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ABSTRACT

A stochastic harmonic autoregressive parametric (SHArP) weather generator is presented that simu-

lates trended, nonstationary temperature values directly, circumventing the conventional approach of

adding simulated standardized anomalies of temperature to a prescribed cyclostationary mean. The model

mean makes autocorrelated transitions between wet- and dry-state values, and its parameters are de-

termined by optimizing harmonic and trend terms. The precipitation-responsive autocorrelated transi-

tions yield more realistic temperature behavior during frontal passage in comparison with prior models

that switch abruptly between wet- and dry-state means. If the stochastic (noise) term is assumed to have

constant amplitude, analytical results are available via maximum likelihood estimation (MLE) and are

equivalent to least squares estimation (LSE). Where observations motivate a seasonally varying noise

coefficient, MLE becomes nonlinear, and an analytical solution is formulated via LSE. For illustration,

SHArP is shown to produce realistic representations of daily maximum air temperature at a single site,

which for the study is the Salt Lake City International Airport (KSLC). SHArP reduces the temperature

bias following frontal passages by over 28C in three seasons. A method for generalizing the model to

multiple variables at multiple sites is discussed.

1. Introduction

The drought-stricken western United States, includ-

ing the Great Basin region of Utah, Wyoming, Idaho,

Oregon, Nevada, and California, is facing an uncertain

water future because of climate change. The northern

half of theGreat Basin, which includes northernUtah, is

located in the center of the El Niño–Southern Oscilla-

tion (ENSO) dipole. ENSO is a well-known climatic

teleconnection between sea surface temperatures and

the atmosphere in the equatorial Pacific Ocean that af-

fects global weather patterns (Troup 1965; Horel and

Wallace 1981). The occurrence of precipitation in the

Great Basin in any given year is dependent on both the

phase of ENSO and the phase of the Pacific decadal

oscillation (PDO), as the phase of the PDO shifts the

ENSO dipole either north or south (Wise 2010; Brown

2011). Because of its complex terrain, themajority of the

water used by those who live in the region is dependent

on the snowpack that is stored in the mountains and

released throughout the year via the reservoir system.

This semiarid region is already experiencing inconsis-

tent water availability throughout any given year be-

cause of the drastically different number of winter

precipitation events from year to year. The ability to

statistically model the occurrence of precipitation and

air temperature is imperative to better forecast po-

tential changes in future water availability as the cli-

mate changes. In this study, we introduce a stochastic

harmonic autoregressive parametric (SHArP) weather

generator, which statistically models meteorological

variables (in this case, the occurrence and amount of

precipitation and maximum air temperature). The model

can be used to investigate how the future of the Great

Basin may be impacted by climate change and to un-

derstand the meteorological extremes that are likely to

play a part in that impact.

While the outputs of both statistically based stochastic

weather generators (SWGs) and dynamically based
Corresponding author e-mail: Courtenay Strong, court.strong@

utah.edu

APRIL 2017 SM I TH ET AL . 953

DOI: 10.1175/JAMC-D-16-0122.1

� 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

mailto:court.strong@utah.edu
mailto:court.strong@utah.edu
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


global climate models (GCMs) are used in climate im-

pacts studies, there are major differences between them.

SWGs work on a point scale, or on a point scale ex-

panded via multisite generalization to a basin scale,

whereas GCMs work on a broad regional scale and can

be downscaled to the basin or smaller scale. GCMs have

difficulty capturing detail in areas of complex terrain,

including the Great Basin, which is characterized by its

basin-and-range topography (e.g., Thompson and Burke

1974). SWGs also have a faster computational time than

GCMs, which can take upward of months to complete a

single run. GCMs are very computationally expensive in

comparison with SWGs, and thus there are not many

GCM runs available for analysis. GCMs also have dif-

ficulty capturing the very low-frequency (century scale)

connections between the Pacific Ocean and the Great

Basin. The performance of state-of-the-art GCMs has

been evaluated in terms of ability to capture the ‘‘ex-

tremes’’ in precipitation and temperature, and it has

been found that GCMs poorly capture the extremes,

though they perform better at temperature extremes

than precipitation (Kiktev et al. 2007).

SWGs alleviate some limitations of GCMs and were

introduced as a way to overcome a lack of observational

meteorological data and problems associated with miss-

ing data both temporally and spatially (Wilks and Wilby

1999; Wilks 2008). In addition, they have been used to

better understand the uncertainties associatedwith future

climate (e.g., Wilks 1992; Forsythe et al. 2014). These

statistical models generate synthetic time series of pre-

cipitation and in some cases also air temperature and

solar radiation, which statistically resemble the data used

to force the model—usually daily observational weather

data (Wilks and Wilby 1999). There have been a multi-

tude of early studies on SWGs that solely generate pre-

cipitation occurrence and amount because air temperature

andothermeteorological variables are affected bywhether

precipitation occurred.

The first studies using stochastic simulators of

weather data employed two-state, first-order Markov

chain frameworks regarding precipitation (Bailey 1964;

Richardson 1981; Roldàn and Woolhiser 1982), meaning

that the probability of precipitation occurrence on a

given day is only dependent on whether precipitation

occurred on the previous day. Precipitation amount

was modeled separately, and maximum/minimum

temperatures and solar radiation were modeled as a

function of precipitation occurrence. Other studies in-

volving SWGs considered a two-state, second-order

Markov chain process (Stern and Coe 1984; Wilks

1999a). Markov chains of higher order have been found

to better capture dry spells than first-order Markov

chains, thus providing more accurate results for most

areas of the western United States where dry spells are

common, such as the semiarid Great Basin.

One limitation of the common SWGs is the ability to

successfully capture nonstationary variability. Previous

studies have found that over the western United States,

El Niño results in a wetter Southwest and a drier

Northwest, while La Niña results in the opposite

(Ropelewski and Halpert 1986; Dettinger et al. 1998;

Woolhiser 2008). In addition, the PDO also has signifi-

cant impacts on precipitation in the western United

States. The PDO is linked to ENSO, which in turn af-

fects how the different phases of ENSO will impact the

western United States (Gershunov and Barnett 1998;

Gershunov et al. 1999; Mauget 2003). Woolhiser (2008)

introduced the idea of adding nonstationarity to the

stochastic framework in order to capture the effects

these major oceanic oscillations have on western U.S.

precipitation. Essentially, perturbations given as time

series of the oscillations were linearly added to the

probability of precipitation, and the coefficients associ-

ated with each perturbation give information on the

sensitivity of each of the oscillations (Woolhiser 2008).

We employ this method in this study and also include a

trend to account for the changing climate.

In the SWG literature, simulation of daily maximum

and minimum air temperature is usually conditioned on

whether the day is wet or dry. The most widely used

method for simulating temperature is the method used

by Richardson (1981). This method involves generating

the standardized residual time series of temperature

(maximum and minimum temperature; the study also

included solar radiation) and using the multivariate

generation model as described byMatalas (1967). These

standardized residuals are assumed normally distrib-

uted, and the coefficients in the generating model are

matrices containing the cross correlations and autocor-

relations between the residuals (Matalas 1967). After

generating the synthetic residuals, the wet- or dry-state

means and standard deviations that were initially re-

moved are reintroduced to yield daily values of the

variables. Themeans and standard deviations depend on

whether the day was wet or dry; they are assumed to be

cyclostationary and are determined by fitting harmonics

of the annual cycle to observations (Richardson 1981).

In addition to the common parametric SWGs described

thus far, including the SWGs introducedbyMatalas (1967)

and Richardson (1981), recent studies have employed

nonparametric SWGs and generalized linear models

(GLMs). These SWGs are data driven and involve either

kernel density estimation (e.g., Rajagopalan et al. 1997;

Harrold et al. 2003) or resampling via k-nearest-neighbor

(k-NN) bootstrapping (e.g., Rajagopalan and Lall 1999;

Caraway et al. 2014). These models do not rely on the
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statistical relationships applied in the parametric SWGs.

They offer an alternative to the standard linear models

presented in the parametric SWGs, which are unable to

capture the nonlinear relationships between meteorolog-

ical variables. The use of GLMs in SWGs, first introduced

by Stern and Coe (1984), has also been increasing in

popularity because they can easily model discrete vari-

ables and variables with nonnormal distributions (Furrer

and Katz 2007). In addition, GLMs are especially useful

tools because of their ability to treat ENSO and other

major oceanicmodes of variability as continuous variables

(e.g., Chandler 2005). More details behind GLMs can be

found in McCullagh and Nelder (1989).

A limitation of the widely used Richardson model is

that its mean and standard deviation switch abruptly be-

tween wet- and dry-state values prescribed in advance of

the simulation, and temperature is not simulated directly

but rather through its residuals. This method inaccurately

captures what occurs in reality, which instead are smooth,

autocorrelated transitions between wet- and dry-state

values. In this study, we introduce the mathematics and

present illustrative results for a SHArPweather generator

that is based on the Richardson model but that simulates

temperature values directly with a mean that makes

autocorrelated transitions between wet-and dry-state

temperature values. Because of this innovation, the

method described here better captures the temperature

transitions between days with different precipitation

states, including following frontal passages.

2. Data and study area

We chose to illustrate the SHArP weather generator

using observations from the Salt Lake City International

Airport (KSLC), which is located in the Great Basin. Its

precipitation depends largely on a combination of the

state of ENSO and the state of the PDO (Wise 2010;

Brown 2011). The precipitation and temperature data

used to force SHArP are daily observational data re-

corded at KSLC (40.788N, 111.978W) from 1 January

1948 to 31 December 2010 via the Global Historical

Climatology Network (GHCN-Daily) provided by

the National Centers for Environmental Information

(obtained from http://www.ncdc.noaa.gov; Menne et al.

2012a,b). In addition, we obtained GHCN-Daily pre-

cipitation and temperature data for four climatologi-

cally similar surrounding sites to illustrate the

autocorrelated transitions during frontal passages. The

domain map (see Fig. 1) shows the location of KSLC in

addition to the four surrounding sites: Boise Air Ter-

minal (KBOI) and Pocatello Regional Airport (KPIH) in

Idaho, Elko Regional Airport (KEKO) in Nevada, and

Grand Junction Regional Airport (KGJT) in Colorado.

Future precipitation and temperature output used to

force SHArP are daily 0.1258 gridded bias correction

constructed analog (BCCA)projections from theCCSM4

model, which was part of phase 5 of the Coupled Model

Intercomparison Project (CMIP5) multimodel ensemble

(Maurer et al. 2007; Brekke et al. 2013). We use the high-

emissions scenario (RCP 8.5) data, and they span from

1 January 2006 to 31 December 2100. We use the data

starting from 1 January 2011 following the end of the

observational data.

A day was considered ‘‘wet’’ and given value x 5 1 if

the total precipitation on that day reached at least

0.25 mm (approximately 0.01 in.), corresponding to

the minimum depth recorded by rain gauges. Otherwise,

the day was considered dry and given value x 5 0. The

x vector was determined from the precipitation time

series, and this provided the precipitation occurrence

needed tomodel temperature with SHArP. In this study,

we use and generate only maximum surface air tem-

perature at a single site. Generalization to multiple

variables at multiple sites has been completed, and the

formulation will be presented in a future paper.

3. Simulation of maximum air temperature and
precipitation

Themethod introduced here is based on theRichardson

(1981) method described in the introduction. The

Richardson method is a linear equation given by

x
p,i
( j)5A

R
x
p,i21

1B
R
e
p,i
( j) ,

where xp,i( j) is a 33 1 matrix containing the residuals for

day i of year p and xp,i21( j) is a 3 3 1 matrix containing

the residuals for day i2 1 of yearp; j refers to the variable

of interest (Richardson simulated three: maximum tem-

perature, minimum temperature, and solar radiation).

The ep,i( j) is a 3 3 1 matrix of normally distributed, in-

dependent randomnoise with 0mean and a variance of 1.

TheAR andBR are 33 3matrices that contain the correct

serial and cross-correlation coefficients (subscript R re-

fers to the Richardson method). The mean and standard

deviation of the variables are removed, and the residuals

are simulated. Themodelmakes abrupt switches between

wet- and dry-state values because of the prescribedmeans

and standard deviations prior to simulation, which are

then used to determine the true values after simulation.

SHArP is based on the observation shown below that

temperature makes autocorrelated transitions between

wet- and dry-state means with characteristic annual cy-

cles, while subject to random fluctuations associated

with frontal passages. For maximum temperature at a

single site, the linear model is
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T
k11

5 aT
k
1b

k
1 c

k
�
k
, (1)

where a is a coefficient that is assumed to be constant and

bk and ck are coefficients that depend on day k. The bk
coefficient captures the mean, annual cycle, and trend.

Errors �k are independent and identically distributed (i.i.

d.) random standard normals. The temperature on day

k1 1 is dependent on the temperature on day k, where k

ranges from 0 to K 2 1 (K being the length of the simu-

lation). We begin the simulations by taking the first tem-

perature value from the training data as T0, but this could

also be drawn from an appropriate distribution.

a. Maximum likelihood estimation

We begin with a simplified case where c does not de-

pend on k. We assume the temperature entries from T1

to TK are multivariate normals, and the joint density

function is given by

f (T
1
, . . . ,T

K
)5

1

(2p)K/2
c
exp

2(DT2B)0(DT2B)

2c2
, (2)

where D is the K 3 K matrix

D5

2
66666664

1 0 ⋯ ⋯ 0

2a 1 ⋱ ⋱ ..
.

0 ⋱ ⋱ ⋱ ..
.

..

.
⋱ ⋱ 1 0

0 ⋯ 0 2a 1

3
77777775
,

and B and T are the K 3 1 vectors

B5

2
6666664

aT
0
1 b

0

b
1

..

.

b
K22

b
K21

3
7777775

and T5

2
6666664

T
1

T
2

..

.

T
K21

T
K

3
7777775
.

The mean is given by D21B, and the dry and wet day

means are shown with their corresponding composite

annual cycles from the KSLC training data in Fig. 2.

Note the higher variability associated with wet days

versus dry days. To restrict the model to a reasonable

number of parameters, we give structure to the bk values

by giving them a trend and harmonics:

FIG. 1. The study area: the eastern half of the Great Basin (which includes northern and western Utah, extreme

southwestern Wyoming, extreme southern Idaho, and Nevada) and the surrounding area. The stars indicate the

location of KSLC and surrounding sites: KBOI, KPIH, KEKO, and KGJT. The color bar indicates elevation in

meters above sea level.
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b
k
5g

xk11
1ak1b

xk11
cos(2pk/t)1b0

xk11
sin(2pk/t)

1 d
xk11

cos(4pk/t)1 d0xk11
sin(4pk/t) ,

(3)

where t is the period, assumed to be 365 days.We include

two harmonics to illustrate how bk can be generalized to

include any number of harmonics. A log-likelihood ratio

test can be performed to determine statistical significance

of additional harmonics.

We applied a maximum likelihood estimate (MLE) to

the joint density function, which involvesmaximizing (2)

or minimizing its negative log:

c22(DT2B)0(DT2B)1 2K logc . (4)

We first minimize (DT2B)0(DT2B) to get the MLEs

for the D matrix and B vector. This returns the sum of

squared errors:

(DT2B)0(DT2B)5 �
K21

k50

(aT
k
1b

k
2T

k11
)2 , (5)

where bk is given in (3).

Taking derivatives in (5) with respect to a and each of

the parameters in bk and setting them equal to zero gives

the following 12 equations:

�
K21

k50

T
k
(aT

k
1 b

k
2T

k11
)5 0,

�
K21

k50

k(aT
k
1 b

k
2T

k11
)5 0,

�
K21

k50

ðaT
k
1 b

k
2T

k11
)1fx

k11
5 0g5 0,

�
K21

k50

ðaT
k
1 b

k
2T

k11
)1fx

k11
5 1g5 0,

�
K21

k50

cos(2pk/t)(aT
k
1 b

k
2T

k11
)1fx

k11
5 0g5 0,

�
K21

k50

cos(2pk/t)(aT
k
1 b

k
2T

k11
)1fx

k11
5 1g5 0,

�
K21

k50

sin(2pk/t)(aT
k
1 b

k
2T

k11
)1fx

k11
5 0g5 0,

�
K21

k50

sin(2pk/t)(aT
k
1 b

k
2T

k11
)1fx

k11
5 1g5 0,

�
K21

k50

cos(4pk/t)(aT
k
1 b

k
2T

k11
)1fx

k11
5 0g5 0,

�
K21

k50

cos(4pk/t)(aT
k
1 b

k
2T

k11
)1fx

k11
5 1g5 0,

FIG. 2. Annual composite of the observation (thin lines) andmodel (thick lines)means for dry

(red) and wet days (blue). Results are based on KSLC observations for years 1948–2010.
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�
K21

k50

sin(4pk/t)(aT
k
1 b

k
2T

k11
)1fx

k11
5 0g5 0, and

�
K21

k50

sin(4pk/t)(aT
k
1b

k
2T

k11
)1fx

k11
5 1g5 0,

where 1 is an indicator function that takes the value of 1

if the condition in brackets is met and 0 otherwise. This

is a linear system of 12 equations and 12 unknowns,

which we solve numerically.

We then minimize (4) as a function of c. Taking a

derivative in c yields

22c23(DT2B)0(DT2B)1 2Kc21 . (6)

The derivative has a unique point at which it vanishes:

c5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K21(DT2B)0(DT2B)

q
, (7)

which is both the MLE value and least squares estima-

tion (LSE) value. However, constant c tends to over-

estimate the variance in the summer and underestimate

it in the winter (see Figs. 3b,c), motivating a seasonally

varying c denoted by ck, as in (1). The seasonally varying

ck makes the MLE nonlinear in the parameters, so we

proceed by taking an LSE approach where linear ana-

lytical expressions can be obtained.

b. Least squares estimation with varying ck

When ck does not depend on k, the LSE for the pa-

rameters in bk and a is equivalent to the MLE and sys-

tem of 12 equations in section 3a. Now, we assume that

c2k has a cyclostationary structure similar to bk but

without a trend. Its formulation is given by

c2k,0 5 r
0
1 �

0
cos(2pk/t)1 �00 sin(2pk/t)

1 k
0
cos(4pk/t)1 k0

0 sin(4pk/t) (8)

for dry days and

c2k,1 5 r
1
1 �

1
cos(2pk/t)1 �01 sin(2pk/t)

1 k
1
cos(4pk/t)1 k0

1 sin(4pk/t) (9)

for wet days. Here, k also varies from 0 to K 2 1.

However, because we assume that ck is cyclostationary

FIG. 3. Illustration of the SHArP weather generator with (a) input observational data for comparison. The blue

curve (raw observations) shows 2008 as an example year, and shading in each panel corresponds to percentiles of

the historical data for 1948–2010. Two simulations (red) of the temperature model with (b),(c) a constant c and

(d),(e) a seasonally varying ck.
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with no trend, it is sufficient to specify ck,0 and ck,1 only

for k5 0, . . . , t2 1. Our strategy to estimate ck,0 and ck,1
is to align the data by day of year j 5 0, . . . , t 2 1 and

segregate it according to the precipitation sequence.

This yields the MLE (and LSE) estimators

ĉ
j,0
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N21

j,0 (DT2B)0j,0(DT2B)
j,0

q
and

ĉ
j,1
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N21

j,1 (DT2B)0j,1(DT2B)
j,1

q
, (10)

where (DT2B)j,0 is theK/(t3 1) vector populated with

(DT 2 B)k if xk11 5 0 and with 0 if xk11 5 1, where

k5 j, j1 t, j1 2t, . . . , j1K2 t. Similarly, (DT2B)j,1 is

theK/(t3 1) vector populated with (DT2B)k if xk115 1

and with 0 if xk11 5 0, where k 5 j, j 1 t, j 1 2t, . . .,

j 1 K 2 t. The quantity Nj,0 is the number of times

xk11 5 0, and Nj,1 is the number of times xk11 5 1.

Once we have estimated cj,0 and cj,1, we use the LSE

method to estimate the parameters in (8) and (9). Spe-

cifically, we minimize

�
t21

j50

[r
0
1 �

0
cos(2pj/t)1 �00 sin(2pj/t)

1 k
0
cos(4pj/t)1 k0

0 sin(4pj/t)2 ĉ2j,0]
2 and (11)

�
t21

j50

[r
1
1 �

1
cos(2pj/t)1 �01 sin(2pj/t)

1 k
1
cos(4pj/t)1 k0

1 sin(4pj/t)2 ĉ2j,1]
2. (12)

Taking derivatives in each of the parameters in (11)

and (12) and setting them equal to zero yields equa-

tions that are familiar from Fourier analysis. For dry

days, we have

r̂
0
5 t21 �

t21

j50

ĉ2j,0,

�̂
0
5

2

t
�
t21

j50

ĉ2j,0 cos(2pj/t) ,

�̂00 5
2

t
�
t21

j50

ĉ2j,0 sin(2pj/t),

k̂
0
5

2

t
�
t21

j50

ĉ2j,0 cos(4pj/t), and

k̂0
0 5

2

t
�
t21

j50

ĉ2j,0 sin(4pj/t),

and for wet days, we have

r̂
1
5 t21 �

t21

j50

ĉ2j,1,

�̂
1
5
2

t
�
t21

j50

ĉ2j,1 cos(2pj/t),

�̂ 0
1 5

2

t
�
t21

j50

ĉ2j,1 sin(2pj/t) ,

k̂
1
5

2

t
�
t21

j50

ĉ2j,1 cos(4pj/t) , and

k̂0
1 5

2

t
�
t21

j50

ĉ2j,1 sin(4pj/t) .

The parameters are inserted back into (8) or (9) to

generate the synthetic temperature series using the lin-

ear model (1). Example simulations with the seasonally

varying ck are shown in the right column of Fig. 3. Note

how seasonally varying ck better captures the low vari-

ability in the summer and high variability in the winter.

The dry and wet ck curves are shown with composite

annual cycles of the standard deviation of the noise in

Fig. 4. These curves highlight the larger variability as-

sociated with wet days as well as the larger variability

associated with the transition seasons (spring and fall)

featuring strong frontal temperature contrasts.

c. Simulation of precipitation

In this section, for completeness, we provide formula-

tion for simulation of daily precipitation in a manner

compatible with the temperature model introduced

above.Our formulation largely followsWoolhiser (2008),

except here we allow for trends in the Markov chain

parameters. The probability of precipitation occurrence

is determined with a two-state (wet or dry), second-order

Markov chain, which means that the probability of pre-

cipitation on a given day depends on the precipitation

state on the previous two days as follows:

p
ij,0
(t)5Pfx

t
5 0 jx

t21
5 j,x

t22
5 ig; t51, 2, . . . , 365M ,

(13)

where M is the number of years. If we assume cyclo-

stationarity, then the pij0 terms are periodic, meaning

pij,0(t 1 K365) 5 pij,0(t) for any integer K. To account

for nonstationarity associated with low-frequency

oceanic forcing plus any trend, we define perturbed

versions of (13):

~p0
ij,0(t)5 ~p

ij,0
(t)1b

(ij,0)
0 1 b

(ij,0)
1 t1 b

(ij,0)
2 S

1
(t2 t

1
)

1b
(ij,0)
3 S

2
(t2 t

2
) , (14)
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where fb0, b1g enable a trend, S1 and S2 are oceanic

forcing with periodicity of 3–7 yr (ENSO) and 10–15 yr

(PDO), respectively, and the t terms are positive lags

(i.e., variations in ENSO and PDO indices may lead

their effects on precipitation by t months).

4. Comparison with the Richardson method

Because the Richardson method of simulating sto-

chastic temperature (referred to as the multivariate

generation model) is the most widely used parametric

method in the field and the one upon which SHArP

builds, it is a useful point of comparison. The Richardson

method is essentially an autoregressive process that

simulates standardized residuals; the details of this

method can be found in Richardson (1981) and Matalas

(1967). TheRichardsonmethod prescribes themeans and

standard deviations of the data (for wet and dry days)

prior to simulation via a harmonic fit and then re-

introduces them after simulating standardized residuals.

This causes the model mean and standard deviation to

abruptly switch between wet- and dry-state values. The

model we introduce here (1) also has wet- and dry-state

harmonics (bk) and noise amplitudes (bk) prescribed in

advance, but themean of themodel (D21B) and standard

deviation make autocorrelated, and hence more realistic,

transitions via the parameter a in D.

We highlight the difference between the methods in

Fig. 5, which compares the composite synthetic temper-

ature simulated by the twomodels with the observational

temperature for precipitation occurrence sequences of

dry-dry-wet-wet-dry-dry for each season. The observa-

tional temperature reflects a typical cold frontal passage

in each season (e.g., Shafer and Steenburgh 2008). In

general, the observed maximum temperature increases

shortly before the frontal passage because of southerly

flow and warm air advection; on the first day of pre-

cipitation, the maximum temperature decreases mod-

estly. On the second day of precipitation, the temperature

continues to decrease, and it slowly rebounds following

FIG. 5. Composite observation temperature (black lines) and

composite synthetic temperature for sets of days that follow the

precipitation occurrence sequence dry-dry-wet-wet-dry-dry, in each

season. In addition, the bias for each season is also shown immedi-

ately below these composite panels. Composite is of each occurrence

of this sequence at five climatologically similar sites (see Fig. 1). The

red lines indicate SHArP, the model presented here, and the blue

lines indicate the Richardson model. The number of samples in each

set is approximately 500.

FIG. 4. Seasonally varying ck curves for (left) dry and (right) wet days (black lines) and standard deviations of the

noise (colored lines). Note the relatively higher variability in the transitional seasons and overall higher variability

associated with the wet days.
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the precipitation event. SHArP is able to capture this

overall pattern. In contrast, the abrupt switching be-

tween wet- and dry-state means in the Richardson

model results in an unrealistically large decrease in

temperature on the first day of precipitation, followed

by minimal change on the second day (actually zero

change with large enough sample). While there is little

to no seasonal bias in the Richardson model, there is a

bias in the temperature around frontal passages. The

temperature bias in the Richardson model is up to 48C
following frontal passages, and SHArP is able to reduce

that bias by 28C in three seasons.

Although the Richardson framework as originally

formulated does not contain a trend term, one could be

added in principle.One approachwould be to fit the trend

by LSE and remove it prior to estimating the annual cy-

cles of the mean and residual standard deviations, and

then adding the trend back in after generating the simu-

lated temperatures. In contrast to this multistep approach

involving removing components, fitting, simulating, and

reintroducing components, the model presented here

involves only fitting and simulation because all variations

are captured in the fit formulation, including a trend term

that is incorporated into bk. Trended output from ob-

servations (1948–2010) and future BCCA CCSM4 high-

emissions scenario output (2011–2100) is shown in Fig. 6a

with an example corresponding realization from the

temperature model presented here shown in Fig. 6b.

5. Discussion and conclusions

This study presents a new linear model for simulating

stochastic temperature realizations called SHArP, and

themethodwas illustrated formaximum temperature at a

single site within the Great Basin. We first considered a

simplified version of the model with a constant noise

coefficient c and applied MLE to obtain its parameters.

However, this constant c compromised between the var-

iance in the summer and the variance in the winter, which

resulted in a simulation that did not adequately capture

the seasonal variance found in the observations. A sea-

sonally varying noise coefficient ck rendered the MLE

nonlinear, and we presented analytical solutions via LSE.

The resulting temperature realization more closely

matched that of observations, with increased wintertime

variance and decreased summertime variance.

Further realism may also be possible by relaxing as-

sumptions used here. For example, we assume the ampli-

tude of noise ck to be annually cyclostationary but without

trend. It is possible for the noise to have similar non-

stationarity because of ENSO and PDO. Curvilinearity (a

trend) and variables related to ENSO and PDO could be

added to the c2k equations (if the area of interest is in a

region where these oceanic modes play a major role) and

solved using the same LSE method. A nonlinear trend

could also be added to ak portion of the bk equation,

making it a1k 1 a2k
2. We also assume that temperature

FIG. 6. (a) KSLC observation GHCN-Daily maximum temperature (1948–2010) and BCCA CCSM4 high-

emissions (RCP8.5) maximum temperature output (2011–2100). (b) An example of a trended stochastic maximum

temperature simulated from 1948 to 2100 for KSLC. The simulation was trained on the data shown in (a). The red

dots indicate the average annual maximum temperature for each year of the simulation.
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depends only on itself and precipitation occurrence, but

precipitation amount and climate teleconnections that in-

fluence airmass trajectoriesmay be additionally important.

Even though this study is focused on only maximum

temperature at a single site, we have generalized the

method described to include minimum temperature in

addition to maximum temperature at multiple sites.

The linear model remains the same, but the scalar com-

putations become matrix computations. We extended

ideas described in Wilks (1998) and Wilks (1999b),

where the sites themselves have spatial correlation but

are generated independently of each other, by intro-

ducing spatial correlations in the ck matrices but not in

the a matrix. However, this method introduced an in-

creased number of parameters in the variance–covariance

matrix that required a nontrivial technique tomitigate the

issue, and this will be described in a future paper.
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