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Irregular and stochastic growth is all around us: tu-
mors, bacterial colonies, infections, fluid spreading
in a porous medium, propagating flame fronts. The
study of simplified mathematical models of stochas-
tic growth began in probability theory half a century

ago. Quite serendipitously these models have turned out
to be extremely hard to analyze. They have inspired inno-
vative probability theory and have led to new connections
between probability and other parts of mathematics.

This brief overview discusses two classes of such
mathematical models, namely undirected first-passage
percolation (FPP) and directed last-passage percolation
(LPP) on the 𝑑-dimensional integer lattice ℤ𝑑. The basic
idea is the following. An infection starts at the origin and
progresses along nearest-neighbor lattice paths. Depend-
ing on the model, admissible paths are either directed, so
that each step is forced to be one of the standard basis
vectors 𝑒𝑖, or undirected. The time it takes for the infection
to reach a given lattice point is determined by random
passage times assigned either to edges or to vertices of
the lattice. FPP seeks the path of minimal passage time,
while LPP maximizes passage time.

In (undirected) first-passage percolation, we give each
nearest-neighbor edge 𝑒 of the lattice ℤ𝑑 a nonnegative
randompassage time 𝑡𝑒. Collectively the random variables
{𝑡𝑒} are typically independent and identically distributed.
The model is parametrized by the common probability
distribution 𝜇 of the 𝑡𝑒s. The passage time of a lattice path
𝛾 (a sequence of consecutive edges) is 𝑇(𝛾) = ∑𝑒∈𝛾 𝑡𝑒.
The passage time between points 𝑥 and 𝑦 is 𝑇(𝑥,𝑦) =
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Figure 1. A traffic map1 showing an optimal (geodesic)
path between two locations and color-coding the
edge weights along the path. Lightning2 explores
every path available to it in space and strikes along
the path of least electrical resistance, much like the
optimal paths discussed in the section “Geodesics”.
Shapes such as the ones in the section “Limit Shapes”
and Figure 3 are ubiquitous in nature, e.g. stains,
burning regions, and growing crystals.3

inf𝛾∶𝑥→𝑦 𝑇(𝛾), the minimal passage time of a path between
𝑥 and 𝑦. If none of the 𝑡𝑒s are zero, then 𝑇 is a random
metric on ℤ𝑑. The infection starts at the origin, and
the set of infected sites at time 𝑡 ≥ 0 is

𝐵(𝑡) = {𝑥 ∈ ℤ𝑑 ∶ 𝑇(0, 𝑥) ≤ 𝑡}.
The leftmost picture in Figure 2 illustrates the optimal
paths from the origin to the lattice points in 𝐵(𝑡). The
middle picture in Figure 3 shows a larger FPP cluster,
with an experimental cluster on the right for comparison.
A thorough recent survey of the mathematics of FPP is
provided by Auffinger et al. [1].

1Generated using Google Maps.
2Courtesy of James McGhee.
3Courtesy of dans-le-townhouse.blogspot.com.
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Figure 2. The leftmost picture is a snapshot of the growing FPP cluster on the plane at some fixed time 𝑡 > 0.
Bullets mark lattice points 𝑥 with 𝑇(0, 𝑥) ≤ 𝑡. The origin is distinguished with the red bullet. The gray region is
the fattened set 𝐵(𝑡) + [−1/2, 1/2]2. The bold black edges are the paths of minimal passage time from the
origin. They are not forced to be directed. The middle and rightmost pictures depict a possible early evolution
of the corner growth model on the first quadrant of the plane. The origin is again the red bullet. Optimal paths
are all directed. The antidiagonals illustrate the mapping of the corner growth model to an interacting particle
system of central importance, namely the totally asymmetric simple exclusion process (TASEP) [2]. Whenever a
point is added to the growing cluster, a particle (solid purple circle) switches places with the hole (open circle)
to its right.

Another much-studied model is the corner growth
model, which is directed last-passage percolation on the
planar square lattice. Passage times are conventionally
assigned to vertices. Admissible paths take only 𝑒1 and
𝑒2 steps, and 𝑇(0, 𝑥) is the maximal passage time of a
path from 0 to 𝑥. This model stands at the nexus of
several disciplines: queueing theory, interacting particle
systems, integrable systems, and representation theory.
Its evolution is illustrated in the middle and right pictures
of Figure 2 and in the leftmost picture of Figure 3.

We address below three fundamental questions about
the growth of 𝐵(𝑡):

(1) Does 𝐵(𝑡) acquire a definite shape?
(2) How does 𝐵(𝑡) fluctuate randomly around its

long-term shape?
(3) How can we describe the geometry of optimal

paths (geodesics) for 𝑇?

Limit Shapes
The basic law of large numbers of the subject is the
shape theorem. For first-passage percolation (FPP), it was
initially proved by Richardson (1973) and then refined
considerably by Cox-Durrett (1981) and Kesten (1986). To
give the random infected set 𝐵(𝑡) positive volume in ℝ𝑑,
replace it with the fattened sum set 𝐵(𝑡) + [−1/2, 1/2]𝑑.
Then there is a nonrandom, convex, compact set 𝐵𝜇 in
ℝ𝑑 such that 𝑡−1𝐵(𝑡) converges almost surely to 𝐵𝜇 in
Hausdorff distance, as 𝑡 → ∞. 𝐵𝜇 depends on the common
probability distribution𝜇 of the weights 𝑡𝑒. It is symmetric
about the axes and has nonempty interior. In Figure 4 we
can discern that the growing clusters approach a limiting
shape.

What does 𝐵𝜇 look like in FPP? For a trivial point of
comparison, note that with constant edge weights the
limit shape is the ℓ1 unit ball, which is a diamond with
sharp corners and flat faces and edges. The randomness
of the weights is expected to smooth out and curve

the limit shape. If 𝜇 is continuous, it is predicted that
𝐵𝜇 is strictly convex with a uniformly positively curved,
differentiable boundary. There is little progress toward
verifying these properties. It is not even known that 𝐵𝜇 is
not a polygon (that is, has infinitely many extreme points),
except in the case of some atomic 𝜇 in two dimensions.
Contrary to good taste, it is believed that 𝐵𝜇 is not a
Euclidean ball for typical 𝜇. This has been proved in high
dimensions. There are no results that say that generally
the shape is not a ball in low dimensions, but this has
been verified for certain distributions.

For the first fifty years of the subject, no gen-
eral descriptions of limit shapes existed beyond their
limit definitions. Recently Krishnan and independently
Georgiou, Rassoul-Agha, and Seppäläinen discovered vari-
ational formulas for the limiting time constant 𝑔(𝑥) =
lim
𝑛→∞

𝑛−1𝑇(0, ⌊𝑛𝑥⌋). These variational formulas live on
complicated infinite-dimensional spaces of functions or
measures, and consequently extracting information from
them is a difficult problem in itself.

Among directed models in two dimensions there
are special exactly solvable ones where fortuitous co-
incidences of combinatorics and probability permit a
closed-form evaluation of the limit shape. The oldest
such is the corner growth model with exponentially
distributed weights (the leftmost picture of Figure 3).

Shape Fluctuations
A law of large numbers raises the question of fluctuations,
that is, the difference between 𝑡−1𝐵(𝑡) and 𝐵𝜇. In Figures 3
and 4 we see the roughness of the growing boundary that
results from the stochastic fluctuations in the growth.

One can split this error into a random part and a
nonrandom part. The random part is represented by the
discrepancy between 𝑇(0, 𝑥) and its mean 𝔼𝑇(0, 𝑥) when
𝑥 is large. The nonrandompart is the discrepancy between
𝔼𝑇(0, 𝑥) and the limiting value 𝑔(𝑥). It is predicted that
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Figure 3. Left: The corner growth model with exponentially distributed vertex weights with mean 1. The gray
region is a simulation of the scaled growing set 𝑡−1(𝐵(𝑡) + [−1/2, 1/2]2) at time 𝑡 = 160. Its boundary (the thick
blue line) approximates the red limit curve √𝑥+√𝑦 = 1, as first proved by Rost in 1981. Middle: A simulation of
the scaled set 𝑡−1(𝐵(𝑡) + [−1/2, 1/2]2) at time 𝑡 = 40 for undirected first-passage percolation with edge weights
that are exponential with mean 1. Such shapes are ubiquitous in nature, e.g. stains, fire fronts, and surfaces of
growing crystals. Right: A growing interface in liquid-crystal turbulence. Takeuchi and Sano demonstrated that
these experimental interfaces possess the same KPZ statistics as the corner growth model with exponential
weights. It is believed that this behavior is universal among two-dimensional FPP and LPP models.
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Figure 4. Growth of the infected region with exponential and Bernoulli distributed weights. Top row directed
LPP, bottom row undirected FPP, colors mark successive level sets of 𝑇(0, 𝑥), and lattice distances are marked
on the axes. The right-hand pictures illustrate the Durrett-Liggett flat edge. A flat edge appears in the limit
shape when the optimal weight values are frequent enough to form an infinite directed connected component
on ℤ𝑑. This phenomenon is called oriented percolation.

there is a dimension-dependent exponent 𝜁 such that the
typical deviation of 𝑇(0, 𝑥) from 𝔼𝑇(0, 𝑥) is of order |𝑥|𝜁.
One way to phrase this is to assert that Var[𝑇(0, 𝑥)] is of
order |𝑥|2𝜁.

What is predicted or proved about this exponent
𝜁? Physicists believe that at least for low dimensions,
𝜁 is positive and strictly less than 1/2. This latter
behavior is called “subdiffusivity” and is associated
with other predicted aspects of the model, like abun-
dance of near-optimizing paths. The best rigorous
bounds to date were established by Kesten (1993),
stating that 0 ≤ 𝜁 ≤ 1/2 for all dimensions. In two

dimensions there are logarithmic lower bound corrections
Var[𝑇(0, 𝑥)] ≥ 𝑐 log |𝑥| by Pemantle-Peres (1993) and
Newman-Piza (1995), and for 𝑑 ≥ 2 there are similar cor-
rections to the upper bound: Var[𝑇(0, 𝑥)] ≤ 𝑐|𝑥|/ log |𝑥|
by Benjamini-Kalai-Schramm (2003), Benaïm-Rossignol
(2008), and Damron-Hanson-Sosoe (2014).

For a handful of exactly solvable two-dimensional
directed models, there are precise results that give 𝜁 =
1/3 and even the limiting distribution for the scaled
discrepancy 𝑛−1/3(𝑇(0, ⌊𝑛𝑥⌋) − 𝑛𝑔(𝑥)) as 𝑛 → ∞. These
phenomena are studied bymathematicians and physicists
under the rubric Kardar-Parisi-Zhang universality [2]. It is
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Figure 5. Top row, left to right: A burnt-out hole in a paper, a coffee stain that percolated on a piece of paper,
and a Borax crystal.4 A traffic map5showing an optimal (geodesic) path between two locations and color-coding
the edge weights along the path. Lightning6,7explores every path available to it in space and strikes along the
path of least electrical resistance, much like the optimal paths discussed in the section “Geodesics”.

expected that, subject to a mild moment assumption on
the random passage times, all two-dimensional FPP and
LPP models obey KPZ universality.

Geodesics
When 𝜇 is continuous, optimal paths or geodesics between
points are almost surely unique. In 1995 Newman intro-
duced an approach to infinite geodesics (infinite paths
whose segments are geodesics) that starts with the infec-
tion tree 𝒯 defined as the union of the geodesics from
the origin to all the lattice points. Somewhat trivially, the
analogous tree in ℝ𝑑 under the Euclidean metric would
have an infinite ray from 0 in each direction and hence
uncountablymany disjoint infinite paths from 0. A similar
property is predicted for these growth models, at least in
low dimension. One expects an infinite path in 𝒯 from
0 in each fixed direction, and so uncountably many such
distinct paths. (Two paths are distinct if they separate
eventually.)

In undirected FPP, these statements are far from
being proved. Hoffman showed in 2008 that in general
𝒯 has at least four infinite eventually disjoint paths
starting from 0. But not even the existence of a single
continuous distribution 𝜇 such that a path in 𝒯 has an
asymptotic direction is known. As one might expect, in
directed planar models geodesics are better understood.
In exactly solvable cases, such as the exponential corner
growth model of Figure 3, the aforementioned geodesic
conjecture can be proved in full.

Suppose now we start infections from two points on
the lattice and let these infections compete for space. The

4Courtesy of dans-le-townhouse.blogspot.com.
5Generated using Google Maps.
6By Axel Rouvin via Wikimedia Commons.
7By Jp Marquis via Wikimedia Commons.

Figure 6. Left: The full tree of infection in the corner
growth model. The origin is the open circle at the
bottom left. The solid black line marks the
competition interface that separates the two
competing infections that grow from points (1, 0) and
(0, 1) marked with larger circles. Globally, the
competition interface points in a precise but
randomly chosen direction whose probability
distribution can be derived in exactly solvable cases.
Right: Competition in undirected FPP. The
competition interface separates the infection trees
originating from (1, 0) and (0, 1) marked with larger
circles.

growthmodelhasbecomeamodelof competition. Figure6
shows the competition interface between two infections
emanating from (1, 0) and (0, 1), both in the directed
corner growth model, and for undirected first-passage
percolation.

For competition inundirectedfirst-passagepercolation,
there are two possible scenarios: either both infections
have a chance of growing indefinitely (coexistence) or
ultimately one encircles the other for sure. Conditions for
these two occurrences are a subject of ongoing research.
In coexistence, the competition interface is a doubly
infinite path with two random asymptotic directions.
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The behavior of the competition interface can be quan-
tified with Busemann functions. This notion from metric
geometry was introduced into percolation by Newman
and Hoffman. In our context, Busemann functions are
equal to the limits 𝑏(𝑥,𝑦) = lim𝑣→∞(𝑇(𝑥, 𝑣)−𝑇(𝑦,𝑣)) as
a point 𝑣 recedes to infinity in a particular direction. In
exactly solvable models, this limit can be proved to exist,
and its behavior is understood completely. Busemann
functions can be used to construct stationary growth
models whose global probability laws are invariant under
spatial translations andwhose growth is linear on average.
Such versions of stochastic processes are very useful for
proofs and explicit calculations. A recent development in
the field, in the work of Damron-Hanson and Georgiou-
Rassoul-Agha-Seppäläinen, is that Busemann functions
have provided a route toward verifying versions of the
geodesic conjectures stated above.
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