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Abstract

While there are clear definitions of what it means for a deterministic dynamical system to be periodic, quasiperiodic, or chaotic,
it is unclear how to define such notions for a noisy system. In this article, we study Markov chains on the circle, which is a
natural stochastic analogue of deterministic dynamical systems. The main tool is spectral analysis of the transition operator of the
Markov chain. We analyze path-wise dynamic properties of the Markov chain, such as stochastic periodicity (or phase locking) and
stochastic quasiperiodicity, and show how these properties are read off of the geometry of the spectrum of the transition operator.
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1. Introduction

Circle maps are by now standard and extensively studied ob-
jects in the theory of dynamical systems; see [1, 2]. They are
also widely used as models in many applications, e.g. cardiac
arythmias (reviewed by Glass in [3]), the Schrödinger operator
(see [4]), and neural systems (see [5–7]). Notions of phase lock-
ing, quasiperiodicity, and chaos, that describe the dynamics of
such systems, are well defined and understood using tools such
as the rotation number, bifurcation diagrams, and Feigenbaum
diagrams; see [8–10].

Natural systems, however, are inherently noisy. Therefore,
adding a stochastic component to the model makes it both more
interesting and realistic. Introducing randomness compensates
for lack of predictability in systems with a large number of de-
grees of freedom, such as gas molecules or neuronal networks.

Markov chains on the circle are a natural stochastic gen-
eralization of circle maps in that the evolution of the system
only depends on its current state. However, the aforementioned
tools, used to study deterministic systems, do not generalize in
an obvious manner and new analytical methods are needed.

Markov chains are completely determined by their transition
operators and it is widely believed that the spectra of those op-
erators carry all the information about the chain’s dynamics.
Many aspects of these operators (such as mixing, asymptotic
stability, etc) have been extensively studied in the literature; see
for example [11] and the review article [12]. It is well known
that the spectral gap (i.e. the distance between the moduli of
the top two eigenvalues) determines the speed of mixing of the
chain. However, beyond that the rigorous connection between
spectrum and dynamics is still an open problem. (For deter-
ministic dynamical systems, the connection between spectral
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properties of the composition operators and ergodic and mixing
properties of the systems has also been studied; see [13].)

Our work extends and complements earlier findings on real-
complex transitions in the spectrum as indicators of changes in
dynamics; see [14–21]. In these works the authors looked at
properties of individual eigenvalues. In this work we assert that
it is essential to consider the shape of the entire spectrum to
more accurately predict the different aspects of the dynamics.

The article is organized as follows. In Section 2 we give an
overview of circle maps and a discussion of Markov chains.
We also provide examples of well-known circle maps and
their stochastic analogues, namely sine-circle maps and the
integrate-and-fire model. The deterministic versions of these
examples are quite general in the sense that they have bifur-
cation scenarios that are ubiquitous throughout dynamical sys-
tems. In Section 3 we demonstrate how spectra and dynamics
are related in the simpler setting of finite-state deterministic dy-
namical systems. In Section 4 we focus on the stochastic ver-
sions of the aforementioned examples and demonstrate how the
dynamics of the Markov chain are related to the spectrum of its
transition operator. We observe and explain spectral spirals in
the quasiperiodic regime, “zipping” of the spectrum, and emer-
gence and dominance of various phase-locked states. Then, in
Section 5 we discuss our results and relate them to existing de-
scriptions of changes in stochastic dynamics, such as P- and
D-bifurcations and reliability. Finally, in the Appendix we jus-
tify the discretization of the Markov chain transition operator
used in our numerics.

2. Setting

2.1. Deterministic dynamical systems: circle maps
A circle map is a function F : R → R satisfying F(x + 1) =

F(x) + 1 for all x. It defines the map f : S → S : x 7→ {F(x)}
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where {x} = x − [x], [x] is the largest integer smaller than x,
and S is the circle R/Z or, equivalently, the interval [0, 1] with
0 and 1 identified. This in turn defines a dynamical system on
S, namely a sequence xn+1 = f (xn), where x0 is the initial state.
One is then interested in studying the behavior of the sequence
(xn); e.g. its periodicity, quasiperiodicity, ergodicity, support,
invariant measures, dependence on x0, etc. One quantity that
is very useful in answering such questions is the so-called ro-
tation (or winding) number ρ = limn→∞ F(n)(x0)/n, where F(n)

is the n-th iterate of F. Henri Poincaré proved that when f is
orientation preserving this limit exists and is independent of the
starting point x0; see [22, 23]. In this case, ρ is simply the num-
ber of times xn wraps around S in a unit time. Then, when ρ is
rational, the dynamical system is said to be periodic (or phase
locked). In this case, starting at Lebesgue-almost every point
x, xn will eventually converge to a periodic orbit. When the ro-
tation number is irrational the system is quasiperiodic and the
orbit is either dense in [0, 1] (if, for example, F is continuous)
or converges to a Cantor set; see [8, 24]. In the more compli-
cated situation of circle maps that are not orientation preserv-
ing the limit defining ρ may not exist and the limsup and liminf
could depend on the starting point. When this happens, the sys-
tem becomes sensitive to the slightest perturbation of the initial
condition and is said to be chaotic; see [25]. General overview
of these topics can be found in [1, 2, 9, 10].

Usually, there are also one or more parameters on which f
depends; i.e. we have a family fκ(x). Then, one asks about how
the behavior of (xn) depends on the parameter κ. Feigenbaum
diagrams (similar to bifurcation diagrams) allow to visualize
the behavior of (xn) by tracking the attractors of the system, as
functions of κ. Even circle maps that have very simple expres-
sions can exhibit a wide range of interesting behavior.

The next two examples are in the context of neural spiking,
where we think of xn as the phase of the n-th spike relative to
the sinusoidal external forcing. The map then takes the phase
of the current spike within the forcing cycle and transforms it
into the the phase of the subsequent spike.

Example 2.1 (Sine Circle Map). Given a ∈ [0, 1) let

Fκ(x) = x + a + κ sin(2πx) and fκ(x) = {Fκ(x)}.

As κ > 0 varies, the corresponding dynamical system switches
from being essentially quasiperiodic (0 < κ < a) to having one
stable and one unstable fixed points (a < κ <

√
a2 + 1/π2) to

having a limit cycle of two points, then four, etc, until the on-
set of a chaotic regime. (This is the so-called period-doubling
route to chaos.) After that comes a fractal-like sequence of pe-
riodic and chaotic regions. The Feigenbaum diagram appears
in Figure 1A. See Section 4 for some more details.

Example 2.2 (Periodically-driven integrate-and-fire). Given
s ∈ [0, 1) and I ∈ R consider the equation

dV
dt

(t; s) = −
1
τ

V(t; s) + I + κ sin(2πt), t ≥ s;

V(s; s) = 0.
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Figure 1: Feigenbaum diagrams. A) For the sine circle map with a = 0.1. B)
For the integrate-and-fire map with τ = 2 and I = 0.7.

Let Fκ(s) = inf{t > s : V(t; s) > 1} and fκ(s) = {Fκ(s)}, the first
time (mod 1) V(· ; s) reaches the threshold level 1. (If the thresh-
old is not reached, the system is said to have been quenched and
Fκ is set to infinity. This does not happen if I is large enough.)
V models the membrane potential of a neuron. It starts at a reset
level, assumed 0 here, and increases until it reaches a threshold
level, which we assumed to equal 1. When that level is reached
the neuron is said to have fired and the potential is reset. The dy-
namical system of interest is then the sequence of firing times.
Since the stimulus κ sin(2πt) has been chosen to have period
1, the firing times are considered modulo this period, in which
case we have a discrete-time dynamical system on the circle.
This system has been shown to switch from quasiperiodic to
periodic behavior as the parameter increases (Figure 1B; [5]).

Variants of the above integrate-and-fire model have also been
considered in [6]. The resulting circle maps are similar to the
ones mentioned in the above two examples.

2.2. Stochastic dynamical systems: Markov chains - definition
and examples

As was mentioned in the introduction, in some contexts it
is important to include a stochastic component in the system.
Adding noise may drastically change the system’s behavior;
e.g. the dynamical system X′(t) = α − X(t)2 exhibits the so-
called saddle node bifurcation as α changes sign, while the
stochastic counterpart dX(t) = (α−X(t)2)dt+σdB(t) (where B(t)
is standard Brownian motion) becomes such that with probabil-
ity one X(t) → −∞ in finite (albeit random) time regardless of
the values of α or the starting point. Noise endows the system
with new properties such as increased or decreased stability, re-
liability or unreliability, larger range of responses, and so on.
In neuroscience in particular, noise in neuronal systems has re-
cently been receiving a lot of attention. Nervous systems seem
to have developed many ways to counteract the noise, and also
multiple ways to use it to their benefit. For examples and re-
views see [26–31].

In this work, we will focus on a particular type of stochastic
processes, namely Markov chains (Xn) on the circle S (endowed
with its Borel σ-algebra). For such processes, the distribution
of the next position Xn+1 only depends on the value of the cur-
rent position Xn, as opposed to the whole history X0, . . . , Xn.
Subsequently, Markov chains on the circle are a natural stochas-
tic generalization of circle maps.
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A Markov chain is completely determined by its transition
operator that maps bounded continuous functions to bounded
measurable ones:

Π : C (S)→ L∞(S) : h 7→ Πh(x) = Ex[h(X1)], (2.1)

where Ex[h(X1)] is the average value of h(X1) given X0 = x.

Example 2.3. Let F be a circle map. Let σ > 0 and (ξn)
a sequence of independent identically distributed (i.i.d.) ran-
dom variables. Set Xn+1 = {F(Xn) + σξn+1}. Here, Πh(x) =

E[h({F(x) + σξ1})].

As a special case, one can take F to be as in Examples 2.1
or 2.2. When also ξi are standard normal we call the former the
stochastic sine circle map model and the latter the simplified
stochastic integrate-and-fire model.

Another (in a sense more natural) way to introduce noise to
the integrate-and-fire model is as follows.

Example 2.4 (Stochastic integrate-and-fire). Fix σ > 0. Given
time s ∈ [0, 1) consider the stochastic differential equation

dV(t; s) =
(
−

1
τ

V(t; s) + κ sin(2πt) + I
)

dt + σ dB(t), t ≥ s;

V(s; s) = 0.

(Recall that B(t) is standard Brownian motion.) Given a starting
time s ∈ [0, 1) define the Markov chain (Tn) of (folded) neuron
firing times as follows: T0 = s and for n ≥ 0, Tn+1 = {inf{t : t >
Tn,V(t; Tn) > 1}}. Here, Πh(s) = Es[h(T1)].

It is noteworthy that when the noise in Example 2.4 is small,
i.e. σ � 1, the Markov chain stays very close to the one in Ex-
ample 2.3 with a possibly different but also small σ, function
F corresponding to Example 2.2, and variables ξi i.i.d. stan-
dard normal; see [14]. Hence the name “simplified” stochastic
integrate-and-fire. The advantage of using the model in Exam-
ple 2.3 is just that it is easier to simulate.

Throughout the paper, we will assume transition operator Π

has a transition density (or kernel) p(y | x) relative to Lebesgue
measure:

Πh(x) =

∫ 1

0
p(y | x)h(y) dy.

Heuristically, p(y | x)dy is the probability of the Markov chain
jumping to (y, y+dy), given it is currently observed at x. This as-
sumption is satisfied in the case of Example 2.3 when variables
ξn themselves have a density relative to Lebesgue measure. In
this case p(y | x) has an explicit formula in terms of the density
of the ξ-variables. Our assumption is also satisfied in the case
of Example 2.4. Here, however, p(y | x) is not explicit. It satis-
fies a Volterra integral equation that can be solved numerically,
e.g. following the scheme described in [32].

Since the state space of the Markov chain is compact, there
exists at least one invariant measure µ, i.e. a measure µ such
that µ{X1 ∈ A} = µ{X0 ∈ A} for all measurable sets A. (If
X0 has distribution µ, then so does Xn for all n ≥ 1.) When
p(y | x) > 0 for Lebesgue-almost every x and y, this invariant

measure is unique, i.e. there is no multistability. This measure
is also ergodic, i.e. Πh(x) = h(x) for µ-almost every x implies
the existence of a constant c such that h(x) = c for µ-almost
every x; see for example Theorem 10.0.1 of [33]. Furthermore,
measure µ is supported on the whole interval [0, 1] and is mu-
tually absolutely continuous relative to Lebesgue measure; see
for example Theorem 10.4.9 of [33].

2.3. Stochastic dynamical systems: Markov chains - dynamics

It is an interesting and hard question to classify how the dif-
ferent ways of adding noise to a dynamical system affect the
resulting dynamic behavior. It is in fact not always clear how to
even define the stochastic counterparts of phenomena such as
phase locking, quasiperiodicity, chaos, etc.

For instance, even when the system is ergodic and the rota-
tion number ρ exists and is independent of the starting point, it
often depends continuously on the strength of the noise and thus
does not quite expose a periodic, quasiperiodic, or chaotic be-
havior, contrary to the deterministic case. To illustrate in simple
example, consider the Markov chain Yn on R with transitions

πn,n+1/3 = πn+1/3,n+2/3 = 1 and
πn+2/3,n+4/3 = 1 − πn+2/3,n+1 = ε ∈ (0, 1),

for n ∈ Z, and πx,[x]+1 = 1 for any x < Z/3. The corresponding
Markov chain Xn on the state space [0, 1) has transitions π0,1/3 =

π1/3,2/3 = 1, π2/3,1/3 = 1 − π2/3,0 = ε, and πx,0 = 1 for x <
{0, 1/3, 2/3}. (For Markov chain Yn, πx,y is the probability that
it will transition from location x to location y. In the case of Xn,
the subscripts are locations folded relative to a period of 1.)

Markov chain Xn has a unique invariant measure concen-
trated at 0, 1/3, and 2/3 with weights equal to (1 − ε)/(3 − ε),
1/(3 − ε), and 1/(3 − ε) respectively. (In other words, if X0 is
chosen according to this measure, then Xn has the same dis-
tribution for all n ≥ 0.) The rotation number for Xn is in-
herited from Yn and by the ergodic theorem equals the aver-
age increment of chain (Yn) once it has reached stationarity:
limn→∞ Yn/n = E[Y1]. However, once stationary, (Yn) has in-
crement 2/3 a fraction ε × 1/(3 − ε) of the time and 1/3 a frac-
tion 1 − ε × 1/(3 − ε) of the time. Hence, the rotation number
equals 2/3 × ε/(3 − ε) + 1/3 × (3 − 2ε)/(3 − ε) = 1/(3 − ε).

Clearly, we can choose ε as small as we wish and have ρ < Q
or ρ ∈ Q at will. However, as ε→ 0 the Markov chain becomes
very similar to a deterministic system of period 3.

Remark 2.5. Although the above example is highly singular,
it can be modified so that Π does have a smooth density p(y | x)
and still have the rotation number ρ be rational or irrational as
desired.

On the other hand, the stochastic analogue of a fixed-point bi-
furcation is useful for studying the dynamics of random dynam-
ical systems. One stochastic counterpart of a fixed point is an
invariant measure. As was pointed out at the end of Section 2.2,
the systems we consider have a unique invariant measure. Still,
one may define a stochastic bifurcation (called pathological- or
P-bifurcation, [34]) as the point where a qualitative change in
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the invariant measure takes place. For example, as the parame-
ter crosses a value, the probability density function of this mea-
sure may switch from having one peak to having two peaks.

Another stochastic counterpart of a fixed point is the so-
called random attractor. Roughly speaking, the stochastic bi-
furcation called dynamic- or D-bifurcation occurs when the sys-
tem switches from being reliable (i.e. paths with different initial
states converge as n→ ∞) to being unreliable (i.e. paths do not
converge), or vice versa; see [34] and Definition 5.4 of [35].

There is no unique way to define a stochastic bifurcation. For
instance, it is possible in general to construct examples where
both of the above types or only one type of bifurcation occurs.
See Chapter 9 of [34] for examples in the context of stochastic
differential equations.

The situation in a stochastic system is further complicated
by the fact that it exhibits different dynamics at different time
scales. For instance, an ergodic Markov chain on S will revisit
and get as close as we wish to any piece of any given orbit, no
matter how long the piece is, infinitely many times. In other
words, the Markov chain will look at times as if it is periodic of
period 2, and at other times will seem to have period 5, and at
others will seem quasiperiodic or chaotic, and so on. Of course,
each such behavior comes with a likelihood value and the dy-
namics of interest are the ones that are “more likely” to occur.
This brings us to the subject of the current work.

In the Appendix we show that under suitable assumptions
transition operator Π has countably many nonzero eigenvalues
with finite multiplicities. In Section 4 we relate the various dy-
namic regimes of the Markov chain to this spectrum. But first
we start with the simpler situation of deterministic finite-state
dynamical systems. In the next section, we show how these can
be represented by a matrix and how the dynamics of the system
are intimately related to the spectral properties of the associated
matrix.

Although we do not use deterministic systems to deduce any
properties about the stochastic operators we analyze in Section
4, the results of the following section guide us and provide in-
sights in the course of our analysis.

3. Finite-state dynamical systems: circle map matrices

Throughout this section N will be a fixed natural number
and we consider dynamical systems on N states, i.e. maps from
{1, . . . ,N} into itself. Such maps arise as discretizations of cir-
cle maps, by binning the circle S into N equal intervals. (To
continue the analogy with spiking systems, think of the situa-
tion where the forcing period is divided into N bins and instead
of spike times only the bin numbers from 1 to N are recorded.)

Let us justify our use of the term “circle map matrix” in the
title of the section. Observe that there is a one-to-one corre-
spondence between maps from {1, . . . ,N} into itself and N × N
matrices with entries in {0, 1} and such that each row has ex-
actly one entry equal to 1. Indeed, given such a matrix, each
i ∈ {1, . . . ,N} maps to the unique integer j such that πi, j = 1,
and vice-versa. We will thus abuse notation and use π for both
objects. See Figures 2A and 2B.

When N is small it is quite simple to deduce the dynamics
of the system by looking directly at the matrix itself and no
spectral analysis is really necessary. However, when N is large
this is no longer possible. The objective of this section is to
determine which features of the spectrum are responsible for
the different aspects of the dynamics.
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Figure 2: A) A map with N = 12 showing C1 = {1, 2}, C2 = {3, 4}, C3 =

{5, 6, 7}, T1 = {8}, T2 = ∅, T3 = {9, 10, 11, 12}, T = {8, 9, 10, 11, 12}, and the
leaves are {8, 9, 11, 12}. B) The corresponding 12 × 12 matrix (unitary entries
are shaded). C) An eigenvector corresponding to an eigenvalue λ with λ3 = 1.

Let π be a map from {1, . . . ,N} into itself. This map induces
a dynamical system: each point i ∈ {1, . . . ,N} flows into π(i).
We will use πn(i) to denote the image of i under n applications
of the map π. Under the action of the map π, {1, . . . ,N} can be
split into a transient part

T = {i : πn(i) , i ∀n ≥ 1}

and a finite collection of disjoint cycles (or irreducible com-
ponents) C1, . . . ,Ck: ∀i ∈ C` ∃n ≥ 1 such that πn(i) = i and
C` = {πm(i) : m ≥ 0}.

We show an example of such a map in Figure 2 with N =

12. Panel A shows the possible transitions under the map and
panel B the corresponding matrix with zero entries shown in
white and entries of one are shaded. Each row i of the matrix
has exactly one nonzero (shaded) entry in column j such that
π(i) = j.

Let p` be the cardinality of C`, i.e. the length of the cycle.
Then each cycle C` is of the form {x0, . . . , xp`−1} with π(x0) =

x1, . . . , π(xp`−2) = xp`−1, and π(xp`−1) = x0.
T can be further split into disjoint transients that eventually

flow into the different cycles:

T` = {i ∈ T : ∃n ≥ 1 such that πn(i) ∈ C`}.

A point i ∈ T is called a leaf if 6 ∃ j such that π( j) = i. Leaves
of T correspond to 0 columns of π. Thus T is empty if and
only if π has no 0 columns. When T is empty, π is a bijection
and the corresponding map is a permutation of {1, . . . ,N}.

As can be seen from Figure 2A, in this example C1 =

{1, 2}, C2 = {3, 4}, C3 = {5, 6, 7}, T1 = {8}, T2 = ∅,
T3 = {9, 10, 11, 12}, T = {8, 9, 10, 11, 12}, and the leaves are
{8, 9, 11, 12}.

Let π be the circle map N × N matrix corresponding to the
map π as described above (Figure 2B). We will identify a vector
v ∈ CN with a function v : {1, . . . ,N} → C in the obvious way.

Note that if v = (v(1), . . . , v(N)) then πv =

(v(π(1)), . . . , v(π(N))) or, in other words, πv(x) = v(π(x)).
We denote the transpose of π by π∗. If v is such that v( j0) = 1
and v( j) = 0 for j , j0, then (π∗)iv is a vector that has a 1
at the πi( j0)-th coordinate and 0 elsewhere. In other words,
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matrix π∗ flows the mass according to the map π. (This in fact
explains why in the physics literature π∗ is sometimes called
the transition matrix, rather than π.)

Recall that the geometric multiplicity of an eigenvalue λ is
the dimension of the corresponding eigenspace Eλ(π). The al-
gebraic multiplicity is the multiplicity in the characteristic poly-
nomial det(π − λI). The algebraic multiplicity is always larger
than or equal to the geometric multiplicity.

The following lemma fully describes the spectra and
eigenspaces of circle map matrices π and their connection to
the dynamics (i.e. the cycles and transients) of the correspond-
ing maps π.

Lemma 3.1. The following hold about π.
(a) The spectrum of π consists of the union of all the roots of

λp` = 1, 1 ≤ ` ≤ k, and, if T , ∅, of 0. (Recall that k is the
number of cycles and p1, . . . , pk their lengths.)

(b) Eigenvectors corresponding to eigenvalue λ , 0 with
λp = 1 can be obtained by setting v to 1 at any x0 in a cycle
of length p then using v(π(x)) = λv(x) to define v on the rest
of the cycle and at any points in T eventually mapping into the
cycle. On the rest of the points v is set to 0 (Figure 2C).

(c) An eigenvalue λ , 0 has geometric multiplicity equal to
the number of cycles of length p with λp = 1. The geomet-
ric and algebraic multiplicities are equal for such eigenvalues.
Consequently, the projection of the matrix onto the correspond-
ing eigenspace is diagonalizable. (In particular, eigenvalue 1
has geometric and algebraic multiplicities k, the number of dis-
joint cycles.)

(d) If T is not empty, eigenvectors corresponding to eigen-
value 0 are obtained by setting v to 1 at a leaf of T and 0 else-
where.

(e) If T is not empty, eigenvalue 0 comes with geometric mul-
tiplicity equal to the number of leaves of T . This is the same as
the number of 0 columns of π. Its algebraic multiplicity equals
the cardinality of T .

Proof. First, observe that the matrix π can be diagonalized into
` blocks each corresponding to a set T` ∪C`. Thus, it is enough
to consider the case of one cycle of length p and one transient
T eventually flowing into C under the action of π.

Next, notice that if πv = λv, λ , 0, and C = {x0, . . . , xp−1}

as explained above, then v(xi) = λiv(x0) for 0 ≤ i ≤ p − 1 and
either λp = 1 or v ≡ 0 on the whole cycle. In the latter case,
v(π(x)) = πv(x) = λv(x) for all x implies v ≡ 0 on T as well.
On the other hand, if πv = 0, then v(π(x)) = 0 for all x and
thus v(y) can only be nonzero if y is a leaf of T . Claims (a),
(b), and (d) now follow. Since we only have one cycle of length
p, the p nonzero eigenvalues are simple and claims (c) and (e)
follow.

Remark 3.2. Since the geometric and algebraic multiplicities
may differ for λ = 0, diagonalizing the corresponding part of π
may result in a number of nilpotent blocks (the Jordan decom-
position). The number of these blocks equals the number of
leaves of T and the length of the different blocks is determined
by the length of the different branches of T .

Let us now illustrate the lemma using the example in Figure
2. The spectrum of the matrix consists of −1 with multiplicity
2, 1 with multiplicity 3, e

2πi
3 and e−

2πi
3 with multiplicity 1 each,

and of zero with algebraic multiplicity 5. Parts (a), (c) and (e)
of the lemma imply then that the total number of cycles is 3 (the
multiplicity of eigenvalue 1), that there are two cycles of length
2, one cycle of length 3, and that there are 5 transient states.
The geometric multiplicity of eigenvalue 0, which equals the
number of zero columns in the matrix, is 4. Hence there are
four leaves in the system.

According to part (b) of the lemma the eigenvectors for non-
zero eigenvalues can be found by starting somewhere at the cy-
cle of corresponding length, setting 1 there and then proceeding
forward and backward, respectively multiplying and dividing
by λ, and then setting all the other connected components to
zero. This is illustrated in Figure 2C for a λ with λ3 = 1 (which
hence corresponds to a cycle of length 3). The resulting eigen-
vector is (0, 0, 0, 0, 1, λ, λ2, 0, λ−1, λ, 1, 1). Non-zero entries of
each eigenvector point out a connected component of the net-
work.

According to part (d) eigenvectors corresponding to eige-
navlue zero have a one at a leaf and zeros elsewhere. In the
example (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) is one such eigenvector,
since 12 is a leaf.

Next, we describe the spectrum and eigenspaces (associated
to nonzero eigenvalues) of the adjoint (or transpose) of a circle
map matrix. (The eigenvectors associated to eigenvalue 0 are
also possible to describe, though we omit them.)

Lemma 3.3. The following hold about π∗.
(a) The spectrum of π∗ is the same as that of π, with the same

multiplicities.
(b) Eigenvectors corresponding to eigenvalue λ , 0 with

λp = 1 can be obtained by setting v to 1 at some x0 in a cy-
cle of length p then using v(x) = λv(π(x)) to determine v along
the cycle, and setting v to 0 outside the cycle.

Part (a) is a known fact about real matrices. The proof of part
(b) is similar to that of the previous lemma and is thus omitted.
(Observe that π∗v(x) =

∑
y:π(y)=x v(y), with the usual convention

that a sum over an empty set is 0.)
Recall that π∗ flows mass forward. Thus, the eigenvectors

of π∗ corresponding to λ = 1 give the invariant measures of
the Markov chain with transition matrix π. The main (extreme,
ergodic) ones are the uniform measures on each cycle (thus, k
of them) and all other invariant probability measures are simply
convex combinations of these.

One useful consequence is that an orthogonal system of
eigenvectors of π∗ corresponding to λ = 1 reveals the differ-
ent cycles: each eigenvector consists of ones on the cycle and
zeros elsewhere.

If we consider sites {1, . . . ,N} to be ordered in the natural
way, then even if we know the cycle lengths, cycles of the same
length may differ in the way their elements are ordered. For
example, the cycle 1 7→ 3 7→ 2 7→ 1 is different from the
cycle 1 7→ 2 7→ 3 7→ 1, even though they both have period (or
length) 3. The difference is that the first cycle crosses the set
{1, 2, 3} twice before its completion (i.e. requires two periods),
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while the second cycle crosses it only once before completion
(i.e. requires one period). We thus say the former cycle is 2:3
(two-to-three) while the latter is 1:3 (one-to-three). In general
a cycle is q : p if q periods are needed to complete the cycle of
length p.

To track down the different q : p cycles we can find an orthog-
onal system of eigenvectors of π∗ corresponding to (any) λ , 1
with λp = 1 and p being the length of the cycle in question. Af-
ter normalizing each vector to have an entry equal to 1, powers
of λ−1 indicate the successive elements of the cycle. q − 1 then
is the number of times we encounter π(x) < x along the cycle.

Remark 3.4. If the map on {1, . . . ,N} is induced by folding an
integer-valued dynamical system with positive increments, then
the notion q : p can also be introduced in the original (unfolded)
process, but then q may get larger by the number of periods
skipped during the cycle. For example, the unfloded version of
1 7→ 2 7→ 3 7→ 1 7→ · · · requires crossing the cycle at least
once, but possibly more if some cycles are skipped completely.
Thus, the actual (unfolded) value of q cannot be determined
from the folded map.

4. Stochastic circle maps: dynamics and spectrum

We now return to our earlier discussion of Markov chains on
the circle. By the discussion in the Appendix, the transition op-
erator Π defined by (2.1) is a compact operator. It thus has a
discrete spectrum with the nonzero (countably many) eigenval-
ues having finite multiplicities and possibly accumulating at 0;
see Theorem 6.26 of Chapter 3 of [36].

The purpose of this section is to relate this spectrum to the
dynamics of the Markov chain. For now we will focus our dis-
cussion on the concrete context of the stochastic sine circle map
in Example 2.3. In Sections 4.8 and 4.9 we will briefly discuss
the other two models of integrate-and-fire. Let us recall the set-
ting: a ∈ [0, 1), fκ(x) = x + a + κ sin(2πx), Xn+1 = fκ(Xn) +σξn,
and ξn i.i.d. standard normal random variables.

To get a sense of things to come we invite the reader to watch
the movie associated with Figure 3A. It shows the spectrum and
dynamics of the stochastic system as parameter κ is varied. In
the video, parameters a and σ are set to 0.1 and 0.05 respec-
tively. The top left panel shows the spectrum of the stochastic
system, a sample trajectory (with X0=0.1) is in the lower left
panel, and the middle panel shows the corresponding invariant
measure . The right panels show the dynamics with the same κ
in the deterministic case (σ = 0). The type of dynamics can be
read off of the Feigenbaum digram in the top panel or from ob-
serving a sample trajectory in the lower panel, where x0 = 0.1.
The goal of the remainder of this section is to describe and ex-
plain various features that can be seen in the movie, such as spi-
ral structures in the spectrum, the apparent mismatch between
stochastic and deterministic dynamics, etc.

The reason we chose to provide more details for the analysis
of the stochastic sine circle map over the stochastic integrate-
and-fire of Example 2.4 is that its deterministic system has
quasiperiodic, periodic, and chaotic regimes. However, our
analysis uses general ideas that apply to other situations such

as Example 2.4 and its modification, the simplified stochastic
integrate-and-fire, in Example 2.3. The movie associated with
Figure 3B shows how the spectrum of Π changes with param-
eter κ in the case of the stochastic integrate-and-fire. See also
Sections 4.8 and 4.9.

Figure 3: Videos showing the spectrum (upper left), Markov chain dynam-
ics (lower left), invariant measure (lower middle), Feigenbaum diagram (upper
right), and deterministic dynamics (lower right). Click on the image to start
the video (if your reader supports it). Left) For the sine circle map with pa-
rameters a = 0.1 and σ = 0.05; see supplementary file vid1 small.avi.
Right) For the integrate-and-fire map of Example 2.4 with parameters I = 0.7,
τ = 2, and σ = 0.01; see supplementary file vid3 small.avi. Files available
at http://www.math.utah.edu/∼borisyuk/DS. A video for the simplified
integrate-and-fire model of Example 2.3 (vid3 small.avi) is also available
at this website.

Our results are more interesting when noise is small, i.e.
σ � 1. This is natural, since injecting a large amount of noise
causes the Markov chain to mix faster and lose any signs of pe-
riodicity or quasiperiodicity. Regions of dominance of different
types of dynamics (that we describe below) become blurred and
overlapping for larger noise.

We will break our analysis of this example into the different
regimes of κ. In the following sections (xn) will denote the de-
terministic dynamical system and (Xn) the Markov chain. In
our figures we chose to set a = 0.1 and σ = 0.05.

We should note here that the analysis below is for operator Π

itself, while the numerical computations performed to plot our
figures were done by discretizing operator Π into a 1000×1000
stochastic matrix. We explain in the Appendix how and why
this works.

4.1. Below a: 0 < κ < a

In this regime the deterministic map fκ does not have a fixed
point and the sequence (xn) wraps around the circle S; see Fig-
ures 4A and 4B upper. If a is irrational, the deterministic dy-
namical system is quasiperiodic (i.e. the trajectory densely cov-
ers the circle) for a whole interval of κ-values near 0. Outside
this interval, or if a = p0/q0 is rational (as in the parameter in
our plots where a = 1/10), there are infinitely many intervals of
κ-values where the orbit is periodic of period q (see the leftmost
part of Figure 1A corresponding to small κ). These intervals are
very short: width w(q) of an interval corresponding to period q
satisfies w(q) ∼ q−β with β ≈ 2.29. See [37].

When noise is present in the system, because the intervals
with periodic behavior are short and mostly correspond to large
periods, periodicity is washed out and the quasiperiodic regime
dominates in this range of κ-values. We will say the chain is
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quasiperiodic. This is confirmed empirically in the numerical
simulations, see Figure 4B lower. We next show how the spec-
trum of transition operator Π may allow us to distinguish this
parameter region.
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Figure 4: A) Sine circle map with a = 0.1 and κ = 0.03 and the first few steps of
cobwebbing of sequence (xn) with x0 = 0.1. B) Upper: deterministic squence
(xn); Lower: Markov chain (Xn) with σ = 0.05. Both sequences are wrapping
densely around S and are hence quasiperiodic. C) The spectrum of Π exhibiting
the spirals.

The spectrum of Π consists of two conjugate spirals; see Fig-
ure 4C. To explain these spirals consider the case κ = 0. (Re-
call that Π has countably many eigenvalues accumulating at 0.
Thus, only a few are visible in the figure.) For σ > 0 consider
the Markov chain on S defined by Xn+1 = {Xn + a +σξn}, where
ξn is an i.i.d. sequence of standard normal random variables.
Then, Πh(x) = E[h({x + a + σξ1})].

The spectrum of the shift operator h(x) 7→ h({x+a}) is {e2πika :
k ∈ Z}, where i =

√
−1. The corresponding eigenfunctions

are {e2πikx : k ∈ Z}. So if a is rational, there are finitely many
eigenvalues, but they come with infinite multiplicity, since e2πika

will match for infinitely many k’s.
The spectrum of the heat operator h(x) 7→ E[h({x + σξ1})]

is {e−2π2k2σ2
: k ∈ Z}. The corresponding eigenfunctions are

again {e2πikx : k ∈ Z}. So 1 has multiplicity 1, but all other
eigenvalues have multiplicity 2.

The two operators commute and can be diagonalized simul-
taneously. As a consequence, the spectrum of the combined
operator Π is

{e−2π2k2σ2
e2πika : k ∈ Z} (4.1)

and the corresponding eigenfunctions are {e2πikx : k ∈ Z}.
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Figure 5: Plot of the spiral (4.1) with k varying from 0 to 20. A) a = 0.1. B)
a = 0.505. C) a = 0.354.

Each eigenvalue has multiplicity 1. The way to visualize the
spectrum is to start with the eigenvalue 1 and then every time
rotate by an angle of 2πa, both clockwise and counterclockwise,
while shrinking the modulus, resulting in a spiral. An example

with a = 0.1 is shown in Figure 5A. This is the exact spectrum
for our sine circle map example with κ = 0. Note that if 2πa
is close to π, then the spectrum looks like two spirals because
eigenvalues in (4.1) alternate between having an angle near 0
and an angle near π. Figure 5B shows the spiral for a = 0.505.
Compare it with early frames of the movie associated with Fig-
ure 3B and see also Sections 4.8 and 4.9. Similarly, if 2πa is
close to 2π/3 or 4π/3, the spectrum looks as if it is made out of
3 spirals; see Figure 5C.

For small non-zero κ the spectrum will be close to the one for
κ = 0 (Figure 4C). This is because when σ > 0 operator Π is
compact and strongly continuous in κ. Thus, its spectrum is also
continuous in κ, in the sense of Lemma A.1 of the Appendix.

The above allows to detect the presence of a spiral, for small
κ, by checking if angles are (approximately) equal between con-
secutive eigenvalues (sorted in decreasing order of their norm).

For larger κ, the angle between consecutive eigenvalues is no
longer constant (or close to constant). Adding to this the fact
that depending on the value of a, the geometry of spirals (4.1)
can be quite complex (Figure 5B and 5C), numerically testing
for the presence of a spiral may become a non-trivial task.

In the next two sections we consider the change in stochastic
dynamics as the deterministic system undergoes a saddle-node
bifurcation. Based on the changes in dynamics and spectrum
with κ, as summarized in the movie in Figure 3, we chose to
split the discussion of this regime into two sections: one where
the Markov chain can escape the trap made by the saddle-node,
and one where the escape becomes highly improbable. We
chose to consider that it is still probable for a normally dis-
tributed random variable to exceed three standard deviations,
while exceeding five standard deviations is highly unlikely. (In
probability theory, the former is usually referred to as a central
limit, or a small deviation event, while the latter is a large de-
viation event.) The boundary between the two types of events
is in fact vague and the choice of the specific constants 3 and
5 is quite arbitrary. In the following two sections we suggest
that the distinction can be made more precise by considering
the changes in the spectrum of Π.

4.2. Near a: a < κ < a/(1 −C2
1σ

2π2/2) with C1 small (C1 ∼< 3)

As κ gets closer to a the corridor which the sequence (xn)
has to cross gets narrower, as Figure 6A shows. The sequence
still wraps around S, but spends more time clearing the corridor.
When κ goes above a, the corridor vanishes and the sequence
(xn) gets “trapped.” The map develops one stable and one un-
stable fixed points (Figures 6B and 6C upper). (This is the well
known saddle-node bifurcation.)

The portion of the map curve below the y = x diagonal,
shown in Figure 6B, forms a trap of height h for the Markov
chain as well. The probability the chain clears this trap is
P{ξ ≥ h/σ} which is of order e−h2/(2σ2) (recall that ξ is a stan-
dard normal random variable). The time it takes the chain to
exit the trap is then of order eh2/(2σ2).

To compute h we note that it equals the distance between the
two solutions of fκ(x) = x, which are the same as the solutions
of sin(2πx) = −a/κ (inset of Figure 6B). When κ is close to a,
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a Taylor expansion of fκ near the fixed point shows that h ≈√
2(1 − a/κ)/π2.
When h/σ is small (roughly speaking, the height to clear is

less than 3 standard deviations) jumping out of the trap takes a
central limit theorem type event to happen, and is hence likely.
The Markov chain keeps wrapping around S and we still con-
sider it quasiperidoic (6C lower).

In this regime, the spectrum continues to consist of two con-
jugate spirals.
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Figure 6: A) Sine circle map with a = 0.1 and κ = 0.08, cobwebbing of se-
quence (xn) with x0 = 0.1, and the sequence itself, which is still quasiperiodic
(inset). The scale bar is 10 time units. B) Sine circle map with a = 0.1 and
κ = 0.1125 and cobwebbing of sequence (xn) with x0 = 0.1. Here, when
σ = 0.05, C1 = 3 and the trap is still small. Inset shows how the size h of
the trap is computed by estimating the distance h between the two solutions of
sin(2πx) = −a/κ in (0, 1) in terms of the depth δ = 1 − a/κ of the curve. C)
Parameters are a = 0.1 and κ = 0.1125. Upper: deterministic sequence (xn)
converging monotonically to the fixed point; Lower: Markov chain (Xn) with
σ = 0.05, spending some time near the fixed point, but eventually escaping and
still wrapping around S.

4.3. Before
√

a2 + 1/(4π2) : a/(1 −C2
1σ

2π2/2) < κ and
κ < a/(1 −C2

2σ
2π2/2) with C2 large (C2 ∼> 5)

As the depth h of the trap becomes large it takes a large de-
viation event for the Markov chain to jump over the trap (i.e.
the probability of achieving this becomes extremely small); see
Figure 7A. The Markov chain spends a long time near the fixed
point; see inset of Figure 7A and note the change of scale on
the time-axis. The larger C2 = h/σ is, the more dominant the
periodic regime is.

The above is very well captured by the spectrum. Indeed,
the fact that h/σ has become large and the fixed point started
to emerge is indicated by the spiral beginning to zip. By this,
we mean that conjugate eigenvalues “collide” and become real,
starting with the two second largest in modulus (Figure 7B).
The size of the remaining spiral indicates the amount of contri-
bution of the quasiperiodic regime (Figure 7C).

One can quantify the size of the zipped region as follows: Let
λk be the eigenvalues of Π ranked so that 1 = λ0 ≥ |λ1| ≥ . . . .
Let K = min{k : λk ∈ R, λk+1 < R}. Then 1 − |λK | indicates
the size of the zipped region. We call this quantity the zipping
index. The right panel in Figure 11 demonstrates how as the
size of the zipped region increases the time it takes the Markov
chain to escape the fixed point becomes larger, i.e. stochastic
phase locking becomes more pronounced.

4.4. Near
√

a2 + 1/(4π2)
While κ is below

√
a2 + 1/(4π2) the slope at the stable fixed

point is positive and (xn) converges monotonically to the stable
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Figure 7: A) Sine circle map with a = 0.1 and κ = 0.14 and cobwebbing of
(xn) with x0 = 0.1. Markov chain time course (Xn) with σ = 0.05 (inset). Here,
C2 = 4.8 and the size h of the trap is large. Hence, the chain spends a very long
time near the fixed point. Note that the scale bar in this inset is 20 time units.
B) The spectrum of Π at κ = 0.14 showing the beginning of the “zipping” of the
spirals, as the two second-largest eigenvalues collide and become real. C) The
spectrum of Π at κ = 0.167: the zipping continues, as the fixed point becomes
more present.

fixed point; see Figures 6B, 6C upper, and 7A. As κ crosses
that value the slope switches from positive to negative. At this
point the sequence (xn) starts oscillating around the fixed point
as it converges to it; see Figures 8A and 8B upper. The system
is starting to prepare for the upcoming cycle of period 2, as
explained further in Section 4.5.

Short before
√

a2 + 1/(4π2) noise allows the Markov chain
more and more to move around the fixed point. A cycle of
period 2 starts emerging, although the fixed point regime is
still the dominant one. This will happen earlier for larger σ,
since the Markov chain has more of a chance to start oscillat-
ing around the fixed point. On the spectrum side, the presence
of period 2 cycle is manifested by negative eigenvalues becom-
ing nonnegligible. (Remember from section 3 that for circle
map matrices period 2 cycles corresponds to eigenvalues of ±1.)
The larger the modulus of the largest negative eigenvalue is, the
more present the cycle of period 2 becomes.

Short after
√

a2 + 1/(4π2), the period 2 cycle starts domi-
nating; see Figure 8B lower. The negative eigenvalue now be-
comes the second-largest in modulus; see Figure 8C.
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Figure 8: A) Sine circle map with a = 0.1 and κ = 0.29 and cobwebbing show-
ing oscillations while converging to the fixed point. B) Upper: deterministic
sequence (xn); Lower: Markov chain (Xn) with σ = 0.05, switching between
oscillating around and converging to the fixed point. C) The spectrum of Π: the
negative eigenvalue is now the second largest in modulus.

4.5. Near
√

a2 + 1/π2

As κ keeps increasing the slope at the fixed point decays to-
wards −1, oscillations take longer, and the fixed point becomes
less stable. The second iteration fκ ◦ fκ starts going through a
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similar scenario as the one the first iteration went through. More
precisely, as κ gets closer to

√
a2 + 1/π2 the slope of the second

iterate at the fixed point grows closer to 1 and as κ gets larger
than this value, its graph crosses the diagonal at three points,
the middle one corresponding to an unstable steady state of the
map and the other two to a cycle of period 2; see Figures 9A
and 9B.

In the stochastic system, however, the presence of a cycle of
period 2 becomes very strong but the stable fixed point is still
felt. More precisely, the Markov chain oscillates for a long time
around the fixed point, but then approaches the fixed point for
another long period of time. This behavior is similar to what
happened near κ = a: the second iteration fκ ◦ fκ does not yet
present a large trap; see the inset of Figure 9A. After that, the
trap gets larger and observing excursions that stay close to the
fixed point becomes more rare; see Figure 9B.

This is again captured by looking at the spectrum: as the trap
gets larger, the negative eigenvalue gets closer to −1. The fixed
point regime starts becoming negligible when this eigenvalue is
at its closest to −1; see Figure 9B. The Markov chain can now
be considered periodic of period 2.
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Figure 9: A) Sine circle map with a = 0.1 and κ = 0.355, cobwebbing showing
a cycle of period 2. Inset: time course of the Markov chain (Xn) with σ = 0.05
having a dominant period 2 but a still present fixed point regime. Here, the
trap in the second iteration fκ ◦ fκ is still small. B) The second iteration of the
sine circle map with a = 0.1 and κ = 0.405. The trap is now bigger and the
Markov chain spends much more time oscillating between the two fixed points
of fκ ◦ fκ (inset). Scale bar on both insets is 10 time units. C) The spectrum of
Π at κ = 0.405: the second-largest eigenvalue is very close to −1.

To quantify the strength of the different periodic scales intro-
duce the function

R(ξ) =
∣∣∣∣ ∞∑

k=0

rke2πiξϕk

∣∣∣∣, (4.2)

where rke2πiϕk are the eigenvalues of Π. The magnitude of R(p)
corresponds to the relative dominance of q:p phase-locking in
the stochastic dynamics. The left panel in Figure 11 demon-
strates how certain scales are more dominant than others, as κ
varies.

On a related note, it was shown in Section 2 of [15] that un-
der some technical conditions on the underlying deterministic
system (in particular, periodicity) and in the limit σ → 0, the
second largest eigenvalue of Π converges to −1 in the period
two case, while in the period four case the top four eigenvalues
converge to the fourth roots of 1, etc. Although, these results
support our observations in the above two sections, they do not
directly apply as we consider the case of a fixed σ > 0.

4.6. Larger κ

The above process continues as the deterministic system de-
velops cycles of period 4, then 8, then 16, and so on; see Figure
1A. At a finite κ, the length of the cycle reaches infinity. In
contrast to the quasiperiodic case, map fκ is not orientation pre-
serving and the sequence (xn) is “out of order” and is thus very
sensitive to initial conditions. The deterministic system is said
to have become chaotic. See Figure 10A. This is the period-
doubling route to chaos. Notice that in our case the range of the
map is quite limited (Figure 1A) and thus the trajectory often
goes through sequences of similar, but not repeating values.

This scenario repeats again and again, with cascades of pe-
riod doublings starting at all possible odd periods p and leading
eventually to chaos. Very small changes in the parameter in this
regime can tune the system into periodic or chaotic dynamics.

The process also continues in the stochastic case, with the
emergence of a cycle of period 4 that starts becoming more and
more dominant; see the inset of Figure 10B. On the spectrum
side 2 purely imaginary eigenvalues emerge indicating a cycle
of period 4 is becoming more present (as explained in Section
3). These eigenvalues grow in modulus, indicating the cycle of
period 4 is becoming more dominant; see Figure 10B.

As we have shown before for fixed point and period 2
regimes, in the stochastic system the change of dynamics starts
at earlier values of the parameter than for the deterministic sys-
tem (i.e. cycles emerge earlier). It also lasts longer (cycles stay
dominant for longer). Thus noise, in a sense, perturbs the pa-
rameter κ, and when the deterministic system becomes sensitive
to changes in κ, e.g. when cascades become too short, close to
and during the chaotic phase as explained above for the deter-
ministic system, certain periods (including the chaotic regime)
may never get a chance to become dominant, while certain other
periods may dominate. Which periods dominate now depends
very delicately on the interplay between the parameter κ and
noise strength σ, and the motion of the eigenvalues thus seems
less organized. Furthermore, at some values of κ several dy-
namic regimes compete, and the Markov chain looks more er-
godic than when one regime is dominant.

In the particular example we are considering, when the noise
is not too small (σ = 0.05), the whole region in the Feigenbaum
diagram between the period 4 and period 3 regimes of the deter-
ministic system (κ between about 0.45 and 0.55 in Figure 1A)
is smoothed out, and the Markov chain simply transitions from
having a more dominant period 4 regime to a more dominant
period 3 regime (Figures 10B and 10C).

Note that in our example, when a = 0.1 and κ goes above 0.9
a long enough interval of period doubling occurs; see Figure
1A. Then the above stochastic bifurcation scenarios (described
in Sections 4.1 through 4.6) are clearly observed again.

4.7. Summary

The left panel in Figure 11 summarizes our analysis of the
stochastic sine circle map. The dark gray shaded region rep-
resents the quasiperiodic regime. The light gray region corre-
sponds to zipping where the dynamics are transitioning from
quasiperiodic to phase-locked. The curves are the graphs of
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Figure 10: A) Sine circle map with a = 0.1 and κ = 0.509 and both cobwebbing
and sequence (xn) showing chaos. B) The spectrum of Π at κ = 0.462 with the
largest eigenvalues aligned at right angles. The inset shows the Markov chain
having cycle of period 4 emerge. C) The spectrum of Π at κ = 0.53 with the
largest eigenvalues aligned at 2π/3 angle; the small squares on the unit circle
mark the third roots of 1. The inset shows the Markov chain having a cycle of
period 3 emerge. Marked scale on all insets is 10 time units.

R(p), 1 ≤ p ≤ 5, as functions of κ. We see that right after
zipping ends the system is phase-locked with period 1. This
is followed by a period 2 phase-locking, then period 4, then 3,
then 2, then 3 again. After that, several periodic regimes com-
pete at the same time and the Markov chain becomes chaotic.

The right panel of the figure demonstrates the increasing cor-
respondence between the zipping index (the size of the zipped
region) and the escape time of the Markov chain from the fixed
point.
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Figure 11: Left: summary of the analysis of stochastic sine circle map with
a = 0.1 and σ = 0.05. The numbers above the graphs indicate the dominant
period. Right: Zipping index vs. median escape time. The error bars give the
first and third quartiles. Values of parameter κ are indicated above the error
bars.

4.8. The stochastic integrate-and-fire model
Our analysis works for other diffusion processes with a con-

stant diffusion coefficient σ2. If the diffusion coefficient is not
constant (e.g. in the case of multiplicative noise), a random time
change brings the situation back to one with constant σ and our
analysis applies again.

As an example, we summarize the results in the case of the
stochastic integrate-and-fire model from Example 2.4. In this
case, transition density p(y | x) satisfies an integral equation that
we solve numerically using the method described in [32]. The
movie associated with Figure 3B shows how the spectrum and
the dynamics of this model change with parameter κ. The rela-
tionship between the spectrum and dynamics follows the same

principles as described for the sine map, thus we will only com-
ment here on selected regimes and transitions.

First, for κ small, the spectrum represents a spiral. Visually,
it is not readily apparent (Figure 12, Right). Let us compute
the parameters of the spiral. For κ = 0 we can compute the
map, starting from Tn = 0. It is equal to Tn+1 = −τ log(1 −
1/(τI)) = 0.505. Setting the spiral parameter a to 0.505 we
obtain the spiral shown in Figure 5C, which approximates the
one for small κ very closely (Figure 12, Right). Dynamics of
the Markov chain are thus quasiperiodic. Notice that in this
example (as in its deterministic counterpart) the values oscillate
as they wrap around S in the quasiperiodic regime.
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Figure 12: Left: Integrate-and-fire with τ = 2, I = 0.7, κ = 0.045, and the
first few steps of cobwebbing of the deterministic sequence with starting point
0.1. Upper center: deterministic sequence; Lower center: Markov chain (Tn)
with σ = 0.01. Both sequences are wrapping densely around S and are hence
quasiperiodic. Right: The spectrum of Π exhibiting the spirals.

Near κ = 0.08 zipping of the spiral begins. Note that here
the zipping starts from the left side, since that is where the
second-largest eigenvalues are. Consequently, a cycle of period
2 emerges. However, escaping it takes a central limit event and
the Markov chain is still quasiperiodic. See the middle panel in
Figure 13. As κ grows the period 2 cycle becomes more domi-
nant. Near κ = 0.24 zipping is complete and the Markov chain
is phase-locked with period 2: escaping the period 2 cycle takes
a large deviation event. See the right panel in Figure 13.
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Figure 13: Left: Integrate-and-fire with τ = 2, I = 0.7, κ = 0.13, and the first
few steps of cobwebbing of the deterministic sequence with starting point 0.1;
Inset shows the deterministic sequence showing a cycle of period 2. Center:
The spectrum of Π with κ = 0.13 and σ = 0.01 exhibiting zipping; Inset shows
how the Markov chain (Tn) oscillates near the periodic cycle for a long time,
then escapes and wraps around S. Right: The spectrum of Π with κ = 0.24 and
σ = 0.01 indicating a period 2 cycle; Inset shows the Markov chain (Tn).

At κ = 0.544 period 5 dominates in the stochastic model; see
Figure 14. The value of κ is taken from the intersection of the
curves R(1) and R(5); see the left panel in Figure 15. In the
deterministic model, the system has a cycle of period 7 a this
value of κ. See Figures 14 and 1A.

At this range of κ the deterministic dynamical regimes are
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Figure 14: Left: Integrate-and-fire with τ = 2, I = 0.7, κ = 0.59, and the
first few steps of cobwebbing of the deterministic sequence with starting point
0.1. Upper center: deterministic sequence showing a cycle of period 7; Lower
center: Markov chain (Tn) with σ = 0.01. Right: The spectrum of Π exhibiting
a cycle of period 5; the small squares on the unit circle mark the fifth roots of 1.

too short to fully develop in the stochastic case. The period 5
cycle transitions to a period 3 cycle which starts dominating at
κ = 0.635 (intersection of R(5) and R(3) in Figure 15, Left).
For larger κ similar transitions occur. E.g. at κ = 0.839 period 4
becomes dominant, etc. See the movie associated with Figure
3B.

The left panel of Figure 15 summarizes the above analysis.
The right panel demonstrates how the size of the zipped region
is again in an increasing relationship with the escape time of the
Markov chain from the periodic cycle.
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Figure 15: Left: summary of the analysis for stochastic integrate-and-fire with
I = 0.7, τ = 2, and σ = 0.01. The numbers above the graphs indicate the
dominant period. Right: Zipping index vs. median escape time. The error bars
give the first and third quartiles. Values of parameter κ are indicated above the
error bars.

4.9. The simplified stochastic integrate-and-fire model
The same analysis can be repeated in the case of the sim-

plified stochastic integrate-and-fire model from Example 2.3.
However, as was mentioned after Example 2.4, it is shown
in [14] that for small values of σ, the simplified stochastic
integrate-and-fire process is very close to the process in Exam-
ple 2.4 with a different but also small σ. Thus, the results of the
analysis of the two models are very similar. We therefore only
give the summary of the analysis for this model in Figure 16.

5. Discussion

We have demonstrated that the dynamics of a finite state dy-
namical system as well as those of certain Markov chains on the
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Figure 16: Top left: density of operator Π corresponding to the simplified
stochastic integrate-and-fire with I = 0.7, τ = 2, σ = 0.03, and κ = 0.19.
Top right: density of operator Π corresponding to the stochastic integrate-and-
fire with I = 0.7, τ = 2, σ = 0.01, and κ = 0.19. Bottom: summary of the
analysis for the simplified stochastic integrate-and-fire with I = 0.7, τ = 2, and
σ = 0.01.

circle can be related to specific properties of the spectrum of the
associated transition operator. Namely, we have demonstrated
that for finite state dynamical systems the eigenvalues of the
transition matrix reveal the cycle lengths and the eigenvectors
show the attractors along with their transients. More impor-
tantly, we have also shown that for a class of Markov chains
on the circle, quasiperiodicity in the dynamics can be seen by
observing spiral structures in the spectrum of the transition op-
erator, and that dominance of quasiperiodicity and the different
phase-locked regimes can be understood in terms of “zipping”
of the spectrum and emergence of eigenvalues approximating
scaled roots of 1, respectively. The spiral structures were also
observed when Gaussian noise was replaced by a uniform noise
over a small interval, or a bimodal combination of two Gaussian
noises. Thus, we believe these structures to occur more gener-
ally, e.g. when the noise is concentrated in a small region, rel-
ative to the size of the circle. The precise mathematical reason
behind the spirals remains an interesting open question.

The spectral approach presented here is likely to be produc-
tive in many different contexts. For example, it can be used to
predict dynamical regimes of computational models without di-
rect simulation. Note that even though our examples have been
one-dimensional, our approach can be applicable to more com-
plex models, that can be projected to a suitable one-dimensional
manifold, e.g. phase-oscillators. In the context of experimental
studies, such as recordings of spiking neurons in the presence
of noise, it can be used to categorize the recorded spiking as
quasiperiodic, or having a particular mode of phase-locking.

Additionally, our results suggest a new definition of a peri-
odic and quasiperiodic Markov chain, based on the shape of
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its spectrum. Moreover, our results also suggest a new notion
of stochastic bifurcation, based on changes in the spectrum of
the transition operator. It is important to note that we have dis-
tinguished parameter ranges when the new dynamical regime
“emerges” and then when it becomes “dominant.” Thus, we are
suggesting that “stochastic bifurcation points” should rather be
thought of as “cascades” or “stochastic bifurcation regions.”

As we mentioned in Section 2.3, one of the accepted notions
of stochastic bifurcation is “P-bifurcation,” in which the shape
of the invariant measure density undergoes qualitative changes.
This notion is closely linked to the work in this paper, as the in-
variant measure density is the eigenfunction of Π, correspond-
ing to eigenvalue 1. Indeed, we see peaks of the eigenfinction
developing and disappearing at various parameter values (Video
associated with Figure 3A), but the most dominant regime can-
not always be read from them. For example, in the case of the
stochastic sine circle map at a = 0.1, κ = 0.32, and σ = 0.05,
a period 2 cycle dominates as can be observed from the eigen-
values and from the trajectory. However, the invariant measure
density only has one peak, as the center between two preferred
locations will be visited (due to randomness) on the way either
up or down, and thus overall visited more frequently than either
location. Perhaps, it is not surprising that the invariant measure
density does not capture the essential features of the dynamics,
as one eigenfunction only carries part of the information, while
looking at the whole spectrum gives more.

Other ways of describing qualitative changes in stochastic
dynamics have been employed, such as D-bifurcations [34] and
reliability [31, 35, 38]. Relating our spectral approach to this
existing body of work will be the subject of future investiga-
tions.

The method presented in this paper critically relies on the
knowledge of the transition probability p(y | x) of the given pro-
cess. The examples we used had the advantage that this prob-
ability was easily computable. In many other situations, given
a model in terms of stochastic differential equations, one would
need to rely on numerical methods to solve an integral equa-
tion for p(y | x). Such numerical methods have been derived
for Ornstein-Uhlenbeck processes, which includes cases of the
stochastic integrate-and-fire model; see [32]. Developing such
methods for the more complex, e.g. multidimensional, situa-
tions is essential and is another future project.

Moreover, in the cases where the method can be applied to
experimental studies, its feasibility will depend on the size of
discretiztion N, as more data will be required to estimate tran-
sition probabilities for larger N. In our examples we have used
N = 1000 since it was not numerically expensive to do so.
However, we have observed that even N = 100 is sufficient
to predict the dynamics. Nevertheless, sensitivity to N is likely
to vary from model to model and is also left for a future inves-
tigation.

The work presented in this manuscript has been partially mo-
tivated by recent work on the phase-locking of periodically-
driven neurons in the presence of noise [39]. In neuroscience, a
common measure of phase-locking in a noisy system is the so-
called vector strength. Our results suggest that dominance of
the appropriate dynamic regime (such as the size of the spiral

in the quasiperiodicity to phase-locking transition or function R
from (4.2) in the phase-locked regimes) may serve as an alter-
native.

One situation in which the stochastic spike phase return maps
can be computed is when the stimulus is a periodic train of brief
pulses, the neuron has a well-defined deterministic phase re-
sponse curve (PRC), and the variability of the phase response
in the presence of noise can be evaluated as well. Such stochas-
tic PRCs have been computed in experiments [40] and their
variance has also been analytically derived under conditions of
small noise and weak stimulus [41]. Once the PRC is com-
puted, the stochastic spike phase return map can also be ob-
tained [42]. As intrinsic properties of the oscillators change
(e.g. in experiment or through mutations), it will affect their
PRCs, which will in turn modify the ability of the cell to entrain
to external input (as can be quantified by the spectral methods
we presented).

In conclusion, we have presented a promising approach for
classifying the dynamics of stochastic circle maps based on the
geometry of the spectra of the associated transition operators.
The results presented in this article motivate further develop-
ment of a mathematically rigorous theory and exploration in a
variety of applications.
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Appendix. Discretization of the transition operator

Recall transition operator Π of the Markov chain, defined in
(2.1). We will assume the following throughout the appendix.

Hypothesis A.1. Transition operator Π has a transition density
(or kernel) p(y | x) relative to Lebesgue measure; i.e. Πh(x) =∫ 1

0 p(y | x)h(y) dy. Furthermore, p(y | x) is bounded in x and y
and continuous in y uniformly over x:

lim
δ→0

sup{|p(y | x) − p(y′ | x)| : x, y, y′ ∈ S, |y − y′| < δ} = 0. (A.1)

p(y | x) is also continuous in x uniformly over y except for, pos-
sibly, finitely many x-values; i.e. ∃x̂1, . . . , x̂m ∈ S (which could
be empty, and then m = 0) such that

lim
δ→0

sup{|p(y | x) − p(y | x′)| : x, x′, y ∈ S, |x − x′| < δ,

|x − x̂k | > δ, |x′ − x̂k | > δ,∀k = 1, . . . ,m} = 0.
(A.2)

This hypothesis is clearly satisfied in the case of Example 2.3
when F has finitely many discontinuities in [0, 1] and ξ1 has a
continuous density relative to Lebesgue measure. It is also sat-
isfied for a wide class of diffusion processes, such as ones with
smooth diffusion and drift coefficients, in which case p(y | x) is
continuous in both x and y; see [43]. This includes Example 2.4.
On the other hand, Hypothesis A.1 is not satisfied in the case of

12



deterministic dynamical systems, i.e. when Πh(x) = h( f (x)) for
some f : S→ S.

Compactness of S and the above hypothesis, in particular
(A.1), imply that Π is a compact operator; see Example 4.1 of
Chapter 3 of [36].

We would like to approximate operator Π, satisfying the Hy-
pothesis A.1, by a sequence of matrices in a way that the spectra
of the matrices “converge” to that of Π.

Fix an integer N ≥ 1 (the resolution of the discretization) and
define

πN
i, j =

p( j
N |

i
N )∑N

k=1 p( k
N |

i
N )
, 1 ≤ i, j ≤ N, and

ΠNh(x) =

N∑
i, j=1

πN
i, jh( j

N )1
( i−1

N ,
i
N ]

(x),

for a continuous bounded function h : S→ R. Then

|(ΠN − Π)h(x)|

≤

∣∣∣∣∣ N∑
i, j=1

([ N∑
k=1

p( k
N |

i
N )

]−1
− N−1

)
p( j

N |
i
N )h( j

N )1
( i−1

N ,
i
N ]

(x)
∣∣∣∣∣

+

∣∣∣∣∣ N∑
i, j=1

N−1(p( j
N |

i
N ) − p( j

N | x))h( j
N )1

( i−1
N ,

i
N ]

(x)
∣∣∣∣∣

+

∣∣∣∣∣ N∑
j=1

h( j
N )

∫ j/N

( j−1)/N
(p( j

N | x) − p(y | x)) dy
∣∣∣∣∣

+

∣∣∣∣∣ N∑
j=1

∫ j/N

( j−1)/N
(h( j

N ) − h(y)) p(y | x) dy
∣∣∣∣∣

≤ sup
y∈S
|h(y)| max

1≤i≤N

∣∣∣∣N−1
N∑

k=1

p( k
N |

i
N ) − 1

∣∣∣∣ (A.3)

+ sup
y∈S
|h(y)|

N∑
i=1

max
1≤ j≤N

|p( j
N |

i
N ) − p( j

N | x)|1
( i−1

N ,
i
N ]

(x) (A.4)

+ sup
y∈S
|h(y)| sup{|p(y′ | x) − p(y | x)| :

x, y, y′ ∈ S, |y − y′| < 1/N}
(A.5)

+ sup{|h(y′) − h(y)| : y, y′ ∈ S, |y − y′| < 1/N}. (A.6)

By continuity of h on the compact set S the term in line (A.6)
converges to 0 as N → ∞. The term on line (A.3) can be
bounded by

sup
y∈S
|h(y)| max

1≤i≤N

∣∣∣∣N−1
N∑

k=1

p( k
N |

i
N ) − 1

∣∣∣∣
≤ sup

y∈S
|h(y)| max

1≤i≤N

N∑
k=1

∫ k/N

(k−1)/N
|p( k

N |
i
N ) − p(y | i

N )| dy

≤ sup
y∈S
|h(y)| sup{|p(y′ | x) − p(y | x)| : x, y, y′ ∈ S, |y − y′| < 1/N}

which equals the term in line (A.5) which in turn converges to
0 as N → ∞ due to (A.1). Lastly, the term on line (A.4) is

bounded above by

sup
y∈S
|h(y)|

N∑
i=1

max
1≤ j≤N

|p( j
N |

i
N ) − p( j

N | x)|1
( i−1

N ,
i
N ]

(x)

≤ sup
y∈S
|h(y)| sup{|p(y | x) − p(y | x′)| : x, x′, y ∈ S, |x − x′| < 1/N,

|x − x̂k | > 1/N, |x′ − x̂k | > 1/N,∀k = 1, . . . ,m}

+ 2 sup
y∈S
|h(y)| sup

y,z∈S
p(y | z)

m∑
k=1

1
(x̂k−

2
N ,x̂k+

2
N )

(x).

Then, by (A.2) the above goes to 0 as N → ∞ for all x <
{x̂1, . . . , x̂m}. (Recall that x̂1, . . . , x̂m are the possible discontinu-
ities of p(y | x) as stated in Hypothesis A.1.)

We have thus shown that ||ΠN − Π|| → 0 and the sequence
of operators ΠN converges to Π in the generalized sense; see
Theorem 2.23 of Chapter 4 of [36]. Since the action of the tran-
sition operator Π on bounded continuous functions completely
determines the distribution of the corresponding Markov chain,
we see that this Markov chain can be recovered from operators
ΠN . We are particularly interested in recovering the spectrum
of Π.

Note that ΠN is a finite rank operator with the range being
the linear span of the functions 1[i/N,(i+1)/N)(x). Hence, it has a
finite spectrum. The eigenvalues of ΠN are the same as those of
the matrix (πN

i, j)i, j and if v = (v0, . . . , vN−1) is an eigenvector of
this matrix, then

∑N−1
i=0 vi1[i/N,(i+1)/N) is an eigenfucntion of ΠN .

In other words, ΠN can really be viewed as a stochastic matrix,
which in turn is completely determined by its eigenvalues and
eigenspaces.

Then, the fact that ΠN converges to Π reproves that Π is a
compact operator. Thus, Π has a discrete spectrum with count-
ably many nonzero eigenvalues of finite multiplicities, possibly
accumulating at 0.

Next, observe that for any ε > 0 there exists an N0 > 0 such
that N ≥ N0 implies that

sup
λ∈σ(ΠN )

d(λ, σ(Π)) < ε;

see Remark 3.3 of Chapter 4 of [36]. (d(λ, σ(Π)) denotes the
Euclidian distance in the space of complex numbers of the point
λ to the spectrum of Π.) Moreover, if λ1, . . . , λk ∈ σ(Π) are
separated from the rest of σ(Π) by a closed curve Γ, then for N
large enough the total multiplicity of σ(ΠN) inside Γ is equal to
the total multiplicity of λ1, . . . , λk; see Section 3.5 of Chapter
4 of [36]. In fact, if λ ∈ σ(Π) \ {0}, then it can be separated
by a closed curve Γ from the rest of σ(Π) and thus for N large
enough ΠN has only one eigenvalue λN inside Γ, with the same
multiplicity as λ, and the projection operator onto eigenspace
EλN (ΠN) converges in norm to the projection onto Eλ(Π), as
N → ∞; see Theorem 3.16 of Chapter 4, (6.19) of Chapter
3, and (5.22) of Chapter 1 in [36]. (Note that the uniqueness
of the spectral representation of a finite rank operator means
that the statements of this paragraph are valid for both geomet-
ric and algebraic eigenspaces; see Section 5.4 of Chapter 1 of
[36].) We thus have the following lemma.

13



Lemma A.1. Assume Hypothesis A.1 holds. Then, away from
0, the spectra and corresponding eigenspaces of the operators
ΠN (and hence also the matrices πN) converge to those of Π, in
the sense of the above paragraph.

This lemma says that one can approximate the spectrum and
eigenfunctions of Π by those of the matrix πN .

Our choice to discretize the operator Π is not the only way
to go. In fact any discretization for which Lemma A.1 holds
works. For example, the following also works:

πN
i, j = N

∫ (i+1)/N

i/N

∫ ( j+1)/N

j/N
p(y | x) dx dy, and

ΠNh(x) = N
N−1∑
i=0

[ N−1∑
j=0

πN
i, j

∫ ( j+1)/N

j/N
h(y) dy

]
1[i/N,(i+1)/N)(x).

Remark A.2. Note that the above discussion was for a fixed
σ > 0, which is the situation considered in this article. When
σ = 0, i.e. in the case of a deterministic dynamical system, the
discretization may fail in approximating the spectrum; see [44]
for situations where this happens and [45] for situations where
the discretization succeeds. Consequently, as σ gets smaller
the discretization may get worse, i.e. N may have to be chosen
larger to achieve the same prescribed error size. One way to
estimate how large N needs to be (to approximate finitely many
eigenvalues of Π) comes by using bounds (A.3-A.6) to estimate
||ΠN−Π||. For instance, in Example 2.3 one has a crude uniform
upper bound of C/σ3 on the x- and y-derivatives of p(y | x). This
leads to the estimate

||ΠN − Π|| ≤ C/(σ3N).
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