for n ∈ Z≥k and y ≥ x,

(3.20)

where we set q(−1, w) = 0 by convention. Differentiate the right-hand side of (3.17)
and apply (3.20) and q(n, 0) = 1(n = 0) to obtain

dỸγ (n, y |m, x) =
∑

m≤k≤n

dq(n − k, y − (x + ε))Yγ (k, x + ε |m, x)

+ γ
∑

m≤k≤n

q(n − k, 0)Yγ (k, y |m, x) dBk(y)

+ γ

∫ y

x+ε

∑

m≤k≤n

dq(n − k, y − w)Yγ (k, w |m, x) dBk(w) (3.21)

= [Ỹγ (n − 1, y |m, x) − Ỹγ (n, y |m, x)] dy + γYγ (n, y |m, x) dBn(y).
(3.22)
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In the first equality above, we have used the stochastic Leibniz rule (see for example,
[54, Equation (6.2.25)]). Then, comparing (3.19) and (3.22), the induction hypothesis
implies that the process

X(y) := Yγ (n, y |m, x) − Ỹγ (n, y |m, x)

satisfies dX = −Xdy. Since q(n, 0) = 1(n = 0), we observe further that Ỹγ (n, x +
ε |m, x) = Yγ (n, x + ε |m, x) for n ≥ m, so X has the initial condition X(x + ε) = 0.
Thus, X(y) = 0 for all y ≥ x + ε, and Yγ (n, y |m, x) = Ỹγ (n, y |m, x), as desired.

We now use Lemma 3.5 to write Yγ as an infinite series of iterated stochastic
integrals.

Lemma 3.6 Let q and Yγ be defined as in (3.12) and (3.13). For every n ≥ m and
y ≥ x, Yγ (n, y |m, x) can be written as the following L2(P)-convergent infinite sum

Yγ (n, y |m, x) =
∞∑

k=0

γ k Ik(n, y |m, x),

Ik(n, y |m, x) =
∑

δk (n |m)

∫

�k (y | x)

k∏

i=0

q(ni+1 − ni , yi+1 − yi )
k∏

i=1

dBni (yi ), (3.23)

where, in the k = 0 case, we use this notation tomean I0(n, y |m, x) = q(n−m, y−x).
Furthermore,

E[Yγ (n, y |m, x)2] =
∞∑

k=0

γ 2k
E[Ik(n, y |m, x)2], (3.24)

and there exists a universal constant C > 0 so that for all integers n ≥ m and k ≥ 0,
and real numbers y ≥ x and γ > 0,

E[Ik(n, y |m, x)2] ≤ Ck(y − x)kq2(n − m, y − x)

(n − m)k/2�((k + 1)/2)
. (3.25)

Proof. Picard iteration of (3.17) in Lemma 3.5 in the case ε = 0 gives the expansion
(3.23), assuming that the series is convergent. By independence of the Bk , the fact that
Itô integrals have mean 0, and the Itô isometry, we have that

E[Ik(n, y |m, x)I j (n, y |m, x)] = δ j=k

∑

δk (n |m)

∫

�k (y | x)

k∏

i=0

q2(ni+1 − ni , yi+1 − yi )
k∏

i=1

dyi ,

Hence, as long as the sum on the right-hand side of (3.24) is convergent, the expansion
(3.23) is L2(P) convergent, and (3.24) holds. For this, it suffices to show (3.25),
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and it further suffices to show the m = x = 0 case by translation invariance. For
shorthand notation, set Yγ (n, y) = Yγ (n, y |0, 0). Then, by Lemma 3.4 and Stirling’s
approximation, there exists a constant C > 0 (possibly changing from line to line) so
that

E[(Ik(n, y))2]
q2(n, y)

≤ 1

q2(n, y)

∑

δk (n)

∫

�k (y)

k∏

i=0

q2(ni+1 − ni , yi+1 − yi )
k∏

i=1

dyi

≤ Ck 2
2n[n!]2yk
[2n + k]!

∑

δk (n)

k∏

i=0

1
√

(ni+1 − ni ) ∨ 1

≤ Ck yk
n2n+122n

(2n + k)2n+k+1/2

∑

δk (n)

k∏

i=0

1
√

(ni+1 − ni ) ∨ 1

≤ Ck ykn1/2

(2n + k)k
∑

δk (n)

k∏

i=0

1
√

(ni+1 − ni ) ∨ 1
,

(3.26)

where in the last line, we made the observation that n2n+1/222n

(2n+k)2n+1/2 ≤ 1. Now, observe
that

∑

δk (n)

k∏

i=0

1
√

(ni+1 − ni ) ∨ 1
=

∑

mi≥0,
∑k

i=0 mi=n

k∏

i=0

1√
mi ∨ 1

=
∫

Rk

k∏

i=1

(
1(ti > 0)√�ti� ∨ 1

)
1(
∑k

i=1�ti� ≤ n)
√

(n −∑k
i=1�ti�) ∨ 1

k∏

i=1

dti .

(3.27)

Make the change of variables ti = si (n + k) to obtain

(n + k)k

n(k+1)/2

∫

Rk

k∏

i=1

(√
n1(si > 0)

�si (n + k)� ∨ 1

)√
n1(
∑k

i=1�si (n + k)� ≤ n)
(
n − �si (n + k)�) ∨ 1

k∏

i=1

dsi .

(3.28)
We now bound the integrand above. Since si > 0, we have

si (n + k) ∨ 1 ≥ (si n − 1) ∨ 1 ≥ si n

2
, (3.29)

where in the last inequality, we have used (x − �) ∨ 1 ≥ x
�+1 .

Next, observe that

k∑

i=1

�si (n + k)� ≥ −k +
k∑

i=1

si (n + k),
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so
k∑

i=1

�si (n + k)� ≤ n �⇒
k∑

i=1

si ≤ 1. (3.30)

When this occurs, we have

k∑

i=1

�si (n + k)� ≤
k∑

i=1

si n + k
k∑

i=1

si ≤ k +
k∑

i=1

si n

so

(n − �si (n + k)�) ∨ 1 ≥ (n − k −
k∑

i=1

si n) ∨ 1 ≥ n −∑k
i=1 si n

k + 1
, (3.31)

where we have again used the bound (x − �) ∨ 1 ≥ x
�+1 for � = k. Combining

(3.15),(3.28),(3.30), and (3.31), we obtain

∑

δk (n)

k∏

i=0

1
√

(ni+1 − ni ) ∨ 1

≤ 2k/2
√
k + 1(n + k)k

n(k+1)/2

∫

Rk

k∏

i=1

(1(si > 0)√
si

)1(
∑k

i=1 si < 1)
√
1 −∑k

i=1 si

k∏

i=1

dsi

≤ Ck(n + k)k

n(k+1)/2�((k + 1)/2)
.

Substituting this bound back into (3.26), we obtain

E[(Ik(n, y))2]
q2(n, y)

≤ Ck yk
(n + k)k

(2n + k)knk/2�((k + 1)/2)
≤ Ck yk

nk/2�((k + 1)/2)
,

as desired.

Lemma 3.7 Given a space-time white noise W, one can couple the field of i.i.d. Brow-
nian motions {Br }r∈Z with W so that

Yγ (n, y |m, x) =
∞∑

k=0

γ k
∫

Rk

∫

Rk

k∏

i=0

q(�ti+1� − �ti�, yi+1 − yi )
k∏

i=1

W (dti , dyi ),

(3.32)

where we define t0 = m, tk+1 = n, y0 = x, and yk+1 = y.

Proof Given a space-time white noise W , we can define a field of i.i.d. two-sided
Brownian motions {Br }r∈Z by

Br (y) =
{
W (1([r , r + 1] × [0, y])) y ≥ 0

−W (1([r , r + 1] × [y, 0])) y < 0
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Alternatively, we can use a single definition using the formal equality

Br (y) =
∫ y

0
dx
∫ r+1

r
dt W (t, x). (3.33)

From the definition of Br , we have the formal equality

dBr (x) = dx
∫ r+1

r
dt W (t, x). (3.34)

Now, with the Br defined in terms of W , we show that we can write Yγ as (3.32).
Using (3.34), the k = 1 term in (3.23) can be written as

γ

∫ y

x

n∑

r=m

q(n − r , y − z)q(r − m, z − x) dBr (z)

= γ

∫ y

x

n∑

r=m

q(n − r , y − z)q(r − m, z − x) dz
∫ r+1

r
dt W (t, z)

= γ

∫ y

x
dz

n∑

r=m

∫ r+1

r
dt q(n − �t�, y − z)q(�t� − m, z − x)W (t, z)

= γ

∫ y

x
dz
∫ n+1

m
dt q(n − �t�, y − z)q(�t� − m, z − x)W (t, z)

= γ

∫

R

dz
∫

R

dt q(n − �t�, y − z)q(�t� − m, z − x)W (t, z),

and this matches the k = 1 term of (3.32). The last line follows because the integrand
is 0 outside the original bounds of integration. The general case follows using the same
reasoning and induction.

We prove an intermediate lemma for a scaled transition function. With q as in
(3.12), set

pN (t, y |s, x) = √
Nq
(�t N� − �sN�, (t − s)N + √

N (y − x)
)

and pN (t, y) = pN (t, y |0, 0). (3.35)

Lemma 3.8 The following hold.

(i) As N → ∞, pN (t, y |s, x) → ρ(t − s, y − x), pointwise, for x, y ∈ R and
t > s.

(ii) For each t > 0, y ∈ R, α > 0, and integer M ≥ 1,

lim
N→∞

∫ t
√
N+y

−∞
eα|x | pMN (t, y |0, x) dx =

∫

R

eα|x |ρM (t, y − x) dx < ∞. (3.36)
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Proof Item (i): The pointwise convergence pN (t, y |s, x) → ρ(t − s, y − x) is a
simple application of Stirling’s approximation. We prove the x = s = 0 case to avoid
clutter, but the general case is entirely similar.

pN (t, y |s, x) = √
Ne−N (t−s)+√

N (y−x)
( (N (t − s) + √

N (y − x))�t N�

(�t N�)!
)

∼
√
N√

2π�t N�e
−t N+�t N�+√

N y
( t N + √

N y

�t N�
)�t N� ∼ p(t, y),

(3.37)

where the last step follows from the Taylor expansion

�t N� log
( t N + √

N y

�t N�
)

= �t N� log
(
1 + t N + √

N y − �t N�
�t N�

)

= t N − √
N y − �t N� − �t N�

2

( t N + √
N y − �t N�

�t N�
)2 + O(N−1/2)

= t N − √
N y − �t N� − y2

2t
+ O(N−1/2)

Item (ii): Recall the convention pN (t, y) = pN (t, y |0, 0). Changing variables, (3.36)
is equivalent to

lim
N→∞

∫ t
√
N

−∞
eα|x+y| p2N (t,−x) dx =

∫

R

eα|x+y|ρ2(t,−x) dx

We prove this by showing separately that

∫ t
√
N

−y
eα(x+y) pMN (t,−x) dx →

∫ ∞

−y
eα(x+y)ρM (t,−x) dx, (3.38)

and

∫ −y

−∞
e−α(x+y) pMN (t,−x) dx →

∫ −y

−∞
e−α(x+y)ρM (t,−x) dx . (3.39)

First, by completing the square and changing variables, we obtain

∫ ∞

−y
eαxρM (t,−x) dx =

√
2teα2t/(2M)

√
M(2π t)M/2

∫ ∞
√

M
2t (−y− αt

M )

e−u2 du

= eα2t/(2M)

2
√
M(2π t)(M−1)/2

erfc
(√M

2t
(−y − αt/M)

)
.
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On the other hand,

∫ t
√
N

−y
eαx pMN (t,−x) dx = NM/2

∫ t
√
N

−y
eαx e−M(t N−x

√
N ) (t N − x

√
N )M�t N�

(�t N�!)M dx,

which, upon the transformation w = (t N − x
√
N )(α/

√
N + M), we obtain

N (M−1)/2eαt
√
N

(�t N�!)M (α/
√
N + M)M�t N�+1

∫ (t N+y
√
N )(α/

√
N+M)

0
e−wwM�t N� dw (3.40)

= N (M−1)/2eαt
√
N (M�t N�)!

(�t N�!)M (α/
√
N + M)M�t N�+1

γ (M�t N� + 1, (t N + y
√
N )(α/

√
N + M))

(M�t N�)!
(3.41)

where γ (s, x) = ∫ x
0 e−uus−1 du is the lower incomplete gamma function. Tricomi

[64] showed that as a → ∞, the function γ has the following asymptotic expansion
that holds uniformly on compact subsets of z (see also [63]):

γ (a + 1, a + z(2a)1/2)

�(a + 1)
∼ 1

2
erfc(−z) + o(1). (3.42)

Inserting this asymptotic into (3.40) and using Stirling’s approximation, we obtain

∫ t
√
N

0
eαx pMN (t,−x) dx ∼ N (M−1)/2eαt

√
N (M�t N�)!

2(�t N�!)M (α/
√
N + M)M�t N�+1

erfc
(√M

2t
(−y − αt/M)

)

∼ N (M−1)/2eαt
√
N√

2πM�t N�(M�t N�/e)M�t N�
2(2π�t N�)M/2

× (�t N�/e)M�t N�M(α/
√
N + M)M�t N� erfc

(√M

2t
(−y − αt/M)

)

∼ eαt
√
N

2
√
M(2π t)(M−1)/2

(
1 + α

M
√
N

)M�t N� ∼ eα
2t/(2M)

2
√
M(2π t)(M−1)/2

erfc
(√M

2t
(−y − αt/M)

)
.

The last step comes from

tα
√
N − M�t N� log

(
1 + α

M
√
N

)
= tα

√
N − M�t N�

( α

M
√
N

− α2

2M2N
+ o(N−1)

)

= α2t

2M
+ o(1).

This proves (3.38). The proof of (3.39) is similar: the left-hand side is transformed into
an incomplete gamma function via the transformationw = (M−α/

√
N )(Nt−x

√
N ).

In this case, we are left with a gamma function minus an incomplete gamma function,
and the asymptotic expansion (3.42) gives us the needed asymptotics.
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We introduce the scaled O’Connell-Yor polymer partition function, whose conver-
gence to the fundamental solution of SHE is proved next. For β > 0 and a sequence
βN such that N 1/4βN → β, define a scaling factor

ψN (s, t, x, y;βN ) = √
N exp

(
−N
(
1 + β2

N

2

)
(t − s) − √

N
(
1 + β2

N

2

)
(y − x)

)

(3.43)

and the scaled partition function

ZN (t, y |s, x) = ψN (s, t, x, y;βN )Z sd
βN

(�t N�, t N + y
√
N
∣∣�sN�, sN

+ x
√
N
)
1{x ≤ (t − s)

√
N + y}

= √
N YβN

(�t N�, t N + y
√
N
∣∣�sN�, sN + y

√
N
)
. (3.44)

We use representation (3.32) in terms of white noise for ZN (t, y |s, x) and then scale
the white noise suitably to relate ZN (t, y |s, x) to Zβ(t, y |s, x). This produces for
each N a coupling of ZN (t, y |s, x) and Zβ(t, y |s, x) on the probability space of the
white noise. We show that in this coupling, their L2 distance converges to zero.

For the next proofs, recall the standard fact from analysis known as the generalized
dominated convergence theorem: if fn → f a.e., | fn| ≤ gn → g a.e., and

∫
gn →∫

g < ∞, then
∫

fn → ∫
f .

Theorem 3.9 Fix β > 0 and a sequence βN such that N 1/4βN → β. For each N we
have a coupling of ZN and Zβ on the probability space of the white noise so that this
limit holds:

lim
N→∞ E

[ ∣∣ZN (t, y |s, x) − Zβ(t, y |s, x)∣∣2 ] = 0 for each s < t and x, y ∈ R.

In particular, the weak convergence ZN (t, y |s, x) �⇒ Zβ(t, y |s, x) holds for each
s < t and x, y ∈ R.

Remark We sketch here how our result is consistent with that in [51, Theorem 1.2].
An independent proof follows. Ours gives the result for the four-parameter field, while
[51] handles the two-parameter case. A change of coordinates is required to transfer
between the two results, as shown in the discussion below. We note that [51, Theorem
1.2] is a more general result about partition functions for d nonintersecting paths,
while we only handle the d = 1 case. There, the semi-discrete partition function is
rescaled by the Lebesgue volume of the path space X(0,0),(n,x):

Z̃ sd
β (n, x) = n!

xn
Z sd

β (n, x |0, 0).

Theorem 1.2 of [51] states that for any sequence βN with N 1/4βN → β as N → ∞,
we have the following convergence in distribution as N → ∞:

Z̃ sd
βN

(�t N + x
√
N�, t N ) exp

(
−β2

N

2
t N
)

�⇒ Zβ(t, x |0, 0)
ρ(t, x)

.

123



Jointly invariant measures for the...

Furthermore, as a process indexed by (t, x) ∈ (0,∞) × R, the convergence holds in
the sense of finite-dimensional distributions, and there exists a coupling in which the
convergence is in L p for any p ≥ 1. Using Stirling’s approximation, one can directly
apply this result to show that, in the s = x = 0 case, the following convergence holds
in L2(P):

√
N exp

(
−N
(
1 + β2

N

2

)
(t − s)

)
Z sd

βN

(�t N + y
√
N�, t N ∣∣�sN + x

√
N�, sN)

�⇒ Zβ(t, y |s, x). (3.45)

It is reasonable to think this would extend to general s < t and x, y ∈ R, but some
additional justificationwould be needed since the shift invariance does not immediately
work through the floor functions. To see how the result in Theorem 3.9 appears from
(3.45), replace t with t − y√

N
and s with s − x√

N
, then replace x with −x and y with

−y and use the reflection invariance of Zβ (Theorem 3.1(ii)). To make this argument
directly rigorous, one would need to show uniform convergence on compact sets,
or change the parameterization and show that the chaos series still converges. We
emphasize here that our proof below is self-contained, uses different methods, and
does not rely on the result of [51], although the white noise coupling is the same.

Proof of Theorem 3.9 With ZN (t, y |s, x) from (3.44) and for a sequence βN with
N 1/4βN → β, Lemma 3.7 implies

ZN (t, y |s, x) = √
N YβN

(�t N�, t N + y
√
N
∣∣�sN�, sN + y

√
N
)

= √
N

∞∑

k=0

βk
N

∫

Rk

∫

Rk

k∏

i=0

q(�ti+1� − �ti�, yi+1 − yi )W (dti , dyi ),

where t0 = �sN�, tk+1 = �t N�, y0 = sN + x
√
N , and yk = t N + y

√
N . Now,

consider the transformation

(ti , yi )1≤i≤k �→ �k((ti , yi )1≤i≤k) =
( ti
N

,
yi − ti√

N

)

1≤i≤k
. (3.46)

This transformation alters the white noise, but multiplying by the square-root Jacobian
term N 3k/4, we have the following distributional equality on the level of processes
in (s, x, t, y) ∈ R

4↑ (note that the transformation does not depend on the choice of
s, x, t, y):

ZN (t, y |s, x) d=
∞∑

k=0

(N 1/4βN )k J N
k (t, y |s, x) :=

∞∑

k=0

(N 1/4βN )k N (k+1)/2

∫

Rk

∫

Rk

k∏

i=0

q
(�Nti+1� − �Nti�, N (ti+1 − ti ) + √

N (yi+1 − yi )
) k∏

i=1

W (dti , dyi )
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=
∞∑

k=0

(N 1/4βN )k
∫

Rk

∫

Rk

k∏

i=0

pN (ti+1, yi+1 |ti , yi )
k∏

i=1

W (dti dyi ) (3.47)

where pN is defined in (3.35), and we define t0 = s, tk+1 = t, y0 = x , and yk+1 = y.
We recall that N 1/4βN → β. Since q(n, y) = 0 for n < 0 or y < 0, the integrand of
the kth term in (3.47) is supported on the set

Ak(N , s, t, y, x) :=
{
sN + x

√
N ≤ ti N + yi

√
N ≤ ti+1N + yi+1

√
N ,

and
�sN�
N

≤ ti ≤ �ti+1N� + 1

N
, 1 ≤ i ≤ k

}
.

The chaos series (3.47) is the version of ZN (t, y |s, x) that we couple with the SHE
through the common white noise. It is compared with the chaos series (3.2) of Zβ :

Zβ(t, y |s, x) =
∞∑

k=0

βk Jk(t, y |s, x) :=

∞∑

k=0

βk
∫

Rk

∫

Rk

k∏

i=0

ρ(ti+1 − ti , yi+1 − yi )
k∏

i=1

W (dti , dyi ),

(3.48)

where the integrand of the kth term is supported on the set �k(t |s) where s <
ti < ti+1 for 1 ≤ i ≤ k. We seek to show that for fixed (s, x, t, y) ∈ R

4↑,
limN→∞ ‖ZN (t, y |s, x) − Zβ(t, y |s, x)‖L2(P) = 0. We note that for any integer
K0 ≥ 0,

∥∥
∥ZN (t, y |s, x) − Zβ(t, y |s, x)

∥∥
∥
L2(P)

≤
K0∑

k=0

∥
∥
∥(N1/4βN )k J Nk (t, y |s, x) − βk Jk(t, y |s, x)

∥
∥
∥
L2(P)

+
∥
∥
∥

∞∑

k=K0+1

(N1/4βN )k J Nk (t, y |s, x)
∥
∥
∥
L2(P)

+
∥
∥
∥

∞∑

k=K0+1

βk Jk(t, y |s, x)
∥
∥
∥
L2(P)

.

(3.49)

Since the series for Zβ is almost surely convergent in L2(P), for any ε > 0, there
exists K0 ≥ 0 so that

∥∥∥
∞∑

k=K0+1

βk Jk(t, y |s, x)
∥∥∥
L2(P)

< ε. (3.50)
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Then, by (3.1), reversing the transformation (3.46), and dividing by the N 3k/2 Jacobian
term, we get

∥∥∥J N
k (t, y |s, x)

∥∥∥
2

L2(P)
≤
∫

Rk

∫

Rk

k∏

i=0

[pN (ti+1, yi+1 |ti , yi )]2
k∏

i=1

dti dyi

= N−k/2+1
∑

δk (�t N�|�sN�)

∫

�k (t N+y
√
N |sN+x

√
N )

k∏

i=0

q2(ni+1 − ni , yi+1 − yi )
k∏

i=1

dyi

(3.51)

(3.25)≤ CkN−k/2+1 ((t − s)N + (y − x)
√
N )kq2(�t N� − �sN�|(t − s)N + (y − x)

√
N )

(�t N� − �sN�)k/2�((k + 1)/2)

≤ Ck[pN (t, y |s, x)]2
�((k + 1)/2)

≤ Ck

�((k + 1)/2)

where the constantC changes from line to line and depends on thefixed parameters x, y
and s < t , but not on N . The last inequality follows from the pointwise convergence
pN (t, y |s, x) → ρ(t − s, y − x) (Lemma 3.8(i)). Then, using orthogonality of each
chaos for different values of k, there exists K0 sufficiently large so that for all N ≥ 1,

∥∥∥
∞∑

k=K0+1

(N 1/4βN )k J N
k (t, y |s, x)

∥∥∥
2

L2(P)
=

∞∑

k=K0+1

(N 1/4βN )2k‖J N
k (t, y |s, x)‖2L2(P)

≤
∞∑

k=K0+1

Ck

�((k + 1)/2)
< ε.

(3.52)

Then, combining (3.49),(3.50), and (3.52), and recalling that N 1/4βN → β, the proof
is complete once we show that, for each k ≥ 0,

lim sup
N→∞

∥∥∥J N
k (t, y |s, x) − Jk(t, y |s, x)

∥∥∥
L2(P)

= 0.

When k = 0, this is simply the convergenceof thenonrandomquantity [pN (t, y |s, x)]2
to ρ2(t − s, y − x), which is Lemma 3.8(i). Thus, we take k ≥ 1 in the sequel. We
again use (3.1). That is,

∥∥∥J N
k (t, y |s, x) − Jk(t, y |s, x)

∥∥∥
2

L2(P)

≤
∫

Rk

∫

Rk

( k∏

i=0

pN (ti+1, yi+1 |ti , yi ) −
k∏

i=0

ρ(ti+1 − ti , yi+1 − yi )

)2 k∏

i=1

dti dyi .

(3.53)

Recall that
∏k

i=0 pN (ti+1, yi+1 |ti , yi ) is supported on the set Ak(N , s, t, y, x), while
∏k

i=0 ρ(ti+1−ti | yi+1−yi ) is supported on the set where ti+1 > ti for all i . By Lemma
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3.8(i), the integrand in (3.53) converges to 0 Lebesgue-a.e. Expand the square, drop
the cross term, and use (3.14) of Lemma 3.4 to conclude that the integrand in (3.53)
is bounded by a k-dependent constant times

Nk+1

π(k+1)/2
e−2[(t−s)N+(y−x)

√
N ]22(�t N�−�sN�)

k∏

i=0

((ti+1 − ti )N + (yi+1 − yi )
√
N )2(�ti+1N�−�ti N�)

[2(�ti+1N� − �ti N�)]!√(�ti+1N� − �ti N�) ∨ 1
(3.54)

+
k∏

i=0

ρ2(ti+1 − ti , yi+1 − yi ) (3.55)

A Stirling’s approximation computation nearly identical to that in the proof of Lemma
3.8(i) shows that the term in (3.54) converges pointwise to the term in (3.55). By the
generalized dominated convergence theorem, it then suffices to show that the integral
over Ak(N , s, t, y, x) of the term in (3.54) converges as N → ∞ to

∫

Rk

∫

Rk

k∏

i=0

ρ2(ti+1 − ti , yi+1 − yi )
k∏

i=1

dti dyi

=
√
t − s

2kπk/2 ρ2(t − s, y − x)
∫

Rk
1Bk

( k∏

i=1

dti
1√
t i

)
1

√
t − s −∑k

i=1 ti

< ∞,

(3.56)

where

Bk = {ti > 0, 1 ≤ i ≤ k,
k∑

i=1

ti < t − s}.

The equality above comes as follows. To compute the integral on the left in (3.56),
write the integrand as

1

2k+1π(k+1)/2

k∏

i=0

1√
ti+1 − ti

k∏

i=0

1
√

π(ti+1 − ti )
e
− (yi+1−yi )

2

ti+1−ti ,

and recognize the second product as a product of transition probabilities for a diffu-
sivity 1√

2
Brownian motion. Hence,

∫

Rk

∫

Rk

k∏

i=0

ρ2(ti+1 − ti , yi+1 − yi )
k∏

i=1

dti dyi
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= e−(y−x)2/(t−s)

2k+1π(k+1)/2
√

π(t − s)

∫

Rk

k∏

i=0

1(ti+1 > ti )√
ti+1 − ti

k∏

i=1

dti ,

and one readily verifies that this agrees with (3.56). Next, reversing the transformation
(3.46) just as in (3.51) (and dividing by the N 3k/2 Jacobian term), the integral over
Ak(N , s, t, y, x) of the term in (3.54) is equal to

N−k/2+1

π(k+1)/2
e−2[(t−s)N+(y−x)

√
N ]22(�t N�−�sN�)

×
∑

δk (�t N�|�sN�)

∫

�k (t N+y
√
N | sN+x

√
N )

k∏

i=0

(yi+1 − yi )
2(ni−ni−1)

[2(ni+1 − ni )]!
√

(ni+1 − ni ) ∨ 1

k∏

i=1

dti

(3.15)= N−k/2

π(k+1)/2

22(�t N�−�sN�)[(�t N� − �sN�)!]2((t − s)N + (y − x)
√
N )k [pN (t, y |s, x)]2

[2(�t N� − �sN�) + k]!

×
∑

δk (�t N�|�sN�)

k∏

i=0

1
√

(ni+1 − ni ) ∨ 1

(next by Stirling’s approximation and pN → ρ)

∼ N−(k−1)/2√t − s

2kπk/2
ρ2(t − s, y − x)

∑

δk (�t N�|�sN�)

k∏

i=0

1
√

(ni+1 − ni ) ∨ 1

= N−(k−1)/2√t − s

2kπk/2
ρ2(t − s, y − x)

∑

mi≥0∑k+1
i=1 mi=�t N�−�sN�

k+1∏

i=1

1√
mi ∨ 1

= N−(k−1)/2√t − s

2kπk/2
ρ2(t − s, y − x)

×
∫

Rk
1(ti > 0, 1 ≤ i ≤ k, tk+1 = �t N� − �sN� −

k∑

i=1

�ti �)
k+1∏

i=1

1√�ti � ∨ 1

k∏

i=1

dti

=
√
t − s

2kπk/2
ρ2(t − s, y − x)

∫

Bk (N )

( k∏

i=1

dti

√
N

�ti N� ∨ 1

)√
N

(�t N� − �sN� −∑k
i=1�ti �) ∨ 1

,

where the last integration is over the set

Bk(N ) =
{
ti > 0, 1 ≤ i ≤ k,

k∑

i=1

�ti N� ≤ �t N� − �sN�
}
.
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Comparing to (3.56), the proof is complete once we show that

lim
N→∞

∫

Rk
1Bk (N )

( k∏

i=1

dti

√
N

�ti N� ∨ 1

)√
N

(�t N� − �sN� −∑k
i=1�ti�) ∨ 1

(3.57)

=
∫

Rk
1Bk

( k∏

i=1

dti
1√
t i

)
1

√
t − s −∑k

i=1 ti

. (3.58)

The proof is technical and lengthy, and is handled in Lemma 3.11 at the end of the
section.

Lemma 3.10 Let f : �× R → R>0 be a jointly measurable function, independent of
Z sd

βN
and Zβ such that, for some α > 0,

E[ f (x)] ≤ eα|x | ∀x ∈ R. (3.59)

For a sequence βN with N 1/4βN → β > 0 and ZN (t, y |s, x) defined as in (3.44),
under the coupling of Theorem 3.9, the following convergence holds for each choice
of y ∈ R and t > 0:

lim
N→∞ E

[ ∣∣∣∣

∫ t
√
N+y

−∞
f (x)ZN (t, y |0, x) dx −

∫

R

f (x)Zβ(t, y |0, x) dx
∣
∣∣∣

]
= 0.

(3.60)

In particular, for a finite collection { fi }1≤i≤k of jointly measurable functions fi :
�×R → R>0 each satisfying (3.59) for some α > 0, the following weak convergence
holds for finite-dimensional distributions of these processes indexed by y ∈ R:

{∫ t
√
N+y

−∞
fi (x)ZN (t, y |0, x) dx : y ∈ R

}

1≤i≤k

N→∞�⇒
{∫

R

fi (x)Zβ(t, y |0, x) dx : y ∈ R

}

1≤i≤k

.

Proof We can integrate over the whole space R in the left integral in (3.60) because
ZN (t, y |0, x) is defined to be zero for x > t

√
N + y. Then, by independence and the

growth assumption on f , we have

E

[∫

R

f (x)|ZN (t, y |0, x) − Zβ(t, y |0, x)| dx
]

≤
∫

R

eα|x |
E[|ZN (t, y |0, x) − Zβ(t, y |0, x)|] dx . (3.61)
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By Theorem 3.9, we have, for each t > 0 and x, y ∈ R,

E[|ZN (t, y |0, x) − Zβ(t, y |0, x)|] ≤ E[|ZN (t, y |0, x) − Zβ(t, y |0, x)|2]1/2 N→∞−→ 0.

By (3.2), (3.18), and the choice of scaling, E[ZN (t, y |0, x)] = pN (t, y |0, x) and
E[Zβ(t, y |0, x)] = ρ(t, y − x). Thus, the integrand on the right-hand side of the
integrand in (3.61) is bounded above by

eα|x |(pN (t, y − x) + ρ(t, y − x)).

Lemma 3.8(i)–(ii) implies that pN (t, y − x) → ρ(t, y − x) pointwise and that

∫

R

eα|x |(pN (t, y − x) + ρ(t, y − x)) dx
N→∞−→

∫

R

2eα|x |ρ(t, y − x) dx < ∞,

so the generalized dominated convergence theorem completes the proof. The finite-
dimensional weak convergence holds because finite linear combinations also satisfy
the limit in (3.60), so the Cramér-Wold theorem completes the proof.

We conclude this section by completing the unfinished business of the proof of
Theorem 3.9.

Lemma 3.11 The convergence of (3.57) to (3.58) holds.

Proof For this, we break the set Bk(N ) into two disjoint pieces,

B1
k (N ) =

{
ti >

k + 1

N
∀ 1 ≤ i ≤ k and t − s −

k∑

i=1

ti >
2

N

}

and B2
k (N ) = Bk(N ) \ B1

k (N ).

We use the dominated convergence theorem to show that the integral over B1
k (N )

converges to the desired limit, and we argue separately that the integral over B2
k (N )

goes to 0. First, observe that, Lebesgue a.e.,

1B1
k (N )

( k∏

i=1

√
N

�ti N� ∨ 1

)√
N

(�t N� − �sN� −∑k
i=1�ti N�) ∨ 1

→ 1Bk

( k∏

i=1

1√
t i

)
1

√
t − s −∑k

i=1 ti

. (3.62)

Observe that, since x − 1 ≤ �x� ≤ x ,

�ti N� ∨ 1

N
≥ ti − 1

N
and

�t N� − �sN� −∑k
i=1�ti N�

N
≥ t − s −

k∑

i=1

ti − 1

N
,
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and thus, for N large,

ti >
k + 1

N
�⇒ ti >

2

N
�⇒ ti − 1

N
>

ti
2

�⇒
√�ti N� ∨ 1

N
≤
√

2

ti
(3.63)

and

t − s −
k∑

i=1

ti >
2

N
�⇒

√
N

(�t N� − �sN� −∑k
i=1�ti N�) ∨ 1

≤
√

2

t − s −∑k
i=1 ti

.

(3.64)

Therefore,

1B1
k (N )

( k∏

i=1

√
N

�ti N� ∨ 1

)√
N

(�t N� − �sN� −∑k
i=1�ti N�) ∨ 1

≤ 1Bk

( k∏

i=1

√
2

ti

)√
2

t − s −∑k
i=1 ti

,

and the right-hand side is integrable over R
k (it is a constant multiple of the Dirich-

let density). The dominated convergence theorem now implies the convergence of
integrals of the functions in (3.62).

We turn to showing the integral over B2
k (N ) converges to 0. Observe first that on

the set Bk(N ),

t − s −
k∑

i=1

ti ≥ �t N� − �sN� −∑k
i=1�ti N�

N
− k + 1

N
≥ −k + 1

N
. (3.65)

From thefirst inequality of (3.65),we observe that, for all N , sufficiently large (depend-
ing on t, s),

ti ≤ k + 1

N
∀ 1 ≤ i ≤ k �⇒ t − s −

k∑

i=1

ti ≥ �t N� − �sN�
N

−k(k + 1)

N
− k + 1

N
>

2

N
. (3.66)

Next, we break up the set B2
k (N ) into 2k+1 − 2 disjoint sets determined by whether

ti ≤ k+1
N for 1 ≤ i ≤ k and by whether t − s −∑k

i=1 ti ≤ 2
N . The minus 2 comes

because B1
k (N ) is one of these possible sets, and (3.66) eliminates another possibility.

Enumerate these sets as {B2, j
k }1≤ j≤2k+1−2. We show that the integral over each B2, j

k

converges to 0.We do this by considering four separate cases for B2, j
k . To avoid messy
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calculations, we use the shorthand notation

I jk (N ) :=
∫

Rk
1
B2, j
k (N )

( k∏

i=1

dti

√
N

�ti N� ∨ 1

)√
N

(�t N� − �sN� −∑k
i=1�ti�) ∨ 1

.

Case 1: 2 or more of the ti for 1 ≤ i ≤ k satisfy ti ≤ k+1
N : Without loss of generality,

we say that, for some � ≥ 2, ti ≤ k+1
N for 1 ≤ i ≤ �, and ti > k+1

N for � + 1 ≤ i ≤ k.
For � + 1 ≤ i ≤ k, we use the bound in (3.63). We also make use of the following
bounds which hold in general:

√
N

�ti N� ∨ 1
≤ √

N and

√
N

(�t N� − �sN� −∑k
i=1�ti�) ∨ 1

≤ √
N . (3.67)

Observe also that on Bk(N ), for 1 ≤ i ≤ k, and all N sufficiently large,

0 < ti ≤ �t N� − �sN� + 1

N
≤ t − s + 1.

Then,

I jk (N ) ≤ √
N

(∫ (k+1)/N

0

√
N dt

)�(∫ t−s+1

0

2√
u
du

)k−�

≤ C(k, �)N−(�−1)/2 → 0.

Case 2: Exactly one of the ti for 1 ≤ i ≤ k satisfies ti ≤ k+1
N and t−s−∑k

i=1 ti > 2
N :

Without loss of generality, we will say t1 ≤ k+1
N . We start similarly to the last case,

but instead use the bound (3.64) for the last term. In the following, the constant C > 0
depends on t − s and k and may change from line to line.

I jk (N ) ≤ √
N
∫

Rk
dt1

( k∏

i=2

dti

√
2

ti

) √
2

t − s −∑k
i=1 ti

1
(
0 < t1 <

k + 1

N
, ti > 0, 2 ≤ i ≤ k,

k∑

i=1

ti < t − s
)

≤ C
√
N
∫

Rk
dt1

( k∏

i=2

dti

√
1

ti

) √
1

1 −∑k
i=1 ti

1
(
0 < t1 <

k + 1

(t − s)N
, ti > 0, 2 ≤ i ≤ k,

k∑

i=1

ti < 1
)

≤ C
√
N P
(
0 < X1 <

k + 1

(t − s)N

)
.
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where P is the distribution of a random vector (X1, . . . , Xk+1) that is distributed
according to the Dirichlet distribution with parameter vector (1, 1

2 , . . . ,
1
2 ). The next

step follows from X1 having a Beta distribution with parameters (1, k
2 ). Thus, for

constants C1,C2 > 0 changing from term to term,

√
N P
(
0 < X1 <

k + 1

(t − s)N

)
= C1

√
N
∫ C2/N

0
(1 − t)k/2−1

dt = C1
√
N (1 − (1 − C2/N )k/2) ≤ CN−1/2.

Case 3: ti > k+1
N for 1 ≤ i ≤ k and t − s −∑k

i=1 ti ≤ 2
N : We use (3.63) and (3.67)

to get the estimate

I jk (N ) ≤ C
√
N
∫

Rk
1
B2, j
k (N )

k∏

i=1

dti

√
1

ti

for a constant C depending on k. Next, consider the following change of variable:

t̃1 = k + 1

N
+ t − s −

k∑

i=1

ti , t̃i = ti , 2 ≤ i ≤ k. (3.68)

On the set B2, j
k , the assumption t − s −∑k

i=1 ti ≤ 2
N and (3.65) imply that 0 ≤ t̃1 ≤

k+3
N . Furthermore,

t − s −
k∑

i=1

t̃i = t1 − k + 1

N
> 0.

In summary, the transformed vector lies in the set

B̃2, j
k (N ) :=

{
0 < t̃1 ≤ k + 3

N
, t̃i > 0, 2 ≤ i ≤ k,

k∑

i=1

t̃i < t − s
}

Putting this all together,

I jk (N ) ≤ C
√
N
∫

Rk
1
B̃2, j
k

d t̃1

( k∏

i=2

dt̃i
1
√
t̃i

)√
1

t − s −∑k
i=1 t̃i + k+1

N

≤ C
√
N
∫

Rk
1
B̃2, j
k

d t̃1

( k∏

i=2

dt̃i
1
√
t̃i

)√
1

t − s −∑k
i=1 t̃i

.

The asymptotics of the integral can now be reduced to the computation of a beta
probability, just as in the previous case.
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Case 4:Exactly one of the ti for 1 ≤ i ≤ k satisfies ti ≤ k+1
N and t−s−∑k

i=1 ti ≤ 2
N .

Without loss of generality, we will say that t2 ≤ k+1
N . Then, using the bounds (3.67)

for i = 1, 2 and the last factor, then (3.63) for 3 ≤ i ≤ k,

I jk (N ) ≤ CN 3/2
∫

Rk
1
B j,2
k (N )

dt1dt2

k∏

i=3

dti√
t i

.

Making the same change of variables (3.68) as in the previous case,

I jk (N ) ≤ CN 3/2
∫ (k+3)/N

0
dt1

∫ (k+1)/N

0
dt2

(∫ t−s+1

0

1√
u
du

)k−2

≤ CN−1/2 → 0,

where the last k − 2 integrals may be taken from 0 to t − s + 1 for sufficiently large
N by the same reasoning as in Case 1. This concludes all cases.

4 Proofs of themain theorems

4.1 Characterization and regularity of the Busemann process

We now turn to proving Theorem 1.4. To do this, we prove invariance of the KPZHβ

for the SHE. Then, we use the uniqueness result from [46] (recorded as Theorem
3.3) to show that KPZHβ describes the Busemann process. Corollary 2.13 gives the
existence of discontinuities. We first prove an intermediate invariance result for the
O’Connell-Yor polymer.

Proposition 4.1 Let β > 0, and let Fβ = {Fλ
β }λ∈R be the KPZHβ . Let B0, B1, . . . be

a sequence of i.i.d. Brownian motions, independent of Fβ and defining the partition
function (3.9). Let Zsd

β (n, y| f ) be as defined in (3.10). Then, for n ≥ 0 and 0 < λ1 <

· · · < λk, we have this distributional equality on C(R)k:

⎧
⎨

⎩

Z sd
β (n, •|eβF

λi
β )

Z sd
β (n, 0|eβF

λi
β )

⎫
⎬

⎭
1≤i≤k

d= {exp(βFλi
β (•)

)}1≤i≤k . (4.1)

Proof We prove this by induction. For n = 0, λ > 0, and y ∈ R,

Z sd
β (0, y |eβFλ

β ) =
∫ y

−∞
eβF

λ
β (x)Zβ(0, y |0, x) dx =

∫ y

−∞
exp
(
β(Fλ

β (x) + B0(x, y))
)
dx,

and therefore, for 0 < λ1 < · · · < λk ,

⎧
⎪⎪⎨

⎪⎪⎩

Z sd
β (0, y |eβF

λi
β )

Z sd
β (0, 0 |eβF

λi
β )

: y ∈ R

⎫
⎪⎪⎬

⎪⎪⎭
1≤i≤k

=
⎧
⎨

⎩

eβB0(y)
∫ y
−∞ exp

(
β(F

λi
β (x) − B0(x))

)
dx

∫ 0
−∞ exp

(
β(F

λi
β (x) − B0(x))

)
dx

: y ∈ R

⎫
⎬

⎭
1≤i≤k
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(2.9)= {
exp
(
βDβ(B0, F

λi
β )(y)

)}
1≤i≤k .

By Theorem 2.9, this has the same distribution as {exp(βFλi
β )}1≤i≤k .

Now, assume the invariance (4.1) holds for some n ≥ 0. Then,

Z sd
β (n + 1, y | exp(βFλ

β )) =
∫ y

−∞
e
βFλ

β
(x)

Z sd
β (n + 1, y |0, x) dx

(3.10)=
∫ y

−∞

∫ y

x
exp
(
β(Fλ

β (x) + Bn+1(w, y))
)
Z sd

β (n, w|0, x) dw dx

=
∫ y

−∞

∫ w

−∞
exp
(
β(Fλ

β (x) + Bn+1(w, y))
)
Z sd

β (n, w|0, x) dx dw

(3.11)=
∫ y

−∞
exp
(
βBn+1(w, y)

)
Z sd

β (n, w | exp(βFλ
β )) dw.

Then,

⎧
⎪⎪⎨

⎪⎪⎩

Zsd
β

(n + 1, y |eβF
λi
β )

Zsd
β

(n + 1, 0 |eβF
λi
β )

: y ∈ R

⎫
⎪⎪⎬

⎪⎪⎭
1≤i≤k

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

eβBn+1(y)
∫ y

−∞
Zsd
β

(n,w | eβF
λi
β )

Zsd
β

(n,0 | eβF
λi
β )

e−βBn+1(w) dw

∫ 0

−∞
Zsd
β

(n,w | eβF
λi
β )

Zsd
β

(n,0 | eβF
λi
β )

e−βBn+1(w) dw

: y ∈ R

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
1≤i≤k

d=

⎧
⎪⎪⎨

⎪⎪⎩

eβBn+1(y)) ∫ y−∞ e
βF

λi
β

(w)
e−βBn+1(w) dw

∫ 0−∞ e
βF

λi
β

(w)
e−βBn+1(w) dw

: y ∈ R

⎫
⎪⎪⎬

⎪⎪⎭
1≤i≤k

(2.11)= {
e
βD(Bn+1,F

λi
β

)}
1≤i≤k

d= {eβF
λi
β }1≤i≤k .

The first distributional equality is the induction assumption and the second one The-
orem 2.9.

Let the fundamental solution Zβ of SHE be defined as in (3.2), and recall the
definition with initial data (3.3).

Theorem 4.2 Let β > 0, and let Fβ be the KPZHβ , defined on the probability space
(�,F , P) and independent of the SHE Green’s function Zβ . Let t > 0 and real
λ1 < · · · < λk . Then,

⎧
⎨

⎩
Zβ(t, •|0, eβF

λi
β )

Zβ(t, 0|0, eβF
λi
β )

⎫
⎬

⎭
1≤i≤k

d= {exp(βFλi
β (•))}1≤i≤k . (4.2)

Proof For N ∈ N and 1 ≤ i ≤ k, set μN
i = (λi + β

2 )N−1/4 + β−1N 1/4 and
βN = N−1/4β. Let N be large enough so that μN

i > 0 for i ∈ {1, . . . , k}. By (4.1),
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for every n ≥ 1,

⎧
⎨

⎩

Z sd
βN

(n, •| exp(βN F
μN
i

βN
))

Z sd
βN

(n, 0| exp(βN F
μN
i

βN
))

⎫
⎬

⎭
1≤i≤k

d= {exp(βN F
μN
i

βN
)}1≤i≤k .

Then, we have that

⎧
⎪⎨

⎪⎩

exp(−(
√
N + β2/2)y)

∫ t N+y
√
N

−∞ exp(βN F
μN
i

βN
(x))Z sd

βN
(t N , t N + y

√
N |0, x) dx

∫ t N
−∞ exp(βN F

μN
i

βN
(x))Z sd

βN
(t N , t N |0, x) dx

: y ∈ R

⎫
⎪⎬

⎪⎭
1≤i≤k

d=
{
exp
(
βN F

μN
i

βN
(t N , t N + y

√
N ) − (

√
N + β2/2)y

) : y ∈ R

}

1≤i≤k

d= {exp(βN F
μN
i

βN
(y

√
N ) − (

√
N + β2/2)y

) : y ∈ R
}
1≤i≤k

d= {exp(βFλi
β (y)

) : y ∈ R
}
1≤i≤k .

(4.3)

where the second equality follows from shift invariance (Theorem 2.11(i)), and the
third equality follows from the scaling relations of Theorem 2.11(ii). For t > 0 and
x, y ∈ R, set

ψN (t, x, y) = √
N exp

(
−
(
N + β2

√
N

2

)
t −
(√

N + β2

2

)
(y − x)

)

so that, for our choice of βN , ψN (t, x, y) = ψN (0, t, x, y;βN ), where the latter was
defined in (3.43). By a change of variable from x to

√
Nx , the first line of (4.3) is

equal to

⎧
⎪⎪⎨

⎪⎪⎩

√
N exp(−(

√
N + β2/2)y)

∫ t
√
N+y

−∞ exp(βN F
μN
i

βN
(x

√
N ))Zsd

βN
(t N , t N + y

√
N |0, x√N ) dx

√
N
∫ t

√
N−∞ exp(βN F

μN
i

βN
(x

√
N ))Zsd

βN
(t N , t N |0, x√N ) dx

: y ∈ R

⎫
⎪⎪⎬

⎪⎪⎭
1≤i≤k

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∫ t
√
N+y

−∞ e
βN F

μN
i

βN
(x

√
N )−(

√
N+β2/2)x

ψN (t, x, y)Z sd
βN

(t N , t N + y
√
N |0, x√N ) dx

∫ t
√
N−∞ e

βN F
μN
i

βN
(x

√
N )−(

√
N+β2/2)x

ψN (t, x, 0)Z sd
βN

(t N , t N |0, x√N ) dx

: y ∈ R

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭
1≤i≤k

d=

⎧
⎪⎨

⎪⎩

∫ t
√
N+y

−∞ exp(βF
λi
β

(x))ψN (t, x, y)Z sd
βN

(t N , t N + y
√
N |0, x√N ) dx

∫ t
√
N−∞ exp(βF

λi
β

(x))ψN (t, x, 0)Z sd
βN

(t N , t N |0, x√N ) dx
: y ∈ R

⎫
⎪⎬

⎪⎭
1≤i≤k

.

where the distributional equality follows from the scaling of Theorem 2.11(ii), simi-
larly as is done in (4.3). Lemma 3.10 implies that the above converges to, in the sense
of finite dimensional distributions on C(R, R

k),

⎧
⎨

⎩

∫
R
exp(βF

λi
β (x))Zβ(t, y |0, x) dx

∫
R
exp(βF

λi
β (x))Zβ(t, 0 |0, x) dx

: y ∈ R

⎫
⎬

⎭
1≤i≤k

=

⎧
⎪⎨

⎪⎩

Zβ(t, y |0, eβF
λi
β )

Zβ(t, 0 |0, eβF
λi
β )

: y ∈ R

⎫
⎪⎬

⎪⎭
1≤i≤k

.

123



S. Groathouse et al.

(4.4)

In the application of the Lemma, fi (x) = eβF
λi
β (x) for which the condition E[ f (x)] ≤

eα|x | follows immediately. Tightness follows because the distribution of the process
does not depend on N by (4.3). Then, by comparing (4.3) and (4.4), for each t ≥ 0,

⎧
⎨

⎩
Zβ(t, •|0, eβF

λi
β )

Zβ(t, 0|0, eβF
λi
β )

⎫
⎬

⎭
1≤i≤k

d= {exp(βFλi
β )}1≤i≤k .

Corollary 4.3 Letβ > 0. Then, the following distributional equality holds as processes
in D(R,C(R)):

{
b(βλ)+
β (0, 0, 0, •)

}

λ∈R
d= {βFλ

β }λ∈R.

Proof The invariance of Theorem 4.2 and the uniqueness of Theorem 3.3 establish
that for λ1 < · · · < λk ,

{
b(βλi )+
β (0, 0, 0, •)

}

1≤i≤k

d= {βFλi
β }1≤i≤k .

The choice of factors of β comes by comparing drifts, using Proposition 2.10(i) and
Theorem 3.2(i). The equality of processes in the path space D(R,C(R)) follows by
the uniqueness of Proposition 2.10(ii).

Proof of Theorem 1.1 The description of the measures used in the theorem comes from
Lemma 2.1 and the definition of the finite-dimensional marginals of the KPZHβ in
Proposition 2.10(ii). Uniqueness follows directly from Corollary 4.3 and the unique-
ness in Theorem 3.3. In handling the factor of β, we recall that we define solutions to
the KPZ equation as in (1.11) as

hZβ (t, y |s, f ) = 1

β
log
∫

R

eβ f (x)Zβ(t, y|s, x) dx .

Proof of Theorem 1.3 By Corollary 2.13, the KPZHβ is not almost surely continuous.
Corollary 4.3 gives the equality of theBusemann process and theKPZHβ . By Theorem
3.2(v), the set of discontinuities �β is countable and dense in R with probability 1.
The presence of the discontinuities for the process λ �→ Fλ

β (x, y) is Theorem 3.2(ii)
(originally proved in [46]). This completes the proof.

Proof of Theorem 1.4 This is a direct consequence of Corollary 4.3 and Theorem 1.3.
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4.2 Limits asˇ ↗ ∞ andˇ ↘ 0

Proof of Theorem 1.5 We first prove the limit as β ↗ ∞: Proposition 2.10(ii) implies
that, for λ1 < · · · < λk , (F

λ1
β , . . . , Fλk

β ) ∼ μ
λ1,...,λk
β . By Lemma 2.1, we can describe

this distribution as (Fλ1
β , . . . , Fλk

β )
d= (η1β, . . . , ηkβ), where for independent Brownian

motions Y 1, . . . ,Y k with drifts λ1, . . . , λk , η1β = Y 1, and for 2 ≤ n ≤ k,

ηnβ(y) = Y 1(y) + β−1 log
∫

−∞<xn−1<···<x1<y

n−1∏

i=1

exp
[
β(Y i+1(xi ) − Y i (xi ))

]
dxi

− β−1 log
∫

−∞<xn−1<···<x1<0

n−1∏

i=1

exp
[
β(Y i+1(xi ) − Y i (xi ))

]
dxi .

By the convergence of the Lβ norm as β ↗ ∞, the zero-temperature limit β → ∞
converts the polymer free energy into last-passage percolation. Therefore, on a single
event of full probability, simultaneously for each y ∈ R and n ∈ {2, . . . , k},

lim
β↗∞ ηnβ(y) = Y 1(y) + sup

−∞<xn−1≤···≤x1≤y

{ n−1∑

i=1

(Y i+1(xi ) − Y i (xi ))

}

− sup
−∞<xn−1≤···≤x1≤0

{ n−1∑

i=1

(Y i+1(xi ) − Y i (xi ))

}
.

Lemma B.3 and Definition B.1 imply that, in the sense of finite-dimensional distribu-
tions on C(Rk, R),

(
η1β(2 •), . . . , ηkβ(2 •)

)
β↗∞�⇒ (Gλ1 , . . . ,Gλk ).

Tightness holds because each component in the prelimit is a Brownian motion with a
fixed drift.

For each β, the process in Item (ii) has the same distribution as the process in Item
(i) by the scaling relations of Theorem 2.11(ii).

Now, we prove the convergence as β ↘ 0. By Theorem 1.2, as processes in y > 0,

Fλ2
β (y) − Fλ1

β (y)
d= β−1 log(1 + Xλ,βYλ,β(y)) = log

(
1 + β−1Xλ,βYλ,β

β−1

)β−1

,

(4.5)
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where λ := λ2 −λ1, Xλ,β has the Gamma distribution with shape λβ−1 and rate β−2,
and

Yλ,β(y) =
∫ y

0
exp(

√
2βB(x) + λβx) dx (4.6)

where B is a standard Brownian motion. For fixed λ, y > 0, couple the Yλ,β(y)
together with a single Brownian motion B using (4.6). Note that for β < 1,

∫ y

0
exp(

√
2βB(x) + λβx) dx ≤

∫ y

0
exp(

√
2|B(x)| + λx) dx,

and the right-hand side is finite almost surely. By dominated convergence, Yλ,β(y)
converges almost surely to y as β ↘ 0. Next, the random variable Xλ,β/β has mean
λ and variance λβ, so for any ε > 0, by Chebyshev’s inequality,

lim
β↘0

P

(
|β−1Xλ,β − λ| > ε

)
= 0. (4.7)

Hence, there exists a coupling of copies of Xλ,β (which we may keep independent of
Yλ,β(y)) so that Xλ,β → λ almost surely as β ↘ 0. In the product space, using (4.5),
β−1 log(1 + Xλ,βYλ,β(y)) converges almost surely to λy. Therefore, for each ε > 0
and y > 0,

lim sup
β↘0

P(|Fλ2
β (y) − Fλ1

β (y) − (λ2 − λ1)y| > ε) = 0.

The result also holds for y < 0 because {Fλ
β (y)}λ∈R = {−Fλ

β (y, 0)}λ∈R
d=

{−Fλ
β (0,−y)}λ∈R (Theorem 2.11(ii)). Now, let λ1 < . . . < λk and {yi, j : 2 ≤

i ≤ k, 1 ≤ j ≤ Ji } be a finite collection of points in R. By a simple union bound, for
each ε > 0, we have

lim sup
β↘0

P

(
sup

2≤i≤k,1≤ j≤Ji
|Fλi

β (yi, j ) − Fλ1
β (yi, j ) − (λi − λ1)yi, j | > ε

)
= 0.

Since the marginal distribution of Fλ1
β does not change as β ↘ 0 (a Brownian motion

with drift λ1), it follows by Slutsky’s Theorem that, in the sense of finite-dimensional
distributions,

(
Fλ1

β (2•), . . . , Fλk
β (2•)

)
β↘0�⇒ (B(2•) + 2λ1•, B(2•) + 2λ2•, . . . , B(2•) + 2λk •),

where B is a standard Brownian motion. Convergence on C(Rk) follows because the
marginal distribution of each component on the left-hand side is a Brownian motion
with drift λi and therefore is tight.
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Proof of Corollary 1.6 Given Theorem 1.5, we follow a similar procedure to the proof
of [66, Corollary 1.9]. The only needed change is that the joint distribution of the initial
data changes with T . LetHβ = log Zβ . Recalling the definition (1.11) of solutions to
the KPZ equation, we observe that

21/3T−1/3
[
βhZβ

( T t
β4 ,

21/3T 2/3y

β2 ; T s
β4 , F

α+21/3T−1/3λi
β (•) − α•

)

+ T (t − s)

24
− 2

3
log(

√
2T )

]

= 21/3T−1/3 log
∫

R

1

21/3T 2/3 exp

(
βF

α+β21/3T−1/3λi
β (x) − βαx

+ Hβ

( T t
β4 ,

21/3T 2/3y

β2

∣
∣∣
T s

β4 , x
)

+ T (t − s)

24

)
dx

= 21/3T−1/3 log
∫

R

β−2 exp

(
βF

α+β21/3T−1/3λi
β

( 21/3T 2/3

β2 x
)

− 21/3T 2/3αx

β

+ Hβ

( T t
β4 ,

21/3T 2/3y

β2

∣∣∣
T s

β4 ,
21/3T 2/3x

β2

)
+ T (t − s)

24

)
dx

d= 21/3T−1/3 log
∫

R

exp

(
βF

α+β21/3T−1/3λi
β

( 21/3T 2/3

β2 x
)

− 21/3T 2/3αx

β

+ H1

(
T t, 21/3T 2/3y

∣
∣∣T s, 21/3T 2/3x

)
+ T (t − s)

24

)
dx

= 21/3T−1/3 log
∫

R

exp

(
2−1/3T 1/3

[
β21/3T−1/3F

α+β21/3T−1/3λi
β

( 21/3T 2/3

β2 x
)

− 22/3T 1/3αx

β

+ 21/3T−1/3H1

(
T t, 21/3T 2/3y

∣∣∣T s, 21/3T 2/3x
)

+ 21/3T 2/3(t − s)

24

])
dx

= 21/3T−1/3 log
∫

R

exp
(
2−1/3T 1/3[Fi

T (x) + HT (t, y |s, x)]
)
dx

where the distributional equality is theorem 3.1(iii), and we define

FT
i (x) = β21/3T−1/3Fα+β21/3T−1/3λi

β

(21/3T 2/3

β2 x
)

− 22/3T 1/3αx

β

HT (t, y|s, x) = 21/3T−1/3H1

(
T t, 21/3T 2/3y

∣∣∣T s, 21/3T 2/3x
)

+ 21/3T 2/3(t − s)

24

hTi (t, y) = 21/3T−1/3 log
∫

R

exp
(
2−1/3T 1/3[Fi

T (x) + HT (t, y |s, x)]
)
dx .

Note that {FT
i }1≤i≤k andHT := {HT (t, y|s, x) : t > s, x, y ∈ R} are independent

by assumption. We observe that Fi
T is a Brownian motion with diffusion

√
2 and drift

2λi ; hence its law does not depend on T . By [66, Theorem 1.6], HT converges to
L in C(R4↑, R). By [56, 65], for each i , hTi := {hTi (t, x; FT

i ) : t > s, x ∈ R}
converges in distribution on C(R>s, R) to the KPZ fixed point hL(t, y; s,Gλi ) :=
supx∈R{Gλi (x)+L(x, s; y, t)}. Hence, this sequence is tight in C(R>s ×R, R

k). All
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together, the sequence

({Fi
T }1≤i≤k,HT , {hTi }1≤i≤k

)
(4.8)

is tight on C(R, R
k) × C(R4↑, R) × C(R>s × R, R). Let

({Gλi }1≤i≤k,L, {gi }1≤i≤k) (4.9)

be a subsequential limit. We may write the first component {Gλi }1≤i≤k and the second
as L because we know the SH and DL are, respectively, the law of the limits of
the first and second component. by the weak convergence of hTi , we also know that,

marginally, for each i , gi
d= hL(•, •; s,Gλi ). By Skorokhod representation ( [33,

Thm. 11.7.2], [36, Thm. 3.1.8]), there exists a coupling of (4.8) and (4.9) where, as
T → ∞, convergence holds in the sense of uniform convergence on compact sets.
Now, we follow the procedure of [66]. We observe that for fixed t > s and y ∈ R,
with probability one,

hL(t, y;Gλi ) = sup
x∈R

{Gλi (x) + L(x, 0; y, t)}

= lim
M→∞ sup

|x |≤M
{Gλi (x) + L(x, 0; y, t)}

= lim
M→∞ lim

T→∞ 21/3T−1/3 log
∫ M

−M
exp

(
2−1/3T 1/3[Fi

T (x) + HT (t, y |s, x)]
)
dx

≤ lim
M→∞ lim

T→∞ 21/3T−1/3 log
∫

R

exp
(
2−1/3T 1/3[Fi

T (x) + HT (t, y |s, x)]
)
dx = gi (t, y).

Hence, since we already established hL(t, y;Gλi )
d= gi (t, y), there exists an event

of probability one on which, for 1 ≤ i ≤ k, all (t, y) ∈ Q>s × Q, hL(t, y;Gλi )
d=

gi (t, y). Equality on R>s × R follows on this full probability event by continuity.
We next turn to the convergence of the Busemann process. It suffices to show that,

for each r ∈ R, the following distributional convergence holds, in the sense of uniform
convergence on compact sets.

{
21/3T−1/3

[
b
β21/3T−1/3λi
β

( T s
β4 ,

21/3T 2/3x

β2 ; T t

β4 ,
21/3T 2/3y

β2

)
+ T (t − s)

24

]
: (x, s; y, t) ∈ R

4
r

}

T→∞�⇒ {Bλi (y, −t; x, −s) : (x, s; y, t) ∈ R
4
r }1≤i≤k ,

where we use the shorthand notation R
4
r = R × R>r × R × R>r . By the dynamic

programming principle and additivity of the Busemann process (Theorem 3.2(iii),(v))
as well as the relation between Busemann process and the KPZH (Corollary 4.3), for
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s, t > r ,

b(βλ)+
β (s, x, t, y) = b(βλ)+

β (r , 0, t, y) − b(βλ)+
β (r , 0, s, x)

= log
∫

R

eb
(βλ)+
β (r ,0,r ,z)Zβ(t, y |r , z) dz

− log
∫

R

eb
(βλ)+
β (r ,0,r ,z)Zβ(s, x |r , z) dz

d= βhZβ (t, y |r , Fλ
β ) − βhZβ (s, x; |r , Fλ

β ),

(4.10)

where the distributional equality holds as processes in λ × (x, s; y, t) ∈ R × R
4
r .

Similarly, by the additivity and evolution of the Busemann process from Theorem

B.4, along with the distributional equalities L(x, s; y, t) d= L(y,−t; x,−s) (Lemma
B.5) and the distributional equality betweenBusemann functions and the SH (Theorem
B.4(v)), for s, t > r ,

Bλ+(y,−t; x,−s) = Bλ+(y,−t; 0,−r) − Bλ+(x,−s; 0,−r)

= sup
z∈R

{L(y,−t; z,−r) + Bλ+(z,−r; 0,−r)}

− sup
z∈R

{L(x,−s; z,−r) + Bλ+(z,−r; 0,−r)}
d= sup

z∈R
{Gλ(z) + L(z, r; y, t)} − sup

z∈R
{Gλ(z) + L(z, r; x, s)}

= hL(t, y |r ,Gλ) − hL(s, x |r ,Gλ),

(4.11)

where, again, the distributional equality holds as processes in λ×(x, s; y, t) ∈ R×R
4
r .

Here, we have also used the independence of the Busemann process at time−r and the
DL for times less than −r (Theorem B.4(iv)). Comparing (4.10) to (4.11) and using
the first part of the theorem in the α = 0 case, we get

{
21/3T−1/3

[
b
β21/3T−1/3λi
β

( T s
β4 ,

21/3T 2/3x

β2 ,
T t

β4 ,
21/3T 2/3y

β2

)
+ T (t − s)

24

]

: (x, s; y, t) ∈ R
4
r

}

1≤i≤k

d=
{
21/3T−1/3

[
hZβ

( T t
β4 ,

21/3T 2/3x

β2 | Tr
β4 , βF

21/3T−1/3λi
β

)
+ T (t − r)

24
− 2

3
log(

√
2T ) − hZβ

( T s
β4 ,

21/3T 2/3y

β2 | Tr
β4 , βF

21/3T−1/3λi
β

)
− T (s − r)

24
+ 2

3
log(

√
2T )
]

: (x, s; y, t) ∈ R
4
r

}

1≤i≤k

T→∞�⇒
{
hL(t, y |r ,Gλi ) − hL(s, x |r ,Gλi )

: (x, s; y, t) ∈ R
4
r

}

1≤i≤k

d= {Bλi (y, −t; x,−s) : (x, s; y, t) ∈ R
4
r }1≤i≤k .
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Appendix A Queues and the O’Connell-Yor polymer

Recall the transformations Qβ, Dβ, Rβ defined in (2.2). We state one of the main
theorems from [53]. Their theorem is stated for β = 1. The statement for general
β > 0 follows from Lemma 2.6 since

Dβ(B,Y ) = TβD1(T
2
β−1(B,Y )), and Rβ(B,Y ) = Tβ R1(T

2
β−1(B,Y )).

Theorem A.1 [53, Theorem 5] Let B and Y be independent two-sided Brownian
motions with drift so that the drift of Y is strictly larger than the drift of B. Let β > 0,

and let Qβ, Dβ, Rβ be defined as in (2.2). Then, (Rβ(B,Y ), Dβ(B,Y ))
d= (B,Y ),

and for each y ∈ R, {Dβ(Y , B)(x), Rβ(Y , B)(x) : −∞ < x ≤ y} is independent of
{Qβ(x) : x ≥ y}.
Lemma A.2 Let B be a standard two-sided Brownian motion, and let β, λ > 0. Then,

(∫ 0

−∞
e
√
2βB(x)+λβx

)−1 ∼ Gamma (λβ−1, β−2).

Proof Theorem 4.4 in [34] (also Equation 1.8.4(1) on page 612 4 of [18]) states that
for γ, σ > 0,

(∫ ∞

0
e−σ B(x)−γ x dx

)−1 ∼ Gamma(2γ σ−2, 2σ−2)

(as a caution, we note that [34] parameterizes the Gamma distribution by shape and
scale, so the result is stated there with scale σ 2/2). Observe that

∫ 0

−∞
e
√
2βB(x)+λβx =

∫ ∞

0
e
√
2βB(−x)−λβx d=

∫ ∞

0
e−√

2βB(x)−λβx ,

and so the result follows upon substituting σ = √
2β and γ = λβ.

The remainder of this appendix contains the omitted proofs from Sect. 2.2, along
with some additional lemmas. These follow similarly as for zero temperature in [37]
and [60], modulo the necessary inputs from Sect. 2.1. We first prove an intermediate
lemma.

Lemma A.3 Let n ≥ 2, and let (B1,Y 1, . . . ,Yn) be such that the following operations
are well-defined. Let β > 0. For 2 ≤ j ≤ n, define B j = Rβ(B j−1,Y j−1). Then, for
1 ≤ k ≤ n − 1,

D(n+1)
β (B1,Y 1, . . . ,Yn) = D(k+1)

β

(
Dβ(B1,Y 1), . . . ,

Dβ(Bk,Y k), D(n−k+1)
β (Bk+1,Y k+1, . . . ,Yn)

)
. (A.1)
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We note that the case k = n − 1 of Lemma A.3 gives us

D(n+1)
β (B1,Y 1, . . . ,Yn) = D(n)

β (Dβ(B1,Y 1), . . . , Dβ(Bn,Yn)). (A.2)

Proof of LemmaA.3 Equation (2.16) gives us the statement for n = 2. Assume, by
induction, that the statement is true for some n − 1 ≥ 2. We will show the statement
is also true for n. We first prove the case k = 1. Using (2.16) in the second equality
below,

D(2)
β (Dβ(B1,Y 1), D(n)

β (B2,Y 2, . . . ,Yn))

= Dβ(Dβ(B1,Y 1), Dβ(B2, D(n−1)
β (Y 2, . . . ,Yn)))

= Dβ(B1, Dβ(Y 1, D(n−1)
β (Y 2, . . . ,Yn)))

= Dβ(B1, D(n)
β (Y 1, . . . ,Yn))

= D(n+1)
β (B1,Y 1, . . . ,Yn).

Now, let 2 ≤ k ≤ n − 1. Then, by definition of D(k+1) and the induction assumption,

D(k+1)
β (Dβ(B1, Y 1), . . . , Dβ(Bk , Yk ), D(n−k+1)

β (Bk+1, Yk+1, . . . , Yn))

=Dβ(Dβ(B1, Y 1), D(k)
β (Dβ(B2, Y 2), . . . , Dβ(Bk , Yk ), D(n−k+1)

β (Bk+1, Yk+1, , . . . , Yn)))

=Dβ(Dβ(B1, Y 1), D(n)
β (B2, Y 2, . . . , Yn)) = D(2)

β (Dβ(B1, Y 1), D(n)
β (B2, Y 2, . . . , Yn)).

The lemma now follows from the k = 1 case.

The multiline process is a discrete-time Markov chain on the state space Y(a,∞)
n of

(2.5), where a ∈ R. The analogous process is defined in a discrete setting for particle
systems in [38], for lattice last-passage percolation in [37], and in zero temperature
BLPP in [60]. Starting at time m − 1 in state Ym−1 = Y = (Y 1,Y 2, . . . ,Yn) ∈
Y(a,∞)
n the time m state is given as

Ym = Y = (Y
1
,Y

2
, . . . ,Y

n
) ∈ Yn

is defined as follows. Let B ∈ Cpin(R) satisfy

lim
x→−∞ x−1B(x) = a.

First, set B1 = B, and Y
1 = Dβ(Y 1, B1). Then, iteratively for i = 2, 3, . . . , n:

Bi = Rβ(Bi−1,Y i−1), and Y
i = Dβ(Bi ,Y i ). (A.3)

Lemma A.4 The mapping (A.3) is well-defined on the state space Y(a,∞)
n .
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Proof This follows from Lemma 2.2: By induction, each Bi satisfies

lim
x→−∞

Bi (x)

x
= a.

Therefore, since Y ∈ Y(a,∞)
n , for 1 ≤ i ≤ n,

lim sup
x→∞

Y i (x) − Bi (x)

x
> 0.

Theorem A.5 At each step of the evolution of the multiline process, take the driving
function B to be an independent standard, two-sided Brownian motion with drift
a ∈ R. For each λ̄ = (λ1, . . . , λn) ∈ R

n
>0 with a < λ1 < · · · < λn, the measure νλ̄

on Y(a,∞)
n is invariant for the multiline process (A.3)

Proof Assuming that Y = (Y 1, . . . ,Yn) ∈ YR>0
n are i.i.d. Brownian motions with

drifts λ1, . . . , λn , wemust show that the same is true for Y
1
, . . . ,Y

n
. By TheoremA.1,

Y
1 = Dβ(B1,Y 1) is a two-sided Brownianmotion with drift λ1, independent of B2 =

Rβ(B1,Y 1), which is a two-sided Brownian motion with drift a. Hence, the random

pathsY
1
, B2,Y 2, . . . ,Yn aremutually independent.We iterate this process as follows:

Assume, for some2 ≤ k ≤ n−1, that the randompathsY
1
, . . . ,Y

k−1
, Bk,Y k, . . . ,Yn

are mutually independent, where for 1 ≤ i ≤ k−1, Y
i
is a Brownian motion with drift

λi . Applying Theorem A.1 again, Y
k = Dβ(Bk,Y k) is a two-sided Brownian motion

with drift λk , independent of Bk+1 = Rβ(Bk,Y k), which is a two-sided Brownian

motion with zero drift. Since (Y
k
, Bk+1) is a function of (Bk,Y k), it follows that

Y
1
, . . . ,Y

k
, Bk+1,Y k+1, . . . , Zn are mutually independent, completing the proof.

Proof of Lemma 2.8 (Consistencyof themeasures) It suffices to show that if (η1, . . . , ηn)
has distribution μ

λ1,...,λn
β , then

(η1, . . . , ηi−1, ηi+1, . . . , ηn) ∼ μ
λ1,...,λi−1,λi+1,...,λn
β .

Let Y = (Y 1, . . . ,Yn) ∼ νλ̄ and η = D(n)
β (Y) so η = (η1, . . . , ηn) ∼ μλ̄

β .

For i = n, the statement is immediate from the definition of the map D(n)
β . Next,

we show the case i = 1. For 2 ≤ j ≤ n, by (A.2), we may write

D( j)
β (Y 1, . . . ,Y j ) = D( j−1)

β (Dβ(Ỹ 1,Y 2), Dβ(Ỹ 2,Y 3), . . . , Dβ(Ỹ j−1,Y j )),

where Ỹ 1 = Y 1, and for i > 1, Ỹ i = R(Ỹ i−1,Y i ). Then (η2, . . . , ηn) =
D(n−1)

β (Ŷ 2, . . . , Ŷ n), where Ŷ i = Dβ(Ỹ i−1,Y i ) for 2 ≤ i ≤ n. By Theorem A.5,
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Ŷ 2, . . . , Ŷ n are independent, completing the proof in the case i = 1. Using the defi-
nition of D( j)

β (2.3), for i < j ≤ n,

D( j)
β (Y 1, . . . ,Y j ) = Dβ(Dβ(Y 1, Dβ(Y2, · · · Dβ(Y i−1, D( j−i+1)

β (Y i , . . . ,Y j )) · · · ).
(A.4)

We apply (A.2), just as in the i = 1 case, to obtain

D( j−i+1)
β (Y i , . . . ,Y j )

= D( j−i)
β (Dβ(Ỹ i ,Y i+1), . . . , Dβ(Ỹ j−1,Y j )) = D( j−i)

β (Ŷ i+1, . . . , Ŷ j ), (A.5)

where, Ỹ i = Y i , and for j > i , Ỹ j = R(Ỹ j−1,Y j ). For j > i , we define Ŷ j =
Dβ(Ỹ j−1,Y j ). Then, by (A.4) and (A.5), when i < j ≤ n,

D( j)
β (Y 1, . . . ,Y j ) = D( j−1)

β (Y 1, . . . ,Y i−1, Ŷ i+1, . . . , Ŷ j ),

and thus,

(η1, . . . , ηi−1, ηi+1, . . . , ηn) = D(n−1)
β (Y 1, . . . ,Y i−1, Ŷ i+1, . . . , Ŷ n). (A.6)

By Theorem A.5, Ŷ i+1, . . . , Ŷ n are independent Brownian motions with drifts
λi+1, . . . , λn . These random paths are functions of Y i , . . . ,Yn ,so the paths functions
Y 1, . . . ,Y i−1, Ŷ i+1, . . . , Ŷ j are also independent. Thus, by (A.6),

(η1, . . . , ηi−1, ηi+1, . . . , ηn) ∼ μ(λ1,...,λi−1,λi+1,...,λn).

Proof of Theorem 2.9 Let Y ∼ νλ̄. Let η = D(n)
β (Y) so that η ∼ μλ̄

β . Then, for Brow-

nian motion B, let SB
β denote the mapping of a single evolution step of Y according

to the multiline process (A.3) and T B
β denote the mapping of a single evolution step

of η according to the Markov chain (2.21). By definition of D(k)
β and Equation (A.2),

[T ,B
β (η)]k = Dβ(ηk, B) = Dβ(B1, D(k)

β (Y 1, . . . ,Y k)) = D(k+1)
β (B1,Y 1, . . . ,Y k)

= D(k)
β (Dβ(B1,Y 1), Dβ(B2,Y 2), . . . , Dβ(Bk,Y k))

= D(k)
β ([SB

β (Y)]1, [SB
β (Y)]2, . . . , [SB

β (Y)]k) = [D(n)
β (SB

β (Y))]k .

Therefore, T B
β (η) = D(n)

β (SB
β (Z)), and because η = D(n)(Z), we have

T B(D(n)(Y)) = D(n)(SB(Y)).

Theorem A.5 implies that SB
β (Y)

d= Y ∼ νλ̄. Therefore, T B
β (η)

d= D(n)
β (Y) ∼ μλ̄.
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Appendix B Stationary horizon and the directed landscape

The stationary horizon (SH) was first introduced by Busani in [20] and was later
studied by Busani and the third and fourth authors in [21, 22, 60]. We refer to those
articles for amore complete description. Analogously to how theKPZHβ describes the
jointly invariantmeasures for theO’Connell-Yor polymer and theKPZ equation, it was
proved in [22, 60] that the SH describes the jointly invariant measures for Brownian
last-passage percolation and the KPZ fixed point. Jointly invariant measures for the
KPZ fixed point are made precise through the coupling with the directed landscape.
See [29, 30, 50, 56, 65, 66] for more on the KPZ fixed point and directed landscape.
We briefly describe the needed definition and facts about the SH, DL, and the KPZ
fixed point here.

The directed landscape (DL) is a random continuous function L : R
4↑ → R.

By convention, we switch the ordering of space-time coordinates to L(x, s; y, t) (in
contrast to the ordering in Zβ(t, y |s, x)). Given the DL, we can construct the KPZ
fixed point started from time s as

hL(t, y|s, h) = sup
x∈R

{h(x) + L(x, s; y, t)}, t > s, y ∈ R.

SH is constructed with the zero-temperature counterparts of the mappings of
Sect. 2.1. We denote these with the same letters but without the β subscript. For
functions that satisfy Y (0) = B(0) = 0 and lim supx→−∞ Y (x) − B(x) = −∞,
define

D(B,Y )(y) = B(y) + sup
−∞<x≤y

{Y (x) − B(x)} − sup
−∞<x≤0

{Y (x) − B(x)}. (B.1)

As in (2.3), iterate the mapping D as follows:

D(1)(Y ) = Y , and D(n)(Y 1,Y 2, . . . ,Yn) = D(Y 1, D(n−1)(Y 2, . . . ,Yn)) for n ≥ 2.

A mapping D(n) : YR
n → XR

n is defined as follows: the image η = (η1, . . . , ηn) =
D(n)(Z) ∈ Xn is defined for Y = (Y 1, . . . ,Yn) ∈ YR

n by

ηi = D(i)(Y 1, . . . ,Y i ) for 1 ≤ i ≤ n.

For λ̄ = (λ1 < · · · < λn), we define the measure μλ1,...,λn (again without the β

subscript) as

μλ̄ = νλ̄ ◦ (D(n))−1.

Definition B.1 The stationary horizon {Gμ}μ∈R is a processwith paths in D(R,C(R)).
Its law is characterized as follows: For real numbers λ̄ = (λ1 < · · · < λk), the k-
tuple (Gλ1 , . . . ,Gλk ) ∈ C(R)k has distribution μλ̄ ◦ (T̃ k

2 )−1, where T̃2 is the mapping
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C(R)k → C(R)k defined by

T̃ k
2 ( f1, . . . , fk)(x) = ( f1(2x), . . . , fk(2x)).

In this definition, we multiply by a factor of 2 so that the marginal distributions
are Brownian motions with diffusivity

√
2. This is the correct parameterization for

invariance under the KPZ fixed point.

Lemma B.2 [[20], Theorem 1.2; [60], Theorems 3.6(iii), 5.4] For c > 0 and ν ∈ R,

{cGc(μ+ν)(c
−2x) − 2νx : x ∈ R}μ∈R

d= {Gμ(x) : x ∈ R}μ∈R.

Lemma B.3 [[60], Lemma 7.2, and see Appendix D in [59]] For Y = (Y 1, . . . ,Yn),
define

AY
n (x) = sup

−∞<xn−1≤···≤x1≤x

{ n∑

i=1

Y i (xi ) − Y i−1(xi )
}
.

Then, if AY
n (0) is finite, for n ≥ 2,

D(n)(Y 1,Y 2, . . . ,Yn)(x) =Y 1(x) + AY
n (x) − AY

n (0).

The following states properties of the Busemann process for the DL from [22]. For
a single direction λ, these properties were previously established in [57].

Theorem B.4 [22, Theorems 5.1–5.2] On the probability space (�,F , P) of the
directed landscape L, there exists a process

{Bλ�(p; q) : λ ∈ R, � ∈ {−,+}, p, q ∈ R
2}

satisfying the following properties. All the properties below hold on a single event of
probability one, simultaneously for all directions λ ∈ R, signs� ∈ {−,+}, and points
p, q ∈ R

2, unless otherwise specified.

(i) (Continuity) As an R
4 → R function, (x, s; y, t) �→ Bλ�(x, s; y, t) is continu-

ous.
(ii) (Additivity) For all p, q, r ∈ R

2, Bλ�(p; q) + Bλ�(q; r) = Bλ�(p; r). In par-
ticular, Bλ�(p; q) = −Bλ�(q; p) and Bλ�(p; p) = 0.

(iii) (Backwards evolution as the KPZ fixed point) For all x, y ∈ R and s < t ,

Bλ�(x, s; y, t) = sup
z∈R

{L(x, s; z, t) + Bλ�(z, t; y, t)}. (B.2)

(iv) (Independence) For each T ∈ R, these processes are independent:

{Bλ�(x, s; y, t) : λ ∈ R, � ∈ {−,+}, x, y ∈ R, s, t ≥ T }
and {L(x, s; y, t) : x, y ∈ R, s < t ≤ T }.
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(v) (Distribution along a time level) For each t ∈ R, the following equality in distri-
bution holds between random elements of the Skorokhod space D(R,C(R)):

{Bλ+(•, t; 0, t)}λ∈R
d= {Gλ(•)

}
λ∈R,

where G is the stationary horizon.

We also make use of the following symmetry of the directed landscape.

Lemma B.5 [30, Proposition 14.1] The directed landscape satisfies the following
symmetry

{L(x, s; y, t) : (s, x, t, y) ∈ R
4↑} d= {L(y,−t; x,−s) : (s, x, t, y) ∈ R

4↑}.
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