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• We study the Markov chain of consecutive spikes of periodically driven noisy neurons.
• We relate the dynamics of the Markov chain to the spectrum of its transition operator.
• Spectral spirals and zipping reveal quasiperiodicity and transition to phase-locking.
• Stochastic bifurcation regions are observed, rather than bifurcation points.
• Our method allows to predict dynamic regimes of noisy maps without direct simulation.
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a b s t r a c t

While there are clear definitions of what it means for a deterministic dynamical system to be periodic,
quasiperiodic, or chaotic, it is unclear how to define such notions for a noisy system. In this article, we
studyMarkov chains on the circle, which is a natural stochastic analog of deterministic dynamical systems.
The main tool is spectral analysis of the transition operator of the Markov chain. We analyze path-wise
dynamic properties of the Markov chain, such as stochastic periodicity (or phase locking) and stochastic
quasiperiodicity, and show how these properties are read off of the geometry of the spectrum of the
transition operator.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Circle maps are by now standard and extensively studied ob-
jects in the theory of dynamical systems; see [1,2]. They are
also widely used as models in many applications, e.g. cardiac ar-
rhythmias (reviewed by Glass in [3]), the Schrödinger operator
(see [4]), and neural systems (see [5–7]). Notions of phase lock-
ing, quasiperiodicity, and chaos, that describe the dynamics of such
systems, are well defined and understood using tools such as the
rotation number, bifurcation diagrams, and Feigenbaumdiagrams;
see [8–10].

Natural systems, however, are inherently noisy. Therefore,
adding a stochastic component to the model makes it both more
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interesting and realistic. Introducing randomness compensates for
lack of predictability in systems with a large number of degrees of
freedom, such as gas molecules or neuronal networks.

Markov chains on the circle are a natural stochastic generaliza-
tion of circlemaps in that the evolution of the system only depends
on its current state. However, the aforementioned tools, used to
study deterministic systems, do not generalize in an obvious man-
ner and new analytical methods are needed.

Markov chains are completely determined by their transition
operators and it is widely believed that the spectra of those oper-
ators carry all the information about the chain’s dynamics. Many
aspects of these operators (such as mixing, asymptotic stability,
etc.) have been extensively studied in the literature; see for ex-
ample [11] and the review article [12]. It is well known that the
spectral gap (i.e. the distance between the moduli of the top two
eigenvalues) determines the speed of mixing of the chain. How-
ever, beyond that the rigorous connection between spectrum and
dynamics is still an open problem. (For deterministic dynamical
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Fig. 1. Feigenbaum diagrams. (A) For the sine circle map with a = 0.1. (B) For the integrate-and-fire map with τ = 2 and I = 0.7.
systems, the connection between spectral properties of the compo-
sition operators and ergodic and mixing properties of the systems
has also been studied; see [13].)

Our work extends and complements earlier findings on real-
complex transitions in the spectrum as indicators of changes in
dynamics; see [14–21]. In these works the authors looked at
properties of individual eigenvalues. In this work we assert that
it is essential to consider the shape of the entire spectrum to more
accurately predict the different aspects of the dynamics.

The article is organized as follows. In Section 2 we give an
overview of circlemaps and a discussion ofMarkov chains.We also
provide examples of well-known circle maps and their stochastic
analogs, namely sine-circlemaps and the integrate-and-firemodel.
The deterministic versions of these examples are quite general in
the sense that they have bifurcation scenarios that are ubiquitous
throughout dynamical systems. In Section 3 we demonstrate how
spectra and dynamics are related in the simpler setting of finite-
state deterministic dynamical systems. In Section 4 we focus
on the stochastic versions of the aforementioned examples and
demonstrate how the dynamics of the Markov chain are related
to the spectrum of its transition operator. We observe and explain
spectral spirals in the quasiperiodic regime, ‘‘zipping’’ of the
spectrum, and emergence and dominance of various phase-locked
states. Then, in Section 5 we discuss our results and relate them to
existing descriptions of changes in stochastic dynamics, such as P-
and D-bifurcations and reliability. Finally, in Appendix Awe justify
the discretization of the Markov chain transition operator used in
our numerics.

2. Setting

2.1. Deterministic dynamical systems: circle maps

A circlemap is a function F : R → R satisfying F(x+1) = F(x)+
1 for all x. It defines the map f : S → S : x → {F(x)} where {x} =

x − [x], [x] is the largest integer smaller than x, and S is the circle
R/Z or, equivalently, the interval [0, 1]with 0 and 1 identified. This
in turn defines a dynamical system on S, namely a sequence xn+1 =

f (xn), where x0 is the initial state. One is then interested in studying
the behavior of the sequence (xn); e.g. its periodicity, quasiperiod-
icity, ergodicity, support, invariant measures, dependence on x0,
etc. One quantity that is very useful in answering such questions is
the so-called rotation (orwinding) number ρ = limn→∞ F (n)(x0)/n,
where F (n) is the nth iterate of F . Henri Poincaré proved thatwhen f
is orientation preserving this limit exists and is independent of the
starting point x0; see [22,23]. In this case, ρ is simply the number
of times xn wraps around S in a unit time. Then, when ρ is rational,
the dynamical system is said to be periodic (or phase locked). In this
case, starting at Lebesgue-almost every point x, xn will eventually
converge to a periodic orbit.When the rotationnumber is irrational
the system is quasiperiodic and the orbit is either dense in [0, 1]
(if, for example, F is continuous) or converges to a Cantor set; see
[8,24]. In the more complicated situation of circle maps that are
not orientation preserving the limit defining ρ may not exist and
the limsup and liminf could depend on the starting point. When
this happens, the system becomes sensitive to the slightest per-
turbation of the initial condition and is said to be chaotic; see [25].
General overview of these topics can be found in [9,10,1,2].

Usually, there are also one or more parameters on which f
depends; i.e. we have a family fκ(x). Then, one asks about how the
behavior of (xn) depends on the parameter κ . Feigenbaum diagrams
(similar to bifurcation diagrams) allow to visualize the behavior of
(xn) by tracking the attractors of the system, as functions of κ . Even
circle maps that have very simple expressions can exhibit a wide
range of interesting behavior.

The next two examples are in the context of neural spiking,
where we think of xn as the phase of the nth spike relative to the
sinusoidal external forcing. The map then takes the phase of the
current spike within the forcing cycle and transforms it into the
phase of the subsequent spike.

Example 2.1 (Sine Circle Map). Given a ∈ [0, 1) let

Fκ(x) = x + a + κ sin(2πx) and fκ(x) = {Fκ(x)}.

As κ > 0 varies, the corresponding dynamical system switches
from being essentially quasiperiodic (0 < κ < a) to having one
stable and one unstable fixed points (a < κ <


a2 + 1/π2) to

having a limit cycle of two points, then four, etc., until the on-
set of a chaotic regime. (This is the so-called period-doubling route
to chaos.) After that comes a fractal-like sequence of periodic and
chaotic regions. The Feigenbaum diagram appears in Fig. 1(A). See
Section 4 for some more details.

Example 2.2 (Periodically-Driven Integrate-and-Fire). Given s ∈

[0, 1) and I ∈ R consider the equation
dV
dt

(t; s) = −
1
τ
V (t; s) + I + κ sin(2π t), t ≥ s;

V (s; s) = 0.

Let Fκ(s) = inf{t > s : V (t; s) > 1} and fκ(s) = {Fκ(s)}, the first
time (mod 1) V (· ; s) reaches the threshold level 1. (If the threshold
is not reached, the system is said to have been quenched and Fκ is
set to infinity. This does not happen if I is large enough.) V mod-
els the membrane potential of a neuron. It starts at a reset level,
assumed 0 here, and increases until it reaches a threshold level,
which we assumed to equal 1. When that level is reached the neu-
ron is said to have fired and the potential is reset. The dynamical
system of interest is then the sequence of firing times. Since the
stimulus κ sin(2π t) has been chosen to have period 1, the firing
times are considered modulo this period, in which case we have a
discrete-time dynamical systemon the circle. This systemhas been
shown to switch from quasiperiodic to periodic behavior as the pa-
rameter increases (Fig. 1(B); [5]).

Variants of the above integrate-and-fire model have also been
considered in [6]. The resulting circle maps are similar to the ones
mentioned in the above two examples.
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2.2. Stochastic dynamical systems: Markov chains—definition and
examples

As was mentioned in the Introduction, in some contexts it
is important to include a stochastic component in the system.
Adding noisemay drastically change the system’s behavior; e.g. the
dynamical system X ′(t) = α−X(t)2 exhibits the so-called saddle–
node bifurcation as α changes sign, while the stochastic counter-
part dX(t) = (α − X(t)2)dt + σdB(t) (where B(t) is standard
Brownian motion) becomes such that with probability one X(t)
→ −∞ in finite (albeit random) time regardless of the values of α
or the starting point. Noise endows the systemwith newproperties
such as increased or decreased stability, reliability or unreliability,
and larger range of responses. In neuroscience in particular, noise
in neuronal systems has recently been receiving a lot of attention.
Nervous systems seem to have developed many ways to counter-
act the noise, and also multiple ways to use it to their benefit. For
examples and reviews see [26–31].

In this work, we will focus on a particular type of stochastic
processes, namely Markov chains (Xn) on the circle S (endowed
with its Borel σ -algebra). For such processes, the distribution
of the next position Xn+1 only depends on the value of the
current position Xn, as opposed to the whole history X0, . . . , Xn.
Subsequently, Markov chains on the circle are a natural stochastic
generalization of circle maps.

A Markov chain is completely determined by its transition
operator that maps bounded continuous functions to bounded
measurable ones:

Π : C (S) → L∞(S) : h → Πh(x) = Ex[h(X1)], (2.1)

where Ex[h(X1)] is the average value of h(X1) given X0 = x.

Example 2.3. Let F be a circle map. Let σ > 0 and (ξn) be a se-
quence of independent identically distributed (i.i.d.) random vari-
ables. Set Xn+1 = {F(Xn) + σξn+1}. Here, Πh(x) = E[h({F(x)
+ σξ1})].

As a special case, one can take F to be as in Examples 2.1 or 2.2.
When also ξi are standard normal we call the former the stochas-
tic sine circle map model and the latter the simplified stochastic
integrate-and-firemodel.

Another (in a sense more natural) way to introduce noise to the
integrate-and-fire model is as follows.

Example 2.4 (Stochastic Integrate-and-Fire). Fix σ > 0. Given time
s ∈ [0, 1) consider the stochastic differential equation

dV (t; s) =


−

1
τ
V (t; s) + κ sin(2π t) + I


dt + σ dB(t), t ≥ s;

V (s; s) = 0.

(Recall that B(t) is standard Brownian motion.) Given a starting
time s ∈ [0, 1) define the Markov chain (Tn) of (folded) neuron
firing times as follows: T0 = s and for n ≥ 0, Tn+1 = {inf{t : t >
Tn, V (t; Tn) > 1}}. Here, Πh(s) = Es[h(T1)].

It is noteworthy that when the noise in Example 2.4 is small,
i.e. σ ≪ 1, the Markov chain stays very close to the one in Ex-
ample 2.3 with a possibly different but still small σ , function F
corresponding to Example 2.2, and variables ξi i.i.d. standard nor-
mal; see [14]. Hence the name ‘‘simplified’’ stochastic integrate-
and-fire. The advantage of using the model in Example 2.3 is just
that it is easier to simulate.

Throughout the paper, we will assume that transition operator
Π has a transition density (or kernel) p(y|x) relative to Lebesgue
measure:

Πh(x) =

 1

0
p(y|x)h(y) dy.
Heuristically, p(y|x)dy is the probability of theMarkov chain jump-
ing to (y, y+dy), given it is currently observed at x. This assumption
is satisfied in the case of Example 2.3when variables ξn themselves
have a density relative to Lebesguemeasure. In this case p(y|x) has
an explicit formula in terms of the density of the ξ -variables. Our
assumption is also satisfied in the case of Example 2.4. Here, how-
ever, p(y|x) is not explicit. It satisfies a Volterra integral equation
that can be solved numerically, e.g. following the schemedescribed
in [32].

Since the state space of the Markov chain is compact, there ex-
ists at least one invariant measure µ, i.e. a measure µ such that
µ{X1 ∈ A} = µ{X0 ∈ A} for all measurable sets A. (If X0 has
distribution µ, then so does Xn for all n ≥ 1.) When p(y|x) >
0 for Lebesgue-almost every x and y, this invariant measure is
unique, i.e. there is no multistability. This measure is also ergodic,
i.e. Πh(x) = h(x) for µ-almost every x implies the existence of a
constant c such that h(x) = c forµ-almost every x; see for example
Theorem 10.0.1 of [33]. Furthermore, measure µ is supported on
thewhole interval [0, 1] and ismutually absolutely continuous rel-
ative to Lebesguemeasure; see for example Theorem10.4.9 of [33].

2.3. Stochastic dynamical systems: Markov chains—dynamics

It is an interesting and hard question to classify how the
different ways of adding noise to a dynamical system affect the
resulting dynamic behavior. It is in fact not always clear how to
even define the stochastic counterparts of phenomena such as
phase locking, quasiperiodicity, and chaos.

For instance, even when the system is ergodic and the rotation
number ρ exists and is independent of the starting point, it often
depends continuously on the strength of the noise and thus does
not quite expose a periodic, quasiperiodic, or chaotic behavior,
contrary to the deterministic case. To illustrate in a simple
example, consider the Markov chain Yn on R with transitions

πn,n+1/3 = πn+1/3,n+2/3 = 1 and
πn+2/3,n+4/3 = 1 − πn+2/3,n+1 = ε ∈ (0, 1),

for n ∈ Z, and πx,[x]+1 = 1 for any x ∉ Z/3. The corresponding
Markov chain Xn on the state space [0, 1) has transitions π0,1/3 =

π1/3,2/3 = 1, π2/3,1/3 = 1 − π2/3,0 = ε, and πx,0 = 1 for
x ∉ {0, 1/3, 2/3}. (For Markov chain Yn, πx,y is the probability that
it will transition from location x to location y. In the case of Xn, the
subscripts are locations folded relative to a period of 1.)

Markov chain Xn has a unique invariant measure concentrated
at 0, 1/3, and 2/3with weights equal to (1−ε)/(3−ε), 1/(3−ε),
and1/(3−ε) respectively. (In otherwords, ifX0 is chosen according
to this measure, then Xn has the same distribution for all n ≥

0.) The rotation number for Xn is inherited from Yn and by the
ergodic theorem equals the average increment of chain (Yn) once
it has reached stationarity: limn→∞ Yn/n = E[Y1]. However, once
stationary, (Yn) has increment 2/3 a fraction ε × 1/(3 − ε) of the
time and 1/3 a fraction 1 − ε × 1/(3 − ε) of the time. Hence, the
rotation number equals 2/3×ε/(3−ε)+1/3×(3−2ε)/(3−ε) =

1/(3 − ε).
Clearly, we can choose ε as small as we wish and have ρ ∉ Q or

ρ ∈ Q at will. However, as ε → 0 the Markov chain becomes very
similar to a deterministic system of period 3.

Remark 2.5. Although the above example is highly singular, it can
be modified so that Π does have a smooth density p(y|x) and still
have the rotation number ρ be rational or irrational as desired.

On the other hand, the stochastic analog of a fixed-point bifur-
cation is useful for studying the dynamics of random dynamical
systems. One stochastic counterpart of a fixed point is an invariant
measure. As was pointed out at the end of Section 2.2, the systems
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Fig. 2. (A) A map with N = 12 showing C1 = {1, 2}, C2 = {3, 4}, C3 = {5, 6, 7}, T1 = {8}, T2 = ∅, T3 = {9, 10, 11, 12}, T = {8, 9, 10, 11, 12}, and the leaves are
{8, 9, 11, 12}. (B) The corresponding 12 × 12 matrix (unitary entries are shaded). (C) An eigenvector corresponding to an eigenvalue λ with λ3

= 1.
we consider have a unique invariant measure. Still, onemay define
a stochastic bifurcation (called pathological- or P-bifurcation, [34])
as the point where a qualitative change in the invariant measure
takes place. For example, as the parameter crosses a value, the
probability density function of this measure may switch from hav-
ing one peak to having two peaks.

Another stochastic counterpart of a fixed point is the so-called
random attractor. Roughly speaking, the stochastic bifurcation
called dynamic- or D-bifurcation occurs when the system switches
from being reliable (i.e. paths with different initial states converge
as n → ∞) to being unreliable (i.e. paths do not converge), or vice
versa; see [34] and Definition 5.4 of [35].

There is no unique way to define a stochastic bifurcation. For
instance, it is possible in general to construct exampleswhere both
of the above types occur or only one type of bifurcation occurs.
See Chapter 9 of [34] for examples in the context of stochastic
differential equations.

The situation in a stochastic system is further complicated by
the fact that it exhibits different dynamics at different time scales.
For instance, an ergodic Markov chain on S will revisit and get
as close as we wish to any piece of any given orbit, no matter
how long the piece is, infinitely many times. In other words, the
Markov chain will look at times as if it is periodic of period 2, and
at other times will seem to have period 5, and at others will seem
quasiperiodic or chaotic, and so on. Of course, each such behavior
comes with a likelihood value and the dynamics of interest are the
ones that are ‘‘more likely’’ to occur. This brings us to the subject
of the current work.

In Appendix A we show that under suitable assumptions
transition operator Π has countably many nonzero eigenvalues
with finite multiplicities. In Section 4 we relate the various
dynamic regimes of the Markov chain to this spectrum. But first
we start with the simpler situation of deterministic finite-state
dynamical systems. In the next section, we show how these can
be represented by a matrix and how the dynamics of the system
are intimately related to the spectral properties of the associated
matrix.

Although we do not use deterministic systems to deduce any
properties about the stochastic operators we analyze in Section 4,
the results of the following section guide us and provide insights
in the course of our analysis.

3. Finite-state dynamical systems: circle map matrices

Throughout this sectionN will be a fixednatural number andwe
consider dynamical systems on N states, i.e. maps from {1, . . . ,N}

into itself. Such maps arise as discretizations of circle maps, by
binning the circle S intoN equal intervals. (To continue the analogy
with spiking systems, think of the situation where the forcing
period is divided into N bins and instead of spike times only the
bin numbers from 1 to N are recorded.)

Let us justify our use of the term ‘‘circle mapmatrix’’ in the title
of the section. Observe that there is a one-to-one correspondence
betweenmaps from {1, . . . ,N} into itself and N ×N matrices with
entries in {0, 1} and such that each row has exactly one entry equal
to 1. Indeed, given such a matrix, each i ∈ {1, . . . ,N} maps to the
unique integer j such that πi,j = 1, and vice-versa. We will thus
abuse notation and use π for both objects. See Figs. 2(A) and (B).

When N is small it is quite simple to deduce the dynamics of
the system by looking directly at the matrix itself and no spectral
analysis is really necessary. However, when N is large this is no
longer possible. The objective of this section is to determine which
features of the spectrum are responsible for the different aspects
of the dynamics.

Let π be a map from {1, . . . ,N} into itself. This map induces a
dynamical system: each point i ∈ {1, . . . ,N} flows into π(i). We
will use πn(i) to denote the image of i under n applications of the
map π . Under the action of the map π , {1, . . . ,N} can be split into
a transient part

T = {i : πn(i) ≠ i ∀n ≥ 1}

and a finite collection of disjoint cycles (or irreducible components)
C1, . . . , Ck: ∀i ∈ Cℓ ∃n ≥ 1 such that πn(i) = i and Cℓ = {πm(i) :

m ≥ 0}.
We show an example of such a map in Fig. 2 with N = 12.

Panel A shows the possible transitions under the map and panel
B the corresponding matrix with zero entries shown in white and
entries of one are shaded. Each row i of the matrix has exactly one
nonzero (shaded) entry in column j such that π(i) = j.

Let pℓ be the cardinality of Cℓ, i.e. the length of the cycle.
Then each cycle Cℓ is of the form {x0, . . . , xpℓ−1} with π(x0) =

x1, . . . , π(xpℓ−2) = xpℓ−1, and π(xpℓ−1) = x0.
T can be further split into disjoint transients that eventually

flow into the different cycles:

Tℓ = {i ∈ T : ∃n ≥ 1 such that πn(i) ∈ Cℓ}.

A point i ∈ T is called a leaf if @j such that π(j) = i. Leaves
of T correspond to 0 columns of π . Thus T is empty if and only
if π has no 0 columns. When T is empty, π is a bijection and the
corresponding map is a permutation of {1, . . . ,N}.

As can be seen from Fig. 2(A), in this example C1 = {1, 2},
C2 = {3, 4}, C3 = {5, 6, 7}, T1 = {8}, T2 = ∅, T3 = {9, 10,
11, 12}, T = {8, 9, 10, 11, 12}, and the leaves are {8, 9, 11, 12}.

Let π be the circle map N ×N matrix corresponding to the map
π as described above (Fig. 2(B)). We will identify a vector v ∈ CN

with a function v : {1, . . . ,N} → C in the obvious way.
Note that if v = (v(1), . . . , v(N)), then πv = (v(π(1)), . . . ,

v(π(N))) or, in other words, πv(x) = v(π(x)). We denote the
transpose of π by π∗. If v is such that v(j0) = 1 and v(j) = 0
for j ≠ j0, then (π∗)iv is a vector that has a 1 at the π i(j0)th
coordinate and 0 elsewhere. In other words, matrix π∗ flows the
mass according to the map π . (This in fact explains why in the
physics literature π∗ is sometimes called the transition matrix,
rather than π .)

Recall that the geometric multiplicity of an eigenvalue λ is the
dimension of the corresponding eigenspace Eλ(π). The algebraic
multiplicity is the multiplicity in the characteristic polynomial
det(π − λI). The algebraic multiplicity is always larger than or
equal to the geometric multiplicity.

The following lemma fully describes the spectra and eigenspaces
of circle map matrices π and their connection to the dynamics
(i.e. the cycles and transients) of the corresponding maps π .
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Lemma 3.1. The following hold about π .
(a) The spectrum of π consists of the union of all the roots of λpℓ =

1, 1 ≤ ℓ ≤ k, and, if T ≠ ∅, of 0. (Recall that k is the number of
cycles and p1, . . . , pk their lengths.)

(b) Eigenvectors corresponding to eigenvalue λ ≠ 0with λp
= 1 can

be obtained by setting v to 1 at any x0 in a cycle of length p then
using v(π(x)) = λv(x) to define v on the rest of the cycle and at
any points in T eventually mapping into the cycle. On the rest of
the points v is set to 0 (Fig. 2(C)).

(c) An eigenvalue λ ≠ 0 has geometric multiplicity equal to the num-
ber of cycles of length p with λp

= 1. The geometric and alge-
braic multiplicities are equal for such eigenvalues. Consequently,
the projection of the matrix onto the corresponding eigenspace is
diagonalizable. (In particular, eigenvalue 1 has geometric and al-
gebraic multiplicities k, the number of disjoint cycles.)

(d) If T is not empty, eigenvectors corresponding to eigenvalue 0 are
obtained by setting v to 1 at a leaf of T and 0 elsewhere.

(e) If T is not empty, eigenvalue 0 comes with geometric multiplicity
equal to the number of leaves of T . This is the same as the number
of 0 columns of π . Its algebraic multiplicity equals the cardinality
of T .

Proof. First, observe that the matrix π can be diagonalized into
ℓ blocks each corresponding to a set Tℓ ∪ Cℓ. Thus, it is enough
to consider the case of one cycle of length p and one transient T
eventually flowing into C under the action of π .

Next, notice that if πv = λv, λ ≠ 0, and C = {x0, . . . , xp−1} as
explained above, then v(xi) = λiv(x0) for 0 ≤ i ≤ p − 1 and
either λp

= 1 or v ≡ 0 on the whole cycle. In the latter case,
v(π(x)) = πv(x) = λv(x) for all x implies v ≡ 0 on T as well.
On the other hand, if πv = 0, then v(π(x)) = 0 for all x and thus
v(y) can only be nonzero if y is a leaf of T . Claims (a), (b), and (d)
now follow. Sincewe only have one cycle of length p, the p nonzero
eigenvalues are simple and claims (c) and (e) follow. �

Remark 3.2. Since the geometric and algebraic multiplicities may
differ for λ = 0, diagonalizing the corresponding part of π may
result in a number of nilpotent blocks (the Jordan decomposition).
The number of these blocks equals the number of leaves of T and
the length of the different blocks is determined by the length of the
different branches of T .

Let us now illustrate the lemma using the example in Fig. 2. The
spectrum of the matrix consists of −1 with multiplicity 2, 1 with
multiplicity 3, e

2π i
3 and e−

2π i
3 with multiplicity 1 each, and of zero

with algebraic multiplicity 5. Parts (a), (c) and (e) of the lemma im-
ply then that the total number of cycles is 3 (the multiplicity of
eigenvalue 1), that there are two cycles of length 2, one cycle of
length 3, and that there are 5 transient states. The geometric mul-
tiplicity of eigenvalue 0, which equals the number of zero columns
in the matrix, is 4. Hence there are four leaves in the system.

According to part (b) of the lemma the eigenvectors for non-
zero eigenvalues can be found by starting somewhere at the
cycle of corresponding length, setting 1 there and then proceed-
ing forward and backward, respectively multiplying and divid-
ing by λ, and then setting all the other connected components to
zero. This is illustrated in Fig. 2(C) for a λ with λ3

= 1 (which
hence corresponds to a cycle of length 3). The resulting eigenvec-
tor is (0, 0, 0, 0, 1, λ, λ2, 0, λ−1, λ, 1, 1). Non-zero entries of each
eigenvector point out a connected component of the network.

According to part (d) eigenvectors corresponding to eigenvalue
zero have a one at a leaf and zeros elsewhere. In the example (0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1) is one such eigenvector, since 12 is a leaf.

Next, we describe the spectrum and eigenspaces (associated
to nonzero eigenvalues) of the adjoint (or transpose) of a circle
map matrix. (The eigenvectors associated to eigenvalue 0 are also
possible to describe, though we omit them.)
Lemma 3.3. The following hold about π∗.

(a) The spectrum of π∗ is the same as that of π , with the same
multiplicities.

(b) Eigenvectors corresponding to eigenvalue λ ≠ 0 with λp
= 1

can be obtained by setting v to 1 at some x0 in a cycle of length p
then using v(x) = λv(π(x)) to determine v along the cycle, and
setting v to 0 outside the cycle.

Part (a) is a known fact about real matrices. The proof of part
(b) is similar to that of the previous lemma and is thus omitted.
(Observe that π∗v(x) =


y:π(y)=x v(y), with the usual convention

that a sum over an empty set is 0.)
Recall that π∗ flowsmass forward. Thus, the eigenvectors of π∗

corresponding to λ = 1 give the invariant measures of the Markov
chain with transition matrix π . The main (extreme, ergodic) ones
are the uniform measures on each cycle (thus, k of them) and all
other invariant probability measures are simply convex combina-
tions of these.

One useful consequence is that an orthogonal system of eigen-
vectors of π∗ corresponding to λ = 1 reveals the different cycles:
each eigenvector consists of ones on the cycle and zeros elsewhere.

If we consider sites {1, . . . ,N} to be ordered in the natural way,
then even if we know the cycle lengths, cycles of the same length
may differ in the way their elements are ordered. For example, the
cycle 1 → 3 → 2 → 1 is different from the cycle 1 → 2 →

3 → 1, even though they both have period (or length) 3. The
difference is that the first cycle crosses the set {1, 2, 3} twice before
its completion (i.e. requires two periods), while the second cycle
crosses it only once before completion (i.e. requires one period).
We thus say the former cycle is 2:3 (two-to-three) while the latter
is 1:3 (one-to-three). In general a cycle is q:p if q periods are needed
to complete the cycle of length p.

To track down the different q:p cycleswe can find an orthogonal
system of eigenvectors of π∗ corresponding to (any) λ ≠ 1 with
λp

= 1 and p being the length of the cycle in question. After
normalizing each vector to have an entry equal to 1, powers of
λ−1 indicate the successive elements of the cycle. q− 1 then is the
number of times we encounter π(x) < x along the cycle.

Remark 3.4. If the map on {1, . . . ,N} is induced by folding an
integer-valued dynamical system with positive increments, then
the notion q:p can also be introduced in the original (unfolded)
process, but then qmayget larger by thenumber of periods skipped
during the cycle. For example, the unfolded version of 1 → 2 →

3 → 1 → · · · requires crossing the cycle at least once, but possibly
more if some cycles are skipped completely. Thus, the actual
(unfolded) value of q cannot be determined from the folded map.

4. Stochastic circle maps: dynamics and spectrum

We now return to our earlier discussion of Markov chains on
the circle. By the discussion in Appendix A, the transition operator
Π defined by (2.1) is a compact operator. It thus has a discrete
spectrum with the nonzero (countably many) eigenvalues having
finite multiplicities and possibly accumulating at 0; see Theorem
6.26 of Chapter 3 of [36].

The purpose of this section is to relate this spectrum to
the dynamics of the Markov chain. For now we will focus our
discussion on the concrete context of the stochastic sine circlemap
in Example 2.3. In Sections 4.8 and 4.9 we will briefly discuss the
other two models of integrate-and-fire. Let us recall the setting:
a ∈ [0, 1), fκ(x) = x + a + κ sin(2πx), Xn+1 = fκ(Xn) + σξn, and
ξn i.i.d. standard normal random variables.

To get a sense of things to come we invite the reader to watch
the movie associated with Fig. 3(A). It shows the spectrum and
dynamics of the stochastic system as parameter κ is varied. In the
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Fig. 3. Videos showing the spectrum (upper left), Markov chain dynamics (lower left), invariant measure (lower middle), Feigenbaum diagram (upper right), and
deterministic dynamics (lower right). Left: For the sine circlemapwith parameters a = 0.1 andσ = 0.05; see supplementary filemmc1.mp4. Right: For the integrate-and-fire
map of Example 2.4 with parameters I = 0.7, τ = 2, and σ = 0.01; see supplementary file mmc2.mp4. Files are available at http://dx.doi.org/10.1016/j.physd.2014.07.006.
A video for the simplified integrate-and-fire model of Example 2.3 (mmc2.mp4) is also available at this website (see Appendix B).
Fig. 4. (A) Sine circle map with a = 0.1 and κ = 0.03 and the first few steps of cobwebbing of sequence (xn) with x0 = 0.1. (B) Upper: Deterministic sequence (xn); Lower:
Markov chain (Xn) with σ = 0.05. Both sequences are wrapping densely around S and are hence quasiperiodic. (C) The spectrum of Π exhibiting the spirals.
video (see Appendix B), parameters a and σ are set to 0.1 and
0.05 respectively. The top left panel shows the spectrum of the
stochastic system, a sample trajectory (with X0 = 0.1) is in the
lower left panel, and the middle panel shows the corresponding
invariant measure. The right panels show the dynamics with the
same κ in the deterministic case (σ = 0). The type of dynamics
can be read off of the Feigenbaum diagram in the top panel or from
observing a sample trajectory in the lower panel, where x0 = 0.1.
The goal of the remainder of this section is to describe and explain
various features that can be seen in the movie, such as spiral
structures in the spectrum, and the apparent mismatch between
stochastic and deterministic dynamics.

The reason we chose to provide more details for the analysis of
the stochastic sine circlemapover the stochastic integrate-and-fire
of Example 2.4 is that its deterministic system has quasiperiodic,
periodic, and chaotic regimes. However, our analysis uses general
ideas that apply to other situations such as Example 2.4 and
its modification, the simplified stochastic integrate-and-fire, in
Example 2.3. The movie associated with Fig. 3(B) shows how
the spectrum of Π changes with parameter κ in the case of the
stochastic integrate-and-fire. See also Sections 4.8 and 4.9.

Our results aremore interestingwhen noise is small, i.e. σ ≪ 1.
This is natural, since injecting a large amount of noise causes the
Markov chain to mix faster and lose any signs of periodicity or
quasiperiodicity. Regions of dominance of different types of dy-
namics (that we describe below) become blurred and overlapping
for larger noise.

We will break our analysis of this example into the different
regimes of κ . In the following sections (xn) will denote the
deterministic dynamical system and (Xn) the Markov chain. In our
figures we chose to set a = 0.1 and σ = 0.05.
We should note here that the analysis below is for operator
Π itself, while the numerical computations performed to plot our
figures were done by discretizing operator Π into a 1000 × 1000
stochastic matrix. We explain in Appendix A how and why this
works.

4.1. Below a: 0 < κ < a

In this regime the deterministic map fκ does not have a fixed
point and the sequence (xn) wraps around the circle S; see
Figs. 4(A) and (B) upper. If a is irrational, the deterministic dynam-
ical system is quasiperiodic (i.e. the trajectory densely covers the
circle) for a whole interval of κ-values near 0. Outside this interval,
or if a = p0/q0 is rational (as in the parameter in our plots where
a = 1/10), there are infinitely many intervals of κ-values where
the orbit is periodic of period q (see the leftmost part of Fig. 1(A)
corresponding to small κ). These intervals are very short: width
w(q) of an interval corresponding to period q satisfies w(q) ∼ q−β

with β ≈ 2.29. See [37].
When noise is present in the system, because the intervals with

periodic behavior are short andmostly correspond to large periods,
periodicity is washed out and the quasiperiodic regime dominates
in this range of κ-values. We will say the chain is quasiperiodic.
This is confirmed empirically in the numerical simulations, see
Fig. 4(B) lower. We next show how the spectrum of transition
operator Π may allow us to distinguish this parameter region.

The spectrum of Π consists of two conjugate spirals; see
Fig. 4(C). To explain these spirals consider the case κ = 0. (Re-
call that Π has countably many eigenvalues accumulating at 0.
Thus, only a few are visible in the figure.) For σ > 0 consider the
Markov chain on S defined by Xn+1 = {Xn + a + σξn}, where ξn

http://dx.doi.org/10.1016/j.physd.2014.07.006
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Fig. 5. Plot of the spiral (4.1) with k varying from 0 to 20. (A) a = 0.1. (B) a = 0.505. (C) a = 0.354.
Fig. 6. (A) Sine circle map with a = 0.1 and κ = 0.08, cobwebbing of sequence (xn) with x0 = 0.1, and the sequence itself, which is still quasiperiodic (inset). The scale bar
is 10 time units. (B) Sine circle map with a = 0.1 and κ = 0.1125 and cobwebbing of sequence (xn) with x0 = 0.1. Here, when σ = 0.05, C1 = 3 and the trap is still small.
Inset shows how the size h of the trap is computed by estimating the distance h between the two solutions of sin(2πx) = −a/κ in (0, 1) in terms of the depth δ = 1 − a/κ
of the curve. (C) Parameters are a = 0.1 and κ = 0.1125. Upper: Deterministic sequence (xn) converging monotonically to the fixed point; Lower: Markov chain (Xn) with
σ = 0.05, spending some time near the fixed point, but eventually escaping and still wrapping around S.
is an i.i.d. sequence of standard normal random variables. Then,
Πh(x) = E[h({x + a + σξ1})].

The spectrum of the shift operator h(x) → h({x+ a}) is {e2π ika
:

k ∈ Z}, where i =
√

−1. The corresponding eigenfunctions
are {e2π ikx

: k ∈ Z}. So if a is rational, there are finitely many
eigenvalues, but they come with infinite multiplicity, since e2π ika

will match for infinitely many k’s.
The spectrum of the heat operator h(x) → E[h({x + σξ1})] is

{e−2π2k2σ 2
: k ∈ Z}. The corresponding eigenfunctions are again

{e2π ikx
: k ∈ Z}. So 1 has multiplicity 1, but all other eigenvalues

have multiplicity 2.
The two operators commute and can be diagonalized simulta-

neously. As a consequence, the spectrum of the combined operator
Π is

{e−2π2k2σ 2
e2π ika

: k ∈ Z} (4.1)

and the corresponding eigenfunctions are {e2π ikx
: k ∈ Z}.

Each eigenvalue has multiplicity 1. The way to visualize the
spectrum is to start with the eigenvalue 1 and then every time
rotate by an angle of 2πa, both clockwise and counterclockwise,
while shrinking themodulus, resulting in a spiral. An examplewith
a = 0.1 is shown in Fig. 5(A). This is the exact spectrum for our
sine circle map example with κ = 0. Note that if 2πa is close to
π , then the spectrum looks like two spirals because eigenvalues
in (4.1) alternate between having an angle near 0 and an angle
near π . Fig. 5(B) shows the spiral for a = 0.505. Compare it with
early frames of the movie associated with Fig. 3(B) and see also
Sections 4.8 and 4.9. Similarly, if 2πa is close to 2π/3 or 4π/3, the
spectrum looks as if it is made out of 3 spirals; see Fig. 5(C).

For small non-zero κ the spectrum will be close to the one for
κ = 0 (Fig. 4(C)). This is because when σ > 0 operator Π is com-
pact and strongly continuous in κ . Thus, its spectrum is also con-
tinuous in κ , in the sense of Lemma A.1 of Appendix A.

The above allows to detect the presence of a spiral, for small
κ , by checking if angles are (approximately) equal between
consecutive eigenvalues (sorted in decreasing order of their norm).
For larger κ , the angle between consecutive eigenvalues is no
longer constant (or close to constant). Adding to this the fact that
depending on the value of a, the geometry of spirals (4.1) can
be quite complex (Figs. 5(B) and (C)), numerically testing for the
presence of a spiral may become a non-trivial task.

In the next two sections we consider the change in stochastic
dynamics as the deterministic system undergoes a saddle–node
bifurcation. Based on the changes in dynamics and spectrum with
κ , as summarized in the movie in Fig. 3, we chose to split the
discussion of this regime into two sections: one where the Markov
chain can escape the trapmade by the saddle–node, and onewhere
the escape becomes highly improbable. We chose to consider that
it is still probable for a normally distributed random variable to
exceed three standard deviations, while exceeding five standard
deviations is highly unlikely. (In probability theory, the former is
usually referred to as a central limit, or a small deviation event,
while the latter is a large deviation event.) The boundary between
the two types of events is in fact vague and the choice of the
specific constants 3 and 5 is quite arbitrary. In the following two
sections we suggest that the distinction can be made more precise
by considering the changes in the spectrum of Π .

4.2. Near a: a < κ < a/(1 − C2
1σ 2π2/2) with C1 small (C1 . 3)

As κ gets closer to a the corridor which the sequence (xn)
has to cross gets narrower, as Fig. 6(A) shows. The sequence
still wraps around S, but spends more time clearing the corridor.
When κ goes above a, the corridor vanishes and the sequence (xn)
gets ‘‘trapped’’. The map develops one stable and one unstable
fixed points (Figs. 6(B) and (C) upper). (This is the well known
saddle–node bifurcation.)

The portion of the map curve below the y = x diagonal, shown
in Fig. 6(B), forms a trap of height h for the Markov chain as well.
The probability the chain clears this trap is P{ξ ≥ h/σ } which
is of order e−h2/(2σ 2) (recall that ξ is a standard normal random
variable). The time it takes the chain to exit the trap is then of order
eh

2/(2σ 2).
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Fig. 7. (A) Sine circle map with a = 0.1 and κ = 0.14 and cobwebbing of (xn) with x0 = 0.1. Markov chain time course (Xn) with σ = 0.05 (inset). Here, C2 = 4.8 and
the size h of the trap is large. Hence, the chain spends a very long time near the fixed point. Note that the scale bar in this inset is 20 time units. (B) The spectrum of Π at
κ = 0.14 showing the beginning of the ‘‘zipping’’ of the spirals, as the two second-largest eigenvalues collide and become real. (C) The spectrum of Π at κ = 0.167: the
zipping continues, as the fixed point becomes more present.
Fig. 8. (A) Sine circle map with a = 0.1 and κ = 0.29 and cobwebbing showing oscillations while converging to the fixed point. (B) Upper: Deterministic sequence (xn);
Lower: Markov chain (Xn) with σ = 0.05, switching between oscillating around and converging to the fixed point. (C) The spectrum of Π : the negative eigenvalue is now
the second largest in modulus.
To compute h we note that it equals the distance between the
two solutions of fκ(x) = x, which are the same as the solutions
of sin(2πx) = −a/κ (inset of Fig. 6(B)). When κ is close to a,
a Taylor expansion of fκ near the fixed point shows that h ≈
2(1 − a/κ)/π2.
When h/σ is small (roughly speaking, the height to clear is

less than 3 standard deviations) jumping out of the trap takes a
central limit theorem type event to happen, and is hence likely.
The Markov chain keeps wrapping around S and we still consider
it quasiperiodic (6(C) lower).

In this regime, the spectrum continues to consist of two conju-
gate spirals.

4.3. Before

a2 + 1/(4π2): a/(1 − C2

1σ 2π2/2) < κ and κ <

a/(1 − C2
2σ 2π2/2) with C2 large (C2 & 5)

As the depth h of the trap becomes large it takes a large devia-
tion event for theMarkov chain to jump over the trap (i.e. the prob-
ability of achieving this becomes extremely small); see Fig. 7(A).
The Markov chain spends a long time near the fixed point; see the
inset of Fig. 7(A) and note the change of scale on the time-axis. The
larger the C2 = h/σ is, the more dominant the periodic regime is.

The above is very well captured by the spectrum. Indeed, the
fact that h/σ has become large and the fixed point started to
emerge is indicated by the spiral beginning to zip. By this, wemean
that conjugate eigenvalues ‘‘collide’’ and become real, starting
with the two second largest in modulus (Fig. 7(B)). The size of
the remaining spiral indicates the amount of contribution of the
quasiperiodic regime (Fig. 7(C)).

One can quantify the size of the zipped region as follows: Let λk
be the eigenvalues of Π ranked so that 1 = λ0 ≥ |λ1| ≥ · · · . Let
K = min{k : λk ∈ R, λk+1 ∉ R}. Then 1 − |λK | indicates the size
of the zipped region. We call this quantity the zipping index. The
right panel in Fig. 11 demonstrates how as the size of the zipped
region increases the time it takes the Markov chain to escape the
fixed point becomes larger, i.e. stochastic phase locking becomes
more pronounced.
4.4. Near

a2 + 1/(4π2)

While κ is below

a2 + 1/(4π2) the slope at the stable fixed

point is positive and (xn) converges monotonically to the stable
fixed point; see Figs. 6(B) and (C) upper, and 7(A). As κ crosses that
value the slope switches from positive to negative. At this point
the sequence (xn) starts oscillating around the fixed point as it
converges to it; see Figs. 8(A) and (B) upper. The system is starting
to prepare for the upcoming cycle of period 2, as explained further
in Section 4.5.

Short before

a2 + 1/(4π2) noise allows the Markov chain

more and more to move around the fixed point. A cycle of period
2 starts emerging, although the fixed point regime is still the
dominant one. This will happen earlier for larger σ , since the
Markov chain has more of a chance to start oscillating around the
fixed point. On the spectrum side, the presence of period 2 cycle
is manifested by negative eigenvalues becoming nonnegligible.
(Remember from Section 3 that for circle map matrices period 2
cycles correspond to eigenvalues of ±1.) The larger the modulus
of the largest negative eigenvalue is, the more present the cycle of
period 2 becomes.

Shortly after

a2 + 1/(4π2), the period 2 cycle starts dominat-

ing; see Fig. 8(B) lower. The negative eigenvalue now becomes the
second-largest in modulus; see Fig. 8(C).

4.5. Near

a2 + 1/π2

As κ keeps increasing the slope at the fixed point decays
towards −1, oscillations take longer, and the fixed point becomes
less stable. The second iteration fκ ◦fκ starts going through a similar
scenario as the one the first iterationwent through.More precisely,
as κ gets closer to


a2 + 1/π2 the slope of the second iterate at

the fixed point grows closer to 1 and as κ gets larger than this
value, its graph crosses the diagonal at three points, themiddle one
corresponding to an unstable steady state of themap and the other
two to a cycle of period 2; see Figs. 9(A) and (B).
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Fig. 9. (A) Sine circle map with a = 0.1 and κ = 0.355, cobwebbing showing a cycle of period 2. Inset: time course of the Markov chain (Xn) with σ = 0.05 having a
dominant period 2 but a still present fixed point regime. Here, the trap in the second iteration fκ ◦ fκ is still small. (B) The second iteration of the sine circle map with a = 0.1
and κ = 0.405. The trap is now bigger and the Markov chain spends much more time oscillating between the two fixed points of fκ ◦ fκ (inset). Scale bar on both insets is
10 time units. (C) The spectrum of Π at κ = 0.405: the second-largest eigenvalue is very close to −1.
Fig. 10. (A) Sine circle map with a = 0.1 and κ = 0.509 and both cobwebbing and sequence (xn) showing chaos. (B) The spectrum of Π at κ = 0.462 with the largest
eigenvalues aligned at right angles. The inset shows the Markov chain having cycle of period 4 emerges. (C) The spectrum of Π at κ = 0.53 with the largest eigenvalues
aligned at 2π/3 angle; the small squares on the unit circle mark the third roots of 1. The inset shows the Markov chain having a cycle of period 3 emerges. Marked scale on
all insets is 10 time units.
In the stochastic system, however, the presence of a cycle of
period 2 becomes very strong but the stable fixed point is still felt.
More precisely, the Markov chain oscillates for a long time around
the fixed point, but then approaches the fixed point for another
long period of time. This behavior is similar towhat happened near
κ = a: the second iteration fκ ◦ fκ does not yet present a large
trap; see the inset of Fig. 9(A). After that, the trap gets larger and
excursions that stay close to the fixed point becomemore rare; see
Fig. 9(B).

This is again captured by looking at the spectrum: as the trap
gets larger, the negative eigenvalue gets closer to −1. The fixed
point regime starts becoming negligible when this eigenvalue is
at its closest to −1; see Fig. 9(B). The Markov chain can now be
considered periodic of period 2.

To quantify the strength of the different periodic scales intro-
duce the function

R(ξ) =

 ∞
k=0

rke2π iξϕk
, (4.2)

where rke2π iϕk are the eigenvalues of Π . The magnitude of R(p)
corresponds to the relative dominance of q:p phase-locking in the
stochastic dynamics. The left panel in Fig. 11 demonstrates how
certain scales are more dominant than others, as κ varies.

On a related note, it was shown in Section 2 of [15] that un-
der some technical conditions on the underlying deterministic sys-
tem (in particular, periodicity) and in the limit σ → 0, the second
largest eigenvalue of Π converges to −1 in the period two case,
while in the period four case the top four eigenvalues converge to
the fourth roots of 1, etc. Although, these results support our ob-
servations in the above two sections, they do not directly apply as
we consider the case of a fixed σ > 0.

4.6. Larger κ

The above process continues as the deterministic system
develops cycles of period 4, then 8, then 16, and so on; see Fig. 1(A).
At a finite κ , the length of the cycle reaches infinity. In contrast to
the quasiperiodic case, map fκ is not orientation preserving and
the sequence (xn) is ‘‘out of order’’ and is thus very sensitive to
initial conditions. The deterministic system is said to have become
chaotic. See Fig. 10(A).This is the period-doubling route to chaos.
Notice that in our case the range of the map is quite limited
(Fig. 1(A)) and thus the trajectory often goes through sequences
of similar, but not repeating values.

This scenario repeats again and again, with cascades of period
doublings starting at all possible odd periods p and leading
eventually to chaos. Very small changes in the parameter in this
regime can tune the system into periodic or chaotic dynamics.

The process also continues in the stochastic case, with the
emergence of a cycle of period 4 that starts becoming more and
more dominant; see the inset of Fig. 10(B). On the spectrum side
2 purely imaginary eigenvalues emerge indicating that a cycle of
period 4 is becoming more present (as explained in Section 3).
These eigenvalues grow in modulus, indicating that the cycle of
period 4 is becoming more dominant; see Fig. 10(B).

As we have shown before for the fixed point and period 2
regimes, in the stochastic system the change of dynamics starts at
earlier values of the parameter than for the deterministic system
(i.e. cycles emerge earlier). It also lasts longer (cycles stay domi-
nant for longer). Thus noise, in a sense, perturbs the parameter κ ,
and when the deterministic system becomes sensitive to changes
in κ , e.g. when cascades become too short, close to and during the
chaotic phase as explained above for the deterministic system, cer-
tain periods (including the chaotic regime) may never get a chance
to become dominant, while certain other periods may dominate.
Which periods dominate now depends very delicately on the in-
terplay between the parameter κ and noise strength σ , and the
motion of the eigenvalues thus seems less organized. Furthermore,
at some values of κ several dynamic regimes compete, and the
Markov chain looks more ergodic than when one regime is domi-
nant.
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Fig. 11. Left: Summary of the analysis of stochastic sine circle map with a = 0.1 and σ = 0.05. The numbers above the graphs indicate the dominant period. Right: Zipping
index vs. median escape time. The error bars give the first and third quartiles. Values of parameter κ are indicated above the error bars.
Fig. 12. Left: Integrate-and-fire with τ = 2, I = 0.7, κ = 0.045, and the first few steps of cobwebbing of the deterministic sequence with starting point 0.1. Upper center:
Deterministic sequence; Lower center: Markov chain (Tn) with σ = 0.01. Both sequences are wrapping densely around S and are hence quasiperiodic. Right: The spectrum
of Π exhibiting the spirals.
In the particular example we are considering, when the noise is
not too small (σ = 0.05), the whole region in the Feigenbaum dia-
grambetween the period 4 and period 3 regimes of the determinis-
tic system (κ between about 0.45 and 0.55 in Fig. 1(A)) is smoothed
out, and the Markov chain simply transitions from having a more
dominant period 4 regime to a more dominant period 3 regime
(Figs. 10(B) and (C)).

Note that in our example, when a = 0.1 and κ goes above 0.9 a
long enough interval of period doubling occurs; see Fig. 1(A). Then
the above stochastic bifurcation scenarios (described in Sections
4.1 through 4.6) are clearly observed again.

4.7. Summary

The left panel in Fig. 11 summarizes our analysis of the stochas-
tic sine circle map. The dark gray shaded region represents the
quasiperiodic regime. The light gray region corresponds to zipping
where the dynamics are transitioning fromquasiperiodic to phase-
locked. The curves are the graphs of R(p), 1 ≤ p ≤ 5, as functions of
κ . We see that right after zipping ends the system is phase-locked
with period 1. This is followed by a period 2 phase-locking, then
period 4, then 3, then 2, then 3 again. After that, several periodic
regimes compete at the same time and the Markov chain becomes
chaotic.

The right panel of the figure demonstrates the increasing cor-
respondence between the zipping index (the size of the zipped re-
gion) and the escape time of theMarkov chain from the fixed point.

4.8. The stochastic integrate-and-fire model

Our analysisworks for other diffusion processeswith a constant
diffusion coefficient σ 2. If the diffusion coefficient is not constant
(e.g. in the case of multiplicative noise), a random time change
brings the situation back to one with constant σ and our analysis
applies again.

As an example, we summarize the results in the case of the
stochastic integrate-and-fire model from Example 2.4. In this
case, transition density p(y|x) satisfies an integral equation that
we solve numerically using the method described in [32]. The
movie associated with Fig. 3(B) shows how the spectrum and the
dynamics of this model change with parameter κ . The relationship
between the spectrum and dynamics follows the same principles
as described for the sine map, thus we will only comment here on
selected regimes and transitions.

First, for κ small, the spectrum represents a spiral. Visually,
it is not readily apparent (Fig. 12, Right). Let us compute the
parameters of the spiral. For κ = 0 we can compute the map,
starting from Tn = 0. It is equal to Tn+1 = −τ log(1 − 1/(τ I)) =

0.505. Setting the spiral parameter a to 0.505 we obtain the spiral
shown in Fig. 5(C), which approximates the one for small κ very
closely (Fig. 12, Right). Dynamics of the Markov chain are thus
quasiperiodic. Notice that in this example (as in its deterministic
counterpart) the values oscillate as they wrap around S in the
quasiperiodic regime.

Near κ = 0.08 zipping of the spiral begins. Note that here the
zipping starts from the left side, since that is where the second-
largest eigenvalues are. Consequently, a cycle of period 2 emerges.
However, escaping it takes a central limit event and the Markov
chain is still quasiperiodic. See the middle panel in Fig. 13. As κ
grows the period 2 cycle becomes more dominant. Near κ = 0.24
zipping is complete and the Markov chain is phase-locked with
period 2: escaping the period 2 cycle takes a large deviation event.
See the right panel in Fig. 13.

At κ = 0.544 period 5 dominates in the stochastic model; see
Fig. 14. The value of κ is taken from the intersection of the curves
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Fig. 13. Left: Integrate-and-fire with τ = 2, I = 0.7, κ = 0.13, and the first few steps of cobwebbing of the deterministic sequence with starting point 0.1; The inset shows
the deterministic sequence showing a cycle of period 2. Center: The spectrum of Π with κ = 0.13 and σ = 0.01 exhibiting zipping; The inset shows how the Markov chain
(Tn) oscillates near the periodic cycle for a long time, then escapes and wraps around S. Right: The spectrum of Π with κ = 0.24 and σ = 0.01 indicating a period 2 cycle;
The inset shows the Markov chain (Tn).
Fig. 14. Left: Integrate-and-fire with τ = 2, I = 0.7, κ = 0.59, and the first few steps of cobwebbing of the deterministic sequence with starting point 0.1. Upper center:
Deterministic sequence showing a cycle of period 7; Lower center: Markov chain (Tn) with σ = 0.01. Right: The spectrum of Π exhibiting a cycle of period 5; the small
squares on the unit circle mark the fifth roots of 1.
R(1) and R(5); see the left panel in Fig. 15. In the deterministic
model, the system has a cycle of period 7 at this value of κ . See
Figs. 14 and 1 (A).

At this range of κ the deterministic dynamical regimes are too
short to fully develop in the stochastic case. The period 5 cycle tran-
sitions to a period 3 cycle which starts dominating at κ = 0.635
(intersection of R(5) and R(3) in Fig. 15, Left). For larger κ similar
transitions occur. E.g. at κ = 0.839 period 4 becomes dominant,
etc. See the movie associated with Fig. 3(B).

The left panel of Fig. 15 summarizes the above analysis. The
right panel demonstrates how the size of the zipped region is again
in an increasing relationship with the escape time of the Markov
chain from the periodic cycle.

4.9. The simplified stochastic integrate-and-fire model

The same analysis can be repeated in the case of the simplified
stochastic integrate-and-firemodel fromExample 2.3. However, as
was mentioned after Example 2.4, it is shown in [14] that for small
values of σ , the simplified stochastic integrate-and-fire process is
very close to the process in Example 2.4 with a different but also
small σ . Thus, the results of the analysis of the twomodels are very
similar.We therefore only give the summary of the analysis for this
model in Fig. 16.

5. Discussion

We have demonstrated that the dynamics of a finite state
dynamical system as well as those of certain Markov chains on
the circle can be related to specific properties of the spectrum of
the associated transition operator. Namely, we have demonstrated
that for finite state dynamical systems the eigenvalues of the
transition matrix reveal the cycle lengths and the eigenvectors
show the attractors along with their transients. More importantly,
we have also shown that for a class of Markov chains on the
circle, quasiperiodicity in the dynamics can be seen by observing
spiral structures in the spectrum of the transition operator, and
that dominance of quasiperiodicity and the different phase-locked
regimes can be understood in terms of ‘‘zipping’’ of the spectrum
and emergence of eigenvalues approximating scaled roots of
1, respectively. The spiral structures were also observed when
Gaussian noise was replaced by a uniform noise over a small
interval, or a bimodal combination of two Gaussian noises. Thus,
we believe these structures to occur more generally, e.g. when the
noise is concentrated in a small region, relative to the size of the
circle. The precisemathematical reason behind the spirals remains
an interesting open question.

The spectral approach presented here is likely to be produc-
tive in many different contexts. For example, it can be used to
predict dynamical regimes of computational models without di-
rect simulation. Note that even though our examples have been
one-dimensional, our approach can be applicable tomore complex
models, that can be projected to a suitable one-dimensional man-
ifold, e.g. phase-oscillators. In the context of experimental studies,
such as recordings of spiking neurons in the presence of noise, it
can be used to categorize the recorded spiking as quasiperiodic, or
having a particular mode of phase-locking.

Additionally, our results suggest a new definition of a periodic
and quasiperiodic Markov chain, based on the shape of its spec-
trum. Moreover, our results also suggest a new notion of stochas-
tic bifurcation, based on changes in the spectrum of the transition
operator. It is important to note that we have distinguished pa-
rameter ranges when the new dynamical regime ‘‘emerges’’ and
then when it becomes ‘‘dominant’’. Thus, we are suggesting that
‘‘stochastic bifurcation points’’ should rather be thought of as ‘‘cas-
cades’’ or ‘‘stochastic bifurcation regions’’.

As we mentioned in Section 2.3, one of the accepted notions
of stochastic bifurcation is ‘‘P-bifurcation’’, in which the shape of
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Fig. 15. Left: Summary of the analysis for stochastic integrate-and-fire with I = 0.7, τ = 2, and σ = 0.01. The numbers above the graphs indicate the dominant period.
Right: Zipping index vs. median escape time. The error bars give the first and third quartiles. Values of parameter κ are indicated above the error bars.
Fig. 16. Left: Density of operator Π corresponding to the simplified stochastic integrate-and-fire with I = 0.7, τ = 2, σ = 0.03, and κ = 0.19. Center: Density of
operator Π corresponding to the stochastic integrate-and-fire with I = 0.7, τ = 2, σ = 0.01, and κ = 0.19. Right: Summary of the analysis for the simplified stochastic
integrate-and-fire with I = 0.7, τ = 2, and σ = 0.01.
the invariant measure density undergoes qualitative changes. This
notion is closely linked to the work in this paper, as the invariant
measure density is the eigenfunction ofΠ , corresponding to eigen-
value 1. Indeed, we see peaks of the eigenfunction developing and
disappearing at various parameter values (video associated with
Fig. 3(A)), but the most dominant regime cannot always be read
from them. For example, in the case of the stochastic sine circle
map at a = 0.1, κ = 0.32, and σ = 0.05, a period 2 cycle domi-
nates as can be observed from the eigenvalues and from the trajec-
tory. However, the invariant measure density only has one peak,
as the center between two preferred locations will be visited (due
to randomness) on the way either up or down, and thus overall
visited more frequently than either location. Perhaps, it is not sur-
prising that the invariant measure density does not capture the es-
sential features of the dynamics, as one eigenfunction only carries
part of the information, while looking at the whole spectrum gives
more.

Other ways of describing qualitative changes in stochastic dy-
namics have been employed, such as D-bifurcations [34] and re-
liability [35,31,38]. Relating our spectral approach to this existing
body of work will be the subject of future investigations.

The method presented in this paper critically relies on the
knowledge of the transition probability p(y|x) of the given process.
The examples we used had the advantage that this probability
was easily computable. In many other situations, given a model in
terms of stochastic differential equations, one would need to rely
on numericalmethods to solve an integral equation for p(y|x). Such
numerical methods have been derived for Ornstein–Uhlenbeck
processes,which includes cases of the stochastic integrate-and-fire
model; see [32]. Developing such methods for the more complex,
e.g. multidimensional, situations is essential and is another future
project.
Moreover, in the cases where the method can be applied to
experimental studies, its feasibility will depend on the size of
discretization N , as more data will be required to estimate tran-
sition probabilities for larger N . In our examples we have used
N = 1000 since it was not numerically expensive to do so. How-
ever, we have observed that even N = 100 is sufficient to predict
the dynamics. Nevertheless, sensitivity to N is likely to vary from
model to model and is also left for a future investigation.

The work presented in this manuscript has been partially
motivated by recent work on the phase-locking of periodically-
driven neurons in the presence of noise [39]. In neuroscience, a
common measure of phase-locking in a noisy system is the so-
called vector strength. Our results suggest that dominance of the
appropriate dynamic regime (such as the size of the spiral in the
quasiperiodicity to phase-locking transition or function R from
(4.2) in the phase-locked regimes) may serve as an alternative.

One situation in which the stochastic spike phase return maps
can be computed is when the stimulus is a periodic train of
brief pulses, the neuron has a well-defined deterministic phase
response curve (PRC), and the variability of the phase response in
the presence of noise can be evaluated aswell. Such stochastic PRCs
have been computed in experiments [40] and their variance has
also been analytically derived under conditions of small noise and
weak stimulus [41]. Once the PRC is computed, the stochastic spike
phase return map can also be obtained [42]. As intrinsic properties
of the oscillators change (e.g. in experiment or throughmutations),
it will affect their PRCs, which will in turn modify the ability of the
cell to entrain to external input (as can be quantified by the spectral
methods we presented).

In conclusion, we have presented a promising approach for
classifying the dynamics of stochastic circle maps based on the
geometry of the spectra of the associated transition operators. The
results presented in this article motivate further development of
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a mathematically rigorous theory and exploration in a variety of
applications.

Acknowledgments

Alla Borisyuk was supported in part by NSF grant DMS-
1022945. Firas Rassoul-Agha was supported in part by NSF grant
DMS-0747758.

Appendix A. Discretization of the transition operator

Recall the transition operatorΠ of theMarkov chain, defined in
(2.1). We will assume the following throughout the appendix.

Hypothesis A.1. Transition operator Π has a transition density
(or kernel) p(y|x) relative to Lebesgue measure; i.e. Πh(x) = 1
0 p(y|x)h(y) dy. Furthermore, p(y|x) is bounded in x and y and

continuous in y uniformly over x:

lim
δ→0

sup{|p(y|x) − p(y′
|x)| : x, y, y′

∈ S,

|y − y′
| < δ} = 0. (A.1)

p(y|x) is also continuous in x uniformly over y except for, possibly,
finitelymany x-values; i.e. ∃x̂1, . . . , x̂m ∈ S (which could be empty,
and then m = 0) such that

lim
δ→0

sup{|p(y|x) − p(y|x′)| : x, x′, y ∈ S, |x − x′
| < δ,

|x − x̂k| > δ, |x′
− x̂k| > δ,∀k = 1, . . . ,m} = 0. (A.2)

This hypothesis is clearly satisfied in the case of Example 2.3
when F has finitely many discontinuities in [0, 1] and ξ1 has a
continuous density relative to Lebesguemeasure. It is also satisfied
for a wide class of diffusion processes, such as ones with smooth
diffusion and drift coefficients, in which case p(y|x) is continuous
in both x and y; see [43]. This includes Example 2.4. On the other
hand, Hypothesis A.1 is not satisfied in the case of deterministic
dynamical systems, i.e. whenΠh(x) = h(f (x)) for some f : S → S.

Compactness of S and the above hypothesis, in particular (A.1),
imply that Π is a compact operator; see Example 4.1 of Chapter 3
of [36].

We would like to approximate operator Π , satisfying the
Hypothesis A.1, by a sequence of matrices in a way that the spectra
of the matrices ‘‘converge’’ to that of Π .

Fix an integer N ≥ 1 (the resolution of the discretization) and
define
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for a continuous bounded function h : S → R. Then
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+ sup
y∈S
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+ sup
y∈S

|h(y)| sup{|p(y′
|x) − p(y|x)| :

x, y, y′
∈ S, |y − y′

| < 1/N} (A.5)

+ sup{|h(y′) − h(y)| : y, y′
∈ S, |y − y′

| < 1/N}. (A.6)

By continuity of h on the compact set S the term on line (A.6)
converges to 0 as N → ∞. The term on line (A.3) can be bounded
by
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which equals the term on line (A.5) which in turn converges to 0
as N → ∞ due to (A.1). Lastly, the term on line (A.4) is bounded
above by
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Then, by (A.2) the above goes to 0 as N → ∞ for all x ∉ {x̂1,
. . . , x̂m}. (Recall that x̂1, . . . , x̂m are the possible discontinuities of
p(y|x) as stated in Hypothesis A.1.)

We have thus shown that ∥ΠN − Π∥ → 0 and the sequence
of operators ΠN converges to Π in the generalized sense; see The-
orem 2.23 of Chapter 4 of [36]. Since the action of the transition
operator Π on bounded continuous functions completely deter-
mines the distribution of the corresponding Markov chain, we see
that this Markov chain can be recovered from operators ΠN . We
are particularly interested in recovering the spectrum of Π .

Note that ΠN is a finite rank operator with the range being
the linear span of the functions 1[i/N,(i+1)/N)(x). Hence, it has a
finite spectrum. The eigenvalues of ΠN are the same as those of
the matrix (πN

i,j)i,j and if v = (v0, . . . , vN−1) is an eigenvector of
this matrix, then

N−1
i=0 vi1[i/N,(i+1)/N) is an eigenfunction of ΠN .

In other words, ΠN can really be viewed as a stochastic matrix,
which in turn is completely determined by its eigenvalues and
eigenspaces.
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Then, the fact that ΠN converges to Π reproves that Π is a
compact operator. Thus,Π has a discrete spectrumwith countably
many nonzero eigenvalues of finite multiplicities, possibly accu-
mulating at 0.

Next, observe that for any ε > 0 there exists an N0 > 0 such
that N ≥ N0 implies that

sup
λ∈σ(ΠN )

d(λ, σ (Π)) < ε;

see Remark 3.3 of Chapter 4 of [36]. (d(λ, σ (Π)) denotes the
Euclidean distance in the space of complex numbers of the point
λ to the spectrum of Π .) Moreover, if λ1, . . . , λk ∈ σ(Π) are
separated from the rest of σ(Π) by a closed curve Γ , then for N
large enough the total multiplicity of σ(ΠN) inside Γ is equal to
the total multiplicity of λ1, . . . , λk; see Section 3.5 of Chapter 4
of [36]. In fact, ifλ ∈ σ(Π)\{0}, then it can be separated by a closed
curve Γ from the rest of σ(Π) and thus for N large enough ΠN has
only one eigenvalue λN inside Γ , with the same multiplicity as λ,
and the projection operator onto eigenspace EλN (ΠN) converges in
norm to the projection onto Eλ(Π), as N → ∞; see Theorem 3.16
of Chapter 4, (6.19) of Chapter 3, and (5.22) of Chapter 1 in [36].
(Note that the uniqueness of the spectral representation of a finite
rankoperatormeans that the statements of this paragraph are valid
for both geometric and algebraic eigenspaces; see Section 5.4 of
Chapter 1 of [36].) We thus have the following lemma.

Lemma A.1. Assume Hypothesis A.1 holds. Then, away from 0, the
spectra and corresponding eigenspaces of the operators ΠN (and
hence also the matrices πN ) converge to those of Π , in the sense of
the above paragraph.

This lemma says that one can approximate the spectrum and
eigenfunctions of Π by those of the matrix πN .

Our choice to discretize the operator Π is not the only way to
go. In fact any discretization for which Lemma A.1 holds works. For
example, the following also works:

πN
i,j = N

 (i+1)/N

i/N

 (j+1)/N

j/N
p(y|x) dx dy, and

ΠNh(x) = N
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j=0

πN
i,j

 (j+1)/N

j/N
h(y) dy


1[i/N,(i+1)/N)(x).

Remark A.2. Note that the above discussionwas for a fixed σ > 0,
which is the situation considered in this article.When σ = 0, i.e. in
the case of a deterministic dynamical system, the discretization
may fail in approximating the spectrum; see [44] for situations
where this happens and [45] for situationswhere the discretization
succeeds. Consequently, as σ gets smaller the discretization may
get worse, i.e. N may have to be chosen larger to achieve the same
prescribed error size. One way to estimate how large N needs
to be (to approximate finitely many eigenvalues of Π ) comes by
using bounds (A.3)–(A.6) to estimate ∥ΠN − Π∥. For instance, in
Example 2.3 one has a crude uniform upper bound of C/σ 3 on the
x- and y-derivatives of p(y|x). This leads to the estimate

∥ΠN − Π∥ ≤ C/(σ 3N).

Appendix B. Supplementary data

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.physd.2014.07.006.
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