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Abstract

We prove an invariance principle for a vector-valued additive functional of a Markov chain for almost every starting point with
respect to an ergodic equilibrium distribution. The hypothesis is a moment bound on the resolvent.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

This note extends a result of Maxwell and Woodroofe (2000). Our notation and presentation follow Maxwell and
Woodroofe (2000) as closely as possible, and some results from there will be repeated without proofs. The work
presented here was motivated by applications to random walks in random environments that are reported elsewhere.

It is noteworthy that one can get the estimates needed for the invariance principles we prove by applying the theory
of fractional coboundaries of Banach space contractions, developed by Derriennic and Lin (2001). Then, one only
needs to assume two moments on the functional of the Markov chain (p = 2 below). This work, however, demonstrates
how elementary probabilistic arguments give the same result if we have a slightly better moment assumption as
in Maxwell and Woodroofe (2000) (p > 2 below).

Let (Xn)n≥0 be a stationary ergodic Markov chain defined on a probability space (Ω ,F, P), with values in a
general measurable space (X ,B). Let Q(x; dy) be its transition probability kernel and π the stationary marginal
distribution of each Xn . Write E for the expectation under P . Px denotes the probability measure obtained by
conditioning on X0 = x , and Ex is the corresponding expectation. For p ≥ 1, we will denote by L p(π) the
equivalence class of B-measurable functions g with values in Rd for some d ≥ 1 and such that

‖g‖
p
p =

∫
|g(x)|pπ(dx) < ∞.

Here, | · | denotes the `2-norm on Rd .
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Now fix d and an Rd -valued function g ∈ L2(π) with
∫

g dπ = 0. Define S0(g) = 0 and

Sn+1(g) =

n∑
k=0

g(Xk) and S̃n(g) = Sn(g) − EX0(Sn(g)), for n ≥ 0.

We are concerned with central limit type results for Sn(g) and S̃n(g). This question has been investigated from
many angles and under different assumptions; see Maxwell and Woodroofe (2000) and its references. A widely used
method of Kipnis and Varadhan (1986) works for reversible chains. Maxwell and Woodroofe (2000) adapted this
approach to a non-reversible setting, and used growth bounds on the resolvent to obtain sufficient conditions for an
invariance principle for Sn(g) under P , if p > 2.

Derriennic and Lin then used their theory of fractional coboundaries (Derriennic and Lin, 2001) to push the result
to an invariance principle for Sn(g) under Px , for π -a.e. x , even when p = 2; see Derriennic and Lin (2003). Using
their method one can also show that the same almost sure invariance principle holds for S̃n(g). We will show how to
further the probabilistic technique of Maxwell and Woodroofe (2000) to yield both almost sure invariance principles
(for Sn(g) and S̃n(g)) when p > 2.

Invariance principles for additive functionals of Markov chains have many applications. This note is a by-product
of the authors’ recent work on random walks in a random environment (Rassoul-Agha and Seppäläinen, 2005, 2006,
2007), where this invariance principle proved useful.

Let us now describe the structure of this note. In Section 2 we will present the setting of Maxwell and Woodroofe
(2000) and prove an Lq bound, with q > 2, on a certain martingale. In Section 3 we will state and prove the
main theorem of the note. The proof depends on a vector-valued version of a well-known invariance principle for
martingales (Theorem 3 of Rassoul-Agha and Seppäläinen (2005)).

2. A useful martingale

For a function h ∈ L1(π) and π -a.e. x ∈ X define

Qh(x) =

∫
h(y)Q(x; dy).

Q is a contraction on L p(π) for every p ≥ 1. For ε > 0 let hε be the solution of

(1 + ε)hε − Qhε = g.

In other words,

hε =

∞∑
k=1

(1 + ε)−k Qk−1g.

Note that hε ∈ L p(π), if g ∈ L p(π). On X 2 define the function

Hε(x0, x1) = hε(x1) − Qhε(x0).

For a given realization of (Xk)k≥0, let

Mn(ε) =

n−1∑
k=0

Hε(Xk, Xk+1) and Rn(ε) = Qhε(X0) − Qhε(Xn)

so that

Sn(g) = Mn(ε) + εSn(hε) + Rn(ε).

Finally, let π1 be the distribution of (X0, X1) under P; that is

π1(dx0, dx1) = Q(x0; dx1)π(dx0).

Let us denote the L p-norm on L p(π1) by ||| · |||p. The following theorem summarizes results of Maxwell and
Woodroofe (2000).
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Theorem MW. Assume that g ∈ L2(π) and that there exists an α ∈ (0, 1/2) such that∥∥∥∥∥n−1∑
k=0

Qk g

∥∥∥∥∥
2

= Ŏ(nα). (2.1)

Then:

(a) The limit H = limε→0+ Hε exists in L2(π1). Moreover, if one defines

Mn =

n−1∑
k=0

H(Xk, Xk+1),

then, for π -almost every x, (Mn)n≥1 is a Px -square integrable martingale, relative to the filtration {Fn =

σ(X0, . . . , Xn)}n≥0.
(b) One has ‖hε‖2 = Ŏ(ε−α), and if Rn = Sn(g) − Mn = Mn(ε) − Mn + εSn(hε) + Rn(ε), then

E(|Rn|
2) = Ŏ(n2α).

Proof. The existence of H follows from Proposition 1 of Maxwell and Woodroofe (2000). The statement about
Mn follows from Theorem 1 therein. The bounds on ‖hε‖2 and E(|Rn|

2) follow from Lemma 1 and Corollary 4
of Maxwell and Woodroofe (2000), respectively. �

If, moreover, one has an L p assumption on g, then one can say more.

Theorem 1. Assume that there exists an α < 1/2 for which (2.1) is satisfied. Assume also that there exists a p > 2
such that g ∈ L p(π). Then there exists a q ∈ (2, p) such that H ∈ Lq(π1) and (Mn)n≥1 is an Lq -martingale.

Proof. First choose a positive q < (3 − 2α)p/(1 − 2α + p). One can check that since 2α < 1 and p > 2, we have
q ∈ (2, p). Using Hölder’s inequality, we have

|||Hδ − Hε|||
q
q ≤ |||Hδ − Hε|||

a
p |||Hδ − Hε|||

b
2,

where a = p(q − 2)/(p − 2) < q and b = q − a. Next, observe that

‖hε‖p ≤

∑
n≥1

(1 + ε)−n
‖g‖p = ‖g‖p ε−1.

Thus, one has

|||Hδ − Hε|||
q
q ≤ 2a

‖g‖
a
p (ε−1

+ δ−1)a
|||Hδ − Hε|||

b
2,

and, by Lemma 2 of Maxwell and Woodroofe (2000),

|||Hδk − Hδk−1 |||
q
q ≤ C 2ka

· 2−kb/2(‖hδk ‖
2
2 + ‖hδk−1‖

2
2)

b/2,

where δk = 2−k . By part (ii) of Theorem MW, we know that ‖hδ‖2 = Ŏ(δ−α). Therefore, one has

|||Hδk − Hδk−1 |||
q
q ≤ C 2k(a−b/2+αb),

with maybe a different C than above. Now, by the choice of q, one can verify that a − b/2 + αb < 0, and then repeat
the proof of Proposition 1 in Maxwell and Woodroofe (2000), with ||| · |||2 replaced by ||| · |||q . �

Remark 1. Note that Maxwell and Woodroofe (2000) uses ‖·‖1 for the L2-norm under π1, while we use ||| · |||2.

3. The almost sure invariance principle

First some notation. We write AT for the transpose of a vector or matrix A. An element of Rd is regarded as a d ×1
matrix, or column vector. Define

Bn(t) = n−1/2S[nt](g) and B̃n(t) = n−1/2 S̃[nt](g), for t ∈ [0, 1].
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Here, [x] = max{k ∈ Z : k ≤ x}. Let DRd ([0, 1]) denote the space of right continuous functions on [0, 1] taking
values in Rd and having left limits. This space is endowed with the usual Skorohod topology Billingsley (1999). Let
∆ denote the Prohorov metric on the space of Borel probability measures on DRd ([0, 1]).

For a given symmetric, non-negative definite d × d matrix Γ , a Brownian motion with diffusion matrix Γ is the
Rd -valued process {W (t) : 0 ≤ t ≤ 1} such that W (0) = 0, W has continuous paths, independent increments, and
for s < t the d-vector W (t) − W (s) has Gaussian distribution with mean zero and covariance matrix (t − s)Γ . If the
rank of Γ is m, one can produce such a process by finding a d × m matrix Λ such that Γ = ΛΛT, and by defining
W (t) = ΛB(t) where B is an m-dimensional standard Brownian motion.

Let ΦΓ denote the distribution of Brownian motion with diffusion matrix Γ on the space DRd ([0, 1]). For x ∈ X let
Ψn(x) and Ψ̃n(x), respectively, be the distributions of Bn and B̃n on the Borel sets of DRd ([0, 1]) under the measure
Px ; that is, conditioned on X0 = x .

Here is our main theorem.

Theorem 2. Assume there are p > 2 and α < 1/2 for which g ∈ L p(π) and E(|R2
n |) = Ŏ(n2α). Then

lim
n→∞

∆(ΦD,Ψn(x)) = 0 for π -a.e. x,

where D = E(M1 MT
1 ) =

∫
H HT dπ1.

Remark 2. The above result improves Theorem 2 of Maxwell and Woodroofe (2000) which stated that

lim
n→∞

∫
∆(ΦD,Ψn(x))π(dx) = 0.

Remark 3. Due to Theorem MW, (2.1) guarantees the bound on E(|Rn|
2) in Theorem 2.

Proof. The proof is essentially done in Maxwell and Woodroofe (2000). We explain below how to apply the
Borel–Cantelli Lemma to strengthen their result to an almost sure statement.

Let M∗
n (t) = n−1/2 M[nt]. We have

sup
0≤t≤1

∣∣Bn(t) − M∗
n (t)

∣∣ ≤ n−1/2 max
k≤n

|Rk | .

Therefore to conclude the proof we need to show two things:

for π -almost every x , under the probability measure Px the processes

M∗
n converge weakly to a Brownian motion with diffusion matrix D, (3.1)

and

n−1/2 max
k≤n

|Rk | −→
n→∞

0 in Px -probability, for π -a.e. x . (3.2)

Statement (3.1) follows from the martingale invariance principle stated as Theorem 3 in Rassoul-Agha and
Seppäläinen (2005). The limits needed as hypotheses for that theorem follow from ergodicity and the square-
integrability of H . We leave this check to the reader.

To prove (3.2), let n j = jr for a large enough integer r . Fix 0 < γ < 1, and let m j = dn1−γ

j e, ` j = dnγ

j e. Here
dxe = min{n ∈ Z : x ≤ n}. Since Rn = Sn(g) − Mn , one can write

n−1/2
j max

i≤n j
|Ri | ≤ n−1/2

j max
0≤k≤m j

∣∣Rk` j

∣∣ + n−1/2
j max

0≤k<m j
max

k` j ≤i≤(k+1)` j

∣∣Mi − Mk` j

∣∣
+ n−1/2

j max
0≤k<m j

max
k` j ≤i≤(k+1)` j

∣∣Si (g) − Sk` j (g)
∣∣ . (3.3)

Recalling that E(|Rn|
2) = Ŏ(n2α) with α < 1/2, one can apply Corollary 3 of Maxwell and Woodroofe (2000) to

get that for any δ > 0

P( max
0≤k≤m j

|Rk` j | ≥ δ
√

n j ) = Ŏ(`2α
j mβ

j /n j ) = Ŏ( j−r(1−2γα−(1−γ )β)),
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for any β > 1. Choosing β close enough to 1 and r large enough, the above becomes summable. The Borel–Cantelli
Lemma implies then that the first term on the right-hand side of (3.3) converges to 0, P-a.s.

The second martingale term on the right-hand side of (3.3) tends to 0 in Px -probability for π -a.e. x , by the
functional central limit theorem for L2-martingales; see Theorem 3 of Rassoul-Agha and Seppäläinen (2005), for
example. So it all boils down to showing that the last term in (3.3) goes to 0 P-a.s.

Remark 4. Note that we have so far used the fact that g ∈ L2(π). It is only to control the third term in (3.3) that we
need a higher moment.

Define, for δ > 0,

B ′

j = { max
0≤k<m j

max
k` j ≤i≤(k+1)` j

|Si (g) − Sk` j (g)| ≥ δ
√

n j }.

Since g ∈ L p(π), one can write

P(B ′

j ) ≤ P(max
i≤n j

|g(X i )| ≥ δ
√

n j/` j )

≤ n jπ(|g| ≥ δ
√

n j/` j ) = Ŏ( j−r(p/2−1−γ p)).

By choosing γ small enough and r large enough, one can make sure that P(B ′

j ) is summable. By the Borel–Cantelli
Lemma, the third term in (3.3) converges to 0, P-a.s.

Finally, note that if n j−1 ≤ n ≤ n j , then

max
k≤n

|Rk |
√

n
≤

(
j

j − 1

)r/2

max
k≤n j

|Rk |
√

n j
, (3.4)

and so (3.2) follows. �

Remark 5. In the above proof we only needed the martingale term in (3.3) to converge in Px -probability. The Lq -
bounds of Theorem 1 imply that it actually goes to 0 P-a.s., making (3.2) also true P-a.s. All this is of course under
the assumptions p > 2 and (2.1) with α < 1/2. In Derriennic and Lin (2003) it is shown that the same almost sure
convergence happens even when p = 2.

We also have a similar result for S̃n(g):

Theorem 3. Assume there are p > 2 and α < 1/2 for which g ∈ L p(π) and condition (2.1) is satisfied. Then
n−1/2 maxk≤n |Ex (Sk(g))| converges to 0 as n goes to infinity for π -almost every x. Consequently, for π -almost every
x,

lim
n→∞

n−1/2 max
k≤n

|Sk(g) − S̃k(g)| = 0 Px -almost surely,

and, therefore,

lim
n→∞

∆(ΦD, Ψ̃n(x)) = 0 for π -a.e. x .

The diffusion matrix D is as defined in Theorem 2.

Before we start the proof, we need to re-prove a maximal inequality of Maxwell and Woodroofe (2000), this time
for a Markov transition operator rather than a shift. For a probability transition kernel Q and a function g in its domain,
define Tn(g, Q) =

∑n−1
k=0 Qk g. We then have the following:

Proposition 1. Let Q be a probability transition kernel with invariant measure π . Let g ∈ L2(π) be such that∫
|Tn(g, Q)|2dπ ≤ C(g, Q)n,

for some C(g, Q) < ∞ and all n ≥ 1. Then we have
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π

(
max
j≤n

|T j (g, Q)| > λ

)
≤

26kC(g, Q)n1+2−k

λ2 ,

for all n ≥ 1, k ≥ 0, and λ > 0.

Proof. We will proceed by induction on k. For k = 0 the lemma follows from Chebyshev’s and Jensen’s inequalities,
as well as the invariance of π under Q. Let us assume that the lemma has been proved for some k ≥ 0. We will prove
it for k + 1. To this end, choose n ≥ 1 and λ > 0. Let m = d

√
n e. Then [n/m] ≤ m, and

π

(
max
j≤n

|T j (g, Q)| > λ

)
≤ π

(
max

i≤n/m
|Tim(g, Q)| > λ/2

)
+ m max

i≤n/m
π

(
max
j≤m

|T j+im(g, Q) − Tim(g, Q)| > λ/2
)

≤ π

(
max
i≤m

|Ti (Tm(g, Q), Qm)| > λ/2
)

+ m max
i≤m

π

(
max
j≤m

|T j (Qim g, Q)| > λ/2
)

≤
4 · 26kC(Tm(g, Q), Qm)m1+2−k

λ2 + max
i≤m

4 · 26kC(Qim g, Q)m2+2−k

λ2 .

But one has∫
|Tn(Tm(g, Q), Qm)|2dπ =

∫
|Tmn(g, Q)|2dπ ≤ C(g, Q)mn

and, therefore, C(Tm(g, Q), Qm) ≤ C(g, Q)m. Similarly,∫
|Tn(Qim g, Q)|2dπ =

∫
|Qim Tn(g, Q)|2dπ ≤

∫
Qim

|Tn(g, Q)|2dπ

=

∫
|Tn(g, Q)|2dπ ≤ C(g, Q)n.

Thus, C(Qim g, Q) ≤ C(g, Q). Above, we have used Jensen’s inequality to bring Q outside the square and then the
fact that π is invariant under Q. Now, we have

π

(
max
j≤n

|Tn(g, Q)| > λ

)
≤

8 · 26kC(g, Q)m2+2−k

λ2 .

Since m ≤ 2
√

n, it follows that

π

(
max
j≤n

|Tn(g, Q)| > λ

)
≤

26k+6C(g, Q)n1+2−k−1

λ2

which is the claim of the lemma, for k + 1. �

The following is then immediate:

Corollary 1. For any β > 1 there is a constant Γ , depending only on β, for which

π

(
max
j≤n

|T j (g, Q)| > λ

)
≤

ΓC(g, Q)nβ

λ2

for all λ > 0 and n ≥ 1.

We can now prove the theorem.

Proof of Theorem 3. Observe that Ex (Sn(g)) = Tn(g, Q). Now, recall that n j = jr , for an integer r large enough.

Also, for 0 < γ < 1 we have m j = dn1−γ

j e, ` j = dnγ

j e. Then,

n−1/2
j max

i≤n j
|Ex (Si (g))| ≤ n−1/2

j max
k≤m j

|Ex (Sk` j (g))| (3.5)

+ n−1/2
j max

k<m j
max

k` j ≤i≤(k+1)` j
|Ex (Si (g)) − Ex (Sk` j (g))|. (3.6)
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For the first term, we can use the above corollary to write

π

(
n−1/2

j max
k≤m j

|Ex (Sk` j (g))| > ε

)
= π

(
n−1/2

j max
k≤m j

|Tk` j (g, Q)| > ε

)
= π

(
max
k≤m j

|Tk(T` j (g, Q), Q` j )| > ε
√

n j

)

≤
ΓC(T` j (g, Q), Q` j )mβ

j

ε2n j

≤
ΓC

ε2

`2α
j mβ

j

n j
= Ŏ( j−r(1−2αγ−(1−γ )β))

since ∫
|Tn(T` j (g, Q), Q` j )|2dπ =

∫
|Tn` j (g, Q)|2dπ ≤ C(n` j )

2α
≤ C` j

2αn,

by (2.1). If one chooses β small enough and r large enough, then the term on line (3.5) goes to 0, π -a.s., by the
Borel–Cantelli Lemma. For the term on line (3.6) we have

π

(
n−1/2

j max
k<m j

max
k` j ≤i≤(k+1)` j

|Ex (Si (g)) − Ex (Sk` j (g))| ≥ ε

)
≤ π

(
max
i≤n j

|Qi g| ≥ ε
√

n j/` j

)
≤ n j max

i≤n j
π

(
|Qi g| ≥ ε

√
n j/` j

)
≤ Ŏ( j−r(p/2−1−γ p)),

since ∫
|Qi g|

pdπ ≤

∫
Qi (|g|

p)dπ =

∫
|g|

pdπ < ∞.

Using the Borel–Cantelli Lemma, we get that the term on line (3.6) also converges to 0, π -a.s., if one chooses γ small
enough and r large enough.

Therefore, we have shown that n−1/2
j maxi≤n j |Ex (Si (g))| converges to 0, π -a.s. The claim of the theorem follows

then as in (3.4), on considering n j ≤ n ≤ n j+1. �
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