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Abstract

We study quenched distributions on random walks in a random potential on in-
teger lattices of arbitrary dimension and with an arbitrary finite set of admissible
steps. The potential can be unbounded and can depend on a few steps of the
walk. Directed, undirected, and stretched polymers, as well as random walk in
random environment, are covered. The restriction needed is on the moment of
the potential, in relation to the degree of mixing of the ergodic environment.
We derive two variational formulas for the limiting quenched free energy and
prove a process-level quenched large deviation principle (LDP) for the empirical
measure. As a corollary we obtain LDPs for types of random walks in random
environments not covered by earlier results. © 2012 Wiley Periodicals, Inc.

1 Introduction
This paper investigates the limiting free energy and large deviations for several

much-studied lattice models of random motion in a random medium. These include
walks in random potentials, also called polymer models, and the standard random
walk in a random environment (RWRE). We derive variational formulas for the
free energy and process-level large deviations for the empirical measure.

1.1 Walks in Random Potentials and Environments
We call our basic model random walk in a random potential (RWRP). A special

case is random walk in a random environment (RWRE). Fix a dimension d 2 N.
There are three ingredients to the model: (i) a reference random walk on Zd , (ii) an
environment, and (iii) a potential.

(i) Fix a finite subset R � Zd . Let Px denote the distribution of the discrete-
time random walk on Zd that starts at x and has jump probability yp.´/ D 1=jRj
for ´ 2 R and yp.´/ D 0 otherwise. Ex is expectation under Px . The walk is
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denoted by X0;1 D .Xn/n�0. Let G be the additive subgroup of Zd generated by
R.

(ii) An environment ! is a sample point from a probability space .�;S;P /.
� comes equipped with a group fT´ W ´ 2 Gg of measurable commuting bijections
that satisfy TxCy D TxTy , and T0 is the identity. P is a fT´ W ´ 2 Gg–invariant
probability measure on .�;S/ that is ergodic under this group. In other words,
if A 2 S satisfies T´A D A for all ´ 2 G, then P .A/ D 0 or 1. E will denote
expectation relative to P . We call .�;S;P ; fT´ W ´ 2 Gg/ a measurable ergodic
dynamical system.

(iii) A potential is a measurable function V W � �R` ! R for some integer
` � 0.

Given an environment ! and a starting point x 2 Zd , for n � 1 define the
quenched polymer measures

(1.1) QV;!n;x fX0;1 2 Ag D
1

Z
V;!
n;x

Ex
�
e�

Pn�1
kD0 V.TXk!;ZkC1;kC`/1A.X0;1/

�
normalized by the quenched partition function

ZV;!n;x D Ex
�
e�

Pn�1
kD0 V.TXk!;ZkC1;kC`/

�
DX

´1;nC`�12RnC`�1

jRj�n�`C1 e�
Pn�1
kD0 V.Txk!;´kC1;kC`/:

Zk D Xk�Xk�1 is a step of the walk and vectors areXi;j D .Xi ; XiC1; : : : ; Xj /.
Q
V;!
n;x represents the evolution of the polymer in a “frozen” environment !. (The

picture is that of a heated sword quenched in water.) Let us mention two models of
special importance.

Example 1.1 (k C 1–Dimensional Directed Polymer in a Random Environment).
Take the canonical setting: product space � D �Zd with generic points ! D
.!x/x2Zd and translations .Tx!/y D !xCy . Then let d D k C 1, V.!/ D �ˇ!0
with inverse temperature parameter ˇ, R D fei C ekC1 W 1 � i � kg, and the
coordinates f!xg i.i.d. under P . Thus the projection of the walk on Zk is a simple
random walk, and at every step the walk sees a fresh environment.

Example 1.2 (Random Walk in a Random Environment). RWRE is a Markov chain
Xn on Zd whose transition probabilities are determined by an environment ! 2 �.
Let P D f.�´/´2R 2 Œ0; 1�R W

P
´ �´ D 1g be the set of probability distributions

on R and p W � ! P a measurable function with p.!/ D .p´.!//´2R . A
transition probability matrix is defined by

�x;y.!/ D

(
py�x.Tx!/; y � x 2 R;

0; y � x … R;
for x; y 2 Zd .
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Given ! and x 2 Zd , P !x is the law of the Markov chain X0;1 D .Xn/n�0
on Zd with initial point X0 D x and transition probabilities �y;´.!/. That is, P !x
satisfies P !x fX0 D xg D 1 and

P !x fXnC1 D ´ jXn D yg D �y;´.!/ for all y; ´ 2 Zd :

P !x is called the quenched distribution of the walkXn. The averaged (or annealed)
distribution is the path marginal Px.�/ D

R
P !x .�/P .d!/ of the joint distribution

Px.dx0;1; d!/ D P
!
x .dx0;1/P .d!/.

RWRE is a special case of (1.1) with V.!; ´1;`/ D � log�0;´1.!/. (Note the
abuse of notation: for RWRE P0 is the averaged measure while in RWRP P0 is the
reference random walk. This should cause no confusion.)

Of particular interest are RWREs where 0 lies outside the convex hull of R.
These are strictly directed in the sense that for some yu 2 Rd , ´ � yu > 0 for each
admissible step ´ 2 R. General large deviation theory for these walks is covered
for the first time in the present paper.

1.2 Results
We have two types of results. First we prove the P -a.s. existence of the quenched

free energy

lim
n!1

n�1 logZV;!n;0 D lim
n!1

n�1 logE0
�
e�

Pn�1
kD0 V.TXk!;ZkC1;kC`/

�
(1.2)

and derive two variational formulas for the limit. The assumption we need com-
bines moment bounds on V with the degree of mixing in P : if P is merely ergodic
we require a bounded V , while with independence or exponential mixing Lp for
p > d is sufficient. The existence of the limit is not entirely new because in some
cases it follows from subadditive methods and concentration inequalities. In Ex-
ample 1.1, [8] proved the limit under an exponential moment assumption and [47]
with the tail assumption under which greedy lattice animals are known to have
linear growth. Our variational descriptions of the free energy are new.

The second results are large deviation principles (LDPs) for the quenched dis-
tributions QV;!n;0 fR

1
n 2 � g of the empirical process

R1n D n
�1

n�1X
kD0

ıTXk!;ZkC1;1 :

TXk! is the environment seen from the current position of the walk, andZkC1;1 D
.Zi /kC1�i<1 is the entire sequence of future steps. We assume � separable met-
ric with Borel � -algebra S. DistributionsQV;!n;0 fR

1
n 2 � g are probability measures

on M1.� �RN/, the space of Borel probability measures on � �RN endowed
with the weak topology generated by bounded continuous functions.
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The LDP takes this standard form. There is a lower-semicontinuous convex rate
function IVq;3 WM1.� �RN/! Œ0;1� such that these bounds hold:

lim
n!1

n�1 logQV;!n;0 fR
1
n 2 C g � � inf

�2C
IVq;3.�/ for all compact sets C;

lim
n!1

n�1 logQV;!n;0 fR
1
n 2 Og � � inf

�2O
IVq;3.�/ for all open sets O:

Large deviations of R1n are called level 3 or process level large deviations. For
basic large deviation theory we refer the reader to [11, 12, 14, 31, 45].

Since we prove the upper bound only for compact sets, the result is technically
known as a weak LDP. In the important special case of strictly directed walk in an
i.i.d. environment, we strengthen the result to a full LDP where the upper bound
is valid for all closed sets. Often � is compact and then this issue vanishes. As a
corollary we obtain large deviations for RWRE.

This paper does not investigate models that allow V D 1. An example in
RWRE would be a walk on a supercritical percolation cluster.

1.3 Overview of Literature and Predecessors of This Work
Random walk in a random environment was introduced by Chernov [6] in 1967

and Temkin [44] in 1972 as a model for DNA replication. Random walk in ran-
dom potential appeared in the work of Huse and Henley [24] in 1985 on impurity-
induced domain-wall roughening in the two-dimensional Ising model. The seminal
mathematical work on RWRE was Solomon in 1975 [39], and on RWRP, Imbrie
and Spencer in 1988 [25] and Bolthausen in 1989 [3]. Despite a few decades of
effort many basic questions on (1) recurrence, transience, and zero-one laws, (2)
fluctuation behavior, and (3) large deviations remain only partially answered. Ac-
counts of parts of the state of the art can be found in the lectures [4, 23, 43, 50] on
RWRE, and in [9, 13, 21, 36, 42] on RWRP.

Our LDP, Theorem 3.1, specialized to RWRE covers the quenched level 1 LDPs
for RWRE that have been established over the last two decades. In the one-
dimensional case, Greven and den Hollander [22] considered the i.i.d. nearest-
neighbor case; Comets, Gantert, and Zeitouni [7] the ergodic nearest-neighbor
case; and Yilmaz [49] the ergodic case with R D f´ W j´j � M g for some M .
In the multidimensional setting Zerner [52] looked at the i.i.d. nearest-neighbor
nestling case, and Varadhan [46] the general ergodic case with bounded step size
and f´ W j´j D 1g � R. All these works, with the exception of [52], required
uniform ellipticity at least on part of R, i.e., �0;´ � � for a fixed � > 0 and all ´
with j´j D 1. [52] needs EŒj log�0;´jd � < 1, still for all j´j D 1. Rosenbluth
[35] gave a variational formula for the rate function in [46] under an assumption of
p > d moments on log�0;´, j´j D 1.

Article [32] proved a quenched level 3 LDP for RWRE under a general ergodic
environment, subject to bounded steps, p > d moments on log�0;´, and an irre-
ducibility assumption that required the origin to be accessible from every x 2 Zd .
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(See Remark 2.7 for a more technical explanation of the scope of [32] compared
to the present paper.) Level 3 large deviations for RWRE have not appeared in
other works. [49] gave a quenched univariate level 2 LDP. This means that the path
component in the empirical measure has only one step: n�1

Pn�1
kD0 ıTXk!;ZkC1 .

One goal of the present paper is to eliminate the unsatisfactory irreducibility
assumption of [32, 49]. This is important because the irreducibility assumption
excluded several basic and fruitful models, such as directed polymers, RWRE in
a space-time, or dynamical, environment (the case R � fx W x � e1 D 1g) and
RWRE with a forbidden direction (the case R � fx W x � yu � 0g for some yu ¤ 0).
Corollary A.3 shows that the forbidden direction is the only case not covered by
[32], but [32] did not address the more general polymer model.

Our results cover the quenched level 1 LDPs for space-time RWRE derived in
[48] for an i.i.d. environment in a neighborhood of the asymptotic velocity and by
Avena, den Hollander, and Redig [2] for a space-time random environment given
by a mixing attractive spin flip particle system. Our results can also be adapted to
continuous time to cover the quenched level 1 LDP by Drewitz and others [15] for
a random walk among a Poisson system of moving traps.

On the RWRP side, Theorems 2.3 and 3.1 cover, respectively, the existence of
free energy and the quenched level 1 LDPs for simple random walk in random
potential proved by Zerner [51] and the corresponding results for directed simple
random walk in random potential proved by Carmona and Hu [5] and Comets,
Shiga, and Yoshida [8]. (See [41] for an earlier continuous counterpart of [51].)
We also give an entropy interpretation for the rate function and two variational
formulas for the free energy, while earlier descriptions of these objects came in
terms of Lyapunov functions and subadditivity arguments. As far as we know,
level 2 or 3 large deviations have not been established in the past for RWRP.

The technical heart of [32] was a multidimensional extension of a homogeniza-
tion argument that goes back to Kosygina, Rezakhanlou, and Varadhan [27] in the
context of diffusion in time-independent random potential. This argument was used
by Rosenbluth [35] and Yilmaz [49] to prove LDPs for RWRE.

The main technical contribution of the current work is a new approach to the
homogenization argument that allows us to drop the aforementioned irreducibility
requirement. One comment to make is that the construction that we undertake in
Appendix C does use the invertibility of the transformations T´ assumed in Section
1.1. This is the only place where that is needed.

The homogenization method of [27] was sharpened by Kosygina and Varad-
han [28] to handle time-dependent but bounded random potentials. The results in
[27, 28] concerned homogenization of stochastic Hamilton-Jacobi-Bellman equa-
tions and yielded variational formulas for the effective Hamiltonian. For a special
case of the random Hamiltonian one can convert these results into quenched large
deviations for the velocity of a diffusion in a random potential, with variational for-
mulas for the quenched free energy. Using different methods, [29] and [1] obtain
homogenization results similar to [27, 28], respectively. Furthermore, [1] allows
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unbounded potentials and requires mixing to compensate for the unboundedness;
compare with part (d) of our Lemma A.4. It is noteworthy that when d D 1, an
ergodic L1 potential is in fact enough; see [18] and compare with part (b) of our
Lemma A.4.

We end this section with some conventions for easy reference. For a measurable
space .X ;B/, M1.X / is the space of probability measures on X and Q.X / the set
of Markov transition kernels on X . Given � 2M1.X / and q 2 Q.X /, ��q is the
probability measure on X �X defined by ��q.A�B/ D

R
1A.x/q.x; B/�.dx/,

and �q is its second marginal. E�Œf � denotes expectation of f under probability
measure �. The increments of a path .xi / in Zd are denoted by ´i D xi � xi�1.
Segments of sequences are denoted by ´i;j D .´i ; ´iC1; : : : ; j́ /, also for j D1.

2 Variational Representations for Free Energy
Standing assumptions in this section are that .�;S;P ; fT´ W ´ 2 Gg/ is a mea-

surable ergodic dynamical system and, as throughout the paper, R is an arbitrary
finite subset of Zd that generates the additive group G. These will not be repeated
in the statements of lemmas and theorems. Most of the time we also assume that
S is countably generated; this will be mentioned. The relevant Markov process for
this analysis is .TXn!;ZnC1;nC`/ with state space �` D � �R`. The evolution
goes via the transformations SC´ .!; ´1;`/ D .T´1!; .´2;`; ´// on �` where the
step ´ is chosen randomly from R as stipulated by the kernel yp. Elements of �`

are abbreviated � D .!; ´1;`/.
We first look at the limiting logarithmic moment-generating function (1.2), also

called the pressure or the free energy. To cover much-studied directed polymer
models it is important to go beyond bounded continuous potentials. To achieve
this, and at the same time provide a succinct statement of a key hypothesis for
Lemma 2.8 below, we introduce class L in the next definition. Let

(2.1) Dn D f´1 C � � � C ´n 2 Zd W ´1;n 2 Rn
g

denote the set of points accessible from the origin in exactly n steps from R.

DEFINITION 2.1. A function g W � ! R is in class L if g 2 L1.P / and for any
nonzero ´ 2 R

lim
"!0

lim
n!1

max
x2
Sn
kD0Dk

1

n

X
0�i�"n

jg ı TxCi´j D 0 P -a.s.

Similarly, a function g on �` is a member of L if g. � ; ´1;`/ 2 L for each ´1;` 2
R`.

A bounded g is in L under an arbitrary ergodic P , and so is any g 2 L1.P / if
d D 1. In general, there is a tradeoff between the degree of mixing in P and the
moment of g required. For example, if sufficiently separated shifts of g are i.i.d. or
there is exponential mixing, then g 2 Lp.P / for some p > d guarantees g 2 L.
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Under polynomial mixing a higher moment is needed. Lemma A.4 in Appendix A
collects sufficient conditions for membership in L.

We have two variational formulas for the free energy. One is duality in terms
of entropy. The other involves a functional K`.g/ defined by a minimization over
gradientlike auxiliary functions. Class K` below is a generalization of a class of
functions previously introduced by [35].

DEFINITION 2.2. A measurable function F W �` � R ! R is in class K` if it
satisfies the following three conditions:

(i) INTEGRABILITY. For each ´1;` 2 R` and ´ 2 R, EŒjF.!; ´1;`; ´/j� <
1.

(ii) MEAN ZERO. For all n � ` and faigniD1 2 Rn the following holds: If
�0 D .!; an�`C1;n/ and �i D SCai�i�1 for i D 1; : : : ; n, then

E
h n�1X
iD0

F.�i ; aiC1/
i
D 0:

In other words, expectation vanishes whenever the sequence of moves
SCa1 ; : : : ; S

C
an

takes .!; ´1;`/ to .Tx!; ´1;`/ for all !, for fixed x and ´1;`.
(iii) CLOSED LOOP. For P -a.e. ! and any two paths f�igniD0 and fx�j gmjD0 with

�0 D x�0 D .!; ´1;`/, �n D x�m, �i D SCai�i�1, and x�j D SC
xaj
x�j�1, for

i; j > 0 and some faigniD1 2 Rn and fxaj gmjD1 2 Rm, we have

n�1X
iD0

F.�i ; aiC1/ D

m�1X
jD0

F.x�j ; xajC1/:

In case of a loop (�0 D �n) in (iii) above, one can takem D 0 and the right-hand
side in the display vanishes. The simplest members of K` are gradients F.�; ´/ D
h.SC´ �/�h.�/with bounded measurable h W �` ! R. Lemma C.3 in the appendix
shows that K` is the L1.P /-closure of such gradients.

For F 2 K` and g W �` ! R such that g. � ; ´1;`/ 2 L1.P / for all ´1;` 2 R`,
define

K`;F .g/ D P– ess sup
!

max
´1;`

log
X
´2R

1

jRj
eg.�/CF.�;´/

and then

K`.g/ D inf
F 2K`

K`;F .g/:

The reference walk yp with uniform steps from R defines a Markov kernel yp`
on �` by

(2.2) yp`.�; S
C
´ �/ D

1

jRj
for ´ 2 R and � D .!; ´1;`/ 2 �`:
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Let�0 denote the�-marginal of a measure� 2M1.�`/. Define an entropyH`;P
on M1.�`/ by

H`;P .�/ D

8̂<̂
:

inffH.� � q j � � yp`/ W q 2 Q.�`/ with �q D �g
if �0 � P ;

1 otherwise.
(2.3)

Inside the braces the familiar relative entropy is

H.� � q j � � yp`/ D

Z X
´2R

q.�; SC´ �/ log
q.�; SC´ �/

yp`.�; S
C
´ �/

�.d�/:

H`;P WM1.�`/ ! Œ0;1� is convex. (The argument for this can be found at the
end of section 4 in [32].) For measurable functions g on �` define

(2.4) H #
`;P .g/ D sup

�2M1.�`/; c>0

fE�Œmin.g; c/� �H`;P .�/g:

For g from the space of bounded measurable functions (or bounded continuous
functions if � comes with a metric) H #

`;P .g/ is the convex dual of H`;P , and then
we write H�

`;P .g/. The constant R D maxfj´j W ´ 2 Rg also appears frequently in
the results.

For the rest of the section we fix ` � 0 and consider measurable functions
g W �` ! R.

THEOREM 2.3. Assume S is countably generated. Let g 2 L. Then, for P -a.e. !
the limit

ƒ`.g/ D lim
n!1

n�1 logE0
�
e
Pn�1
kD0 g.TXk!;ZkC1;kC`/

�
exists, is deterministic, and satisfies ƒ`.g/ D K`.g/ D H #

`;P .g/:

Remark 2.4. The limit ƒ`.g/ satisfies these bounds:

EŒ min
´1;`2R`

g.!; ´1;`/� � ƒ`.g/

� lim
n!1

max
xi�xi�12R
1�i�n

n�1
n�1X
kD0

max
ź1;`2R`

g.Txk!; ź1;`/:
(2.5)

The upper bound is nonrandom by invariance. The lower bound comes from er-
godicity of the Markov chain TXn! [32, lemma 4.1] and Jensen’s inequality:

n�1 logE0
�
e
Pn�1
kD0 g.TXk!;ZkC1;kC`/

�
� n�1

n�1X
kD0

E0Œmin
´1;`

g.TXk!; ´1;`/�:

If g is unbounded from above and R allows the walk to revisit sites, then a situation
where ƒ`.g/ D 1 can be easily created. Under some independence and moment
assumptions, the limit on the right in (2.5) is known to be a.s. finite.
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Remark 2.5. Suppose� is a product space with i.i.d. coordinates f!xg under P , the
walk is strictly directed (0 does not lie in the convex hull of R), and g. � ; ´1;`/ is
a local function on �. Then the assumption Ejg. � ; ´1;`/j

p < 1 for some p > d

and all ´1;` 2 R` is sufficient for the above Theorem 2.3 and the finiteness of the
limit ƒ`.g/. That such g 2 L is proved in Lemma A.4 in Appendix A. Under this
moment bound, finiteness of the upper bound in (2.5) follows from lattice animal
bounds [10, 19, 30].

Remark 2.6. If R D f˙e1; : : : ;˙ed g or R D fe1 ˙ e2; : : : ; e1 ˙ ed g and if we
take g to be a function of ! only, then ƒ0.g/ D K0.g/ D H #

0;P .g/ corresponds
to a discretization of the variational formula for the effective HamiltonianH of the
homogenized stochastic Hamilton-Jacobi-Bellman equation considered in [27, 28,
29]. It is also related to the variational formula for the exponential decay rate of
the Green’s function of Brownian motion in a periodic potential; see (1.1) in [38].

Here is an outline of the proof of Theorem 2.3. Introduce the empirical measure
R`n D n�1

Pn�1
kD0 ıTXk!;ZkC1;kC` so that nR`n.g/ D

Pn�1
kD0 g.TXk!;ZkC1;kC`/

gives convenient compact notation for the sum in the exponent. Let

ƒ`.g; !/ D lim
n!1

n�1 logE0
�
enR

`
n.g/

�
;

ƒ`.g; !/ D lim
n!1

n�1 logE0
�
enR

`
n.g/

�
:

The existence of ƒ`.g/ and the variational formulas are established through the
inequalities

(2.6) ƒ`.g/
.i/
� K`.g/

.ii/
� H #

`;P .g/
.iii/
� ƒ`.g/:

Inequality (2.6.i) is proved in Lemma 2.11. This is the only step that requires
g 2 L rather than just L1.P /. Inequality (2.6.ii) is proved in Lemma 2.12. This is
where the main technical effort of the paper lies, in order to relax the irreducibility
assumption on R used in [32]. Bound (2.6.iii) is proved with the usual change-of-
measure argument. It follows as a special case from Lemma 2.15 below. The proof
of Theorem 2.3 comes at the end of this section after the lemmas. To improve the
readability of this section, some lemmas are proved in an appendix at the end of
the paper.

Remark 2.7. Suppose 0 lies in the relative interior of the convex hull of R. Then
for every x 2 G there exists ´1;n 2 Rn with xn D x (Corollary A.3). Un-
der this irreducibility the approach of [32] becomes available and can be used to
prove our results under the assumption that g. � ; ´1;`/ 2 Lp.P / for some p > d

and all ´1;` 2 R`. In this case (2.6.i) is proved via a slight variation of [32,
lemma 5.2] rather than our Lemma 2.11. This relies crucially on [32, lemma 5.1],
which is where p > d moments are required. We replace this with the much
weaker Lemma 2.9, which only requires one moment, but then we need Lemma
2.11, which requires g 2 L.
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We turn to developing inequalities (2.6). Decomposing the free energy accord-
ing to asymptotic directions � turns out to be useful. Let U be the (compact) convex
hull of R in Rd . For each rational point � 2 U fix a positive integer b.�/ such that
b.�/� 2 Db.�/ (recall definition (2.1) of Dn). The existence of b.�/ follows from
Lemma A.1 in Appendix A. Then fix a path fyxn.�/gn2ZC , starting at yx0.�/ D 0,
with admissible steps yxn.�/ � yxn�1.�/ 2 R and such that yxjb.�/.�/ D jb.�/� for
all j 2 ZC. Even though stationarity and ergodicity are standing assumptions in
this section, the next lemma actually needs no assumptions on P .

LEMMA 2.8. Let g 2 L. Then for P -a.e. !

(2.7) lim
n!1

n�1 logE0
�
enR

`
n.g/

�
�

sup
�2U\Qd

lim
n!1

n�1 logE0
�
enR

`
n.g/1fXn D yxn.�/g

�
:

PROOF. Fix a small " > 0, an integer k � jRj"�1, and a nonzero ý 2 R.
For x 2 Dn write x D

P
´2R a´´ with a´ 2 ZC and

P
´2R a´ D n. Let

mn D dn=.k.1 � 2"//e and s.n/´ D dk.1 � 2"/a´=ne. Then k�1
P
´ s
.n/
´ � 1 � "

and mns
.n/
´ � a´ for each ´ 2 R. Let

(2.8) �.n; x/ D k�1
X
´2R

s.n/´ ´C
�
1 � k�1

X
´2R

s.n/´

�
ý:

Then �.n; x/ 2 k�1Dk . With " fixed small enough and considering n > k=", we
constructed an admissible path of mnk � n � 4n" steps from x to mnk�.n; x/.
This path has at least mn.k �

P
s
.n/
´ / � mnk" � n"=.1 � 2"/ ý-steps. Conse-

quently, at least a fixed fraction ı of the steps of the path are ý-steps for all x 2 Dn
and all n.

Let b be the least common multiple of the (finitely many) integers fb.�/ W � 2
k�1Dkg. Now we take another bounded number of additional steps to get from
mnk�.n; x/ to the path yx˘.�.n; x//. Pick `n such that .`n � 1/b < mn � `nb.
Then by repeating the steps of k�.n; x/ in (2.8) `nb �mn � b times, we go from
mnk�.n; x/ to `nkb�.n; x/ D yx`nkb.�.n; x//. The duration of this last leg is
bounded independently of n and x 2 Dn because k was fixed at the outset and b is
determined by k. Thus the total number of steps from x 2 Dn to yx`nkb.�.n; x// is
rn D `nkb � n � 5n" for large enough n. Let u.n; x/ D .u1; u2; : : : ; urn/ denote
this sequence of steps. Again we note that at least a fixed fraction ı of the ui ’s are
ý-steps.
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Develop an estimate:

1

n
logE0

�
enR

`
n.g/

�
D
1

n
log

X
x2Dn

E0
�
enR

`
n.g/; Xn D x

�
� max
x2Dn

1

n
logE0

�
e.n�`/R

`
n�`

.g/; Xn D x
�

C max
w2Dn�`

max
y2[`

sD0
Ds

`

n
xg.TwCy!/C

C logn
n

� max
x2Dn

1

n
logE0

�
e
`nbkR

`
`nbk

.g/
; X`nbk D yx`nbk.�.n; x//

�
C
C logn
n

C max
w2Dn�`

max
y2
S`
sD0Ds

2`

n
xg.TwCy!/

C max
x2Dn

1

n

rnX
iD1

xg.TxCu1C���Cui!/C
rn

n
log jRj:

Above, xg.!/ D max´1;`2R` jg.!; ´1;`/j. The third-last line of the above display
is bounded above by

max
�2k�1Dk

1

n
logE0

�
e`nbkR

`
`nbk

.g/; X`nbk D yx`nbk.�/
�
;

and so its limsup is almost surely at most

.1C 5"/ sup
�2U\Qd

lim
n!1

n�1 logE0
�
enR

`
n.g/1fXn D yxn.�/g

�
:

The proof of (2.7) is complete once we show that a.s.

lim
"!0

lim
n!1

max
x2Dn

1

n

rnX
iD1

xg.TxCu1C���Cui!/ D 0;

lim
"!0

lim
n!1

max
w2Dn�`

max
y2
S`
sD0Ds

1

n
xg.TwCy!/ D 0:

(2.9)

To this end, observe that the ordering of the steps of u.n; x/ was so far immate-
rial. Because Definition 2.1 cannot handle zero steps, we need to be careful about
them. The ratio of zero steps to ý-steps is at most t D

˙
ı�1

�
. We begin u.n; x/

by alternating ý-steps with blocks of at most t zero steps, until the ý-steps and the
zero steps are exhausted. After that, order the remaining nonzero steps of R in any
fashion ´1; ´2; : : : , and have u.n; x/ take first all its ´1-steps, then all its ´2-steps,
and so on. Since zero steps do not shift ! but simply repeat the same xg-value at
most t times, we get the bound

rnX
iD1

xg.TxCu1C���Cui!/ � t jRj max
y2xCu.n;x/

max
´2Rnf0g

rnX
iD0

xg.TyCi´!/:
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By y 2 x C u.n; x/ we mean y is on the path starting from x and taking steps in
u.n; x/. A similar bound develops for the second line of (2.9), and the limits in
(2.9) follow from membership in L. �

The next step is to show (2.6.i): for g 2 L and P -a.e. !, ƒ`.g; !/ � K`.g/.
The following ergodic property is crucial. Recall the definition of the path yx�.�/
above Lemma 2.8. For � 2 Qd \ U and ´1;`, x́1;` 2 R`, define

An.�; ´1;`; x́1;`/ D
˚
.a1; : : : ; an/ 2 Rn

W

´1 C � � � C ´` C a1 C � � � C an�` D yxn.�/;

an�`C1;n D x́1;`
	
:

The vectors of steps .a1; : : : ; an/ take �0 D .!; ´1;`/ to �n D .Tyxn.�/!; x́1;`/ via
�i D S

C
ai
�i�1, 1 � i � n.

LEMMA 2.9. Let F 2 K`. Then, for each � 2 Qd \ U and ´1;`, x́1;` 2 R`,

lim
n!1

max
.a1;:::;an/2An.�;´1;`;x́1;`/

ˇ̌̌̌
1

n

n�1X
iD0

F.�i ; aiC1/

ˇ̌̌̌
D 0

in L1.P / and for P -a.e. !.

Remark 2.10. Due to the closed loop property (iii) in Definition 2.2, the sum above
is independent of .a1; : : : ; an/ 2 An.�; ´1;`; x́1;`/. In other words, there actually
is no maximum. Also, Lemma 2.9 holds regardless of the choices made in the
definition of yx�.�/.

We postpone the proof of Lemma 2.9 to Appendix C.

LEMMA 2.11. Let g 2 L. Then ƒ`.g; !/ � K`.g/ for P -a.e. !.

PROOF. By Lemma 2.8 it is enough to show that

lim
n!1

n�1 logE0
�
enR

`
n.g/1fXn D yxn.�/g

�
� K`;F .g/ P -a.s.

for fixed � 2 Qd \ U and F 2 K`. Abbreviate �k D .TXk!;ZkC1;kC`/. Fix
" > 0. Lemma 2.9 implies that for P -a.e. ! there exists a finite c".!/ such that for
all n, on the event fXn D yxn.�/g,

n�1X
kD0

F.�k; ZkC`C1/ � �c" � n":
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Therefore, for P -a.e. !

�n�1c" � "C n
�1 logE0

�
enR

`
n.g/1fXn D yxn.�/g

�
� n�1 logE0

h
exp

nn�1X
kD0

.g.�k/C F.�k; ZkC`C1//
o
1fXn D yxn.�/g

i

� n�1 logE0
h

exp
nn�1X
kD0

.g.�k/C F.�k; ZkC`C1//
oi

D n�1 logE0
h

exp
nn�2X
kD0

.g.�k/C F.�k; ZkC`C1//
o

�E0
�
eg.�0/CF.�0;Z`C1/

ˇ̌
�n�1

�i
� n�1K`;F .g/C n

�1 logE0
h

exp
nn�2X
kD0

.g.�k/C F.�k; ZkC`C1//
oi

� � � � � K`;F .g/:

The claim follows by taking n%1 and then "& 0. �

We have shown (2.6.i) and next in line is (2.6.ii). The following lemma is the
most laborious step in the paper.

LEMMA 2.12. In addition to ergodicity, assume now that S is countably generated.
Assume g. � ; ´1;`/ 2 L1.P / is bounded above. Then

K`.g/ � H
#
`;P .g/ D sup

�2M1.�`/

fE�Œg� �H`;P .�/g:

PROOF. We can assumeH #
`;P .g/ <1. The first technical issue is to find some

compactness to control the supremum on the right. Assume � compact would not
be helpful because the problem is the absolute continuity condition in the definition
of H`;P .�/.

Fix a sequence of increasing finite algebras Sk on � that satisfy T˙´Sk�1 �
Sk for all k 2 N and ´ 2 R, and whose union generates S. Let Mk

1 DMk
1.�`/

be the set of probability measures � on �` for which there exist Sk-measurable
Radon-Nikodym derivatives �´1;` on � (with respect to P ) such that for bounded
measurable G Z

�`

G d� D
X

´1;`2R`

Z
�

�´1;`.!/G.!; ´1;`/P .d!/:
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Such � satisfy �0 � P and so

H #
`;P .g/ D sup

�W�0�P
fE�Œg� �H`;P .�/g � sup

�2Mk
1

fE�Œg� �H`;P .�/g:

Abbreviate A D H #
`;P .g/. The proof is completed by verifying this statement:

(2.10)
If A � sup�2Mk

1
fE�Œg� �H`;P .�/g for all k � 1,

then A � K`.g/.

Let ˛ denote a generic probability measure on �2
` with marginals ˛1 and ˛2,

and let b�` denote the space of bounded measurable functions on �`.

A � sup
�2Mk

1 ; qW�qD�

fE�Œg� �H.� � q j � � yp`/g

D sup
˛W˛12Mk

1 ;˛1D˛2

fE˛1 Œg� �H.˛ j ˛1 � yp`/g

D sup
˛W˛12Mk

1

inf
h2b�`

fE˛1 Œg�CE˛2 Œh� �E˛1 Œh� �H.˛ j˛1 � yp`/g:(2.11)

Let F denote a bounded measurable test function on �2
` . Mk

2 is the set of proba-
bility measures ˛ on �2

` of the formZ
�2
`

F d˛ D
X
´2R

Z
�`

˛1.d�/ q.�; S
C
´ �/ F.�; S

C
´ �/

where ˛1 2 Mk
1 and kernel q.�; SC´ �/ D q..!; ´1;`/; .T´1!; ´2;`´// is Sk-

measurable as a function of ! for each fixed .´1;`; ´/. A measure ˛ 2 Mk
2 is

uniquely represented by a finite sequence .�i;´1;` ; qi;´1;`;´/ via the identity

(2.12)
Z

�2
`

F d˛ D
X

i;´1;`;´

�i;´1;`qi;´1;`;´

Z
Ai

F..!; ´1;`/; .T´1!; ´2;`´//P .d!/

where fAig is the finite set of atoms of Sk such that P .Ai / > 0, �i;´1;` is the value
of �´1;`.!/ for ! 2 Ai , and qi;´1;`;´ is the value of q.�; SC´ �/ for ! 2 Ai . Thus
Mk

2 is in bijective correspondence with a compact subset of a euclidean space, and
(2.12) shows that via this identification the integral is continuous in ˛ for any F
that is suitably integrable under P . Similarly, the entropy

H.˛ j˛1 � yp`/ D
X

i;´1;`;´

�i;´1;`qi;´1;`;´P .Ai / log.jRjqi;´1;`;´/

is continuous and convex in ˛.
We turn our attention back to (2.11). Once we restrict ˛ to the compact Haus-

dorff space Mk
2 the expression in braces is upper-semicontinuous and concave in ˛
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and convex in h. We can apply König’s minimax theorem ([26] or [31]) and con-
tinue as follows:

A � sup
˛2Mk

2

inf
h2b�`

fE˛1 Œg�CE˛2 Œh� �E˛1 Œh� �H.˛ j ˛1 � yp`/g

D inf
h2b�`

sup
˛2Mk

2

fE˛1 Œg�CE˛2 Œh� �E˛1 Œh� �H.˛ j ˛1 � yp`/g

D inf
h2b�`

sup
˛2Mk

2

X
´1;`

Z
�

P .d!/�´1;`.!/

�

nX
´

q.�; SC´ �/.g.�/ � h.�/C h.S
C
´ �// �H.q.�; � / j yp`.�; � //

o
D inf
h2b�`

sup
˛2Mk

2

X
´1;`

Z
�

P .d!/�´1;`.!/

�

nX
´

q.�; SC´ �/EŒg.�/ � h.�/C h.S
C
´ �/ j Sk� �H.q.�; � / j yp`.�; � //

o
D inf
h2b�`

sup
�2Mk

1

X
´1;`

Z
�

P .d!/�´1;`.!/ log
X
´

1

jRj
eEŒg.�/�h.�/Ch.SC´ �/jSk�:

Above we introduced the densities �´1;`.!/ and the kernel q that correspond to
˛ 2Mk

2 , used Sk-measurability to take conditional expectation, and then took the
supremum over the kernels q with the first marginal ˛1 D � fixed. This supremum
is a finite case of the convex duality of relative entropy:

sup
q

nX
´

q.´/v.´/ �
X
´

q.´/ log
q.´/

p.´/

o
D log

X
x

p.x/ev.x/;

and the maximizing probability is q.´/ D .
P
x p.x/e

v.x//�1p.´/ev.´/. In our
case v.´/ D EŒg.�/ � h.�/ C h.SC´ �/ j Sk�, so the maximizing kernel is Sk-
measurable in ! and thus admissible under the condition ˛ 2Mk

2 .
Performing the last supremum over � 2Mk

1 gives

A � inf
h2b�`

max
´1;`2R`

P - ess sup
!

n
log

X
´

1

jRj
eEŒg.�/�h.�/Ch.SC´ �/jSk�

o
:

Consequently, for " > 0 and k � 1 there exists a bounded measurable function
hk;" on �` such that for all ´1;` 2 R` and P -a.s.

(2.13) AC log jRj C " � log
X
´

eEŒg.�/�hk;".�/Chk;".S
C
´ �/jSk� :

For integers 0 � i � k define

(2.14) F
.i/

k;"
.�; ´/ D EŒhk;".S

C
´ �/ � hk;".�/ j Sk�i �:
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We next extract a limit point in K`. The proof of the following lemma is given
in Appendix C.

LEMMA 2.13. Assume S is countably generated andA <1. Construct F .i/
k;"

as in

(2.14). Fix ` � 0 and let g.!; ´1;`/ 2 L1.P / for all ´1;` 2 R`. Fix " > 0. Then,
as k ! 1, along a subsequence that works simultaneously for all ´1;` 2 R`,
´ 2 R, and i � 0, one can write

F
.i/

k;"
D yF

.i/

k;"
�R

.i/

k;"

with yF .i/
k;"
.�; ´/ converging in weak L1.P / to a limit yF .i/" and the error terms ! 7!

R
.i/

k;"
.!; ´1;`; ´/ � 0 Sk�i -measurable and converging to 0 P -a.s. Furthermore,

as i !1, yF .i/" converges strongly in L1.P / to a limit yF",

c.´/ D EŒ yF".!; .´; : : : ; ´/; ´/� � 0

for all ´ 2 R, and F".�; ´/ D yF".�; ´/ � c.´1/ belongs to class K`.

Fix i � 0 for the moment. As a uniformly integrable martingale, Mk.�/ D

EŒg.�/ j Sk�i � converges as k ! 1 to g.�/, both a.s. and in L1.P / for all ´1;`
and ´.

Fix ´1;` and ´. The weak-L1.P / closure of the convex hull of fMj C yF
.i/
j;" W

j � kg is equal to its strong closure [37, theorem 3.12] . Since g.�/C yF .i/" .�; ´/

is in this closure, there exist finite convex combinations

yG
.i/

k;"
D

X
j�k

j̨;k

�
Mj C yF

.i/
j;"

�
such that

E
ˇ̌
g.�/C yF .i/" .�; ´/ � yG

.i/

k;"
.�; ´/

ˇ̌
�
1

k
:

Along a subsequence (that we again index by k) yG.i/
k;"
.�; ´/ converges P -a.s. to

g.�/C yF
.i/
" .�; ´/. Consequently, also

G
.i/

k;"
D

X
j�k

j̨;k

�
Mj C F

.i/
j;"

�
�!
k!1

g C yF .i/" P -a.s.

Along a further subsequence this holds simultaneously for all ´1;` and ´.
By (2.13) and Jensen’s inequality, we have for all ´1;` 2 R` and P -a.s.

eAClog jRjC"
�

X
´2R

E
�
eEŒg.�/�hk;".�/Chk;".S

C
´ �/jSk�

ˇ̌
Sk�i

�
�

X
´2R

eMk.�;´/CF
.i/

k;"
.�;´/:
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Since this is valid for all k � i , another application of Jensen’s inequality gives

eAClog jRjC"
�

X
´2R

eG
.i/

k;"
.�;´/:

Taking k !1 implies, for P -a.e. ! and all ´1;` 2 R`,

AC " � g.�/C log
X
´2R

1

jRj
e
yF
.i/
" .�;´/:

Taking i !1 implies, for P -a.e. ! and all ´1;` 2 R`,

AC " � g.�/C log
X
´2R

1

jRj
e
yF".�;´/:

Since c.´1/ � 0 the above inequality still holds if yF" is replaced with F". Thus

AC " � inf
F 2K`

max
´1;`2R`

P - ess sup
�

n
g.�/C log

X
´2R

1

jRj
eF.�;´/

o
:

Taking "! 0 gives A � K`.g/. (2.10) is verified and thereby the proof of Lemma
2.12 is complete. �

Next for technical purposes is a Fatou-type lemma for K`.

LEMMA 2.14. Let gk. � ; ´1;`/ �!
k!1

g. � ; ´1;`/ inL1.P / for each ´1;` 2 R`. Then

K`.g/ � lim
k!1

K`.gk/:

PROOF. We can assume limk!1K`.gk/ D A < 1. Fix " > 0. There exists
a subsequence, denoted again by gk , such that K`.gk/ < A C " for all k. Pick
Fk 2 K` such that

(2.15) gk.�/C log
X
´2R

1

jRj
eFk.�;´/ < AC "

for all k, ´1;` 2 R`, and P -a.e. !. Out of this we can produce an F 2 K` such
that

(2.16) g.�/C log
X
´2R

1

jRj
eF.�;´/ � AC ":

This implies K`.g/ � AC " and taking "! 0 finishes the proof.
The construction of F is a simplified version of the argument to realize a limit

point in K` in the proof of Lemma 2.12. We sketch the steps. The reader who aims
to master the proof may find it useful to fill in the details.

For each k, ´1;`, and ´,

Fk.�; ´/ � AC " � gk.�/C log jRj:
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Thus FC
k

is uniformly integrable. Controlling F�
k

is indirect. Set �0 D .!; ´1;`/,
´0 D ´, ai D ´i�1, and �i D SCai�i�1 for i D 1; 2; : : : ; `C 1. By the mean-zero
property of Fk (part (ii) in Definition 2.2),

EŒF�k .�; ´/� �
X̀
iD0

EŒF�k .�i ; aiC1/� D
X̀
iD0

EŒFC
k
.�i ; aiC1/�;

and so EŒF�
k
� is bounded uniformly in k. Apply Lemma C.4 to write F�

k
D

zFk C Rk such that along a subsequence zFk is uniformly integrable and Rk � 0

converges to 0 in P -probability, for each ´1;`. Along a further subsequence yFk �
FC
k
� zFk converges weakly in L1.P / to a limit yF and the limits Rk ! 0 and

gk ! g hold almost surely.
In (2.15) write Fk D yFk�Rk . As done in the proof of Lemma 2.12, take almost

surely convergent convex combinations of yFk , Rk , and gk and substitute these into
(2.15). Taking the limit now yields (2.16) but with yF in place of F .

Almost sure convergence of convex combinations ensures that yF satisfies the
closed-loop property. But it may fail the mean-zero property. To remedy this,
let c.´/ D EŒ yF .!; .´; : : : ; ´/; ´/�. By the weak convergence c.´/ is a limit of
EŒ yFk.!; .´; : : : ; ´/; ´/�, which is nonnegative due to Rk � 0 and the mean-zero
property for Fk . Since c.´/ � 0, (2.16) holds with F.�; ´/ D yF .�; ´/ � c.´1/.
That F satisfies both the mean-zero and the closed-loop property is verified with
the argument given between equations (C.10) and (C.11) in Appendix C. The point
is that the closed-loop property of yF allows us to define the path integral yf that is
used in that argument. This verifies that F 2 K` and completes the proof. �

Next is a large deviation lower bound lemma that gives us (2.6.iii) and serves
again to prove Theorem 3.1 below.

LEMMA 2.15. Let g. � ; ´1;`/ 2 L1.P / be bounded above. Then for P -a.e. !

(2.17) lim
n!1

n�1 logE0
�
enR

`
n.g/

�
� sup

�
fE�Œg� �H`;P .�/g:

Assume additionally that � is a separable metric space. Then for P -a.e. ! this
lower bound holds for all open O �M1.�`/:

(2.18) lim
n!1

n�1 logE0
�
enR

`
n.g/1fR`n 2 Og

�
� � inf

�2O
fH`;P .�/ �E

�Œg�g:

PROOF. This proof proceeds along the familiar lines of Markov chain lower-
bound arguments, and we refer to [32, sec. 4] for further details.

Switch to the �`-valued Markov chain �k D .TXk!;ZkC1;kC`/ with transi-
tion kernel yp` defined in (2.2). Then R`n is the position level empirical measure
Ln D n�1

Pn�1
kD0 ı�k : Denote by P� (with expectation E�) the distribution of the

Markov chain .�k/k�0 with initial state �. Starting at � D .!; ´1;`/ is the same as
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conditioning our original process on Z1;`:

E0ŒG..TXk!; ZkC1;kC`/0�k�n/1fZ1;` D ´1;`g� D

1

jRj`
E�ŒG.�0; �1; : : : ; �n/�:

Consequently, for any ´1;` 2 R` and P -almost every !, with � D .!; ´1;`/,

lim
n!1

n�1 logE0
�
enR

`
n.g/1fR`n 2 Og

�
� lim
n!1

n�1 logE�
�
enLn.g/1fLn 2 Og

�
:

Next we reduce the right-hand sides of (2.17) and (2.18) to nice measures. A
convexity argument shows that the supremum/infimum is not altered by restricting
it to measures � with these properties: �0 � P and there exists a kernel q 2
Q.�`/ such that �q D �, H.� � q j � � yp`/ <1, q.�; � / is supported on shifts
SC´ �, and q.�; SC´ �/ > 0 for all ´ 2 R and �-a.e. �. We omit this argument. It
can be patterned after the lower-bound proof of [32, theorem 3.1, p. 224]. This step
needs the integrability of g.!; ´1;`/ under P .

These properties of � imply the equivalence �0 � P and the ergodicity of the
Markov chain Q� with initial state � and transition kernel q [32, lemma 4.1].

Next follows a standard change-of-measure argument. Let Fn be the � -algebra
generated by .�0; �1; : : : ; �n/. Then

n�1 logE�ŒenLn.g/1fLn 2 Og�

� n�1 log
EQ�

h�
dQ�jFn�1
dP�jFn�1

��1
enLn.g/1fLn 2 Og

i
Q�fLn 2 Og

C n�1 logQ�fLn 2 Og

�

�n�1EQ�
h
log
�
dQ�jFn�1
dP�jFn�1

�i
Q�fLn 2 Og

C
EQ� ŒLn.g/�

Q�fLn 2 Og
C n�1 logQ�fLn 2 Og

C

n�1EQ�
h
log
�
dQ�jFn�1
dP�jFn�1

�
1fLn … Og

i
Q�fLn 2 Og

�
EQ� ŒLn.g/1fLn … Og�

Q�fLn 2 Og

D
�n�1H.Q� jFn�1

j P� jFn�1
/

Q�fLn 2 Og
C
EQ� ŒLn.g/�

Q�fLn 2 Og
C n�1 logQ�fLn 2 Og

C

n�1E�

h
dQ�jFn�1
dP�jFn�1

log
�
dQ�jFn�1
dP�jFn�1

�
1fLn … Og

i
Q�fLn 2 Og

�
EQ� ŒLn.g/1fLn … Og�

Q�fLn 2 Og

� �
EQ�

�
n�1

Pn�1
kD0 F.�k/

�
Q�fLn 2 Og

C
EQ� ŒLn.g/�

Q�fLn 2 Og
C n�1 logQ�fLn 2 Og

�
n�1e�1

Q�fLn 2 Og
�
.supg/Q�fLn … Og

Q�fLn 2 Og
;
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where we used x log x � �e�1 and

F.�/ D
X
´2R

q.�; SC´ �/ log
q.�; SC´ �/

yp`.�; S
C
´ �/

:

Since F � 0 by Jensen’s inequality and g is bounded above, ergodicity gives the
limits for �0-a.e. !:

lim
n!1

n�1 logE0
�
enR

`
n.g/1

˚
R`n 2 O

	�
� E�Œg� �H.� � q j � � yp`/:

(For the details of Q�fLn 2 Og ! 1, see the proof of [32, lemma 4.2].) By
�0 � P this also holds P -a.s. �

We are ready for the proof of the theorem.

PROOF OF THEOREM 2.3. Assume first that g 2 L is bounded above. Then
Lemmas 2.11, 2.12, and 2.15 give these P -a.s. inequalities:

ƒ`.g; !/ � K`.g/ � H
#
`;P .g/ � ƒ`.g; !/:

Existence of the limit ƒ`.g/ and ƒ`.g/ D K`.g/ D H #
`;P .g/ follows.

Next, consider g 2 L. Lemma 2.14 implies that K`.g/ D supc K`.min.g; c//.
Existence of the limit ƒ`.min.g; c// combined with Lemma 2.11 implies

K`.g/ D sup
c
K`.min.g; c// D sup

c
ƒ`.min.g; c// D sup

c
ƒ`.min.g; c//

� ƒ`.g/ � ƒ`.g/ � K`.g/:

Existence of the limit and the equality ƒ`.g/ D K`.g/ follow again. For the other
variational formula write

K`.g/ D sup
c
K`.min.g; c//

D sup
c

sup
�2M1.�`/

fE�Œmin.g; c/� �H`;P .�/g D H
#
`;P .g/: �

3 Large Deviations under Quenched Polymer Measures
As before, we continue to assume that R is finite and .�;S;P ; fT´ W ´ 2 Gg/

is a measurable ergodic system where G is the additive subgroup of Zd generated
by R. Now assume additionally that � is a separable metric space and S is its
Borel � -algebra.

Since our limiting logarithmic moment-generating functions ƒ`.g/ are defined
only P -a.s., we need a separable function space that generates the weak topology
of probability measures. Give �` a totally bounded metric and let Ub.�`/ be the
space of uniformly continuous functions under this metric. These functions are
bounded. The space Ub.�`/ is separable under the supremum norm and generates
the same topology on M1.�`/ as does the space of bounded continuous functions.
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Given a real-valued function V on �`, define the quenched polymer measures

Q
V;!
n;0 .A/ D

1

Z
V;!
n;0

E0
�
e�

Pn�1
kD0 V.TXk!;ZkC1;kC`/1A.!;X0;1/

�
;

where A is an event on environments and paths and

Z
V;!
n;0 D E0

�
e�

Pn�1
kD0 V.TXk!;ZkC1;kC`/

�
:

Theorem 2.3 gives the a.s. limit ƒ`.�V / D limn�1 logZV;!n;0 . Next we prove an

LDP for the quenched distributions QV;!n;0 fR
`
n 2 � g of the empirical measure

R`n D n
�1

n�1X
kD0

ıTXk!;ZkC1;kC` :

THEOREM 3.1. Fix ` � 0. Let V be a measurable function on �`, V 2 L, and
ƒ`.�V / <1. Then for P -a.e. ! the weak large deviation principle holds for the
sequence of probability distributions QV;!n;0 fR

`
n 2 � g on M1.�`/ with convex rate

function

(3.1) IVq;2;`.�/ D sup
g2Ub.�`/

fE�Œg� �ƒ`.g � V /g Cƒ`.�V /:

Rate IV
q;2;`

is also equal to the lower-semicontinuous regularization of

(3.2) HV
`;P .�/ D inf

c<0
fH`;P .�/CE

�Œmax.V; c/�Cƒ`.�V /g:

PROOF OF THEOREM 3.1. We show an upper bound for compact sets A,

(3.3) lim
n!1

n�1 logQV;!n;0
˚
R`n 2 A

	
� � inf

�2A
IVq;2;`.�/;

a lower bound for open sets G,

(3.4) lim
n!1

n�1 logQV;!n;0
˚
R`n 2 G

	
� � inf

�2G
HV
`;P .�/;

and then match the rates.
By Theorem 2.3 and the separability of Ub.�`/, we have P -a.s. these finite

limits for all g 2 Ub.�`/:

lim
n!1

n�1 logEQ
V;!
n;0

�
enR

`
n.g/

�
D ƒ`.g � V / �ƒ`.�V /:

Inequality (3.3) follows by a convex duality argument (see [11, theorem 4.5.3] or
[31, theorem 5.24]).

Lower bound (3.4) follows from Lemma 2.15 and a truncation: for�1 < c < 0

n�1 logQV;!n;0
˚
R`n 2 O

	
� n�1 logE0

�
e�nR

`
n.max.V;c//1fR`n 2 Og

�
� n�1 logE0

�
e�nR

`
n.V /

�
:
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(3.4) continues to hold if HV
`;P is replaced with its lower-semicontinuous regu-

larization HV;��
`;P .�/ D supB inf�2B HV

`;P .�/, where the supremum is over open
neighborhoods B of �.

Theorem 2.3 implies that for g 2 Ub.�`/

ƒ`.g � V / �ƒ`.�V /

D sup
�2M1.�`/; c>0

fE�Œmin.g � V; c/� �H`;P .�/ �ƒ`.�V /g

D sup
�2M1.�`/; c<0

fE�Œg �max.V; c/� �H`;P .�/ �ƒ`.�V /g

D sup
�2M1.�`/

fE�Œg� �HV
`;P .�/g:

Another convex duality gives IV
q;2;`

.�/ D H
V;��
`;P .�/ because the lower-semicon-

tinuous regularization HV;��
`;P is also equal to the double convex dual of HV

`;P . �

Next we record the LDP for the quenched distributions of the empirical process
R1n D n

�1
Pn�1
kD0 ıTXk!;ZkC1;1 .

THEOREM 3.2. Let V be a measurable function on some �`0 with V 2 L and
ƒ`0.�V / < 1. Then for P -a.e. ! the weak large deviation principle holds for
the sequence of probability distributions QV;!n;0 fR

1
n 2 � g on M1.� � RN/ with

convex rate function IVq;3.�/ D sup`�`0 I
V
q;2;`

.�j�`
/.

PROOF. This comes from a projective limit. Formula (3.1) shows that IV
q;2;`

.�ı


�1
`C1;`

/ � IV
q;2;`C1

.�/ for � 2 M1.�`C1/ where 
`C1;` W �`C1 ! �` is the
natural projection. Since weak topology of M1.� � RN/ can be generated by
uniformly continuous functions, a base for the topology can be created from inverse
images of open sets from the spaces M1.�`/. Apply Theorem B.1. �

In one of the most basic situations, namely for strictly directed walks in i.i.d.
environments, we can upgrade the weak LDPs into full LDPs. This means that the
upper bound is valid for all closed sets. “Strictly directed” means that there is a
vector yu 2 Rd such that ´ � yu > 0 for all ´ 2 R. Equivalently, 0 does not lie in the
convex hull of R.

Here is the setting. Let � be a Polish space. Set� D �Zd with generic elements
! D .!x/x2Zd and shift maps .Tx!/y D !xCy . Assume that the coordinates
f!xg are i.i.d. under P .

THEOREM 3.3. As described above, let P be an i.i.d. product measure on a Polish
product space �. Assume that 0 does not lie in the convex hull of R. Let V be a
measurable function on some �`, V 2 L, and assume that ƒ`.�ˇV / < 1 for
some ˇ > 1. Then for P -a.e. ! the full LDP holds for the sequence of probability
distributions QV;!n;0 fR

1
n 2 � g on M1.� � RN/ with convex rate function IVq;3

described in Theorem 3.2.
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PROOF. ƒ`.V / < 1 by Jensen’s inequality. Due to Theorem 3.2 it suffices to
show that the distributions QV;!n;0 fR

1
n 2 � g are exponentially tight for P -a.e. !.

Suppose we can show that

(3.5) distributions P0fR1n 2 � g are exponentially tight for
P -a.e. !.

From the lower bound in (2.5) and the hypotheses on V we have constants 0 <
c0; c1 <1 such that, for P -a.e. !,

E0Œe
�nR`n.V /� � e�c0n and E0Œe

�nR`n.ˇV /� � ec1ˇn

for large enough n. Fix ! so that these bounds and (3.5) hold. Given c <1, pick
a compact A �M1.� �RN/ such that P0fR1n 2 A

cg � e�ˇ.c0Cc1Cc/n=.ˇ�1/

for large n. Then

Q
V;!
n;0 fR

1
n 2 A

c
g � E0Œe

�nR`n.V /��1E0Œe
�nR`n.ˇV /�ˇ

�1

P0fR
1
n 2 A

c
g
1�ˇ�1

� e�cn:

Thus it suffices to check (3.5).
Next observe from

Pf! W P0.R
1
n 2 A

c/ � e�cng � ecn xP .R1n 2 A
c/

and the Borel-Cantelli lemma that we only need exponential tightness under the
averaged measure xP D P˝P0. As the last reduction, note that by the compactness
of RN it is enough to have the exponential tightness of the xP -distributions of
R0n D n

�1
Pn�1
kD0 ıTXk! .

The exponential tightness that is part of Sanov’s theorem gives compact sets
fUm;x W m 2 N; x 2 Zd g in the state space � of the !x such that

P
n
n�1

n�1X
kD0

1U cm;x .!yk / > e
�m�jxj

o
� e�n.mCjxj/:

Here fykg are any distinct sites. Define

Hm D fQ 2M1.�/ W 8x 2 Zd Qf! W !x … Um;xg � e
�.mCjxj/

g

and compact sets

Kb D
\

m�`.b/

Hm

where ` D `.b/ is chosen for b 2 N so thatX
m�`�b

X
x

e�.mCjxj/ � 1:
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Now

xP .R0n 2 K
c
b/ �

X
m�`.b/

xP .R0n 2 H
c
m/

�

X
m�`.b/

X
x

xP
�
R0nf!x … Um;xg > e

�m�jxj
�

�

X
m�`.b/

X
x

xP
n
n�1

n�1X
kD0

1U cm;x .!xCXk / > e
�m�jxj

o
� e�bn:

The crucial point used above was that under the assumption on R the points fXng
of the walk are distinct (Corollary A.2), and so the variables f!xCXng are i.i.d.
under xP . This gives the exponential tightness of the xP -distributions of R0n D
n�1

Pn�1
kD0 ıTXk! . �

Remark 3.4. For exponential tightness the theorem above is in some sense the best
possible. Theorem 3.3 can fail if 0 lies in the convex hull of R. Then a loop is
possible (Corollary A.2). Suppose the distribution of !0 is not supported on any
compact set. Then, given any compact set U in � , wait until the walk finds an
environment !x … U , and then forever after execute a loop at x.

4 Large Deviations for Random Walk in a Random Environment
This final section before the appendices is a remark about adapting the re-

sults of Section 3 to RWRE described in Example 1.2. Continue with the as-
sumptions on .�;S;P ; fT´ W ´ 2 Gg/ from Section 3. Fix any ` � 1 and
let V.!; ´1;`/ D � log�0;´1.!/ to put RWRE in the polymer framework. Then
ƒ1.�V / D � logjRj. The necessary assumption is now

(4.1) jlog�0;´j 2 L for each ´ 2 R.

The commonly used RWRE assumption of uniform ellipticity, namely the existence
of � > 0 such that Pf�0;´ � �g D 1 for ´ 2 R, implies (4.1).

Under assumption (4.1) Theorems 3.1 and 3.2 are valid for RWRE and give
quenched weak LDPs for the distributions P !0 fR

`
n 2 � g and P !0 fR

1
n 2 � g. Note

though that for ` � 2, QV;!n;0 fR
`
n 2 Bg is not exactly equal to P !0 fR

`
n 2 Bg

because under QV;!n;0 steps Zk for k > n are taken from kernel yp. This difference
vanishes in the limit due to log�0;´.!/ 2 L1.P /. These LDPs take care of cases
of RWRE not covered by [32], namely those walks for which 0 does not lie in the
relative interior of the convex hull U of R.

For RWRE the rate function IV
q;2;`

in Theorem 3.1 can be expressed directly as

the lower-semicontinuous regularization of an entropy. Indeed, let V .!; ´1;`/ D
� log�0;´`.Tx`�1!/. The difference between using potential V and potential V
is only in finitely many terms in the exponent. Thus ƒ`.g � V / D ƒ`.g � V /
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for all g 2 Ub.�`/. Then (3.1) shows that IV
q;2;`

D IV
q;2;`

. The latter rate is

the lower-semicontinuous regularization ofHV
`;P in (3.2), which itself equalsH`;P

from (2.3) with yp` replaced with the kernel pC.�; SC´ �/ D �0;´.Tx`!/ of the
Markov chain .TXk!;ZkC1;kC`/ under P !0 . By [32, lemma 6.1] the same is true
of the level 3 rate IVq;3 under the additional assumption that � is a compact space.
We refer to [32] for this and some other properties of IVq;3.

If � is compact, these weak LDPs are of course full LDPs, that is, the upper
bound holds for all closed sets. For RWRE with finite R the natural canonical
choice of� is compact: in the setting of Example 1.2, take� D PZd with generic
elements ! D .!x/x2Zd and p.!/ D !0 the projection at the origin.

If � is compact we can project the LDP of Theorem 3.1 to the level of the walk
to obtain the following statements: The limiting logarithmic moment-generating
function

(4.2) �.t/ D lim
n!1

1

n
logE!0 Œe

t �Xn �; t 2 Rd ;

exists a.s. Its convex conjugate

��.�/ D sup
t2Rd
f� � t � �.t/g; � 2 Rd ;

is the rate function for the LDP of the distributions P !0 fn
�1Xn 2 � g on Rd . For

walks without ellipticity, in particular for walks with 0 … U , even this quenched
position-level LDP is new. It has been proved in the past only in a neighborhood
of the limiting velocity [48].

In the following appendices we invoke the ergodic theorem a few times. By that
we mean the multidimensional ergodic theorem; see, for example, [20, theorem
14.A8].

Appendix A Some Auxiliary Lemmas

In this appendix R is a finite subset of Zd , G the additive subgroup of Zd

generated by R, and U the convex hull of R in Rd .

LEMMA A.1. Let � 2 Qd \ U . Then there exist rational coefficients ˛´ � 0 such
that

P
´2R ˛´ D 1 and � D

P
´2R ˛´´.

PROOF. Suppose first that R D fý0; : : : ; ýng for affinely independent points
ý0; : : : ; ýn. This means that the vectors ý1 � ý0; : : : ; ýn � ý0 are linearly inde-
pendent in Rd , and then necessarily n � d . Augment this set to a basis fb1 D
ý1 � ý0; : : : ; bn D ýn � ý0; bnC1; : : : ; bd g of Rd where bnC1; : : : ; bd are also
integer vectors (for example, by including a suitable set of d � n standard basis
vectors). Let A be the unique invertible linear transformation such that Abi D ei
for 1 � i � d . In the standard basis the matrix of A is the inverse of the matrix
B D Œb1; : : : ; bd �; hence this matrix has rational entries.
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Now let � D
Pn
iD0 ˛i ýi be a representation of � as a convex combination of

ý0; : : : ; ýn. Then � � ý0 D
Pn
iD1 ˛i .ýi � ý0/, and after an application of A,

A� � Aý0 D
Pn
iD1 ˛iei . The vector on the left has rational coordinates by

the assumptions and by what was just said about A. The vector on the right is
Œ˛1; : : : ; ˛n; 0; : : : ; 0�

T. Hence the coefficients ˛1; : : : ; ˛n are rational, and so is
˛0 D 1 �

Pn
iD1 ˛i .

Now consider the case of a general R. By Carathéodory’s theorem, every point
in the convex hull of R is a convex combination of d C 1 or fewer affinely inde-
pendent points of R [34, cor. 17.1.1]. Thus the argument given above covers the
general case. �

The next simple corollary characterizes the existence of a loop.

COROLLARY A.2. The existence of a loop (i.e., ´1;m 2 Rm with ´1C� � �C´m D 0)
is equivalent to 0 2 U .

This corollary expresses the irreducibility assumption used in [32] in terms of
the convex hull of R.

COROLLARY A.3. There is a path from 0 to each y 2 G with steps from R if and
only if 0 is in the relative interior of U .

PROOF. Each y 2 G is reachable from 0 if and only if�x is reachable from 0 for
each x 2 R. This is equivalent to the existence of an identity 0 D x1 C � � � C xm
where each xi is in R and each ´ 2 R appears at least once among the xi ’s.
Equivalently, we can write 0 as a convex combination of R so that each ´ 2 R has
a positive rational coefficient. By using Lemma A.1, this in turn is equivalent to
the following statement: for each ´ 2 R, �"´ 2 U for small enough " > 0. By
theorem 6.4 in [34] this is the same as 0 2 riU . �

This lemma gives sufficient conditions for membership in class L of Definition
2.1.

LEMMA A.4. Let .�;S;P ; fTx W x 2 Gg/ be a measurable ergodic dynamical
system. Let 0 � g 2 L1.P /. Assume one of the four conditions below.

(a) g is bounded.
(b) d D 1.
(c) d � 2. There exist r 2 .0;1/ and p > d such that EŒgp� < 1 and
fg ı Txi W i D 1; : : : ; mg are i.i.d. whenever jxi � xj j � r for all i ¤ j .

(d) d � 2. There exist a > d and p > ad=.a�d/ such that EŒgp� <1, and
for each ´ 2 R n f0g and large k 2 N,

sup
A2�.gıTx Wx�´�0/
B2�.gıTx Wx�´�k/

jP .A \ B/ � P .A/P .B/j � k�a:(A.1)
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Then, for each ´ 2 R n f0g,

(A.2) lim
"!0

lim
n!1

max
x2GWjxj�n

1

n

"nX
iD0

g ı TxCi´ D 0 P -a.s.

PROOF. Part (a) is immediate.
For (b) let s 2 N be such that G D fns W n 2 Zg. Fix ´ D as and let
xg D g � E.g j I´/ where I´ is the � -algebra of events invariant under T´. By
Tas-invariance

max
�n�j�n

1

n

"nX
iD0

E.g j I´/ ı TjsCias �
�
"C

1

n

�
max
0�j<a

E.g j I´/ ı Tjs P -a.s.

By the ergodic theorem

lim
n!1

max
j`j�n

ˇ̌̌̌
1

n

nX
iD0

xg ı T`´Ci´

ˇ̌̌̌
D 0 P -a.s.

This limit is not changed by taking a finite maximum over the shifts by Tjs , 0 �
j < a.

Part (c) follows from part (d).
Fix ´ for part (d). First two reductions.

(i) The maximum over x in (A.2) can be restricted to a set An of size jAnj �
Cnd�1"�1 at the expense of doubling " in the upper summation limit. The reason
is that g � 0 and if x0 D xCj´ for some 1 � j < n"=2, then the 2n"-sum started
at x covers the n"-sum started at x0.

(ii) It suffices to consider a subsequence nm D m
 for any fixed 
 > 0 because
nmC1=nm ! 1 and g � 0.

Since constants satisfy (A.2) we can replace g with xg D g � EŒg�. Let Sxn DPn
iD0 xg ı TxCi´. Equation (A.1) and the translation invariance of P imply strong

mixing as defined by [33]. Then applying theorem 6 therein with u D n�b , r large
enough, and t D ın=.cr/, we get a generalization of the Fuk-Nagaev inequality to
square-integrable, mean-zero, strongly mixing random variables. This implies that
for fixed "; ı > 0, PfjSxn"j > nıg � C."; ı/n

1�b with b D ap=.aC p/ > d . By a
straightforward union bound

P
n

max
x2An

ˇ̌̌ n"X
iD0

xg ı TxCi´

ˇ̌̌
> nı

o
� Cnd�1"�1PfjS0n"j > nıg � C."; ı/n

d�b:

Along the subsequence nm D m
 for 
 > .b � d/�1 the last bound is summable.
We get P -a.s. convergence to 0 for each fixed " > 0 by the Borel-Cantelli lemma.

�

For a general ergodic system (a) cannot be improved. For example, take d D 2,
an i.i.d. sequence f!i;0gi2Z, and then set !i;j D !i;0. For ´ D e2, we have
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n�1
Pn"
jD0j!xC.0;j /j � "j!xj and consequently the limit in n in (A.2) blows up

unless !i;j is a bounded process.
If the mixing in part (d) above is faster than any polynomial, then we can take

a ! 1 and the condition becomes p > d . Part (c) is close to optimal. If
EŒgd � D 1 then n�1 maxjxj�n g ı Tx blows up by the second Borel-Cantelli
lemma. Currently we do not know if p � d is sufficient in (c).

Appendix B Weak LDP through a Projective Limit
We describe a small alteration of the projective limit LDP. Let X and Xj , j 2 N,

be metric spaces with continuous maps gj W X ! Xj and gj;i W Xj ! Xi for i < j
such that gi D gj;i ı gj and gk;i D gj;i ı gk;j . Let f�ng be a sequence of Borel
probability measures on X , and define�jn D �nıg�1j on Xj . Let Ij W Xj ! Œ0;1�

be lower-semicontinuous. Define I.x/ D supj Ij .gj .x// for x 2 X .

THEOREM B.1.
(i) Suppose that for all j , Ij ı gjC1;j � IjC1 and Ij satisfies the large

deviation upper bound for compact sets in Xj . Then I satisfies the large deviation
upper bound for compact sets in X .

(ii) Assume that U D fg�1j .Uj / W j 2 N; Uj � Xj openg is a base for the
topology of X . Suppose that for all j , Ij satisfies the large deviation lower bound
for open sets in Xj . Then I satisfies the large deviation lower bound for open sets
in X .

PROOF. Part (ii) is straightforward. We prove part (i). Let A � X be compact.
Since gj .A/ is compact in Xj and g�1j .gj .A// � A,

lim n�1 log�n.A/ � lim n�1 log�jn.gj .A// � � inf
y2gj .A/

Ij .y/

D � inf
x2A

Ij .gj .x//;

from which
limn�1 log�n.A/ � � sup

j

inf
x2A

Ij .gj .x//:

Next we claim a minimax property from the assumption of monotonicity:

(B.1) sup
j

inf
x2A

Ij .gj .x// D inf
x2A

sup
j

Ij .gj .x// � inf
x2A

I.x/:

Inequality � is obviously true. To show �, let c < infx2A supj Ij .gj .x//. Then
each x 2 A has an index j.x/ such that Ij.x/.gj.x/.x// > c. The set Dx D f´ 2
X W Ij.x/.gj.x/.´// > cg is open by the continuity of gj and lower semicontinuity
of Ij . Cover A with finitely many sets: A � Dx1 [ � � � [Dxk . Fix j � j.x1/ _
� � � _ j.xk/. Then if x 2 A pick ` such that x 2 Dx` , and we have

Ij .gj .x// � Ij.x`/
�
gj; j.x`/.gj .x//

�
D Ij.x`/

�
gj.x`/.x/

�
> c:
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Thus infx2A Ij .gj .x// � c. We have proved (B.1) and thereby the upper large
deviation bound for A. �

Appendix C Proofs of Lemmas 2.9 and 2.13
Standing assumptions in this section are the same as in Section 2: .�;S;P ;

fT´ W ´ 2 Gg/ is a measurable ergodic dynamical system and, as throughout the
paper, R is an arbitrary finite subset of Zd that generates the additive group G.
Throughout this section ` � 0 is a fixed integer. C denotes a chameleon constant
that can change from term to term and only depends on R, `, and d . In order to
avoid working on a sublattice, we will assume throughout this appendix that R
generates Zd as a group. This does not cause any loss of generality. The additive
group G generated by R is linearly isomorphic to Zd

0

for some d 0 � d [40,
pp. 65–66] and we can transport the model to Zd

0

.
A crucial tool will be the path integral of a function F 2 K`. The main idea is

that due to the closed loop property these functions are gradientlike.
For `-tuples ź1;`; x́1;` 2 R` we write zx` D ź1 C � � � C ź` and xx` D x́1 C

� � �C x́`. We say that there exists a path from .y; ź1;`/ to .x; ´1;`/ when there exist
a1; : : : ; am 2 R such that the composition SCam ı � � � ı S

C
a1

takes .Ty!; ź1;`/ to
.Tx!; ´1;`/ for all ! 2 �. This is equivalent to the pair of equations

y C zx` C a1 C � � � C am�` D x and am�`C1;m D ´1;`:

For any two points .x; ´1;`/ and .xx; x́1;`/ and any ź1;` there exists a point y 2
Zd such that from .y; ź1;`/ there is a path to both .x; ´1;`/ and .xx; x́1;`/. For this,
find first xa1; : : : ; xam�` and a1; : : : ; an�` 2 R such that

xx � x D .xa1 C � � � C xam�`/ � .a1 C � � � C an�`/

so that
y0 D xx � .xa1 C � � � C xam�`/ D x � .a1 C � � � C an�`/

and then take y D y0 � zx`. By induction, for any finite number of points there is a
common starting point from which there exists a path to each of the chosen points.

Now fix a measurable function F W �` �R ! R that satisfies the closed loop
property (iii) of Definition 2.2. If there is a path .ai /miD1 from .y; ź1;`/ to .x; ´1;`/,
set �0 D .Ty!; ź1;`/, �i D SCai�i�1 for i D 1; : : : ; m so that �m D .Tx!; ´1;`/,
and then

(C.1) L.!; .y; ź1;`/; .x; ´1;`// D

m�1X
iD0

F.�i ; aiC1/:

By the closed loop property, L.!; .y; ź1;`/; .x; ´1;`// is independent of the path
chosen. We also admit an empty path that gives

L.!; .x; ´1;`/; .x; ´1;`// D 0:
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If a1; : : : ; am work for .y; ź1;`/ and .x; ´1;`/, then these steps work also for .y C
u; ź1;`/ and .x C u; ´1;`/. The effect on the right-hand side of (C.1) is to shift !
by u, and consequently

(C.2) L.Tu!; .y; ź1;`/; .x; ´1;`// D L.!; .y C u; ź1;`/; .x C u; ´1;`//:

Next define f W � �R2` � Zd ! R by

(C.3) f .!; ´1;`; x́1;`; x/ D L.!; .y; ź1;`/; .x; x́1;`// � L.!; .y; ź1;`/; .0; ´1;`//

for any .y; ź1;`/ with a path to both .0; ´1;`/ and .x; x́1;`/. This definition is inde-
pendent of the choice of .y; ź1;`/, again by the closed loop property.

Here are some basic properties of f .

LEMMA C.1. Let F. � ; ´1;`; ´/ 2 L1.P / for each .´1;`; ´/ and satisfy the closed
loop property (iii) of Definition 2.2.

(a) There exists a constant C depending only on d , `, and R D maxfj´j W ´ 2
Rg such that for all ´1;`; x́1;` 2 R`, x 2 Zd , and P -a.e. !

jf .!; ´1;`; x́1;`; x/j �
X

bWjbj�C.jxjC1/

max
ź1;`2R`

max
´2R
jF.Tb!; ź1;`; ´/j:

In particular, f 2 L1.P / for all .´1;`; x́1;`; x/.
(b) For ´1;`; x́1;`; ź1;` 2 R`, x; xx 2 Zd , and P -a.e. !,

f .!; ´1;`; ź1;`; xx/ D f .!; ´1;`; x́1;`; x/C f .Tx!; x́1;`; ź1;`; xx � x/:

(c) Assume additionally that F satisfies the mean-zero property (ii) of Defini-
tion 2.2. Then for any x́1;` 2 R` and x 2 Zd , EŒf .!; x́1;`; x́1;`; x/� D 0:

PROOF. Let e1; : : : ; ed be the canonical basis of Rd . For each 1 � i � d , there

exist nonnegative integers n˙i and .a˙i;j /
n˙
i

jD1 from R such that

ei D a
C
i;1 C � � � C a

C

i;n
C

i

� a�i;1 � � � � � a
�
i;n�
i
:

Write x D
Pd
iD1 bi�iei with bi � 0 and �i 2 f�1;C1g. Then,

x D

dX
iD1

n
�i
iX

jD1

bia
�i
i;j �

dX
iD1

n
��i
iX
jD1

bia
��i
i;j :

One can thus find a y that has paths to both 0 and x that stay inside a ball of radius
C.jxj C 1/. This proves (a).
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To prove (b), let .y; ý1;`/ have paths to .�x; ´1;`/, .0; x́1;`/, and .xx � x; ź1;`/.
Use the definition of f (C.3) and the shift property (C.2) to write

f .Tx!; x́1;`; ź1;`; xx � x/

D L.Tx!; .y; ý1;`/; .xx � x; ź1;`// � L.Tx!; .y; ý1;`/; .0; x́1;`//

D L.!; .y C x; ý1;`/; .xx; ź1;`// � L.!; .y C x; ý1;`/; .x; x́1;`//

D ŒL.!; .y C x; ý1;`/; .xx; ź1;`// � L.!; .y C x; ý1;`/; .0; ´1;`//�

� ŒL.!; .y C x; ý1;`/; .x; x́1;`// � L.!; .y C x; ý1;`/; .0; ´1;`//�

D f .!; ´1;`; ź1;`; xx/ � f .!; ´1;`; x́1;`; x/:

For (c), let y be so that from .y; x́1;`/ there is a path to both .x; x́1;`/ and
.0; x́1;`/. Then

f .!; x́1;`; x́1;`; x/ D L.!; .y; x́1;`/; .x; x́1;`// � L.!; .y; x́1;`/; .0; x́1;`//:

Both L-terms above equal sums
Pm�1
iD0 F.�i ; aiC1/ where �0 D .Ty!; x́1;`/ and

�m D .Tu!; x́1;`/ with u D x or u D 0. Both have zero E-mean by property (ii)
of Definition 2.2. �

Remark C.2. Part (b) above shows that f is a path integral of F or, alternatively,
that F is a gradient of f . More precisely,

F.!; ´1;`; ´/ D f .!; x́1;`; S
C
´ ´1;`; ´1/ � f .!; x́1;`; ´1;`; 0/

for all ´1;`, x́1;` 2 R`, ´ 2 R, and P -a.e. !. (SC´ acts on R` in the obvious way.)

LEMMA C.3. Let F 2 K`. Then there exists a sequence of bounded measurable
functions hk W �` ! R such that EŒjhk.S

C
´ �/ � hk.�/ � F.�; ´/j� ! 0 for all

´1;` 2 R` and ´ 2 R.

PROOF OF LEMMA C.3. Starting withF , denote its path integral by f as above.
Define

gn.!; ´1;`/ D �jRj
�`.2nC 1/�d

X
x́1;`2R`

X
jxj�n

f .!; ´1;`; x́1;`; x/:

By part (b) of Lemma C.1

f .!; ´1;`; x́1;`; x/C f .Tx!; x́1;`; x́1;`; ´1/

D f .!; ´1;`; x́1;`; x C ´1/

D f .!; ´1;`; S
C
´ ´1;`; ´1/C f .T´1!; S

C
´ ´1;`; x́1;`; x/:
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Consequently, from the closed loop property alone,

gn.S
C
´ �/ � gn.�/

D jRj�`.2nC 1/�d
X
x́1;`2R`

X
jxj�n

�
f .!; ´1;`; x́1;`; x/

� f .T´1!; S
C
´ ´1;`; x́1;`; x/

�
D jRj�`.2nC 1/�d

X
x́1;`2R`

X
jxj�n

�
f .!; ´1;`; S

C
´ ´1;`; ´1/

� f .Tx!; x́1;`; x́1;`; ´1/
�

D F.�; ´/ � jRj�`.2nC 1/�d
X
x́1;`2R`

X
jxj�n

f .Tx!; x́1;`; x́1;`; ´1/:(C.4)

By parts (a) and (c) of Lemma C.1 and by the ergodic theorem we see that
F.�; ´/ is the L1.P /-limit of gn.SC´ �/ � gn.�/ for each ´1;` 2 R` and ´ 2 R.
Finally, approximate the integrable gn with a bounded hn in L1.P /. �

PROOF OF LEMMA 2.9. TheL1.P / convergence to 0 follows from Lemma C.3.
Next, observe that for any a1;n that satisfies the properties in braces in the statement
of the lemma, the F -sum satisfies

n�1X
iD0

F.�i ; aiC1/ D f .!; ´1;`; x́1;`; yxn.�//:

Consequently, the task is to show that n�1f .!; ´1;`; x́1;`; yxn.�// has a limit P -a.s.
Recall that the definition of the path yx˘.�/ given above Lemma 2.8 involved an

integer b D b.�/ such that b� 2 Zd and yxmb.�/ D mb� for all m. Using (b) of
Lemma C.1 we have

.mb/�1f .!; ´1;`; x́1;`; mb�/ D .mb/
�1f .!; ´1;`; x́1;`; 0/

C .mb/�1
m�1X
jD0

f .Tjb�!; x́1;`; x́1;`; b�/;

and by the ergodic theorem, the right-hand side has a P -a.s. limit.
Given n choose mn so that mnb � n < .mn C 1/b. By (a) and (b) of Lemma

C.1,

n�1jf .!; ´1;`; x́1;`; yxn.�// � f .!; ´1;`; x́1;`; mnb�/j

D n�1jf .Tmnb�!; x́1;`; x́1;`; yxn.�/ �mnb�/j

� .mnb/
�1G.Tmnb�!/ �!n!1

0 P -a.s.;
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where
G.!/ D

X
xWjxj�C.bj�jC1/

max
ź1;`2R`

max
´2R
jF.Tx!; ź1;`; ´/j

is in L1.P /. �

PROOF OF LEMMA 2.13. Fix " > 0 for the rest of the proof. From (2.13) we
have that for P -a.e. ! and for all ´1;` 2 R` and ´ 2 R

F
.0/

k;"
.�; ´/ � C � EŒg.�/ j Sk�:

By the fact that g.!; ´1;`/ 2 L1.P / for all ´1;` 2 R`, the right-hand side is
uniformly integrable. Thus so is F .0/;C

k;"
D max.F .0/

k;"
; 0/.

Let F .0/;�
k;"

D max.�F .0/
k;"
; 0/. Observe that by the T´-invariance of P

E
�
F
.0/

k;"
.!; ´1;`; ´/

�
D EŒhk;".T´1!; S

C
´ ´1;`/ � hk;".!; ´1;`/�

D EŒhk;".!; S
C
´ ´1;`/� � EŒhk;".!; ´1;`/�:

Thus F .0/
k;"

satisfies the mean-zero property (ii) in Definition 2.2. Letting �0 D
.!; ´1;`/, ´0 D ´, ai D ´i�1, and �i D SCai�i�1 for i D 1; : : : ; `C1, one has that

E
�
F
.0/;�

k;"
.�; ´/

�
�

X̀
iD0

E
�
F
.0/;�

k;"
.�i ; aiC1/

�
D

X̀
iD0

E
�
F
.0/;C

k;"
.�i ; aiC1/

�
is bounded uniformly in k. We apply the following lemma to extract a uniformly
integrable part leaving a small error.

LEMMA C.4 (Lemma 4.3 of [28]). Let fgngn�1 be a sequence of nonnegative
functions such that supnEŒgn� � C . Then there is a subsequence fnj gj�1 and an
increasing sequence aj % 1 such that gnj 1fgnj � aj g is uniformly integrable
and gnj 1fgnj > aj g converges to 0 in probability.

By the above lemma we can write F .0/;�
k;"

D zF
.0/

k;"
C R

.0/

k;"
such that, along a

subsequence, zF .0/
k;"

is uniformly integrable and R.0/
k;"
� 0 is Sk-measurable and

converges to 0 in P -probability. One can then take a further subsequence along
which yF .0/

k;"
D F

.0/;C

k;"
� zF

.0/

k;"
converges in weak L1.P / to yF .0/" and R.0/

k;"
! 0

P -a.s. (Uniform integrability gives sequential compactness in weak L1; see [16,
theorem 9, p. 292].) We will always keep indexing subsequences by k. Now we
have the decomposition

(C.5) F
.0/

k;"
D yF

.0/

k;"
�R

.0/

k;"
:

An attempt to check that the limit yF .0/" satisfies the closed loop property runs
into difficulty because we have very weak control of the errors R.0/

k;"
, and the con-

ditioning in definition (2.14) damages the closed loop property of the function
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hk;".S
C
´ �/ � hk;".�/. To get around this we defined the family indexed by i in

(2.14). In the next lemma we develop a hierarchy of errors obtained by successive
applications of Lemma C.4. We give the proof after the current proof is done. Re-
call that given ´1;j 2 Rj , xj D ´1 C � � � C j́ . We will use the notation ¿ for a
path of length j D 0 and then x0 D 0.

LEMMA C.5. There exist nonnegative random variables on �` � R, denoted by
zR
.i;j;´1;j /

k;"
, yR.i;j;´1;jC1/

k;"
, andR.i;j;´1;j /

k;"
, with 0 � j � i � k and ´1;jC1 2 RjC1,

such that the following properties are satisfied:

(a) R.0;0;¿/
k;"

D R
.0/

k;"
.

(b) zR.i;j;´1;j /
k;"

, yR.i;j;´1;jC1/
k;"

, and R.i;j;´1;j /
k;"

are TxjSk�i -measurable.

(c) EŒR.i;0;¿/
k;"

j Sk�i�1� D zR
.iC1;0;¿/

k;"
CR

.iC1;0;¿/

k;"
for all i � 0.

(d) EŒR
.i;j;´1;j /

k;"
j Txj�1Sk�i�1� D yR

.iC1;j�1;´1;j /

k;"
C R

.iC1;j�1;´1;j�1/

k;"
for

all i � j � 1 and ´1;j 2 Rj .

(e) EŒR
.i;j;´1;j /

k;"
j TxjC1Sk�i�1� D zR

.iC1;jC1;´1;jC1/

k;"
C R

.iC1;jC1;´1;jC1/

k;"

for all i � j � 0 and ´1;jC1 2 RjC1.

(f) As k !1, zR.i;j;´1;j /
k;"

and yR.i;j;´1;jC1/
k;"

are uniformly integrable and con-

verge in weak L1.P / to a limit zR.i;j;´1;j /" and yR.i;j;´1;jC1/" , respectively.
(g) R.i;j;´1;j /

k;"
converges to 0 P -a.s. as k !1.

(h) One has for j � 0, ´1;jC1 2 RjC1, and s � 1

zR.s;0;¿/" C zR.sC1;0;¿/" C zR.sC2;1;´1/"

C � � � C zR
.jCs;j�1;´1;j�1/
" C zR

.jCsC1;j;´1;j /
"

D zR.s;1;´1/" C � � � C zR
.jCs;jC1;´1;jC1/
" C yR

.jCsC1;j;´1;jC1/
" :

(i) For any fixed j � 0 and ´1;jC1 2 RjC1 both zR.i;j;´1;j /" and yR.i;j;´1;jC1/"

converge to 0 strongly in L1.P / as i !1.
The limits as k !1 are to be understood in the sense that there exists one subse-
quence along which all the countably many claimed limits hold simultaneously.

Fix i � 0 and let k � i . Starting with (C.5), using (a) of the above lemma and
applying (c) repeatedly, we have the decomposition F .i/

k;"
D yF

.i/

k;"
�R

.i/

k;"
with

yF
.i/

k;"
D E

�
yF
.0/

k;"
� zR

.1;0;¿/

k;"
� � � � � zR

.i;0;¿/

k;"
j Sk�i

�
and R

.i/

k;"
D R

.i;0;¿/

k;"
:

R
.i/

k;"
is Sk�i -measurable and yF .i/

k;"
uniformly integrable. (The proof of theorem 5.1

in chapter 4 of [17] applies to the uniformly integrable sequence yF .0/
k;"
� zR

.1;0;¿/

k;"
�

� � � � zR
.i;0;¿/

k;"
.) One can check by a standard �-� or monotone class argument

that any weak L1.P / limit coincides with the weak limit without the conditioning,
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namely yF .i/" D yF
.0/
" � zR

.1;0;¿/
" � � � � � zR

.i;0;¿/
" : Furthermore, since EŒR.0/

k;"
� is

uniformly bounded in k, we have

E
�
zR
.1;0;¿/

k;"
C � � � C zR

.i;0;¿/

k;"

�
� E

�
R
.0/

k;"

�
� C:

Taking i !1 we see that yF .i/" decreases, converging strongly in L1.P / to

yF" D yF
.0/
" �

X
i�1

zR.i;0;¿/" :

Then, yF" 2 L1.P / satisfies (i) of Definition 2.2.
Fix a path x0;1 with increments in R. Fix integers k � b � j � 0. Re-

call that T˙´Ss�1 � Ss for all ´ 2 R and s � 1. In particular, Sk�bCj �
Tx1Sk�bCj�1 � � � � � TxjSk�b . Applying (e) and (b) of Lemma C.5 repeatedly,
one has

(C.6) E
�
R
.b�j /

k;"

ˇ̌
TxjSk�b

�
D

E
h jX
sD1

zR
.b�jCs;s;´1;s/

k;"

ˇ̌
TxjSk�b

i
CR

.b;j;´1;j /

k;"
:

Thus,

E
�
hk;".TxjC1!; j́C2;jC`C1/ � hk;".Txj!; j́C1;jC`/

ˇ̌
Sk�b

�
(C.7)

D E
�
EŒhk;".TxjC1!; j́C2;jC`C1/

� hk;".Txj!; j́C1;jC`/ j T�xjSk�bCj �
ˇ̌
Sk�b

�
D E

�
F
.b�j /

k;"
.Txj!; j́C1;jC`; j́C`C1/

ˇ̌
Sk�b

�
D E

�
yF
.b�j /

k;"
.Txj!; j́C1;jC`; j́C`C1/

ˇ̌
Sk�b

�
� E

�
R
.b�j /

k;"
.Txj!; j́C1;jC`; j́C`C1/

ˇ̌
Sk�b

�
D E

�
yF
.b�j /

k;"
.Txj!; j́C1;jC`; j́C`C1/

ˇ̌
Sk�b

�
(C.8)

� E
�
zR
.b�jC1;1;´1/

k;"
. � ; j́C1;jC`; j́C`C1/

C � � � C zR
.b;j;´1;j /

k;"
. � ; j́C1;jC`; j́C`C1/ j TxjSk�b

�
.Txj!/(C.9)

�R
.b;j;´1;j /

k;"
.Txj!; j́C1;jC`; j́C`C1/:

The last equality used (C.6) and the formula EŒg j Sk� ı Tx D EŒg ı Tx j
T�xSk�. The two sequences in (C.8) and (C.9) are uniformly integrable and con-
verge weakly in L1.P / (along a subsequence) to

yF .b�j /" .Txj!; j́C1;jC`; j́C`C1/

and �
zR
.b�jC1;1;´1;j /
" C � � � C zR

.b;j;´1;j /
"

�
.Txj!; j́C1;jC`; j́C`C1/;
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respectively.
For any two paths f�igniD0 and fx�j gmjD0 as in (iii) of Definition 2.2

n�1X
iD0

E
�
hk;"

�
SCaiC1�i

�
� hk;".�i /

ˇ̌
Sk�b

�
D

m�1X
jD0

E
�
hk;"

�
SC
xajC1
x�j
�
� hk;".x�j /

ˇ̌
Sk�b

�
:

Now, taking b > max.m; n/ and further subsequences of (C.7), we arrive at

n�1X
iD0

�
yF .b�i/" .�i ; aiC1/ �

iX
sD1

zR
.b�iCs;s;´1;s/
" .�i ; aiC1/

�
D

m�1X
jD0

�
yF .b�j /" .x�j ; xajC1/ �

jX
sD1

zR
.b�jCs;s;´01;s/
" .x�j ; xajC1/

�
:

Here, ´1;n and ´01;m denote the steps of the two paths corresponding to f�ig and
fx�j g. Taking b ! 1 and applying part (i) of Lemma C.5, we conclude that yF"
satisfies the closed loop property (iii) of Definition 2.2. Next, we work on the
mean-zero property.

Abbreviate ý1;` D .´; : : : ; ´/ 2 R`. Then,

c.´/ D EŒ yF".!; ý1;`; ´/� D inf
i

EŒ yF .i/" .!; ý1;`; ´/�

D inf
i

lim
k!1

EŒ yF .i/
k;"
.!; ý1;`; ´/� � inf

i
lim
k!1

EŒF .i/
k;"
.!; ý1;`; ´/�

D lim
k!1

EŒhk;".T´!; ý1;`/ � hk;".!; ý1;`/� D 0:

Since yF" satisfies the closed loop property, one can define its path integral yf" as
above and use (C.3) to write

(C.10)

yf".!; x́1;`; x́1;`; ´/

D yF".T�`´!; ý1;`; ´/

C yF".T�.`�1/´!; ý1;`; x́1/C � � � C yF".!; .ý`; x́1;`�1/; x́`/

� yF".T�`´!; ý1;`; x́1/ � � � � � yF".T�´!; .ý`; x́1;`�1/; x́`/:

Thus, we have c.´/ D EŒ yf".!; x́1;`; x́1;`; ´/� for all x́1;` 2 R` and ´ 2 R. Hence

c.´/ D jRj�`
X
x́1;`2R`

EŒ yf".!; x́1;`; x́1;`; ´/�:
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Integrating (C.4) out (with F D yF") one sees that

EŒgn.S
C
´ �/ � gn.�/� D EŒ yF".�; ´/ � c.´1/�:

Since gn.SC´ �/� gn.�/ has the mean-zero property (ii) of Definition 2.2, we con-
clude that yF".�; ´/�c.´1/ does too. Let x́1;` 2 R`, ´1;n 2 Rn, x D ´1C� � �C´n,
and apply the mean-zero property of yF".�; ´/ � c.´1/ to the path that takes steps
.´1;n; x́1;`/ to go from .0; x́1;`/ to .x C xx`; x́1;`/. This gives

(C.11) EŒ yf".!; x́1;`; x́1;`; x C xx`/� D c.x́1/C � � � C c.x́`/C
nX
iD1

c.´i /:

Since the left-hand side does not depend on ´1;n as long as the increments add up
to x, we see that c.´1/C� � �Cc.´n/ only depends on ´1C� � �C´n. Consequently,
yF".�; ´/ � c.´1/ also has the closed loop property and thus belongs to K`. This

completes the proof of Lemma 2.13. �

PROOF OF LEMMA C.5. In what follows, decomposing a sequence Rk � 0

means applying Lemma C.4 to it. The leftmost term in the decomposition is the one
that converges in weak L1.P / topology along a subsequence. Its limit is denoted
by the same symbol, with k omitted. The rightmost term in the decomposition
is the one converging to 0 P -a.s. Subsequences are chosen to work for all ´1;j ,
j � 1, at once, and are still indexed by k. Once a subsequence has been given to
suit a decomposition, subsequent decompositions go along this subsequence, and
so on. Induction will be repeatedly used in our proof and once an induction is
complete, the diagonal trick is used to obtain one subsequence that works for all
the terms simultaneously. Recall that R.0/

k;"
� 0 and EŒR.0/

k;"
� is bounded uniformly

in k.
The following diagram may be instructive to the reader during the course of the

proof. Index the columns from left to right by i D 0; 1; : : : ; k and the rows from
top to bottom by j D 0; 1; : : : ; k.

Sk Sk�1 Sk�2 � � � � � � Sk�i � � � S0
Tx1Sk�1 Tx1Sk�2 � � � � � � Tx1Sk�i � � � Tx1S0

Tx2Sk�2
:::

: : : TxjSk�i
:::

: : :
:::

:::

TxiSk�i
: : :

TxkS0

The algebra on row j and column i � j is TxjSk�i . Each algebra in the diagram
includes the one down and to the right of it, the one up and to the right of it, and
the one immediately to the right of it. The decomposition in (d) corresponds to a
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step up and to the right in the diagram, while the decomposition in (e) corresponds
to a step down and to the right.

We will define zR.i;j;´1;j /
k;"

, yR.i;j;´1;jC1/
k;"

, and R.i;j;´1;j /
k;"

by induction on s D
i � j � 0. On the above diagram, this corresponds to the sth diagonal starting at
Sk�s and going down to Tx1Sk�s�1 and so on. We check property (i) after the
whole induction process is complete.

Induction Assumption for s. There exist nonnegative random variables on �` �

R, denoted by zR.i;j;´1;j /
k;"

, yR.i;j;´1;jC1/
k;"

, and R.i;j;´1;j /
k;"

, with 0 � j � i � k,
i�j � s, and ´1;jC1 2 RjC1, such that properties (a)–(h) are satisfied (whenever
the terms involved have already been defined).

Set R.0;0;¿/
k;"

D R
.0/

k;"
and zR.0;0;¿/

k;"
D 0. For k > j � 0, ´1;jC1 2 RjC1,

observe that TxjC1Sk�j�1 � TxjSk�j and decompose inductively

E
�
R
.j;j;´1;j /

k;"
j TxjC1Sk�j�1

�
D zR

.jC1;jC1;´1;jC1/

k;"
CR

.jC1;jC1;´1;jC1/

k;"
:

For j � 0 and ´1;jC1 2 RjC1 set yR.j;j;´1;jC1/
k;"

D 0. These are actually never
used in properties (a)–(i) of the lemma. This settles the case s D 0.

Next, for k > 0, decompose

E
�
R
.0;0;¿/

k;"
j Sk�1

�
D zR

.1;0;¿/

k;"
CR

.1;0;¿/

k;"
;

and for k > j � 1 decompose inductively

E
�
R
.jC1;j;´1;j /

k;"
j TxjC1Sk�j�2

�
D zR

.jC2;jC1;´1;jC1/

k;"
CR

.jC2;jC1;´1;jC1/

k;"
:

Set yR.jC1;j;´1;jC1/
k;"

D 0 for all k > j � 0 and ´1;jC1 2 RjC1. These are again
not used in properties (a)–(i) of the lemma. This settles the case s D 1.

Now fix s � 1 and assume the induction assumption for this s. We will define
zR
.jCsC1;j;´1;j /

k;"
, yR.jCsC1;j;´1;jC1/

k;"
, and R.jCsC1;j;´1;j /

k;"
by induction on j � 0.

On the above diagram, this corresponds to going along the fixed sth diagonal.

Induction Assumption for j with s � 1 Fixed. We have defined zR.jCsC1;j;´1;j /
k;"

,

yR
.jCsC1;j;´1;jC1/

k;"
, and R.jCsC1;j;´1;j /

k;"
such that properties (a)–(h) are satisfied

(whenever the terms involved have already been defined).

Observe that Sk�s�1 � T´1Sk�s and temporarily decompose

E
�
R
.s;0;¿/

k;"
j Sk�s�1

�
D zR

.sC1;0;¿/

k;"
CR

.sC1;0;¿/

k;"
and

E
�
R
.s;1;´1/

k;"
j Sk�s�1

�
D yR

.sC1;0;´1/

k;"
C xR

.sC1;0;´1/

k;"
:
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LetR be the smallest of xR.sC1;0;´1/
k;"

, ´1 2 R, andR.sC1;0;¿/
k;"

. Use (c) and (e) with
i D s � 1 and j D 0 to write

E
�
zR
.s;0;¿/

k;"
j Sk�s�1

�
C zR

.sC1;0;¿/

k;"
CR

.sC1;0;¿/

k;"

D E
�
R
.s�1;0;¿/

k;"
j Sk�s�1

�
D E

�
zR
.s;1;´1/

k;"
j Sk�s�1

�
C yR

.sC1;0;´1/

k;"
C xR

.sC1;0;´1/

k;"
:

The above display shows that the differences xR.sC1;0;´1/
k;"

� R and R.sC1;0;¿/
k;"

�

R are uniformly integrable. Redefine all the terms xR.sC1;0;´1/
k;"

, ´1 2 R, and

R
.sC1;0;¿/

k;"
to equal R and redefine zR.sC1;0;¿/

k;"
to equal

zR
.sC1;0;¿/

k;"
CR

.sC1;0;¿/

k;"
�R

and yR.sC1;0;´1/
k;"

to equal

yR
.sC1;0;´1/

k;"
C xR

.sC1;0;´1/

k;"
�R:

The upshot is that one can assume that xR.sC1;0;´1/
k;"

D R
.sC1;0;¿/

k;"
for all ´1 2 R.

Taking k !1 in the above display verifies (h) for j D 0. This starts the induction
at j D 0.

Now we go from j to j C 1. Temporarily decompose

(C.12) E
�
R
.jCsC1;j;´1;j /

k;"
j TxjC1Sk�j�s�2

�
D

zR
.jCsC2;jC1;´1;jC1/

k;"
CR

.jCsC2;jC1;´1;jC1/

k;"

and

(C.13) E
�
R
.jCsC1;jC2;´1;jC2/

k;"
j TxjC1Sk�j�s�2

�
D

yR
.jCsC2;jC1;´1;jC2/

k;"
C xR

.jCsC2;jC1;´1;jC2/

k;"
:

Then, one has

E
�
zR
.s;0;¿/

k;"
C zR

.sC1;0;¿/

k;"
C zR

.sC2;1;´1/

k;"
C � � �

C zR
.jCsC1;j;´1;j /

k;"
j TxjC1Sk�j�s�2

�
C zR

.jCsC2;jC1;´1;jC1/

k;"
CR

.jCsC2;jC1;´1;jC1/

k;"

D E
�
R
.s�1;0;¿/

k;"
j TxjC1Sk�j�s�2

�
D E

�
zR
.s;1;´1/

k;"
C � � � C zR

.jCsC1;jC2;´1;jC2/

k;"
j TxjC1Sk�j�s�2

�
C yR

.jCsC2;jC1;´1;jC2/

k;"
C xR

.jCsC2;jC1;´1;jC2/

k;"
:
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An explanation: Use (c) first twice to conditionR.s�1;0;¿/ on Sk�s and then on
Sk�s�1. Next, use (e) conditioning R.sC1;0;¿/ on Tx1Sk�s�2, then R.sC2;1;´1/

on Tx2Sk�s�3, and so on, until conditioningR.sCjC1;j;´1;j / on TxjC1Sk�s�j�2.
On the other side, use (e) conditioning R.s�1;0;¿/ on Tx1Sk�s , then R.s;1;x1/

conditioned on Tx2Sk�s�1, and so on until R.sCj;jC1;´1;jC1/ is conditioned on
TxjC2Sk�s�j�1. Then use (C.12) and (C.13) and condition R.sCjC1;jC2;´1;jC2/

on TxjC1Sk�s�j�2.
Now, repeating what we have done for the case j D 0, we can assume that
xR
.jCsC2;jC1;´1;jC2/

k;"
D R

.jCsC2;jC1;´1;jC1/

k;"
for all ´1;jC2 2 RjC2. Taking

k !1 verifies (h).
We have achieved the induction on j and thus also the induction on s. Our

construction is thus complete once we prove it satisfies (i). Using (h), this follows
easily by induction on j � 0 once one shows that zRs;0;¿" ! 0 strongly in L1.P /,
which itself follows from the fact that EŒ zR.1;0;¿/

k;"
C � � � C zR

.s;0;¿/

k;"
� � EŒR.0/

k;"
� is

uniformly bounded in k. The lemma is proved. �
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