
Multisite Generalization of the SHArP Weather Generator

KIMBERLY SMITH AND COURTENAY STRONG

Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

FIRAS RASSOUL-AGHA

Department of Mathematics, University of Utah, Salt Lake City, Utah

(Manuscript received 12 August 2017, in final form 25 June 2018)

ABSTRACT

Generalization of point-scale stochastic weather generators to simultaneously produce output at multiple

sites provides more powerful support for hydrology and climate change impact studies. Generalization

preserves the statistical properties of each individual site whilemaintaining proper spatial correlation over the

domain. Here, generalization of the daily precipitation and temperature components of the stochastic har-

monic autoregressive parametric (SHArP) weather generator is presented. The generalization process for

temperature involves conversion of vector time series to matrix time series that capture between-site co-

variances of maximum and minimum daily temperature. Between-site temperature covariances depend on

spatial precipitation-occurrence patterns (POPs), of which there are up to 2M for M sites. To dramatically

reduce the number of covariancematrices that drive temperature, multisite SHArP uses empirical orthogonal

function analysis to categorize the POPs and harmonic smoothing to reduce the number of parameters de-

scribing the temporal evolution (annual cycle) of the elements in the covariance matrices. By modeling

precipitation-regime-specific residuals, the model is shown to capture statistically significant spatial and

temporal contrasts in observed temperature covariance. For precipitation simulation, we extend existing

techniques by adding a trend term to the occurrence and amount parameters. Multisite generalization of the

framework is illustrated by simulating stochastic historical and future temperature and precipitation across

complex terrain over northern Utah on the basis of historical station observations and historical and future

statistically downscaled climate model output.

1. Introduction

Stochastic weather generators (SWGs) were primarily

introduced to simulate daily meteorological variables,

namely precipitation and temperature, that replicate sta-

tistical properties of the observed data at the location in

question. SWGs are especially useful tools for hydrolo-

gists, climate scientists, agriculturalists, ecologists, plan-

ners, engineers, and practitioners in related fields given

missing meteorological data or an interest in ensemble

statistics (e.g., for uncertainty analysis). The development

of SWGs often begins with the precipitation process since

most other meteorological variables depend on whether

or not precipitation occurred, and the addition of air

temperature is a natural next step. SWGs are constructed

to work on a point scale, but to further capture variations

between sites or examine hydrologic or climate change

impacts on a broader scale the methods need to be gen-

eralized to multiple sites. Generalization to multiple sites

has its own set of challenges, especially as the number of

sites increases.

Wilks (1998) introduced the widely known multisite

generalization model of precipitation occurrence and

amount based on chain-dependent processes (a two-state,

second-order Markov chain for occurrence and a mixed

exponential distribution for amount) that were described

in Todorovic and Woolhiser (1975) and later applied in

Richardson (1981). This is done by applying spatially

correlated yet time-independent random vectors on the

models of each individual site within the domain (Wilks

1998). With this method, each site retains its own statis-

tical properties while maintaining realistic correlations

with the neighboring sites.

Wilks (1999b) expanded on the multisite generaliza-

tion method presented in Wilks (1998) by applying the
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method over an area with complex terrain in the western

United States. In addition, the method was expanded to

include daily maximum and minimum temperature

and solar radiation following Richardson (1981). The

Richardson (1981) method involves simulating the re-

siduals of air temperature and solar radiation. Fitted

correlation functions were used to capture the seasonal

variations in the study area, and thismultisite generation

was able tomodel the precipitation over complex terrain

while preserving the spatial correlations found in nature

(Wilks 1999b). Later, Wilks (2009) showed the practi-

cality of a spatially coherent SWG that interpolated

parameters for single sites as described in Wilks (2008).

In addition, the study was able to synchronize the grid-

ded synthetic data to true weather data at reference

stations within the domain and provide more realistic

simulations for hydrologic purposes.

Caraway et al. (2014) developed a nonparametric mul-

tisite SWG using the k-nearest neighbor resampling ap-

proach. This model uses clustering of homogeneous sites in

addition to Markov chain states to simulate precipitation

at multiple sites within a heterogeneous watershed. While

most present-day weather generators are parametric and

are based off the work of Richardson (1981) and Wilks

(1998), including the stochastic harmonic autoregressive

parametric weather generator (SHArP; Smith et al. 2017)

andMulti-siteWeatherGenerator ofÉcole deTechnologie
Supérieure (MulGETS; Chen et al. 2014), the advantages

of a nonparametric weather generator include the ability to

capture the nonlinear variability that is missed in the linear

parametric SWGs. Kleiber et al. (2012) introduced a gen-

eralized linear model (GLM) that uses spatial Gaussian

processes to model the statistical parameters of pre-

cipitation over a domain. A similar nonparametric GLM

for maximum and minimum temperature was also de-

veloped and is described in Kleiber et al. (2013). Verdin

et al. (2015) combined the methods in Kleiber et al. (2012)

and Kleiber et al. (2013) and developed a GLM-based

weather generator that can be applied to any area regard-

less of data density or availability.

Existing multisite SWG research has focused pri-

marily on the precipitation component of the generator

and the complexities associated with generating it

realistically at multiple sites. There is comparatively

minimal focus on the temperature component, but

temperature fidelity is important for determining the

phase (snow vs rain) and fate of winter precipitation

over complex terrain. Many previous studies involving

the temperature component have opted to use the

method applied in Richardson (1981), which was gen-

eralized to multiple sites over complex terrain in Wilks

(1999b). This method involves prescribing and then

removing the means and standard deviations of the

temperature values (separating the dry and wet days) in

advance and generating the temperature residuals. The

resulting mean temperatures switch abruptly between

the dry- and wet-state values due to the prescribed

means. To overcome this limitation and provide a more

realistic temporal evolution of daily weather, Smith

et al. (2017) introduced the SHArP weather generator,

which simulates autocorrelated temperatures directly

without prescribing mean values in advance. The ex-

tension of existing multisite SWGs usually involves a

conditioning of temperature on precipitation occur-

rence, but this is largely sitewise, meaning variations in

the larger-scale spatial pattern of precipitation do not

affect the temporal evolution or spatial covariance of

temperature.

In this study, we present a multisite generalization of

SHArP. The mathematical formulation follows that of

the single-site, single-temperature case in Smith et al.

(2017), but major differences stem from how objec-

tively identified precipitation-occurrence patterns (POPs)

impact temperature stochasticity and autocorrelation.

In the single-site, single-temperature case, we used a

temporally varying noise coefficient that depended on

whether the given day was wet or dry at the site. Having

multiple sites introduces between-site covariances that

are found to depend on POPs whose number increases

as 2M for M sites. To circumvent this situation, we use

empirical orthogonal function analysis to objectively

categorize the POPs, yielding a compact set of matrices

for driving between-site temperature covariance. An

example application in the western United States is used

to illustrate the fidelity of the framework in complex

terrain where precipitation patterns can change mark-

edly over the study domain, and the simulation period is

1950–2100 to illustrate how trends are handled.

2. Data and study area

SHArP was initially developed, tested, and presented

in an entirely observational context (Smith et al. 2017).

We use observations again here and incorporate statis-

tically downscaled historical and future climate model

output in part because the principal anticipated appli-

cation of SHArP is simulation of future weather under

climate change. From theGlobal Historical Climatology

Network (Menne et al. 2012), we use daily precipitation,

minimum temperature, and maximum temperature from

19 sites over northern Utah and southwestern Wyoming

(Fig. 1) during 1950–2005. Additional available stations

that had 10%ormoremissing values over this period were

eliminated.

We also use 0.1258 bias-corrected constructed analogs

(BCCA) of daily CCSM4 output from phase 5 of the
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Coupled Model Intercomparison Project (CMIP5;

Maurer et al. 2007; Bureau of Reclamation 2013).

We used the historical BCCA data, which span from

1 January 1950 to 31 December 2005, in this analysis, as

well as the future RCP 8.5 (high emissions scenario) data,

which span from 1 January 2006 to 31 December 2100.

We select from the statistically downscaled data a

transect of 30 sites from the western desert of Utah

(40.81258N, 113.68758W) to the Uinta Mountains

(40.81258N, 110.06258W), which includes a point near

the Salt Lake International Airport (KSLC; 40.81258N,

111.93758W; site 15 adjacent to the red circle in Fig. 1).

Half of the sites are located in the ‘‘valley,’’ and the

other half of the sites are located in the mountains. The

study region is located within the larger Great Basin,

which is known for its semiarid climate and basin-and-

range topography (e.g., Thompson and Burke 1974).

To pair with the statistically downscaled climate data

(1950–2100), we use indices of El Niño–Southern
Oscillation (ENSO; e.g., Diaz et al. 2001) and the Pacific

decadal oscillation (PDO; e.g., McCabe and Dettinger

2002). These data are bandpass-filtered, spatially av-

eraged historical CCSM4 sea surface temperature

output processed by following the method of Smith

et al. (2015).

3. Multisite simulation of daily maximum and
minimum air temperature

a. Model formulation

The linear model for simulating multiple tempera-

tures at multiple sites extends the SHArP linear model

introduced in Smith et al. (2017) and is given by

T
k11

5AT
k
1B

k
1C

k
e
k
, (1)

where A is a 2M 3 2M autocorrelation matrix for

number of sites M, Bk is a 2M 3 1 column vector that

depends on day k, Ck is a 2M 3 2M positive definite

matrix made up of noise coefficients, and ek is a 2M3 1

column vector. Errors ek are independent and identi-

cally distributed (i.i.d.) random vectors with entries that

themselves are independent standard normals. The

temperature on day k 1 1 is dependent on the temper-

ature on day k, where k ranges from 0 toK2 1 (K being

the length of the simulation).

FIG. 1. Domain map showing northern and central Utah with locations of the 19 observation

stations (circles, shaded red or white) and a transect of 30 grid points at which statistically

downscaled climate model output was used (diamonds). The transect was chosen to be the row

of grid points closest to KSLC (indicated by the red circle). Color shading indicates elevation

(m MSL), with the Great Salt Lake shown in cyan.
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We assume that A is time independent and block

diagonal:

A5

2
666664

A
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0 � � � 0

0 A
2
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.
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0 . . . . . . A
M

3
777775 , (2)

where 0 is a 2 3 2 zero matrix and the elements of

A
m
5

"
a
max,max

a
max,min

a
min,max

a
min,min

#
(3)

capture the dependence of maximum and minimum tem-

perature at site m on the prior day’s maximum and mini-

mum temperature at sitem, as indicated by the subscripts

(e.g., amin,max is the dependence of minimum temperature

on the preceding day’s maximum temperature). With this

structure forA, between-site covariance is provided byCk.

Wemodel the time dependence of each component of

Bk using harmonics generally written as

b
k
5 g

xk11
1ak1b

xk11
cos(2pk/t)1b0

xk11
sin(2pk/t)

1 d
xk11

cos(4pk/t)1 d0xk11
sin(4pk/t) , (4)

where t is the period, assumed to be 365 days. Here, bk is

one of the 2M entries ofBk. Coefficients g, a, b, b
0, d, and

d0 are also entries of 2M3 1 vectors. The subscript xk11

indicates that bk depends on whether day k1 1 was wet

(x 5 1) or dry (x 5 0).

As in the single-site SHArP, we apply a least squares

estimation to determine the parameters in A and Bk.

Because there are two temperatures (maximum and

minimum) and A is now a matrix of four elements per

site instead of a single coefficient, we minimize the re-

siduals by differentiating with respect to 26 variables per

site instead of the 12 in the single-temperature, single-

site case. The 22M resulting equations related to the

(POP) parameters of Bk from Eq. (4) are analogous to

those presented in Smith et al. (2017) and are omitted

for brevity. The remaining 4M equations related to the

four elements of A at each site follow the form

�
K21

k50

T
max,k

(a
max,max

T
max,k

1 a
max,min

T
min,k

1 b
k,max

2T
max,k11

)5 0,

�
K21

k50

T
min,k

(a
max,max

T
max,k

1 a
max,min

T
min,k

1 b
k,max

2T
max,k11

)5 0,

�
K21

k50

T
max,k

(a
min,max

T
max,k

1 a
min,min

T
min,k

1 b
k,min

2T
min,k11

)5 0, and

�
K21

k50

T
min,k

(a
min,max

T
max,k

1 a
min,min

T
min,k

1 b
k,min

2T
min,k11

)5 0,

where bk,max and bk,min refer to the elements of Bk that

correspond to maximum temperature Tmax and minimum

temperature Tmin, respectively. In the case of missing

values, summations are taken over available data.

b. Specification of parameters

In the single-site, single-temperature case, the noise

coefficient ck was a time-dependent vector that de-

pended on whether the day was wet or dry. For multisite

SHArP, Ck is a time-dependent, 2M 3 2M matrix that

depends on the spatial POP. In the multisite case, the

number of possible POPs is 2M, which would yield an

unmanageably large set of Ck matrices. We reduce this

dramatically by performing empirical orthogonal func-

tion (EOF) analysis (e.g., Hannachi et al. 2007). Spe-

cifically, we calculate the eigenvectors of the 2M 3 2M

spatial covariance matrix of daily occurrence. While we

process all days of year together here, it is possible to

develop and use seasonal or monthly EOFs. Area

weighting was used for EOF analysis, determined via

Delaunay triangulation for the station data. For the

example application here, we used the positive and

negative polarities of the first twoEOFs of occurrence to

define four POPs (positive polarities are shown in

Figs. 2a and 2b), and then assigned each day to the

pattern it most closely resembled as detailed below. The

first two EOFs were chosen because they captured

the majority of the variance in the domain (53% and

8%, respectively). To determine the closest match

between a given day’s simulated occurrence pattern and

the four POPs, the eigenvector of each POP was quan-

tized so that nonnegative components were assigned a

value 1 and negative components were assigned a value

0, and the Euclidian distance was calculated between the

quantized eigenvector and the simulated occurrence

pattern on that day.

For the study area here, the first quantized eigenvec-

tor captured all sites being wet in its positive polarity

(Fig. 2a) and all sites being dry in its negative polarity.

The second quantized eigenvector captured the moun-

tain sites being wet and the valley sites being dry in its

positive polarity (Fig. 2b) and the reverse in its negative

polarity. Similar EOFs were found analyzing pre-

cipitation occurrence along the statistical downscaling
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transect (Figs. 2c,d), and these first two EOFs accounted

for 62% and 11% of the variance for the transect.

We populate each of the four C2
k matrices with the

square of residuals (Tk11 2 ATk 2 Bk) specific to the

given day of year and one of the four POPs determined

via the EOF analysis (there are as many Ck matrices as

there are POP EOFs). To ensure sufficient degrees of

freedom in the observed record (1950–2005), we sam-

pled the residuals monthly and placed the results on the

center day of the month in a matrix C2
m, m 5 1, . . . , 12.

The length and smoothness of the statistically down-

scaled climate model output (1950–2100) allowed us to

populate the matrices daily. We then fit the annual cy-

cles of daily values as in Smith et al. (2017) using Fourier

analysis with the general equation

c2k 5 r1 � cos(2pk/t)1 �0 sin(2pk/t)

1 k cos(4pk/t)1 k0 sin(4pk/t) , (5)

where c2k is a time-dependent element of one of the

four C2
k matrices. On average, the harmonic fits ac-

count for 85% of the variance in the monthly values.

We then take the principal square root to yield the

four Ck matrices. During estimation and simulation,

FIG. 2. EOFs of precipitation occurrence: (a) The leading EOF in its positive polarity corresponding to all

stations being wet (negative polarity is all stations being dry and is not shown). (b) The second EOF in its positive

polarity with mountain stations in the northern part of the domain being wet and lower-elevation stations to the

west and south being dry (mountain-wet/valley-dry pattern; negative polarity is the opposite and is not shown).

(c),(d) Corresponding first two EOFs diagnosed from statistically downscaled climate model output along the

transect of sites indicated by the black diamonds in (a) and (b), respectively; dashed curves are the EOF loading

vectors, and solid lines are the quantized versions of the EOFs.
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each of the Ck matrices contains maximum and mini-

mum temperature for each site, so they are of size

2M 3 2M with row 1 corresponding to maximum

temperature at site 1, row 2 corresponding to mini-

mum temperature at site 1, row 3 corresponding to

maximum temperature at site 2, and so on. Once we

have determined the parameters in A, Bk, and Ck, we

simulate maximum and minimum temperature si-

multaneously at all sites.

4. Model significance, validation, and illustration

a. Model significance

The POP-specific covariance patterns are one of the

principal innovations in the multisite generalization of

SHArP, so we provide some statistical analysis to em-

phasize their importance.As noted at the endof section 3b,

for each month we have four C2
m matrices—one for each

POP. We tested the null hypothesis that these four co-

variance matrices are equal using Box’sM test, which is a

x2 approximation of the modified likelihood-ratio statistic

(e.g., Rencher and Christensen 2012). For all 12 months,

we can reject at the 95% confidence level the null

hypothesis of covariance matrix equality, meaning

the POP-based decomposition captures statistically

significant differences in observed temperature co-

variance. We can also reject at the 95% confidence

level the null hypotheses of covariance matrix

equality for subsets such as all-wet and mountain-

wet/valley-dry regimes.

To depict some of the patterns underlying these hy-

pothesis testing results, we average over elements of the

C2
k matrices and plot their annual cycles, recalling that the

harmonic fits in theseC2
k matrices account on average for

85% of observed covariance. We begin with the co-

variance of maximum temperature residuals between the

valley site marked V in Fig. 2b and blue-shaded sites in

Fig. 2b, and Fig. 3a shows the average of these co-

variances for each day of the year. Covariation is stronger

in the cold season, and all-dry values are approximately

50% larger than all-wet values in January,withmountain-

wet and valley-wet values being intermediate. As pre-

cipitation dynamics make the transition to monsoonal

convective regimes during the warm season, the all-wet

and mountain-wet regimes have larger covariances than

do the all-dry and valley-wet regimes. Examining co-

variance of maximum temperature residuals between the

mountain site marked M in Fig. 2b and brown-shaded

sites in Fig. 2b, we find similar strong and seasonally

evolving separation between the all-wet and all-dry re-

gimes, with the mountain-wet regimes tracking more

closely with all-dry regimes in this case (Fig. 3b).

b. Model validation and illustrative patterns

The model skill and validation at individual sites was

presented in Smith et al. (2017), so we focus on the

multisite aspects of the performance here based on re-

sults from the historical station observations. Performance

for the historical and future statistically downscaled data

was also assessed and found to be comparable or better

(not shown), consistent with the downscaling producing

smoother variations in space and time compared to station

observations.

We begin with Fig. 4 to illustrate the model’s fidel-

ity in capturing spatial extrema of daily minimum and

maximum temperature. Shown are quantile–quantile

plots of the spatial maximum of Tmax, minimum

of Tmin, maximum of Tmin, and minimum of Tmax.

FIG. 3. Average covariance of maximum temperature residuals (a) between the valley site markedV in Fig. 2b and the blue-shaded sites

in Fig. 2b and (b) between the mountain site marked M in Fig. 2b and the brown-shaded sites in Fig. 2b. Abbreviations in the legend

indicate, in order, all-wet, mountain-wet/valley-dry, all-dry, and valley-wet/mountain-dry precipitation-occurrence patterns.
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SHArP tends to slightly overpredict the maximum ex-

trema (Figs. 4b,c) and slightly underpredict the mini-

mum extrema (Figs. 4a,d), but the agreement is very

good overall.

Segregating by POP, SHArP captures seasonal

contrasts in mean Tmax and Tmin well (Figs. 5a–d).

For pairwise, between-station covariation, SHArP

captures aspects of the seasonal changes such as the

smaller covariances in summer and larger covariances

in the transition seasons (Figs. 5e–h). Large changes in

the position of a given seasonal cluster between panels

in Fig. 5 illustrate the importance of the POPs in

modulating intersite covariation. A portion of the co-

variance in Figs. 5e–h is associated with changes in

mean temperature, so we also show the same analysis

calculated for the stochastic residuals (Tk112ATk2Bk)

in Figs. 5i–l. Deviations tend toward the right of the

1:1 line, indicating conditions under which SHArP

tends to underpredict covariation. One example is

winter temperatures during the all-dry POP (Fig. 5j),

and some of the strong observed covariation may

stem from persistent cold-air-pool events (Lareau

et al. 2013).

To further illustrate the utility of the POP-based

matrices Ck, Fig. 6 contrasts spatial patterns of temper-

ature covariance between different POPs for selected

seasons. Strong variations in longitude are in part due to

collapsing the latitude dimension of the data for display,

and SHArP captures these spatial patterns well. During

autumn, maximum temperatures near the peak of the

Wasatch Range covary strongly with values along the

western face of the range, and these covariances are

almost uniformly increased in the mountain-wet results

relative to all-wet results (Fig. 6a). During spring, min-

imum temperatures over the high elevations in the

eastern portion of the domain covary more strongly with

values to the east, and SHArP captures the west-

ward decrease in covariance moving down in eleva-

tion (Fig. 6b). Also, for spring minimum temperatures,

SHArP captures the tendency for all-dry days to have

larger covariance than all-wet days (Fig. 6b).

We close this section with some remarks and results

for simulation of future temperature variations, in-

cluding trends. As noted above, SHArP trained on sta-

tistically downscaled climate model output along the

transect in Fig. 1 produces similar POP EOFs to those

FIG. 4. Quantile–quantile plots for temperature spatial extrema using daily data from all months: (a) minimum of

Tmin, (b) maximum of Tmax, (c) maximum of Tmin, and (d) minimum of Tmax. Blue lines are 1:1 lines.
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found for station data (Fig. 2) and comparable or better

validation due to data smoothness. Training SHArP on

the statistically downscaled data for 1950–2100 enables

us to simulate future variations. As an example, annual

cycles of maximum temperature are shown for four sites

corresponding to a late-century year in Figs. 7a and 7b.

SHArP, in addition to simulating realistic annual cycles

and variance at each site, provides realistic intersite

covariation that is temporally synchronized by POPs.

SHArP is also able to capture long-term trends with

realistic intersite covariation as illustrated by annual

mean minimum temperatures at the four sites (cf.

Figs. 7c,d).

5. Multisite simulation of daily precipitation

a. Formulation and parameter estimation for
precipitation occurrence

The precipitation model we use with SHArP largely

follows formulations presented in Woolhiser (2008) and

Wilks (2009), except we introduce a trend term in the

perturbation of theMarkov chain precipitation-occurrence

FIG. 5.Model assessment on the basis of station observationswith results segregated by four precipitation-occurrence patterns: (top) all-

wet, (top middle) all-dry, (bottom middle) mountain-wet/valley-dry, and (bottom) valley-wet/mountain-dry regimes for the statistics of

(a)–(d) mean temperature, (e)–(h) pairwise between-station covariance of temperature, and (i)–(l) pairwise between-station covariance

of temperature residuals. Black lines are 1:1 lines.
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probabilities so that the framework can simulate climate

change. We provide details leading up to the introduction

of the trend here for completeness.

We model precipitation occurrence with a two-state

(wet or dry), second-order Markov chain such that the

probability of precipitation on any given day depends on

the precipitation state on the previous two days:

p
ij1
(t)5Pfx

t
5 1jx

t21
5 j,x

t22
5 ig; t5 1, 2, . . . , 365Y,

(6)

where Y indicates the number of years. We use a second-

order Markov chain as opposed to a first-order Markov

chain because the former has been shown to better cap-

ture the occurrence of dry spells (e.g., Stern andCoe 1984;

Wilks 1999a), which are common in the semiarid region

in this study. The unperturbed probability time series in

Eq. (6) are cyclostationary, written as inverse logits, and

found via maximum likelihood using a Newton–Raphson

iterative procedure (Woolhiser 2008). To illustrate the

spatiotemporal patterns of these probability functions in

the statistically downscaled climate model output, the

p011 values for each site over any given year are shown in

Fig. 8a. The probability of precipitation is overall higher

in the mountains than in the valleys, and the maximum in

p011 for most sites occurs near day of year 100. The

marked increase in p011 at the valley-to-mountain tran-

sition near site 15 motivates the use of EOF analysis to

categorize the POPs and contributes to mountain versus

valley contrast captured by EOF 2 (recall Figs. 2b,d).

We generalize the precipitation-occurrence process to

m 5 1, . . . , M sites by defining the multisite occurrence

(Wilks 2009):

x
t
(m)5

(
1 if w

t
(m)#F21[p

ij0
(t)]

0 otherwise
, (7)

whereF21[] is the probit function and wt(n);N[0, 1] is

Gaussian white noise. To achieve spatially coherent

precipitation occurrence, the Markov chain model in

Eq. (7) is forced by a vector of mutually correlated

standard Gaussian variates wt that is characterized by

correlation matrix CR. We populate CR so that the

synthetic correlation matrix Cx matches its observed

counterpartCx. We achieve this via brute-force iteration

(Brissette et al. 2007):

FIG. 6. (a) Covariance of maximum temperature between station 13 (40.088N, 111.608W) and all other stations for

days in autumn that had all-wet (blue) ormountain-wet/valley-dry (red) values. The longitude of station 13 is indicated

by the vertical gray line. (b)Covariance ofminimumtemperature between station 17 (41.828N, 110.538W)andall other

stations for days in spring that had all-wet (blue) or all-dry (red) values. The longitude of station 17 is indicated by the

vertical gray line. Gray shading indicates relative terrain height averaged over the latitude range in Fig. 1.
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C
R
(i1 1)5C

R
(i)1h(C

x
2C

x
) , (8)

with initial guess CR (1) 5 Cx, h 5 0.1, and ;30 itera-

tions to achieve 1023 precision.

b. Formulation and parameter estimation for
precipitation amount

In addition, we model precipitation amount using a

mixed exponential distribution followingWilks (1999b).

The associated probability density function

f [r(m)]5
a

b
2
(m)

exp

�
2r(m)

b
2
(m)

�
1

12a

b
1
(m)

exp

�
2r(m)

b
1
(m)

�
(9)

is the sum of two exponential distributions; the first with

larger mean b2 occurs with probability a, and the second

with smaller mean b1 occurs with probability 1 2 a.

When precipitation occurs at sitem, we choose between

b1 and b2 according to

b
t
(m)5

8>><
>>:

b
2
(m) if

F[w
t
(m)]

p
ij1
(m)

#a

b
1
(m) otherwise

, (10)

where pij1(m) is the appropriate transition probability

from Eq. (6). The formulation in Eq. (10) captures the

tendency for larger precipitation amounts to occur near

the interior of wet areas because, for stations and days

with small wt(m) [i.e., first line of Eq. (10)], other sta-

tions around the site are likely to be wet because of

the spatial autocorrelation in CR, and the larger pre-

cipitation mean (b2) is selected (Wilks 1999a,b). Spa-

tiotemporal variations in these amount parameters for

the study region are shown in Fig. 8, illustrating that the

mixed exponential means (b1,b2) tend to be larger in the

mountains and outside of summer and that the proba-

bility of selecting the larger mean (a) tends to maximize

in spring and minimize in summer.

The amount is then recovered from the probability

density function via

r
t
(m)5 h2b

t
(m) ln[n(m)] , (11)

where h is the precipitation-occurrence threshold (de-

fined here as 0.254mm) and n(m); U[0, 1] is uniformly

distributed. The required spatial correlation for n(m) is

achieved via brute-force iteration (Brissette et al. 2007)

analogous to the determination of CR as described

FIG. 7. Dailymaximum temperature in 2085 at four sites for (a) statistically downscaled climatemodel output and

(b) a sample realization from SHArP. Also shown are annual mean minimum temperature from (c) statistically

downscaled climate model output and (d) SHArP at the same four sites. Sites are numbered 1–30 from west to east

in Fig. 1.
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before with regard to multisite occurrence. Similar to

the probability of precipitation, the means b1 and b2

increase markedly at the valley-to-mountain transition

near site 15 (Figs. 8c,d), and they tend to be smaller in

the summer months. The probability of choosing the

larger mean (a) is smallest in the summer months for all

sites along the transect (Fig. 8b).

c. Formulation and parameter estimation for climate
perturbation

Because of the likely effects of climate change in the

future, especially relating to the snowpack in the western

United States (e.g., Mote 2006), we modified the pre-

cipitation components of SHArP to include these effects.

We use the formulation for simulating precipitation oc-

currence introduced in Smith et al. (2017), wherewe define

perturbed versions of the pijk values that can incorporate

trends and sensitivity to teleconnection indices, extending

ideas presented inWoolhiser (2008). In addition, the larger

mean in the mixed exponential precipitation amount

distribution (b2) is here allowed to have a trend and

dependence on teleconnection indices, analogous to the

perturbed formulation of pij1.

The perturbed pij1 values are given by

p0
ij1(t)5 p

ij1
(t)1g

ij1
0 1g

ij1
1 t1g

ij1
2 E(t2 t

E
)1g

ij1
3 P(t2 t

P
) ,

(12)

where the g0,1 coefficients enable a trend and the g2,3
coefficients provide potentially time-lagged sensitivity

to climate variability modes, here chosen to be ENSO

(E) and PDO (P). The perturbation of b2 is formulated

analogously. The g parameters in Eq. (12) are de-

termined via maximum likelihood in a stepwise fashion,

first bringing in the trend, then adding the first oceanic

mode, and finally adding the second oceanic mode. At

each step, we use the Akaike information criterion to

include only parameters that significantly improve the

logarithmic likelihood. We use ENSO and PDO indices

here because these modes are important in influencing

FIG. 8. For sites 1–30 along the statistical downscaling transect: (a) raw (nonperturbed) probability of precipitation given that the

preceding two days were dry and wet, respectively, (b) the probability a of selecting the higher precipitation mean from the mixed

exponential precipitation distribution, (c) the lower mean from the mixed exponential precipitation distribution (b1; mm), and (d) the raw

(nonperturbed) higher mean from the mixed exponential precipitation distribution (b2; mm). Note the different scales for b1 and b2.
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precipitation variability in the study region (e.g., Wise

2010), CCSM4 captures these effects well (Smith et al.

2015), and their inclusion significantly increases the log

likelihood. Nonetheless, this is just an illustration of

capability and not a claim that complicated ocean-to–

Great Basin teleconnection dynamics can be fully

captured by index-based perturbation of parameters.

As an illustrative example, the perturbed p0
ij1 values

for the statistical downscaling grid point nearest KSLC

over the analysis period (1950–2100) are shown in

Figs. 9b and 9c, and an increase in p111 is visible over the

record. In addition, there is salient periodic variability in

all of the pij1 time series following the oceanic forcing

terms (cf. Figs. 9b,c with Fig. 9a). Determining the

perturbation of b2 via maximum likelihood formulated

analogous to Eq. (12) yielded sensitivity to the oceanic

modes with a clear increasing trend over the record

(Fig. 9d).

We simulated multisite daily precipitation 500 times

from 1950 to 2100 to illustrate variability in total pre-

cipitation from year to year. Figure 10 shows this vari-

ability at KSLC in comparison with the training data.

Note the overall increasing trend and low-frequency

variability due to ENSO and the PDO. The tendency for

correlation between the training data and the ensemble

mean arises because the oceanic modes (E and P)

driving the precipitation occurrence and amount were

diagnosed from the coupled global climate model sim-

ulation that produced the training data.

6. Discussion and conclusions

We extended the stochastic temperature simulation

framework introduced by Smith et al. (2017) by generaliz-

ing the single-temperature, single-site formulation to en-

compass maximum and minimum temperatures correlated

between multiple sites. This study focused substantially on

the temperature component because temperature has re-

ceived comparatively less attention in the literature despite

its importance to snowpack variability, and wewere able to

markedly improve its realism by leveraging techniques

described in Smith et al. (2017). The formulation of SHArP

shares conceptual similarity with some recent GLM

frameworks referenced in the introduction, but it is unique

in its incorporation of precipitation spatial pattern effects

(e.g., mountain-wet/valley-dry patterns) on temperature

FIG. 9. (a) Standardized indices of the oceanic modes of variability (ENSO and PDO)

diagnosed fromCCSM4. For the site nearest KSLC, (b),(c) annual mean perturbed pij1 values

with trend lines indicated in black, and (d) annual mean perturbed b2 values.

2124 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 57



temporal evolution and spatial covariance. Hypothesis

testing shows that the POP-based decomposition cap-

tures statistically significant differences in observed

temperature covariance. In addition, we presented

a compatible multisite daily precipitation simulation

framework based on Markov chain ideas introduced by

Woolhiser (2008) andWilks (1998, 2009). The precipitation

framework can capture lagged dependence on climate

modes such as ENSO and PDO and was generalized here

to capture trends associatedwith climate change. This study

used data fromweather station locations and grid points on

the downscaled model output grid. Data can be generated

for ‘‘unobserved’’ or off-grid locations by interpolating the

model parameters using elevation and distance relation-

ships via, for example, kriging or use of distance and ele-

vation dependencies following Wilks (1999b).

A key advance from the mathematical formulation of

single-site SHArP introduced in Smith et al. (2017) is the

change from temporally varying noise coefficient vec-

tors (one for dry days and one for wet days) to noise

coefficient matrices that depend on the multisite spatial

POP and simulate observed intersite correlations in

temperature. A total ofM sites yields an unmanageably

large 2M possible POPs, so we employ EOF analysis to

reduce the number of possible POPs to some number

much smaller than 2M. Here, we used the leading two

EOFs for illustration, with the first capturing the contrast

between all sites wet and all sites dry, and the second

capturing mountain-wet/valley-dry versus mountain-dry/

valley-wet patterns. The number of EOFs used might be

increased depending on the patterns of variability in a

particular study region, but it needs to be balanced

against the accompanying decrease in sample size for

estimation of the covariance matrices. After the residual

error for each day is assigned to one of four noise co-

efficient matrices Ck, the entries in the matrices are

temporally smoothed via Fourier analysis, and those

curves are used in the generation process. This method

recognizes only a subset of the total variance in spatial

patterns of occurrence, but we found that two harmonics

were sufficient for capturing the statistical properties of

the input data, and use of more harmonics changed the

results minimally. By modeling POP-specific residuals,

SHArP is able to capture statistically significant contrasts

between precipitation regimes associated with large ver-

sus small intersite temperature covariance.

Another key change associated with the multisite

generalization is related to the Amatrix in Eq. (1), which

replaces the scalar a in the single-site, single-temperature

case. The matrix A contributes to the autocorrelation

of Tmax and minimum temperature Tmin at each site, and

is block diagonal so it provides no intersite effects.

More specifically, A has four entries for each site: the

dependence of Tmax on the previous day’s Tmax and Tmin,

FIG. 10. Annual total precipitation for site nearest KSLC over the period 1950–2100. The

mean of the data is shown by the solid black curve, and degrees of shading from darker to

lighter indicate the 25th–75th percentiles, the 10th–90th percentiles, and the range. The total

number of simulations is 500. The training data from BCCA CCSM4 are shown in red.
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and the dependence of Tmin on the previous day’s Tmin

and Tmax. The dependence of Tmax on the previous day’s

Tmin is arguably the least physical of the four relationships

and could be omitted if weak. The block diagonal as-

sumption on A means that all intersite correlation is

handled by the noise Ck matrices described above, and is

consistent with block diagonal assumptions made for the

matrices that control the autocorrelation of temperature

noise in versions of the Richardson model presented in

previous studies (e.g., Richardson 1981;Wilks 1999b, 2009).

Testing the encoding of SHArP, we verified that the

model accurately estimates the parameters of a broad

range of synthetic multisite input data that we generated

using Eq. (1) (i.e., the estimation procedures recoverAk,

Bk, and Ck). Tested examples include the full model in

Eq. (1) and also simplifications such a vector autore-

gressive process (Bk 5 0) with temporally invariant Ck,

or Ck matrices populated with smooth harmonic time

series. Diagnostics such as intersite correlation matrices

are also skillfully recovered by SHArPwhen the training

data are generated consistent with its model formula-

tion. Similar to other weather generators, though, the

performance diagnostics of SHArP can of course de-

grade for processes with prominent components (e.g.,

nonlinearities) not captured by its basic formulation. As

an example, SHArP currently assumes Ak does not de-

pend on time, so generating synthetic training data using

Eq. (1) with marked temporal fluctuations in Ak pro-

duces positive or negative discrepancies in intersite

correlation at different times during the annual cycle.

The actual training data used here certainly contain

variability associated with processes not in the SHArP

formulations. Nonetheless, fitting SHArP to these data

yields intersite squared correlations that match the

corresponding training data diagnostics to within 0.05,

suggesting that the formulation in Eq. (1) is sufficiently

complex while still being parsimonious.
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