
ar
X

iv
:2

40
7.

07
86

6v
2 

 [
m

at
h.

PR
] 

 1
8 

O
ct

 2
02

4

SHOCKS AND INSTABILITY

IN BROWNIAN LAST-PASSAGE PERCOLATION

FIRAS RASSOUL-AGHA AND MIKHAIL SWEENEY

Abstract. For stochastic Hamilton-Jacobi (SHJ) equations, instability points are the space-time
locations where two eternal solutions with the same asymptotic velocity differ. Another crucial
structure in such equations is shocks, which are the space-time locations where the velocity field
is discontinuous. In this work, we provide a detailed analysis of the structure and relationships
between shocks, instability, and competition interfaces in the Brownian last-passage percolation
model, which serves as a prototype of a semi-discrete inviscid stochastic HJ equation in one space
dimension. Among our findings, we show that the shock trees of the two unstable eternal solutions
differ within the instability region and align outside of it. Furthermore, we demonstrate that one
can reconstruct a skeleton of the instability region from these two shock trees.
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1. Introduction

1.1. Stochastic Hamilton-Jacobi equations. Stochastic Hamilton-Jacobi (SHJ) equations are
a broad class of randomly forced Hamilton-Jacobi equations of the form

∂tΦ+H(∇Φ) = ν∆Φ− F,

where Φ = Φ(t, x) : R × Rd → R is a scalar function, ∇Φ is its spatial gradient representing
momentum, and the Hamiltonian H : Rd → R is assumed to be a convex function. The term
F = Fω(t, x) represents the random external force potential, with the random forcing given by its
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2 F. RASSOUL-AGHA AND M. SWEENEY

spatial gradient f = −∇F . The viscosity parameter ν ≥ 0 dictates the level of diffusion, with ν > 0
representing the viscous case and ν = 0 corresponding to the inviscid case.

Given an appropriate initial condition ϕ at the initial time s, the solution to the viscous SHJ
equation is unique and smooth. In contrast, the inviscid SHJ equation admits multiple solutions
with discontinuities in the spatial gradient, known as shocks. Shocks play a crucial role in Hamilton-
Jacobi equations and are fundamental to understanding phenomena such as sonic booms, breaking
waves, traffic jams, and discontinuities in spacetime curvature, all of which are manifestations of
nonlinear shock wave phenomena.

The solution of interest to us is the so-called viscosity solution, which is obtained by solving the
equation with ν > 0 and then taking the limit as ν → 0. This solution is expressed by the Hopf-Lax-
Oleinik variational representation. Specifically, define the random HamiltonianHω(p, x, t) = H(p)+
Fω(t, x) and its Legendre transform, the random Lagrangian Lω(v, x, t) = supp{p · v−Hω(p, x, t)}.
Then for an initial condition ϕ : Rd → R at time s, the viscosity solution at time t > s is given by

Φ(t, x) = inf
γ:γ(t)=x

{

ϕ(γ(s)) +

∫ t

s
Lω(γ

′(r), γ(r), r) dr
}

,(1.1)

where the infimum is taken over all absolutely continuous paths γ : [s, t] → R with γ(t) = x. Paths
that achieve the infimum are known as characteristic lines or geodesics, borrowing terminology
from first-passage percolation models. Thus, the equation is solved by picking up an initial value
ϕ(γ(s)) and then collecting the Lagrangian action along the characteristic line. Shock points (t, x)
are those from which emanate multiple characteristic lines. A similar variational formula exists in
the viscous case; see (2) in [8]. In this case, the paths γ are referred to as random polymers.

The representation (1.1) shows that the SHJ equation is a Markov process, making it suitable
for analysis with tools from random dynamical systems (RDS). For an overview of RDS, refer to
[3]. A fundamental concept in RDS is the stability or reliability of the system. In a seminal paper,
Sinai [63] studied the viscous SHJ equation with a forcing term that is either regular and periodic
in both space and time or periodic and regular in space and white in time. He demonstrated that
solutions to the equation, starting from different initial conditions, can be coupled to a process
defined for all times. This process acts as a pullback attractor, as defined in Definition 9.3.1 of [3].

The existence of a unique, globally defined stochastic process (called an eternal solution) that
is measurable with respect to the history of the noise is commonly referred to as the one force-one
solution (1F1S) principle (see, for example, the introduction of [24]). The authors of [7] incorporate
the pullback attractor property into the definition of the 1F1S principle. When the 1F1S principle
holds, the system is considered stable or reliable, and stochastic synchronization occurs: solutions
starting from different initial conditions (within the basin of attraction of the pullback attractor)
converge over time.

In this paper, we are interested in the one-dimensional case d = 1. In this case, the asymp-
totic velocities limx→∞ x−1Φ(t, x) and limx→−∞ x−1Φ(t, x) are conserved by the dynamics of the
Hamilton-Jacobi equation and the 1F1S principle is discussed for given values of the conserved
quantity. The ergodic theory of the SHJ calls for the 1F1S principle to hold for each fixed velocity
value, on a full-probability event dependent on this value. However, there may be exceptional val-
ues of the conserved quantity for which the 1F1S principle fails to hold. In such instances, multiple
eternal solutions with the same asymptotic velocity exist, indicating that the random dynamical
system is unstable. The points of instability are those points (t, x) at which the eternal solutions
differ.

The instability phenomenon described above occurs in both the viscous and inviscid cases,
whereas shocks are unique to inviscid Hamilton-Jacobi equations. Our interest lies in understand-
ing the connection between the structure of shocks and the structure of instability. Consequently,
this paper focuses on inviscid SHJ equations.
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Before describing the model considered in this paper, we provide a list of works where the
aforementioned phenomena have been rigorously demonstrated.

The 1F1S principle for deterministic values of the asymptotic velocity has been rigorously es-
tablished for several models. Initially, it was demonstrated in settings where space is compact (or
essentially compact) and the random forcing is fairly regular [4, 7, 21, 24, 31, 42, 52, 64]. Recently,
the principle was proven for the one-dimensional KPZ equation (see Section 1.2) with space-time
white noise on the torus [58]. In [5, 6, 9, 22], the necessity of spatial compactness was eliminated,
but the random forcing was essentially discrete (e.g., a Poisson point process) or semi-discrete (a
kick-type forcing activated at integer times and smooth in space). These works did not consider
instability for exceptional values of the conserved quantity.

The 1F1S principle was shown to hold for deterministic velocities and to fail for a random
countable dense set of exceptional velocities in two discretizations of SHJ equations [50, 62] (see
Sections 1.3 and 1.4). In the fully continuous space-time setting, this was proved for the KPZ
equation [49] and its inviscid counterpart, the KPZ fixed point [14]. For more details, see Section
1.2.

Remark 1.1. Although the 1F1S principle results are not explicitly stated in [14, 50, 62], they
can be derived from the directional semi-infinite geodesics coalescence results presented in these
papers. This connection is perhaps not surprising since these geodesics are characteristics from
time −∞ that can be used to define eternal solutions. This path to proving the 1F1S principle is
demonstrated in [47] for a viscous model and in [5] for an inviscid model.

Remark 1.2. The above works also include the result that eternal solutions must either satisfy

lim
x→∞

x−1Φ(0, x) = lim
x→−∞

x−1Φ(0, x) or lim
x→∞

x−1Φ(0, x) = − lim
x→−∞

x−1Φ(0, x) 6= 0.

and the 1F1S principles were only proved for the former type. It is believed that there are no
eternal solutions of the latter type. This was recently proved in [23] for the KPZ equation.

1.2. The KPZ equation and KPZ universality. A particular SHJ of note is the famed KPZ
equation

∂th− 1

2
(∂xh)

2 = ν∂xxh+ βW,(1.2)

obtained by setting d = 1, ν > 0, H(p) = p2

2 , F = −βW , whereW is a space-time white noise and β
a real parameter modulating the strength of the noise, and then defining h = −Φ. This viscous SHJ
equation was introduced by Kardar, Parisi, and Zhang [51] to describe the evolving height interface
h(t, x) of a growing random surface. It has been argued in the physics literature that the KPZ
equation represents a broad universality class of physical systems and mathematical models that
exhibit similar long-term behavior. This behavior is characterized by a fluctuations scaling exponent
of 1/3 a correlation scaling exponent of 2/3, which coincides with the polymer paths’ fluctuation
scaling exponent. Additionally, these systems exhibit Tracy-Widom asymptotic long-time scaling
limit probability distributions. The KPZ universality class is believed to contain viscous and
inviscid SHJ equations, interacting particle systems, percolation/growth models, paths/polymers
in random environments, driven diffusive systems, and random matrices.

Taking a formal spatial derivative of the KPZ equation says that the velocity u = −∂xh satisfies
the stochatic viscous Burger’s equation:

∂tu+ u∂xu = ν∂xxu− β∂xW.(1.3)

The well-posedness of an appropriately renormalized version of the KPZ equation (1.2) was shown
only recently, first on the torus [34, 35, 39, 40] and then on the real line [56]. For the case of the
stochastic Burgers equation (1.3) see [11, 32, 35–38].
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As part of a broader study of randomly forced models in fluid dynamics, [28] performed a
dynamical renormalization group analysis of the stochastic Burgers equation (1.3) and predicted

the existence of the scaling limit of ε1/2h(ε−3/2t, ε−1x)− Cεt, as ε → 0, where h solves (1.3) with
ν = 1

2 and β = 1 and Cε is an appropriate constant. This prediction was recently proved in [57] for
the KPZ equation with appropriate initial conditions, including both continuous initial data and
the fundamental solution, corresponding to a Dirac δ measure initial condition. The limit, originally
constructed in [54] and termed the KPZ fixed point, is believed to be the universal attractor for the
entire KPZ universality class under the same scaling. This was proved for a number of models in
[20, 57, 65]. By rescaling the KPZ equation (see Remark 1.1 in [49]), this statement implies that

the solution of equation (1.2) with β =
√
2ν converges to the KPZ fixed point, as ν → 0. The KPZ

fixed point can thus be viewed as an inviscid version of the KPZ equation, and it is reasonable to
expect that the “spatial derivative” of the KPZ fixed point exhibits characteristics of an inviscid
stochastic Burgers equation. This statement can be made rigorous by describing the KPZ fixed
point in terms of the directed landscape model.

The directed landscape, constructed by [19], is a stochastic process of nonnegative passage times
{L(t, y | s, x) : x, y, s, t ∈ R, s < t} that satisfies, for any r ∈ (s, t),

L(t, y | s, x) = sup
z

(

L(r, z | s, x) + L(t, y | r, z)
)

.

The KPZ fixed point is then a Markov process in time t, which can be written in terms of the
directed landscape and its initial condition ϕ at time s via

h(t, x) = sup
z

(

ϕ(z) + L(t, x | s, z)
)

.

Comparing with (1.1), we see that L(t, x | s, z) plays the role of the point-to-point action

inf
γ:γ(s)=z,γ(t)=x

∫ t

s
Lω(γ

′(r), γ(r), r) dr.

(The infimum switched to a supremum due to the sign change in h = −Φ.) Thus, in the directed
landscape model, a geodesic from (s, z) to (t, x) is a continuous path γ : [s, t] → R such that
γ(s) = z, γ(t) = x, and

L(t, x | s, z) = inf
k≥1

inf
s=r0<r1<···<rk=t

k
∑

i=1

L
(

ri, γ(ri) | ri−1, γ(ri−1)
)

.

As mentioned in the previous section, the stability and instability of the KPZ equation and KPZ
fixed point have been examined in [49] and [14], respectively.

1.3. Last-passage percolation. Analogous to the way Brownian motion can be discretized by a
random walk, (1.1) can be discretized by taking s, t, x to be integers with s < t and replacing the
continuous paths γ : [s, t] → R with nearest-neighbor paths (γk)

t
k=s. After rotating the space-time

lattice, this results in the directed last-passage percolation (LPP) model on the cubic lattice Zd+1.
In the directed LPP model on Zd+1, random weights {ωx : x ∈ Zd+1} are placed at the lattice sites

according to a shift-invariant ergodic (usually product) probability measure P. The admissible paths
between vertices are those with increments in {e1, . . . , ed+1}. The weight of an admissible path γ is
the sum of the weights along the path,

∑

z∈γ ωz. For x, y ∈ Zd+1 with x ≤ y coordinate-wise, the

point-to-point last-passage time Gx,y from x to y is the maximum path weight Gx,y = maxγ
∑

z∈γ ωz

over admissible paths from x to y. For x ∈ Zd+1 and n ∈ Z with n > x · (e1 + · · · + ed+1) = ℓ and
a function ϕ : Zd+1 → R, the point-to-level last-passage time is

Gϕ
x,(n) = max

γ

{

ϕ(γn) +
∑

z∈γ

ωz

}

,(1.4)
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where the maximum is taken over all admissible paths (γi)
n
i=ℓ with γℓ = x and maximizing paths

are called geodesics.
The planar directed last-passage percolation (LPP) model on Z2 is a pivotal model in probability

theory, situated at the intersection of multiple disciplines, including queueing theory, interacting
particle systems, integrable systems, and representation theory.

Comparing the formula (1.4) to (1.1), one can see how the directed LPP model discretizes a
stochastic inviscid Hamilton-Jacobi equation. In this context, the time coordinate of a vertex
y ∈ Zd+1 is represented by t = −y · (e1 + · · ·+ ed+1) and, therefore, eternal solutions correspond to
taking n → ∞ in (1.4). This, however, will result in Gϕ

x,(n) blowing up and one instead considers

the limit of the differences Gϕ
x,(n) −Gϕ

y,(n).

By writing

Gϕ
x,(n) = max

{

ϕ(y) +Gx,y : y ∈ Zd+1, y · (e1 + · · ·+ ed+1) = n
}

,

one sees that eternal solutions can be studied by analyzing the existence or absence of the almost
sure limits

Bξ(x, y) = lim
n→∞

(Gx,⌊nξ⌋ −Gy,⌊nξ⌋)(1.5)

for x, y ∈ Zd+1 and ξ ∈ Rd+1 with ξ · (e1 + · · · + ed+1) = 1. These limits are related to the
existence, uniqueness, and coalescence of semi-infinite directed geodesics. Therefore, Bξ is called
the Busemann function, borrowing terminology from metric geometry.

Busemann functions were first introduced to first-passage percolation by Chuck Newman [55]
and were initially utilized to prove results about semi-infinite geodesics in the same context by
Hoffman [43]. Since then, they have become a fundamental tool for studying semi-infinite geodesics
and polymer measures [1, 10, 15–18, 25–27, 29, 30, 33, 44, 45, 47, 48, 53].

In the context of the directed LPP model, [50] demonstrated that the limits in (1.5) exist for
deterministic directions ξ, but fail to exist for an exceptional random countable dense set of these
directions. For each such exceptional direction, [50] also introduced and analyzed the instability
graph. This graph has vertices u ∈ Z2 and nearest-neighbor edges (u, u+ ei), i ∈ 1, 2, characterized
by the failure of the limit in (1.5) to hold for x = u and y = u+ ei.

What the lattice LPP model lacks, however, is the presence of shocks. Due to the discrete nature
of the space, there is no meaningful notion of discontinuity in the spatial gradient. To study the
interaction between shocks and instability, a model with a continuous space variable is required.
One such model is the Brownian last-passage percolation model, which we describe next.

1.4. Brownian LPP and our contribution. Brownian last-passage percolation (BLPP) is simi-
lar to the planar LPP described earlier, but with a discrete time coordinate and a continuous space
coordinate. Here, we provide a brief description of the model, with a more rigorous introduction
to the model presented in Section 2.

In the Brownian last-passage percolation model (BLPP), paths are restricted to up-right stair-
cases on Z×R. These paths are indexed by their exit times from each integer level m, denoted by
sm. The random weights are given by i.i.d. standard two-sided Brownian motions {Bk : k ∈ Z}.
For integers m ≤ n and s < t, the weight of a path from (m, s) to (n, t) with jump times
s = sm−1 ≤ sm ≤ · · · ≤ sn = t is the cumulative amount of Brownian motions it collects:
∑n

k=mBk(sk−1, sk). The Brownian LPP time L(m,s),(n,t) from (m, s) to (n, t) is defined as the
supremum of the weights of all admissible paths from (m, s) to (n, t). Paths that attain this supre-
mum are called point-to-point geodesics, as in the lattice LPP model, and semi-infinite geodesics
are rooted infinite paths which are geodesics between any two of their points.

The Busemann functions

Bθ(m, s, n, t) = lim
k→∞

(L(m,s),(k,θk) − L(n,t),(k,θk)),
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θ > 0, have been defined and studied in [2, 14, 61, 62]. In particular, it is shown in [62] that there
is an exceptional random countable dense set of directions θ for which these limits do not exist.

In this paper, we introduce and study the properties of the instability graph of points (n, t)
where these Busemann limits do not exist. These points are also where (at least) two θ-directed
semi-infinite geodesics originate, which separate immediately and never touch again.

On the other hand, [61] showed that, due to the continuous nature of the space variable, for
each direction θ > 0, there exists a countable set of points (n, t) from which two θ-directed semi-
infinite geodesics emanate. These geodesics separate immediately and then rejoin and coalesce at
a later point. These are the shock points, as they are locations where two distinct characteristic
lines originate, carrying the same information from the remote past. This is in contrast with the
aforementioned two distinct semi-infinite geodesics emanating from instability points, which do not
touch after separating, thus bringing different information from the remote past.

We demonstrate that the shock points exhibit the familiar tree structure and investigate the
relationship between their locations and the instability graph. In particular, we show that a skeleton
of the instability graph can be reconstructed by knowing the locations of the shock points.

This work represents the first investigation into the relationship between shocks and instability
in inviscid stochastic Hamilton-Jacobi equations. It lays the foundation for a broader analysis of
the interplay between these two critical structures, providing a new framework for future research
in this area.

Organization. In Section 2, we introduce the Brownian last-passage percolation model and
highlight its parallels with the inviscid stochastic Hamilton-Jacobi equation. Our main results
are presented in Section 3. Section 4 compiles results from previous papers that we will need
for this work. The instability graph is defined in Section 5 through the Busemann process, with
an equivalent definition via semi-infinite geodesics given in Section 6. Section 7 is devoted to the
properties of the instability graph. Section 8 introduces shock points and examines their relationship
with the instability graph. Section 9 explores the relationship between the instability graph, shocks,
and the origins of competition interfaces. Section 10 contains the proofs of several auxiliary results
stated in Section 3. Additionally, two more results concerning semi-infinite geodesics and shocks
are left to the appendix, as they are not used in the rest of the paper but are still of significant
interest. Notably, the graph defined in Sections 5 and 6, and studied in Sections 7-9, is in fact more
general than the one mentioned in Section 3.

Notation. R denotes the set of real numbers, Z the integers, R+ the nonnegative reals, and Z+

the nonnegative integers. We abbreviate a∨ b = max(a, b). (m, s) ≤ (n, t) means m ≤ n and s ≤ t.
(m, s) � (n, t) means m ≥ n and s ≤ t, i.e. (n, t) is south-east of or down-right from (m, s).

2. The setting

2.1. Brownian LPP. Let (Bi(t), t ∈ R)i∈Z be a sequence of independent two-sided standard
Brownian motions, defined on a Polish probability space (Ω,S,P). E denotes expectation under P.

An up-right path between two points (m, s) ≤ (n, t) ∈ Z×R with s < t is described by its jump
times s = sm−1 ≤ sm ≤ . . . ≤ sn = t. Alternatively, the path can be thought of as the linear
interpolation of the sequence of points {(k, sk−1), (k, sk) : m ≤ k ≤ n}.

Given a realization ω ∈ Ω, space-time points (m, s) ≤ (n, t) in Z×R with s < t, and a sequence
of jump times s = sm−1 ≤ sm ≤ . . . ≤ sn = t, we let

∑n
k=m

(

Bk(sk) − Bk(sk−1)
)

be the length
of the path from (m, s) to (n, t) defined by the jump times. The last-passage time from (m, s) to
(n, t) is defined as

L(m,s),(n,t)(ω) = sup
{

n
∑

k=m

(

Bk(sk)−Bk(sk−1)
)

: s = sm−1 ≤ sm ≤ · · · < sn = t
}

.(2.1)
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An up-right path is a geodesic from (m, s) to (n, t) if its jump points maximize the supremum in
(2.1). Theorem B.1 in [41] demonstrates that for any m ≤ n in Z and s < t in R, there is P-almost
surely a unique geodesic path from (m, s) to (n, t). However, there may be exceptional start and
end points for which there are multiple geodesic paths. Indeed, Lemma 3.5 in [19] shows that for
any m ≤ n in Z and s < t in R and for any realization of ω ∈ Ω for which the Brownian motions Bk,
m ≤ k ≤ n, are continuous, there exist jump times s = sSm−1 < sSm < . . . < sSn = t, S ∈ {L,R}, that
maximize the supremum in (2.1) and such that these are, respectively, the leftmost and rightmost
geodesic paths: any maximizing sequence of jump times satisfies sLk ≤ sk ≤ sRk , for all integers
m ≤ k ≤ n.

Figure 2.1. Left: An illustration of an up-right path. According to Proposition 4.14,
up-right paths do not jump twice in a row like the path in the right panel.

A semi-infinite up-right path starting at (m, s) ∈ Z×R is determined by its jump times (sk)k≥m−1

with sm−1 = s and sk ≤ sk+1 for all k ≥ m − 1. Such a path is called a semi-infinite geodesic
if for each integer n > m (sm−1, sm, . . . , sn) is a geodesic between (m, s) and (n, sn). Similarly, a
bi-infinite up-right path is determined by its jump times (sk)k∈Z and it is said to be a bi-infinite
geodesic if for any integers m < n, (sm−1, sm, . . . , sn) is a geodesic between (m, sm−1) and (n, sn).

We are interested in the large-scale properties of the Brownian last-passage percolation model
and, in particular, the structure of the semi-infinite geodesics. The following limit is one of the
main tools we use in our analysis.

Theorem 2.1 (Theorem 4.2 in [2]). Fix m,n ∈ Z, s, t ∈ R, and θ > 0. Then with P-probability
one, the limit

Bθ(m, s, n, t) = lim
k→∞

(L(m,s),(k,tk) − L(n,t),(k,tk))(2.2)

exists almost surely and is independent of the choice of the sequence {tk}, so long as limk→∞
tk
k = θ.

We call Bθ the Busemann function with velocity θ.

Using the monotonicity of Bθ(m, s,m, t) and Bθ(m, s,m + 1, s) in θ, [61] takes left and right
limits to construct the Busemann process

{

Bθ�(m, s, n, t) : θ > 0,� ∈ {−,+},m, n ∈ Z, s, t ∈ R
}

.

[61, 62] established many properties of this process. Theorem 4.1 below summarizes the ones we
need for this paper.

The above Busemann process produces a process of semi-infinite geodesics:
{

ΓS,θ�
(m,s) : θ > 0,� ∈ {−,+}, S ∈ {L,R},m ∈ Z, s ∈ R

}

.(2.3)

For each θ > 0, � ∈ {−,+}, and (m, s) ∈ Z × R, ΓL,θ�
(m,s) and ΓR,θ�

(m,s) are, respectively, the leftmost

and the rightmost up-right paths starting at (m, s) and satisfying

Bn(sn)−Bθ�(n+ 1, 0, n+ 1, sn) = sup{Bn(s)−Bθ�(n+ 1, 0, n + 1, s) : s ≥ sn−1}, for all n ≥ m.

[61, 62] introduced and studied the above geodesics and proved a large number of properties that
these paths satisfy. Theorem 4.3 summarizes the properties we need in this work.
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The formula (2.1) is analogous to the Hopf-Lax-Oleinik variational formula for the fundamental
solutions of inviscid Hamilton-Jacobi equations, with time running downward. In this analogy,
point-to-point geodesics correspond to the characteristic lines of these equations.

Similarly, the function Bθ�(0, 0, n, t) can be viewed as an eternal solution, meaning it is defined
for all times n ∈ Z. Given that time progresses downward in this analogy, we can interpret the

semi-infinite geodesics ΓL,θ�
(m,s) and ΓR,θ�

(m,s) as characteristic curves of Bθ�, tracing back from (m, s) to

the distant past.

2.2. Stability and instability. Eternal solutions and semi-infinite geodesics are related to the
notions of pullback attractors and stochastic synchronization, from random dynamical systems.
See Sections 3.3 and 3.5 in [49] for these connections in the context of the Kardar-Parisi-Zhang
equation.

Define the random set

Θω =
{

θ > 0 : Bθ− 6= Bθ+
}

.(2.4)

Theorem 2.5 in [62] says that Θω is almost surely a “genuinely random” countable dense set. (See
also Theorem 4.9 below.)

When θ > 0 is such that θ 6∈ Θω, the ± distinction disappears and ΓS,θ−
(m,s) = ΓS,θ+

(m,s) for all (m, s) ∈
Z × R and S ∈ {L,R}. By Theorem 4.21 in [62], we have that P-almost surely, for all θ 6∈ Θω,
all θ-directed geodesics, out of the various points (m, s) ∈ Z × R, coalesce. This translates to the
uniqueness of the pullback attractors (Definition 9.3.1 in [3]), indicating stability, where solutions
started from initial conditions in an appropriate space of functions (basin of attraction) synchronize.
Conversely, according to Remark 4.22 in [62], P-almost surely, for any θ ∈ Θω, there exist at least

two non-coalescing θ-directed geodesics, ΓL,θ−
(m,s) and ΓR,θ+

(m,s), out of each (m, s) ∈ Z × R. In this

case, the associated random dynamical system exhibits multiple pullback attractors, suggesting
instability, where stochastic synchronization fails. For more details and precise definitions in the
related cases of the discrete last-passage percolation model and the Kardar-Parisi-Zhang (KPZ)
equation, refer to Section 4.1 in [50] and Section 3.5 in [49], respectively. This instability, when
θ ∈ Θω, can also be interpreted as a phase transition in the familiar setting of Gibbs measures. See
Section 2.4 in [46] for details in the case of directed random polymers.

With the above in mind, we are interested in analyzing the properties of the set
{

(n, t) ∈ Z× R : Bθ− 6= Bθ+ “near (n, t)”
}

.

The precise definition of the actual object we study, called the instability graph, is given in Section
3, then a more general version is developed in Sections 5 and 6. Properties of this graph are given
in Section 7.

2.3. Shocks. Viewing semi-infinite geodesics as characteristic lines suggests this definition of shock
points (of Bθ�). For θ > 0 and � ∈ {−,+}, let

NUθ�
1 =

{

(m, s) ∈ Z× R : (m+ 1, s) ∈ ΓL,θ�
(m,s),∃δ > 0 such that (m, s+ δ) ∈ ΓR,θ�

(m,s)

}

.

In words, points in NUθ�
1 are ones at which the two geodesics ΓL,θ�

(m,s) and ΓR,θ�
(m,s) split immediately.

Definition 2.2. Given θ > 0 and � ∈ {−,+} a point (m, s) ∈ Z × R is called a θ�-shock point if
(m, s) ∈ NUθ�

1 . When θ and � are clear from the context, we just say that (m, s) is a shock point.

Remark 2.3. The above definition only considers semi-infinite geodesics from the process (2.3). A
priori, there may be other semi-infinite geodesics in the model and hence there may be more shock
points. However, as explained in Remark 4.5 below, it is expected that the process (2.3) contains
all the semi-infinite geodesics of the model and hence that there are no other shocks that may have
been overlooked.
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The set NUθ�
1 was introduced in [62]. Theorem 4.7 below summarizes the results we need from

that paper.
Shock points mark places where we have multiple semi-infinite geodesics, corresponding to the

same Busemann function (i.e. eternal solution). As per Theorem 4.7(ii), these points are present for

all θ > 0 and � ∈ {−,+}. However, according to Theorem 4.3(iii), the geodesics ΓS,θ�
(m,s), S ∈ {L,R}

and � ∈ {−,+}, are all θ-directed. Thus, when θ ∈ Θω and Bθ− and Bθ+ differ we get two eternal
solutions, each producing semi-infinite geodesics traveling at the same speed θ. Consequently, there
might be points that are not shock points but still emit multiple θ-directed geodesics.

As highlighted in the introduction, the BLPP model has aspects of a Burgers’ equation, where the
system dissipates energy at shock points. It is then natural to ponder the connection between the
locations of shock points and instability points. This forms the primary focus of our investigation
in this paper and is presented in Section 8 and summarized in Section 3. A pertinent question left
open is whether instability points are linked to any form of energy dissipation.

2.4. Competition interfaces. Another question of interest to us is the relationship between in-
stability and competition interfaces. More precisely, given S ∈ {left, right} and a starting point
(m, s) ∈ Z×R, we can split (m, s)+Z+×R+ into two regions, based on whether or not the S-most
geodesic from (m, s) to the point (n, t) ∈ (m, s) + Z+ × R+ (with (n, t) 6= (m, s)) goes through
(m+ 1, s), i.e. whether the geodesic proceeds from (m, s) upward or to the right. The two regions
are then separated by an interface, an up-right path on (Z + 1

2)× R, starting at (m+ 1
2 , s), called

the S-competition interface. The detailed construction of the paths is done in Remark 4.24 in [62].
Theorem 4.12 below summarizes the properties we need. In particular, part (i) of that theorem says
that, P-almost surely, for any (m, s) ∈ Z × R, the left and the right competition interfaces out of
(m, s) have asymptotic directions θL(m,s) and θR(m,s), respectively. Section 9 explores the relationship

between these roots of competition interfaces, the instability graph, and shock points.

3. An overview of the main results

In this section, we give a quick run through our main results. Section 4 lists results from previous
works which we will need in this paper. The sum of the results in that section holds on a single
event Ω10 ∈ S with P(Ω10) = 1. See Remark 4.17. This is the full P-probability event on which all
of our results hold.

3.1. Instability. We begin by defining instability points and edges and the instability graph.
Recall the exceptional set Θω, defined in (2.4).

Definition 3.1. Take θ ∈ Θω.

(a) For m ∈ Z and t ∈ R, we call the vertical closed interval [(m− 1
2 , t), (m+ 1

2 , t)] a θ-instability

edge if s 7→ Bθ−(m, 0,m, s) − Bθ+(m, 0,m, s) has a point of increase at t.

(b) For m ∈ Z and t ∈ R, we say that (m+ 1
2 , t) is a proper θ-instability point if Bθ−(m, t,m+

1, t) < Bθ+(m, t,m+ 1, t).

(c) The instability graph Sθ = Sθ(ω) is the union of all the θ-instability edges and the closure
of the set of proper θ-instability points.

(d) For m ∈ Z and t ∈ R, the point (m + 1
2 , t) is a θ-instability point if it belongs to Sθ. A

θ-instability point that is not proper is called improper.

(e) For m ∈ Z, and an interval I ⊂ R, {(m + 1
2 , r) : r ∈ I} is a θ-instability interval if it is a

subset of Sθ. It is a proper instability interval if (m + 1
2 , r) is a proper θ-instability point

for all r ∈ I.

(f) For m ∈ Z and t ∈ R, (m + 1
2 , t) is called a double-edge θ-instability point if both [(m −

1
2 , t), (m+ 1

2 , t)] and [(m+ 1
2 , t), (m+ 3

2 , t)] are instability edges.
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In the above definition, proper instability points are defined explicitly through the Busemann
process but improper instability points are defined via a closure procedure. Theorem 5.6 gives a
characterization of all instability points in terms of the Busemann process. In words, it says that
(m + 1

2 , s) ∈ (Z + 1
2) × R is a θ-instability point if and only if for any r′ < t and r′′ > t we have

Bθ−(m, r′,m+1, r′′) < Bθ+(m, r′,m+1, r′′). Then Lemma 6.2 and Theorem 6.5 provide equivalent
characterizations in terms of the geodesics process (2.3). In words, they say that [(m− 1

2 , t), (m+
1
2 , t)] is a θ-instability interval if and only if ΓR,θ+

(m,t) and ΓL,θ−
(m,t) separate immediately and never touch

again and (m+ 1
2 , t) is a θ-instability point if and only if ΓR,θ+

(m,t) and ΓL,θ−
(m+1,t) do not intersect.

Section 7 is devoted to the properties of the instability graph. We summarize the results in the
following two theorems.

The first theorem says that this graph is a connected closed bi-infinite set that goes north-east in
direction θ. It consists of the union of closed horizontal intervals of the form [(m+ 1

2 , s), (m+ 1
2 , t)],

m ∈ Z and t > s in R, with downward closed vertical instability edges [(m− 1
2 , s), (m+ 1

2 , s)] from

the instability intervals’ left endpoints and upward vertical instability edges [(m+ 1
2 , t), (m+ 3

2 , t)]
from the instability intervals’ right endpoints, and with an additional set of vertical instability edges
out of a Hausdorff dimension 1/2 set of points (m+ 1

2 , r), s < r < t, in the interiors of instability
intervals, going either up or down, but not both. See Figure 7.1 and the left panel in Figure 3.1.

Theorem 3.2. The following holds for all ω ∈ Ω10 and all θ ∈ Θω.

(i) The instability graph is bi-infinite: For any instability point x⋆ ∈ Sθ there exist an infinite
up-right path and an infinite down-left path, both starting at x⋆ and moving along the
instability graph Sθ.

(ii) Any up-right path x⋆
0:∞ on the instability graph Sθ has direction θ.

(iii) There are no double-edge instability points in Sθ.

(iv) The instability graph extends infinitely far to the left and to the right: For any m ∈ Z

sup
{

s :
[

(m− 1
2 , s), (m+ 1

2 , s)
]

∈ Sθ
}

= ∞ and inf
{

s :
[

(m− 1
2 , s), (m+ 1

2 , s)
]

∈ Sθ
}

= −∞.

(v) Take m ∈ Z and s < t. The interval {(m + 1
2 , r) : s ≤ r ≤ t} is a maximal θ-instability

interval if and only if (m+ 1
2 , r) is a proper θ-instability point for all r ∈ (s, t) and (m+ 1

2 , s)

and (m+ 1
2 , t) are improper θ-instability points.

(vi) For any m ∈ Z, the set of instability points (m + 1
2 , s) ∈ Sθ from which descends an

instability edge has a Hausdorff dimension of 1
2 .

The next theorem demonstrates that the instability graph exhibits a web-like structure. Specif-
ically, one can find up-right paths on the graph connecting any two instability points to a shared
instability point (we call a common ancestor), as well as down-left paths on the graph also leading
to a common instability point (a common descendent). See the center panel in Figure 3.1.

Theorem 3.3. The following holds for all ω ∈ Ω10 and all θ ∈ Θω. For every pair of instability
points x⋆,y⋆ ∈ Sθ there exist instability points z⋆1, z

⋆
2 ∈ Sθ and up-right paths on the graph Sθ going

from z⋆1 to x⋆, from z⋆1 to y⋆, from x⋆ to z⋆2, and from y⋆ to z⋆2.

3.2. Shocks. In Section 8 we study the structure of shock points and their relation to the instability
graph. As one might expect from the connection to the Burgers’ equation, shock points form
coalescing trees.

Definition 3.4. Take θ > 0 and � ∈ {−,+}. We say that y ∈ NUθ�
1 is a NE ancestor of x ∈ NUθ�

1

or, equivalently, that x is a SW descendant of y if y is weakly between ΓL,θ�
x and ΓR,θ�

x .
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x

y

z

z′

Figure 3.1. Left: An illustration of a maximal θ-instability interval. In reality, the set
of endpoints of the vertical edges has a Hausdorff dimension 1

2 . Thus, each vertical edge
has uncountably many vertical edges near it, similar to the way the zeros of standard
Brownian motion behave. There are no θ-instability points from which emanate both a
vertical edge going upward and another going downward. Center: An illustration of the
web-like structure. Points x and y have a common NE ancestor z and a common SW
descendent z′. Right: An illustration of the shocks tree structure. When θ 6∈ Θω, the
coloring is immaterial. When θ ∈ Θω and � = +, red depicts the subtree of points in
NUθ+

1 \ NUθ−
1 and blue depicts the “bushes” of points in NUθ+

1 ∩ NUθ−
1 . Similarly, when

θ ∈ Θω and � = −, red depicts the subtree of points in NUθ−
1 \NUθ+

1 and blue depicts the

“bushes” of points in NUθ+
1 ∩ NUθ−

1 .

Note that for any x ∈ NUθ�
1 , x is both an ancestor and a descendant of x. The above ancestry

relation is a partial order on NUθ�
1 .

We show that for each θ > 0 and � ∈ {−,+}, the above ancestry relation induces a tree structure
on NUθ�

1 . The tree’s branches coalesce in the south-west direction and die out in the north-east
direction. That is, the tree does not have a bi-infinite backbone. Each shock point (m, s) has a
unique immediate child on level m− 1. Interestingly, even though the tree branches die out in the
north-east direction, each shock point (m, s) that has a NE ancestor on level m+ 1 has infinitely

many of them on that level. We also show that the shock points in NUθ+
1 \NUθ−

1 form a subtree of

the NUθ+
1 tree and the shock points in NUθ−

1 \NUθ+
1 form a subtree of the NUθ−

1 tree. In both cases,

the remaining points in NUθ−
1 ∩NUθ+

1 form smaller trees (bushes) with each such bush containing
infinitely many branches but only finitely many generations. See the right panel in Figure 3.1.

Remark 3.5. In the standard tree convention, children branch out from their parents. However, our
terminology reverses this direction because the Hamilton-Jacobi equation progresses downward in
time. Thus, we refer to the points further down as children and the points further up as ancestors.

Theorem 3.6. The following holds for all ω ∈ Ω10, all θ > 0, and all � ∈ {−,+}.
(i) Take (m, s) ∈ NUθ�

1 . Then for any r < s with (m, r) ∈ NUθ�
1 , (m, r) is not a descendant of

(m, s).

(ii) Take x,y, z ∈ NUθ�
1 . Assume that x and y are both SW descendants of z. Then either x is

a SW descendant of y or y is a SW descendant of x.

(iii) For each (m, s) ∈ NUθ�
1 there exists a unique t < s such that (m−1, t) ∈ NUθ�

1 and (m−1, t)
is a descendant of (m, s). Furthermore, if s1 < s2 are such that (m, s1), (m, s2) ∈ NUθ�

1

and (m− 1, ti) is the unique SW descendent of (m, si) for each i ∈ {1, 2}, then t1 ≤ t2.

(iv) Suppose (m, s) ∈ NUθ�
1 has a NE ancestor. Then it has infinitely many NE ancestors on

level m+ 1.

(v) Take x,y ∈ NUθ�
1 . Then x and y have a common SW descendant z ∈ NUθ�

1 .

(vi) Take (m, s) ∈ NUθ+
1 \ NUθ−

1 . Then all SW descendants of (m, s) in the NUθ+
1 tree are in

NUθ+
1 \ NUθ−

1 .
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(vii) Take (m, s) ∈ NUθ−
1 \ NUθ+

1 . Then all SW descendants of (m, s) in the NUθ−
1 tree are in

NUθ−
1 \ NUθ+

1 .

(viii) Take (m, s) ∈ NUθ+
1 ∩NUθ−

1 . Then (m, s) has a SW descendant in NUθ+
1 \NUθ−

1 and a SW

descendant in NUθ−
1 \ NUθ+

1 .

To analyze the relationship between shock points and the instability graph one needs to consider
θ ∈ Θω. Then, in this case, the ± distinction implies that there are two types of shock points:
NUθ−

1 and NUθ+
1 . Note that shock points live on the primal semi-discrete lattice Z × R while

instability points live on the dual lattice (Z + 1
2) × R. We prove that shock points that have no

instability points above them are both θ− and θ+ shocks. On the other hand, if a shock point
has an instability point above it, then it is either only a θ+ shock point if the instability point is
a left endpoint of an instability interval, or only a θ− shock point if the instability point above it
is an interior point of an instability interval. Each shock point of the latter type has an instability
edge going through it. Lastly, a feature that identifies the right endpoints of instability intervals is
that they have a θ− shock point above them. Thus, knowing the locations of the θ± shock points
allows us to reconstruct all the horizontal instability intervals, and a countable number of vertical
instability edges.

Theorem 3.7. The following holds for all ω ∈ Ω10 and all θ ∈ Θω. Suppose that for some m ∈ Z

and s < t, {(m+ 1
2 , r) : s ≤ r ≤ t} is a θ-instability interval and that (m+ 1

2 , s) and (m+ 1
2 , t) are

improper θ-instability points.

(i) (m, s) ∈ NUθ+
1 \ NUθ−

1 and (m+ 1, t) ∈ NUθ−
1 \NUθ+

1 .

(ii) For any r ∈ (s, t), (m, r) 6∈ NUθ+
1 . Furthermore, (m, r) ∈ NUθ−

1 if, and only if, [(m −
1
2 , r), (m+ 1

2 , r)] is a θ-instability edge that is right-isolated among θ-instability edges.

(iii) For any r ∈ (s, t) with (m, r) ∈ NUθ−
1 , [(m− 1

2 , r), (m+ 1
2 , r)] is a θ-instability edge.

(iv) There exists an ε > 0 such that for any r ∈ [t, t+ ε], (m, r) 6∈ NUθ−
1 ∪NUθ+

1 .

(v) For any r ∈ R such that (m + 1
2 , r) 6∈ Sθ, (m, r) is either in NUθ−

1 ∩ NUθ+
1 or not in

NUθ−
1 ∪NUθ+

1 .

(vi) There exist sequences r′n ր s and r′′n ց s such that (m, r′n) ∈ NUθ−
1 ∩ NUθ+

1 and (m, r′′n) ∈
NUθ−

1 \ NUθ+
1 for all n.

Remark 3.8. Parts (i), (ii), (v), and (vi) in the above theorem give a natural injection that says that
there are infinitely many more θ− shocks than θ+ shocks. We will see, in Section 8, a more general
result that says that the number of shock points strictly increases as the velocity θ decreases. See
Remark 8.12.

Remark 3.9. Parts (i), (ii), and (v) show that the points in NUθ+
1 \ NUθ−

1 are isolated. This is in

contrast to the points in NUθ−
1 \ NUθ+

1 , which by parts (ii) and (vi) and Theorem 4.7(iii) are all

left-dense, and to the points in NUθ−
1 \NUθ+

1 , which by parts (v) and (vi) and Theorem 4.7(iii) are
also all left-dense.

3.3. Competition interfaces. Since the set of vertical instability edges has a Hausdorff dimension
1
2 while shock points are only countably infinite, one cannot reconstruct all the instability edges
from only knowing the locations of shock points. However, one can completely reconstruct the
instability graph from knowing the starting points of left and right competition interfaces with
asymptotic direction θ. Namely, we show that an instability edge goes through (m, s) ∈ Z × R if,
and only if, (m + 1

2 , s) is the starting point of either a left or a right competition interface with

asymptotic direction θ, i.e. θ ∈ {θL(m,s), θ
R
(m,s)}. Furthermore, these points identify the shock points

that are below instability points: if (m + 1
2 , s) is an instability point, then (m, s) ∈ NUθ+

1 \ NUθ−
1
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if and only if (m+ 1
2 , s) is the starting point of a right, but not left, competition interface with an

asymptotic direction θ (i.e., θ = θR(m,s) < θL(m,s)). Similarly, (m, s) ∈ NUθ−
1 \ NUθ+

1 if and only if

(m + 1
2 , s) is the starting point of a left, but not right, competition interface with an asymptotic

direction θ (i.e., θ = θL(m,s) > θR(m,s)), and (m, s) 6∈ NUθ−
1 ∪ NUθ+

1 if and only if (m + 1
2 , s) is the

starting point of both left and right competition interfaces with the same asymptotic direction θ
(i.e., θ = θL(m,s) = θR(m,s)).

Theorem 3.10. The following holds for all ω ∈ Ω10, θ ∈ Θω, and (m, s) ∈ Z× R.

(a) [(m − 1
2 , s), (m + 1

2 , s)] is a θ-instability edge if, and only if, for some S ∈ {L,R}, ΓS,θ+
(m,s)

and ΓS,θ−
(m,s) split at (m, s) (i.e. θ ∈ {θL(m,s), θ

R
(m,s)}).

(b) If (m+ 1
2 , s) is the left endpoint of a maximal θ-instability interval, then ΓR,θ+

(m,s) and ΓR,θ−
(m,s)

split at (m, s) but ΓL,θ+
(m,s) and ΓL,θ−

(m,s) do not. That is, θ = θR(m,s) < θL(m,s).

(c) If (m+ 1
2 , s) is a proper θ-instability point and (m, s) ∈ NUθ−

1 , then ΓL,θ+
(m,s) and ΓL,θ−

(m,s) split

at (m, s) but ΓR,θ+
(m,s)

and ΓR,θ−
(m,s)

do not. That is, θ = θL(m,s) > θR(m,s).

(d) If [(m−1
2 , s), (m+1

2 , s)] is a θ-instability edge but (m, s) 6∈ NUθ−
1 ∪NUθ+

1 , then ΓL,θ−
(m,s) = ΓL,θ+

(m,s)

and ΓR,θ−
(m,s) = ΓR,θ+

(m,s) split at (m, s). That is, θ = θR(m,s) = θL(m,s).

In Sections 5 through 9, we will introduce and explore a broader concept of instability. This
expanded notion enables us to examine the relationship between the locations of shock points as
the parameter θ varies. The definitions and results presented in this section will subsequently be
seen as a special case of the more general findings discussed later.

4. Inputs from previous works

In this section, we compile several previous results that will be utilized in this work.

4.1. The Busemann process. The following theorem summarizes the properties of the Busemann
process that we need in this work. It comes from Theorem 3.5 in [61] and Theorems 3.15 and 7.19(v)
in [62].

Theorem 4.1. There exists a real-valued process
{

Bθ�(m, s, n, t) : θ > 0,� ∈ {−,+},m, n ∈ Z, s, t ∈ R
}

(4.1)

and an event Ω1 ∈ S with P(Ω1) = 1 and such that the following hold for all ω ∈ Ω1, θ > 0, and
� ∈ {−,+}.

(i) (Cocycle) For any ℓ,m, n ∈ Z, and r, s, t ∈ R,

Bθ�(ℓ, r,m, s) + Bθ�(m, s, n, t) = Bθ�(ℓ, r, n, t).(4.2)

(ii) (Monotonicity) For any θ′ > θ, m ∈ Z, and s < t in R,

Bθ′+(m, s,m, t) ≤ Bθ′−(m, s,m, t) ≤ Bθ+(m, s,m, t) ≤ Bθ−(m, s,m, t) and

Bθ−(m, s,m+ 1, s) ≤ Bθ+(m, s,m+ 1, s) ≤ Bθ′−(m, s,m+ 1, s) ≤ Bθ′+(m, s,m+ 1, s).
(4.3)

(iii) (Continuity) For any m,n ∈ Z, (s, t) 7→ Bθ�(m, s, n, t) is a continuous function.

(iv) (Limits) Bγ� converges uniformly on compacts to Bθ− as γ increases to θ and to Bθ+ as γ
decreases to θ.

(v) (Locally constant) For any compact set K ⊂ Z × R there exists an ε = ε(ω,K, θ) > 0 such
that for any (m, s), (n, t) ∈ K, γ ∈ (θ − ε, θ), and δ ∈ (θ, θ + ε),

Bγ�(m, s, n, t) = Bθ−(m, s, n, t) and Bδ�(m, s, n, t) = Bθ+(m, s, n, t).
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4.2. Semi-infinite geodesics. Next, we need results concerning semi-infinite geodesics.

Definition 4.2. The following are a collection of definitions pertaining to semi-infinite paths.

(a) Given two semi-infinite up-right paths Γ1 and Γ2 starting at the same level m ∈ Z and
defined by their jump times {s1k : k ≥ m − 1} and {s2k : k ≥ m − 1}, respectively, we say
that Γ1 is to the left of, or equivalently above, Γ2 if s1k ≤ s2k for all k ≥ m − 1. We write
Γ1 � Γ2 or, equivalently, Γ2 � Γ1.

(b) Fix a starting level ℓ ∈ Z. A sequence of up-right, semi-infinite paths, defined by the

sequences of jump times (s
(k)
i )i≥ℓ−1, k ∈ N, converges to the up-right path defined by the

sequence of jump times (si)i≥ℓ−1 if for each integer i ≥ ℓ− 1, s
(k)
i → si as k → ∞.

(c) A semi-infinite or bi-infinite up-right path defined by the sequence of jump times (sn)n≥ℓ−1

or, respectively, (sn)n∈Z is said to have direction θ > 0 if sn/n → θ as n → ∞.

(d) Two up-right, semi-infinite paths, defined by the sequences of jump times (si)i≥ℓ−1 and
(s′j)j≥k−1, coalesce if n = min

{

j ≥ (ℓ− 1) ∨ (k − 1) : sj = s′j 6∈ {sℓ−1} ∩ {s′k−1}
}

< ∞ and

si = s′i for all i ≥ n. In words, the two paths coalesce if they either start at the same point,
immediately split, then intersect later and continue together, or if they start at different
points and intersect later to proceed together.

The following theorem summarizes the properties of the process (2.3) that we need in this work.
Its claims follow from Theorem 4.3(ii,v) in [61], Theorems 4.3(iii), 4.5(ii), and 4.11 in [62], and our
Proposition 4.14.

Theorem 4.3. There exists an event Ω2 ∈ S with Ω2 ⊂ Ω1, P(Ω2) = 1, and such that the geodesics
process (2.3) satisfies all of the following properties, for all ω ∈ Ω2, θ > 0, and � ∈ {−,+}.

(i) (Monotonicity) For all m ∈ Z, s < t in R, and S ∈ {L,R}
ΓR,θ�
(m,s) � ΓL,θ�

(m,t) , ΓL,θ�
(m,t) � ΓR,θ�

(m,t) , ΓS,θ−
(m,t) � ΓS,θ+

(m,t) .(4.4)

(ii) (Continuity) For all m ∈ Z, s ∈ R, and S ∈ {L,R}
lim
rրs

ΓS,θ�
(m,r) = ΓL,θ�

(m,s) and lim
rցs

ΓS,θ�
(m,r) = ΓR,θ�

(m,s).(4.5)

(iii) (Directedness) For all m ∈ Z, s ∈ R, and S ∈ {L,R}, ΓS,θ�
(m,s)

has direction θ.

(iv) (Coalescence) For all m,n ∈ Z, s, t ∈ R, and S, S′ ∈ {L,R}, ΓS,θ�
(m,s) and ΓS′,θ�

(n,t) coalesce.

(v) (Leftmost and rightmost) For all (m, s) ∈ Z×R, if x and y are on ΓL,θ�
(m,s), then the segment

on this path that is between x and y coincides with the leftmost geodesic path between x and

y. Similarly, if x and y are on ΓR,θ�
(m,s), then the segment on this path that is between x and

y coincides with the rightmost geodesic path between x and y.

Remark 4.4. Theorem 4.11 in [62] leaves the possibility of the geodesic ΓL,θ�
(m,s) moving vertically,

going through (n, s) and (n + 1, s) for some integer n > m, and the geodesic ΓR,θ�
(n,s) first going to

the right from (n, s), and then later merging with ΓL,θ�
(m,s). See Remark 4.14 in that paper. Our

Proposition 4.14 says that this cannot happen.

Remark 4.5. For each (m, s) ∈ Z×R, the paths {(m, t) : t ≥ s} and {(r, s) : r ≥ m} are degenerate
geodesics. Theorem 3.1(iv-v) in [61] implies that with P-probability one, for any starting point
(m, s) ∈ Z × R, every non-degenerate semi-infinite geodesic out of (m, s) is θ-directed for some

θ > 0. Then Theorem 4.5(ii) in the same paper implies that this geodesic stays between ΓL,θ−
(m,s) and

ΓR,θ+
(m,s). That said, it is expected that for every non-degenerate semi-infinite geodesic out of (m, s)
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there exists a sign � ∈ {−,+} such that the geodesic is trapped between ΓL,θ�
(m,s) and ΓR,θ�

(m,s). This

has already been shown in the case of the fully discrete last-passage percolation model on Z2 with
exponentially distributed weights [50, Theorem 3.11(a)] and in the fully continuous model called the
Directed Landscape [13, Theorem 1.8(iv)]. Proving this conjecture for the Brownian last-passage
percolation model is work in progress. If it does hold, then together with Lemma A.1, this would
imply that the geodesics process (2.3) contains all the non-degenerate semi-infinite geodesics of the
model (see also Remark 4.23 in [62]). This last fact is known to hold in the case of the last-passage
percolation model with exponential weights [50, Theorem 3.11(a)].

4.3. Shock points. Although Theorem B.1 in [41] says that for any given (m, s) ≤ (n, t) in Z×R,
there exists, P-almost surely, a unique geodesic path between the two points, there are random
points between which there exist multiple geodesics. Thus, [62] introduced the sets

NUθ�
0 =

{

(m, s) ∈ Z× R : ΓL,θ�
(m,s) 6= ΓR,θ�

(m,s)

}

and

NUθ�
1 =

{

(m, s) ∈ Z× R : (m+ 1, s) ∈ ΓL,θ�
(m,s),∃δ > 0 such that (0, δ) ∈ ΓR,θ�

(m,s)

}

,(4.6)

for θ > 0 and � ∈ {−,+}. In words, points in NUθ�
0 are ones for which the geodesics ΓL,θ�

(m,s) and

ΓR,θ�
(m,s) eventually split and points in NUθ�

1 are ones at which the two geodesics split immediately.

Our Lemma 4.15 shows that the two geodesics can only split at their starting point. This implies
the following.

Figure 4.1. Left: An illustration of a point (m, s) ∈ NUθ�
1 . Right: An illustration of a

point (m, s) ∈ NUθ�
0 \NUθ�

1 . Proposition 4.14 prevents the existence of points of the latter

type. In both figures, the top up-right path is ΓL,θ�

(m,s) and the bottom up-right path is ΓR,θ�

(m,s).

Lemma 4.6. There exists an event Ω3 ∈ S such that Ω3 ⊂ Ω2, P(Ω3) = 1, and for any ω ∈ Ω3,
θ > 0, and � ∈ {−,+}, NUθ�

0 = NUθ�
1 .

Note that even though for (m, s) ∈ NUθ�
1 , ΓL,θ�

(m,s) and ΓR,θ�
(m,s) split, the coalescence in Theorem

4.3(iv) says that they have to come together at some later point and then proceed together from
there onwards.

The following is a summary of the subset of results from [62] that we will need in this work. A
few more results relating shock points to competition interfaces appear further down in Theorem
4.12.

Theorem 4.7 (Theorems 4.8(i,iii) and 4.32(iv) in [62]). There exists an event Ω4 ∈ S with Ω4 ⊂ Ω3,
P(Ω4) = 1, and such that the following hold for all ω ∈ Ω4, θ > 0, and � ∈ {−,+}.

(i) For any (m, s) ∈ Z×Q, (m, s) 6∈ NUθ�
1 .

(ii) NUθ�
1 is countably infinite.
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(iii) For each (m, s) ∈ NUθ�
1 , there exists a sequence (m, sk) ∈ NUθ�

1 such that sk strictly
increases to s as k → ∞.

(iv) For each (m, s) ∈ NUθ+
1 \ NUθ−

1 , there is a sequence sk, strictly decreasing to s, and such

that (m, sk) ∈ NUθ−
1 for all k.

Remark 4.8. Even though we will not use this fact, it is noteworthy that Theorem 4.8(ii) in [62]
states the following stronger property than the one in Theorem 4.7(ii): with P-probability one,
⋃

θ>0(NU
θ−
1 ∪NUθ+

1 ) is countable.

4.4. Instability points. Recall the set Θω, defined in (2.4). The next theorem says that Θω is
almost surely a “genuinely random” countable dense set.

Theorem 4.9 (Theorem 2.5 in [62]). For any θ > 0, P(θ ∈ Θω) = 0. There exists an event Ω5 ∈ S

with Ω5 ⊂ Ω4, P(Ω5) = 1, and such that for any ω ∈ Ω5, Θ
ω is countable and dense in R+.

We also need the following.

Theorem 4.10 (Corollaries 8.10 and 8.11 in [14]). There exists an event Ω6 ∈ S with Ω6 ⊂ Ω5,
P(Ω6) = 1, and such that for any ω ∈ Ω6, θ ∈ Θω, and any m ∈ Z,

lim
t→−∞

(Bθ−(m, 0,m, t) − Bθ+(m, 0,m, t)) = −∞, lim
t→∞

(Bθ−(m, 0,m, t) − Bθ+(m, 0,m, t)) = ∞,

and the set of points of increase of the function

t 7→ Bθ−(m, 0,m, t) − Bθ+(m, 0,m, t)

has a Hausdorff dimension of 1
2 .

We will need for our analysis the following connection between the discontinuities of the Buse-
mann process (as a function of θ) and the intersection of leftmost and rightmost geodesics.

Theorem 4.11 (Theorems 4.20 and 8.8 in [62]). There exists an event Ω7 ∈ S with Ω7 ⊂ Ω6,
P(Ω7) = 1, and such that for any ω ∈ Ω7, θ ≥ γ > 0, and x � y in Z×R, the following statements
are equivalent.

(i) Bγ−(x,y) = Bθ+(x,y).

(ii) ΓR,γ−
y ∩ ΓL,θ+

x 6= ∅.

4.5. Competition interfaces. Theorem 4.29 in [62] states that the left and the right competition
interfaces out of (m, s) have asymptotic directions θL(m,s) and θR(m,s), respectively. Then, as a result

of the directedness in Theorem 4.3(iii), we see that for any S ∈ {L,R}, if θ < θS(m,s), then ΓS,θ�
(m,s),

� ∈ {−,+}, both move up from (m, s), and if θ > θS(m,s), then ΓS,θ�
(m,s), � ∈ {−,+}, both proceed to

the right from (m, s). In particular, θR(m,s) ≤ θL(m,s), and if θ 6∈ (θR(m,s), θ
L
(m,s)), then ΓL,θ�

(m,s) = ΓR,θ�
(m,s),

and (m, s) 6∈ NUθ�
1 , for any � ∈ {−,+}. Similarly, if θ ∈ (θR(m,s), θ

L
(m,s)), then ΓL,θ�

(m,s) and ΓR,θ�
(m,s)

split at (m, s) and (m, s) ∈ NUθ−
1 ∩NUθ+

1 . These results are summarized in the following theorem,
relating competition interfaces and shocks.

Let {σL
(m,s),n : n ≥ m}, respectively {σR

(m,s),n : n ≥ m}, denote the jump times of the left,

respectively right, competition interface out of (m+ 1
2 , s). Thus, σ

L
(m,s),m = σR

(m,s),m = s.

Theorem 4.12 (Corollary 2.10 and Theorems 4.29 and 4.32(iii) in [62]). There exists an event
Ω8 ∈ S with Ω8 ⊂ Ω7, P(Ω8) = 1, and such that the following hold for any ω ∈ Ω8 and (m, s) ∈
Z× R.
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(i) For all S ∈ {L,R}, the limit

θS(m,s) = lim
n→∞

σS
(m,s),n

n

exists and we have θR(m,s) ≤ θL(m,s).

(ii) (m, s) ∈ NUθ−
1 if and only if θR(m,s) < θ ≤ θL(m,s).

(iii) (m, s) ∈ NUθ+
1 if and only if θR(m,s) ≤ θ < θL(m,s).

Examining the above we see that if for S ∈ {L,R}, θ = θS(m,s), then ΓS,θ−
(m,s) and ΓS,θ+

(m,s) end up

on different sides of the S-competition interface out of (m + 1
2 , s) and, consequently, they split

at (m, s). Thus, the set Θω of exceptional directions is exactly the union of all the asymptotic
directions of left competition interfaces from the various points in (Z+ 1

2 )×R and also the union of
all the asymptotic directions of right competition interfaces. See Theorem 4.36(i) in [62]. A more
detailed description of this relation between competition interfaces and instability points is one of
our results, given as Theorem 3.10. A more general version is given in Theorem 9.1.

4.6. Further geodesics properties. We conclude this section with four additional results that
will be of use in the sequel. The first theorem will allow us to describe the Hausdorff dimension of
certain objects we study. For m ∈ Z define the set

CIm =
{

s : ∃(n, t) ∈ Z× R, n ≥ m, t > s, and a geodesic from (m, s) to (n, t)

that goes through (m+ 1, s)
}

.

Theorem 4.13 (Theorem 2.10 in [62]). There exists an event Ω9 ∈ S with Ω9 ⊂ Ω8, P(Ω9) = 1,
and such that for all ω ∈ Ω9 and m ∈ Z, the set CIm does not contain any rational point, has
Hausdorff dimension 1

2 , and is dense in R.

The next three results are new and may also be of independent interest. Their proofs are deferred
to Section 10. The first result states that, almost surely, there are no geodesics with two consecutive
vertical edges.

Proposition 4.14. There exists an event Ω′
1 ∈ S such that P(Ω′

1) = 1 and for any ω ∈ Ω′
1 neither

of the following occurs:

(a) There exist (m,n) ∈ Z2 and (s, t) ∈ R2 with n ≥ m+2, t > s, and L(m,s),(n,t) = L(m,s),(n−2,t).

(b) There exist (m,n) ∈ Z2 and (s, t) ∈ R2 with n ≥ m+2, t > s, and L(m,s),(n,t) = L(m+2,s),(n,t).

The following is a consequence of the above proposition.

Lemma 4.15. There exists an event Ω′
2 ∈ S such that Ω′

2 ⊂ Ω2 ∩ Ω′
1, P(Ω

′
2) = 1, and for any

ω ∈ Ω′
2, θ > 0, � ∈ {−,+}, and any (m, t) ∈ Z× R, ΓR,θ�

(m,t) and ΓL,θ�
(m,t) either separate immediately

or are equal.

The last result of this section concerns bi-infinite geodesics. For each m ∈ Z and z ∈ R, the
paths {(m, t) : t ∈ R} and {(n, s) : n ∈ Z} are degenerate bi-infinite geodesics.

Theorem 4.16. There exists an event Ω10 ∈ S such that Ω10 ⊂ Ω9 ∩Ω′
2, P(Ω10) = 1, and for any

ω ∈ Ω10, there are no non-degenerate bi-infinite geodesics.

This is a stronger version of Theorem 3.1(iv) in [60], which states that for any given θ > 0 there
exists a full P-probability event Ωθ (possibly depending on θ) on which there are no bi-infinite
geodesics going in direction θ.

Remark 4.17. At this point, we have a full P-probability event Ω10 on which all the results of
this section hold. All of our subsequent results will hold on this event. Thus, any instance of ω
mentioned in the remaining text should be understood as belonging to Ω10.
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5. Analytical characterization of the instability graph

In this section, we define instability points and the instability graph though the Busemann
process (4.1). We begin by defining the instability edges.

Definition 5.1. For θ ≥ γ > 0, m ∈ Z, and t ∈ R, we call the vertical closed interval [(m −
1
2 , t), (m + 1

2 , t)] a [γ, θ]-instability edge if

(5.1) s 7→ Bγ−(m, 0,m, s)− Bθ+(m, 0,m, s)

has a point of increase at t.

By the cocycle, monotonicity, and continuity properties in Theorem 4.1, the function in (5.1) is
continuous and nondecreasing.

Next, we define instability points, also using Busemann functions.

Definition 5.2. For θ ≥ γ > 0, m ∈ Z, and t ∈ R, we say that (m+ 1
2 , t) is a proper [γ, θ]-instability

point if Bγ−(m, t,m+ 1, t) < Bθ+(m, t,m+ 1, t).

By the monotonicity and continuity properties in Theorem 4.1, the function

t 7→ Bθ+(m, t,m+ 1, t)− Bγ−(m, t,m+ 1, t)

is continuous and nonnegative. Consequently, the set of proper [γ, θ]-instability points on a hori-
zontal level m is an open set and hence a countable union of disjoint open intervals.

Definition 5.3. For θ ≥ γ > 0, the [γ, θ]-instability graph S [γ,θ] = S [γ,θ](ω) is the union of all the
[γ, θ]-instability edges and the closure of the set of proper [γ, θ]-instability points.

Definition 5.4. For θ ≥ γ > 0, m ∈ Z, and t ∈ R, the point (m+ 1
2 , t) is a [γ, θ]-instability point

if it belongs to S [γ,θ]. A [γ, θ]-instability point that is not proper is called improper.

In the rest, unless we are dealing with multiple instability graphs simultaneously, we will often
simplify our language by omitting the explicit mention of [γ, θ] and instead refer to “instability
edges”, “instability points”, and other instability objects, when addressing [γ, θ]-instability edges,
[γ, θ]-instability points, and other [γ, θ]-instability objects, respectively. When γ = θ, we write Sθ

instead of S [θ,θ] and will refer to θ-instability objects.

Remark 5.5. When γ = θ 6∈ Θω, S [γ,θ] = ∅ and all the definitions and results on the instability
graph are vacuous. When γ = θ ∈ Θω, the definitions in this section match the ones in Definition
3.1. Consequently, the results presented in Section 3 follow from the more general results we present
throughout the rest of the paper by specializing to the case γ = θ ∈ Θω.

The next theorem gives a characterization of instability points.

Theorem 5.6. For all ω ∈ Ω10, θ ≥ γ > 0, m ∈ Z, and t ∈ R, the following are equivalent.

(i) (m+ 1
2 , t) is a [γ, θ]-instability point.

(ii) For any r′ < t and r′′ > t we have

Bγ−(m+ 1, r′,m, r′′) > Bθ+(m+ 1, r′,m, r′′).(5.2)

(iii) For any r′ < t and r′′ > t we have

Bγ−(m+ 1, r′,m+ 1, r′′) > Bθ+(m+ 1, r′,m+ 1, r′′)

or Bγ−(m+ 1, r′′,m, r′′) > Bθ+(m+ 1, r′′,m, r′′).
(5.3)

(iv) For any r′ < t and r′′ > t we have

Bγ−(m, r′,m, r′′) > Bθ+(m, r′,m, r′′)

or Bγ−(m+ 1, r′,m, r′) > Bθ+(m+ 1, r′,m, r′).
(5.4)
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Proof. The equivalence of (ii-iv) is a direct consequence of the cocycle and monotonicity properties
in Theorem 4.1.

Suppose next that (m+ 1
2 , t) is an instability point and take arbitrary r′ < t < r′′. Consider the

cases that can happen at the instability point. If there is an instability edge between (m + 1
2 , t)

and (m + 3
2 , t), then Bγ−(m + 1, r′,m + 1, r′′) > Bθ+(m + 1, r′,m + 1, r′′). Monotonicity implies

Bγ−(m+ 1, r′′,m, r′′) ≥ Bθ+(m+ 1, r′′,m, r′′). Then the cocycle property implies

Bγ−(m+ 1, r′,m, r′′) = Bγ−(m+ 1, r′,m+ 1, r′′) + Bγ−(m+ 1, r′′,m, r′′)

> Bθ+(m+ 1, r′,m+ 1, r′′) + Bθ+(m+ 1, r′′,m, r′′)

= Bθ+(m+ 1, r′,m, r′′).

The case where there is an instability edge between (m + 1
2 , t) and (m − 1

2 , t) is similar, using
Bγ−(m+ 1, r′,m, r′′) = Bγ−(m+ 1, r′,m, r′) + Bγ−(m, r′,m, r′′).

Suppose now that there is a sequence of proper instability points (m+ 1
2 , rn) with rn → t. (This

includes the case where rn = t for all n.) Then we have for each n, Bγ−(m + 1, rn,m, rn) >
Bθ+(m+ 1, rn,m, rn). But then for n large enough, r′ < rn < r′′ and hence

Bγ−(m+ 1, r′,m, r′′)

= Bγ−(m+ 1, r′,m+ 1, rn) + Bθγ(−, (,m,+)1, rn,m+ 1, r′) + Bγ−(m+ 1, r′′,m, r′)

> Bθ+(m+ 1, r′,m+ 1, rn) + Bθ+(m+ 1, rn,m+ 1, r′) + Bθ+(m+ 1, r′′,m, r′)

= Bθ+(m+ 1, r′,m, r′′).

We thus see that (5.2) is satisfied in all cases.
Suppose now that (m+ 1

2 , t) is not an instability point. Then there is no instability edge between

(m+ 1
2 , t) and (m+ 3

2 , t) and, therefore, Bγ−(m+1, r′,m+1, r′′) = Bθ+(m+1, r′,m+1, r′′) for all
r′ < t and r′′ > t close enough to t. Furthermore, there are no proper instability points converging
to (m + 1

2 , t). This implies that Bγ−(m + 1, r′′,m, r′′) = Bθ+(m + 1, r′′,m, r′′) for all r′′ > t close
enough to t. Then (5.3) fails to hold. Thus, we have shown that if (i) does not hold, then (iii),
which is equivalent to (ii), does not hold. The proof of the lemma is complete. �

Definition 5.7. For θ ≥ γ > 0, m ∈ Z, and an interval I ⊂ R, {(m + 1
2 , r) : r ∈ I} is a [γ, θ]-

instability interval if it is a subset of S [γ,θ]. It is a proper [γ, θ]-instability interval if (m+ 1
2 , r) is a

proper [γ, θ]-instability point for all r ∈ I.

Definition 5.8. For θ ≥ γ > 0, m ∈ Z, and t ∈ R, (m+ 1
2 , t) is called a double-edge [γ, θ]-instability

point if both [(m− 1
2 , t), (m+ 1

2 , t)] and [(m+ 1
2 , t), (m + 3

2 , t)] are [γ, θ]-instability edges.

Lemma 5.9. The following holds for all ω ∈ Ω10, θ ≥ γ > 0, m ∈ Z, and s < t. Suppose
{(m + 1

2 , r) : s < r < t} ⊂ S [γ,θ]. Then for each r ∈ (s, t), (m + 1
2 , r) is either a proper [γ, θ]-

instability point or a double-edge [γ, θ]-instability point.

Proof. Suppose (m+ 1
2 , r) is not a proper [γ, θ]-instability point. Then it must be that Bγ−(m, r,m+

1, r) = Bθ+(m, r,m + 1, r). Take s < r′ < r < t. Since (m + 1
2 , (r

′ + r)/2) is an instability point,

Theorem 5.6(iii) (with r′′ = r) implies that Bγ−(m + 1, r′,m + 1, r) > Bθ+(m + 1, r′,m + 1, r).
This shows that r is a point of increase for Bγ−(m + 1, 0,m + 1, •) − Bθ+(m + 1, 0,m + 1, •) and,
therefore, [(m+ 1

2 , r), (m+ 3
2 , r)] is an instability edge. Similarly, taking s < r < r′′ < t and using

Theorem 5.6(iv) with r′ = r shows that r is a point of increase for Bγ−(m, 0,m, •)−Bθ+(m, 0,m, •)
and, therefore, [(m− 1

2 , r), (m+ 1
2 , r)] is an instability edge. �

Remark 5.10. When θ > γ > 0, replacing γ− everywhere with γ+ and changing θ+ everywhere to
θ− gives another instability graph, denoted by S(γ,θ). Then all of our results about S [γ,θ] hold for
S(γ,θ).
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6. Geometric characterization of the instability graph

Now we develop equivalent definitions of instability through semi-infinite geodesics. We begin
by looking at instability edges.

Lemma 6.1. For all ω ∈ Ω10, θ ≥ γ > 0, and (m, t) ∈ Z × R, Bγ−(m, 0,m, •) − Bθ+(m, 0,m, •)
has a point of increase at t if and only if for any r′ < t and r′′ > t,

ΓR,γ−
(m,r′) ∩ ΓL,θ+

(m,r′′) = ∅.(6.1)

This comes straight from Theorem 4.11. The above result requires considering a whole interval
around t. The following result gives a criterion only in terms of geodesics out of (m, t).

Lemma 6.2. For all ω ∈ Ω10, θ ≥ γ > 0, and (m, t) ∈ Z × R, Bγ−(m, 0,m, •) − Bθ+(m, 0,m, •)

has a point of increase at t if and only if ΓR,θ+
(m,t) and ΓL,γ−

(m,t) separate immediately and never touch

again.

r′ t r′′
m

m+ 1

r′ t r′′ T

z

m

m+ 1

r′ t r′′

z

m

m+ 1

Figure 6.1. An illustration of the proof of Lemma 6.1. Left: The proof of the first

direction. The two geodesics in the middle are ΓL,γ−

(m,t) and ΓR,θ+
(m,t). They separate immediately

and do not meet again, thus separating the two outer geodesics ΓR,θ+
(m,r′) and ΓL,γ−

(m,r′′). Middle:

The first case in the second direction. Right: The second and third cases in the second

direction.

Proof. Suppose that the lemma’s geodesic condition is true. Take r′ < t and r′′ > t. Then, by the

first inequality in (4.4), the geodesic ΓL,θ+
(m,r′′) either instantly coalesces with or stays to the right of

ΓR,θ+
(m,t). Likewise, Γ

R,γ−
(m,r′) must stay to the left of ΓL,γ−

(m,t). Thus, by montonicity, ΓR,γ−
(m,r′) ∩ ΓL,θ+

(m,r′′) = ∅

and by Lemma 6.1, t is a point of increase of Bγ−(m, 0,m, •) − Bθ+(m, 0,m, •). See the left panel
in Figure 6.1.

For the other direction, suppose that the lemma’s geodesic condition is false. Then ΓL,γ−
(m,t) and

ΓR,θ+
(m,t) must do one of the following: (1) both go up one level and then both proceed rightwards,

(2) split instantly and reconvene again at some later point z ∈ Z×R, or (3) go rightwards together
immediately; they cannot proceed vertically together for more than one level, nor can they split at

(m+1, t), as both scenarios would make ΓL,γ−
(m,t) take two consecutive vertical steps, which does not

happen by Proposition 4.14. See the middle panel in Figure 6.1.

For the first case, suppose that ΓR,θ+
(m,t) and ΓL,γ−

(m,t) both proceed upwards to (m + 1, t) and then

proceed together rightward on level m+1 to (m+1, T ) for T > t. In that case, by the montonicity

(4.4) and continuity (4.5), for r′′ > t and r′ < t sufficiently close to t, ΓL,θ+
(m,r′′) and ΓR,γ−

(m,r′) must

both pass through (m + 1, T ), which by Lemma 6.1 implies that t is not a point of increase for
Bγ−(m, 0,m, •)− Bθ+(m, 0,m, •).

In the second and third cases, ΓR,θ+
(m,t) must immediately proceed laterally on level m. Then for

r′′ > t sufficiently close to t, ΓL,θ+
(m,r′′) ⊂ ΓR,θ+

(m,t). By Proposition 4.14, ΓL,γ−
(m,t) must either proceed
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laterally on level m or m + 1. Regardless, on that level M ∈ {m,m + 1}, ΓL,γ−
(M,t) is the limit of

ΓR,γ−
(M,r′) as r′ ր t and thus for r′ < t sufficiently near t, ΓR,γ−

(M,r′) must proceed laterally to (M, t),

coalescing there with ΓL,γ−
(M,t). By monotonicity, taking such an r′ yields that ΓR,γ−

(m,r′) must also

coalesce with ΓL,γ−
(m,t) at (M, t). Thus, for r′ < t and r′′ > t sufficiently close to t, z ∈ ΓR,γ−

(m,r′)∩ΓL,θ+
(m,r′′)

and, according to Lemma 6.1, t is not a point of increase for Bγ−(m, 0,m, •)− Bθ+(m, 0,m, •) See
the right panel in Figure 6.1. �

Lemma 6.3. The following holds for all ω ∈ Ω10. Take θ ≥ γ > 0. If θ = γ, then assume θ ∈ Θω.
For all m ∈ Z, the set of points of increase of the function in (5.1) has a Hausdorff dimension 1

2 .

Proof. By Theorem 4.9, there exists a θ′ ∈ [γ, θ] ∩ Θω. By the monotonicity property in Theorem
4.1(ii) we have, for any ε > 0,

Bγ−(m, s−ε,m, s+ε) ≥ Bθ′−(m, s−ε,m, s+ε) ≥ Bθ′+(m, s−ε,m, s+ε) ≥ Bθ+(m, s−ε,m, s+ε).

Therefore, the set in question contains the set of points of increase of the function

s 7→ Bθ′−(m, 0,m, s) − Bθ′+(m, 0,m, s),

which by Theorem 4.10 has a Hausdorff dimension of 1
2 . On the other hand, if s is a point of

increase of (5.1), then Lemma 6.2 implies that ΓL,γ−
(m,s)

goes up from (m, s) and, therefore, s ∈ CIm,

which by Theorem 4.13 has a Hausdorff dimension of 1
2 . �

We now turn to the instability points. Theorem 4.11 implies the following characterization of
proper instability points through semi-infinite geodesics.

Lemma 6.4. For all ω ∈ Ω10, θ ≥ γ > 0, m ∈ Z, and t ∈ R, Bθ+(m, t,m + 1, t) < Bγ−(m, t,m+

1, t), if and only if ΓR,γ−
(m+1,t) ∩ ΓL,θ+

(m,t) = ∅.

The next result characterizes all instability points.

Theorem 6.5. For all ω ∈ Ω10, θ ≥ γ > 0, m ∈ Z, and t ∈ R, (m + 1
2 , t) is a [γ, θ]-instability

point if and only if ΓR,θ+
(m,t) and ΓL,γ−

(m+1,t) do not intersect.

Proof. Note that if r′ < t and r′′ > t, then ΓR,γ−
(m+1,r′) must remain to the left of ΓL,γ−

(m+1,t) and ΓL,θ+
(m,r′′)

must remain to the right of ΓR,θ+
(m,t). This and the fact that ΓR,γ−

(m+1,r′) and ΓL,γ−
(m+1,t) coalesce and ΓL,θ+

(m,r′′)

and ΓR,θ+
(m,t) coalesce, we get that ΓR,γ−

(m+1,r′) ∩ ΓL,θ+
(m,r′′) = ∅ for all r′ < t and r′′ > t if and only if

ΓR,θ+
(m,t) and ΓL,γ−

(m+1,t) either do not intersect or both go vertically together to a level n ≥ m+1 before

permanently splitting. In the latter case, ΓL,γ−
(m,t) makes two consecutive vertical steps, which cannot

happen by Proposition 4.14. Consequently, we see that ΓR,θ+
(m,t) and ΓL,γ−

(m+1,t) do not intersect if and

only if ΓR,γ−
(m+1,r′) ∩ ΓL,θ+

(m,r′′) = ∅ for all r′ < t and r′′ > t. By Theorem 4.11, this is equivalent to (ii)

in Theorem 5.6 being true, which by that theorem is equivalent to (m + 1
2 , t) being an instability

point. �

7. The structure of the instability graph

Having defined the instability graph, both analytically and geometrically, we turn to its proper-
ties. The first result states a certain monotonicity of the graph S [γ,θ], in γ and θ.

Lemma 7.1. For all ω ∈ Ω10 and θ′ ≥ θ ≥ γ ≥ γ′ > 0, S [γ,θ] ⊂ S [γ′,θ′].
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Proof. Suppose [(m − 1
2 , t), (m + 1

2 , t)] is a [γ, θ]-instability edge. Then for any ε > 0, Bγ−(m, t −
ε,m, t+ ε) > Bθ+(m, t− ε,m, t+ ε). By the monotonicity property in Theorem 4.1 we have for any
ε > 0

Bγ′−(m, t− ε,m, t+ ε) ≥ Bγ−(m, t− ε,m, t+ ε)

> Bθ+(m, t− ε,m, t+ ε) ≥ Bθ′+(m, t− ε,m, t+ ε).

Consequently, t is a point of increase for s 7→ Bγ′−(m, 0,m, s)−Bθ′+(m, 0,m, s) and [(m− 1
2 , t), (m+

1
2 , t)] is also a [γ′, θ′]-instability edge. Similarly, if (m + 1

2 , t) is a [γ, θ]-instability point, then it is
also a [γ′, θ′]-instability point. �

Next, we show that the instability graph S [γ,θ] is northeast and southwest bi-infinite.

Lemma 7.2. For all ω ∈ Ω10, θ ≥ γ > 0, and any instability point x⋆ ∈ S [γ,θ] there exist an
up-right path and a down-left path, both starting at x⋆ and moving along the instability graph S [γ,θ].

Proof. Let x⋆ = (m + 1
2 , t) be an instability point in S [γ,θ]. Then, by Theorem 5.6(iii), for any

r′ < t and r′′ > t,

Bγ−(m+ 1, r′,m+ 1, r′′) > Bθ+(m+ 1, r′,m+ 1, r′′)

or Bγ−(m+ 1, r′′,m, r′′) > Bθ+(m+ 1, r′′,m, r′′).

If there is no instability edge going up from x⋆, then Bγ−(m+1, r′,m+1, r′′) = Bθ+(m+1, r′,m+
1, r′′) for all r′ < r and r′′ > r close enough to r. Then the second inequality in the above display
must hold for all such r′′. This implies that (m+ 1

2 , r
′′) is an instability point for all r′′ > r close

enough to r.
The argument for moving in the south-west direction is similar. �

Lemma 7.3. For all ω ∈ Ω10 and θ ≥ γ > 0 there are no double-edge instability points in S [γ,θ].

Proof. By Lemma 6.2, if both [(m− 1
2 , t), (m+ 1

2 , t)] and [(m+ 1
2 , t), (m+ 3

2 , t)] are instability edges

in S [γ,θ], then ΓL,γ−
(m,t) has to go through (m+ 2, t), which cannot happen by Proposition 4.14. �

Together, the above lemma and Lemma 5.9 imply that the interior of an instability interval
consists of proper instability points.

Lemma 7.4. The following holds for all ω ∈ Ω10, θ ≥ γ > 0, m ∈ Z, and s < t. Suppose
{(m + 1

2 , r) : s < r < t} ⊂ S [γ,θ]. Then for each r ∈ (s, t), (m + 1
2 , r) is a proper [γ, θ]-instability

point.

Lemma 7.5. For all ω ∈ Ω10 and θ ≥ γ > 0, the only improper [γ, θ]-instability points are the left
and right endpoints of maximal proper [γ, θ]-instability intervals.

Proof. Suppose that (m + 1
2 , s) ∈ S [γ,θ] but that (m + 1

2 , s) is not a proper [γ, θ]-instability point.

By Lemma 7.3, (m + 1
2 , s) cannot be a double-edge instability point. Then by Lemma 7.2, either

[(m+ 1
2 , s), (m + 1

2 , t)] is an instability interval or [(m+ 1
2 , r), (m+ 1

2 , s)] is an instability interval,

for some t > s or r < s. It cannot be both because then Lemma 7.4 would imply that (m + 1
2 , s)

is proper. Thus, we have shown that (m+ 1
2 , s) is an endpoint of an instability interval. �

The next lemma says that the instability graph extends infinitely far to the left and to the right.

Lemma 7.6. Take ω ∈ Ω10, θ ≥ γ > 0, and m ∈ Z. If θ = γ, then assume that θ ∈ Θω. Then

sup
{

s :
[

(m− 1
2 , s), (m+ 1

2 , s)
]

∈ S [γ,θ]
}

= ∞ and inf
{

s :
[

(m− 1
2 , s), (m+ 1

2 , s)
]

∈ S [γ,θ]
}

= −∞.
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Proof. When θ = γ ∈ Θω, take κ = θ. If γ < θ, then Theorem 4.9 implies the existence of a
κ ∈ [γ, θ] ∩Θω. The monotonicity (4.3) implies that for all t ≥ 0

Bγ−(m, 0,m, t) −Bθ+(m, 0,m, t) ≥ Bκ−(m, 0,m, t) − Bκ+(m, 0,m, t),

with the reversed inequality for all t ≤ 0. The claim now follows from Definition 5.1 and Theorem
4.10 (applied with the parameter κ). �

Lemma 7.7. The following holds for all ω ∈ Ω10, θ ≥ γ > 0, m ∈ Z, and s < r0 < t. Suppose
{(m + 1

2 , r) : s < r < r0} and {(m + 1
2 , r) : r0 < r < t} are proper θ-instability intervals. Then

(m+ 1
2 , r0) is a proper θ-instability point. Consequently, if two maximal proper instability intervals

are not identical, then their closures are disjoint.

Proof. Since instability intervals are closed we get that {(m + 1
2 , r) : s ≤ r ≤ t} is an instability

interval. By Lemma 7.4, (m+ 1
2 , r0) is a proper instability point. �

The following is a summary of the above results. The case where γ = θ ∈ Θω gives Theorem 3.2,
except for its part (ii), which follows from Lemma 7.14 below.

Theorem 7.8. Take ω ∈ Ω10 and θ ≥ γ > 0. If θ = γ, then assume θ ∈ Θω.

(i) The instability graph is bi-infinite: For any instability point x⋆ ∈ S [γ,θ] there exist an
infinite up-right path and an infinite down-left path, both starting at x⋆ and moving along
the instability graph S [γ,θ].

(ii) There are no double-edge instability points in S [γ,θ].

(iii) The instability graph extends infinitely far to the left and to the right: For any m ∈ Z

sup
{

s :
[

(m− 1
2 , s), (m+ 1

2 , s)
]

∈ S [γ,θ]
}

= ∞ and inf
{

s :
[

(m− 1
2 , s), (m+ 1

2 , s)
]

∈ S [γ,θ]
}

= −∞.

(iv) Take m ∈ Z and s < t. The interval {(m+ 1
2 , r) : s ≤ r ≤ t} is a maximal [γ, θ]-instability

interval if and only if (m + 1
2 , r) is a proper [γ, θ]-instability point for all r ∈ (s, t) and

(m+ 1
2 , s) and (m+ 1

2 , t) are improper [γ, θ]-instability points.

(v) For any m ∈ Z, the set of instability points (m + 1
2 , s) ∈ S [γ,θ] from which descends an

instability edge has a Hausdorff dimension of 1
2 .

Figure 7.1. An illustration of Theorem 7.8.

Now let us investigate how the semi-infinite geodesics interact with the instability graph S [γ,θ].
The contents of the next three lemmas are summarized in Figure 7.2.
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Lemma 7.9. The following holds for all ω ∈ Ω10 and θ ≥ γ > 0. Suppose that for some m ∈ Z

and s < t, {(m + 1
2 , r) : s < r < t} is a proper [γ, θ]-instability interval. Then ΓR,θ+

(m,s) goes through

(m, t). For any r ∈ (s, t), ΓL,θ+
(m,r) = ΓR,θ+

(m,r) and this geodesic also goes through (m, t).

Proof. If ΓL,θ+
(m,r) does not go through (m, t), then it must go up at (m, r′′) for some r′′ ∈ [r, t). But

this would mean that ΓL,θ+
(m,r′′)

goes up and Lemma 6.4 says that this contradicts (m+ 1
2 , r

′′) being

a proper [γ, θ]-instability point. Consequently, ΓL,θ+
(m,r) cannot go up before it reaches (m, t). By

monotonicity, ΓR,θ+
(m,r) must do the same. Taking a rational r′ ∈ (s, r) and applying Theorem 4.7(i)

tells us that ΓL,θ+
(m,r′) = ΓR,θ+

(m,r′), which implies that also ΓL,θ+
(m,r) = ΓR,θ+

(m,r). Since ΓR,θ+
(m,s) = lim

rցs
ΓR,θ+
(m,r),

ΓR,θ+
(m,s) also goes through (m, t). �

Lemma 7.10. The following holds for all ω ∈ Ω10 and θ ≥ γ > 0. Suppose that for some m ∈ Z

and s < t, {(m + 1
2 , r) : s < r < t} is a proper [γ, θ]-instability interval. Then (m + 1

2 , s) is an

improper [γ, θ]-instability point if, and only if, ΓL,θ+
(m,s) goes up to (m+ 1, s).

Proof. When (m + 1
2 , s) is proper, ΓL,θ+

(m,s) must go right (all the way to (m, t)) by Lemma 7.9.

Conversely, suppose ΓL,θ+
(m,s) goes to (m, r) for some r ∈ (s, t). Then it coalesces with ΓL,θ+

(m,r) and thus

can never intersect ΓR,γ−
(m+1,s) since Γ

R,γ−
(m+1,s) � ΓR,γ−

(m+1,r) and ΓR,γ−
(m+1,r)∩ΓL,θ+

(m,r) = ∅ (because (m+ 1
2 , r)

is a proper instability point). This implies that (m+ 1
2 , s) is a proper instability point. �

Lemma 7.11. The following holds for all ω ∈ Ω10 and θ ≥ γ > 0. Suppose that for some m ∈ Z

and s < t, {(m + 1
2 , r) : s < r < t} is a proper [γ, θ]-instability interval. If (m + 1

2 , t) is an

improper [γ, θ]-instability point, then ΓL,γ−
(m,t) proceeds rightwards out of (m, t) but ΓL,γ−

(m+1,t) proceeds

immediately vertically to (m+ 2, t) while ΓR,γ−
(m+1,t) proceeds rightwards.

Proof. Suppose that (m+ 1
2 , t) is an improper [γ, θ]-instability point. Then, by Lemma 7.5, (m+ 1

2 , t)

is the right endpoint of {(m+1
2 , r) : s < r < t} and, by Lemma 7.2, there is a vertical [γ, θ]-instability

edge up from (m + 1
2 , t). Thus, by Lemma 6.2, ΓL,γ−

(m+1,t)
must proceed vertically to (m + 2, t). By

Proposition 4.14, ΓL,γ−
(m,t) must proceed laterally on level m. Likewise ΓR,γ−

(m+1,t) must immediately

proceed laterally. Indeed, if it were to proceed vertically along with ΓL,γ−
(m+1,t), then we would have

ΓL,γ−
(m+1,t) = ΓR,γ−

(m+1,t) by Lemma 4.15. On the other hand, Theorem 6.5 implies ΓL,γ−
(m+1,t) ∩ΓR,θ+

(m,t) = ∅.

Furthermore, since ΓL,γ−
(m,t) goes right on level m, it forces both ΓL,θ+

(m,t) and ΓR,θ+
(m,t) to go right together

and hence ΓL,θ+
(m,t)

= ΓR,θ+
(m,t)

(Lemma 4.15 again). But then we would have ΓR,γ−
(m+1,t)

∩ ΓL,θ+
(m,t)

= ∅. By

Lemma 6.4, this makes (m+ 1
2 , t) a proper instability point, which it is assumed not to be. �

The following is a corollary of Theorem 4.13 and the geodesics characterization of vertical in-
stability edges. Compare with Corollary 8.10, which states that there are no isolated instability
edges.

Lemma 7.12. The following holds for all ω ∈ Ω10 and θ ≥ γ > 0. For any m ∈ Z, the set
{s : [(m− 1

2 , s), (m+ 1
2 , s)] is a [γ, θ]-instability edge} is nowhere dense.

Proof. By Theorem 4.13, for any rational r, there exists a t > r such that ΓL,γ−
(m,r) goes through

(m, t). By the geodesics ordering, ΓR,θ+
(m,r) also goes through (m, t). Then Lemma 6.2 implies that

for any s ∈ [r, t), [(m− 1
2 , s), (m+ 1

2 , s)] is not a [γ, θ]-instability edge. The claim now follows from
the fact that rational numbers are dense. �
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m

m+ 1
2

m+ 1

m+ 3
2

Figure 7.2. A summary of the contents of Lemmas 7.9-7.11. The geodesics are color-
coded as follows: ΓL,γ−, ΓR,γ−, ΓL,θ+, and ΓR,θ+. The instability graph is the thicker red

line.

Next, we describe the web-like structure of the instability graph.

Lemma 7.13. The following holds for all ω ∈ Ω10 and θ ≥ γ > 0. Take x⋆,y⋆ ∈ S [γ,θ] such that
y⋆ = (n + 1

2 , t) and x⋆ = (m + 1
2 , s) with m ≤ n in Z and s ≤ t in R. Then the following are

equivalent:

(a) There is an up-right path in S [γ,θ] from x⋆ to y⋆.

(b) y⋆ is between ΓL,γ−
(m+1,s)

and ΓR,θ+
(m,s)

.

ΓL,γ−

ΓR,θ+

y⋆

k − 1
2

k

k + 1
2

k + 1

rr′

ΓL,γ−

ΓR,θ+

y⋆

k − 1
2

k

k + 1
2

k + 1

Figure 7.3. An illustration of the two cases in the proof of (b)⇒(a) in Lemma 7.13. In
both instances, the configuration of the instability graph and the geodesics (depicted by the
solid lines) implies that the instability graph follows the path indicated by the thick dashed
red line.

Proof. (a)⇒(b). Suppose there exists an up-right path π in S [γ,θ] from x⋆ to y⋆. By Lemma 7.9,

ΓR,θ+
(m,s) cannot cross an instability interval neither at an interior (and therefore proper) point nor

at its left endpoint. Moreover, considering that from the right endpoint of an instability interval
(denoted as z⋆), the instability graph can only go up, and in accordance with Proposition 4.14,

geodesics do not take consecutive vertical steps, the geodesic ΓR,θ+
(m,s) is unable to transition from a

position below z⋆ to a position above z⋆ + e2. Consequently, based on these observations, we see

that since ΓR,θ+
(m,s) starts below π, the whole path has to remain below π. Similarly, by Lemma 6.2,

ΓL,γ−
(m+1,s) cannot cross an instability edge. Therefore, since it starts above π, the whole path has to

remain above π. This proves (b).

(b)⇒(a). By Lemma 7.2, there always exists an infinite down-left path on S [γ,θ], starting at y⋆.

We will show, however, that there exists a down-left path that remains confined between ΓR,θ+
(m,s) and

ΓL,γ−
(m+1,s). This then ensures that the path must go through x⋆ and proves (a). To see the existence

of such a path, start at y⋆ and follow any down-left path in S [γ,θ].

If the path reaches a point (k + 1
2 , r) ∈ S [γ,θ] such that {(k, r), (k + 1, r)} ⊂ ΓL,γ−

(m+1,s), then

Theorem 6.5 says that ΓR,θ+
(k,r) goes right and then Lemma 6.2 implies that [(k − 1

2 , r), (k + 1
2 , r)]
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is an instability edge. We can then use this edge to continue the down-left path without crossing

ΓL,γ−
(m+1,s), and hence continuing to remain between ΓR,θ+

(m,s) and ΓL,γ−
(m+1,s).

Similarly, suppose the path reaches a point (k + 1
2 , r) ∈ S [γ,θ] such that [(k − 1

2 , r), (k + 1
2 , r)] is

an instability edge in S [γ,θ], but where {(k, r′), (k, r)} ⊂ ΓR,θ+
(m,s) for some r′ < r. By Lemma 6.2,

ΓR,θ+
(m,s) must go right, ΓL,γ−

(k,r) must go up, and then the two never touch again. By the monotonicity

of geodesics, ΓL,γ−
(k+1,r′′) is always to the left of ΓL,γ−

(k,r) , for any r′′ ≤ r. Therefore, we see that

ΓL,γ−
(k+1,r′′) ∩ ΓR,θ+

(k,r′′) = ∅ for any r′′ ∈ [r′, r]. Then by Theorem 6.5, {(k, r′′) : r′ ≤ r′′ ≤ r} is an

instability interval. We can then follow this interval to continue the down-left path without crossing

ΓR,θ+
(m,s), and hence continuing to remain between ΓR,θ+

(m,s) and ΓL,γ−
(m+1,s). �

Taking γ = θ ∈ Θω in the next lemma gives Theorem 3.3(ii).

Lemma 7.14. The following holds for all ω ∈ Ω10 and θ ≥ γ > 0. Any up-right path x⋆
0:∞ on the

instability graph Sθ is directed into [γ, θ].

Proof. Let x⋆
0 = (m + 1

2 , s). Then Lemma 7.13 implies that for all n ∈ N, x⋆
n is between ΓL,γ−

(m+1,s)

and ΓR,θ+
(m,s). The lemma thus follows from the directedness of these geodesics, given in Theorem

4.3(iii). �

Definition 7.15. Take θ ≥ γ > 0. We say that y⋆ ∈ S [γ,θ] is a NE ancestor of x⋆ ∈ S [γ,θ] or,
equivalently, that x⋆ is a SW descendant of y⋆ if there is an up-right path on S [γ,θ] going from x⋆

to y⋆.

Theorem 3.3 follows from the case γ = θ ∈ Θω in next two theorems.

Theorem 7.16. The following holds for all ω ∈ Ω10 and θ ≥ γ > 0. Every pair of instability points
x⋆,y⋆ ∈ S [γ,θ] have a common NE ancestor z⋆ ∈ S [γ,θ].

Proof. Write x⋆ = (m+ 1
2 , s) and y⋆ = (n+ 1

2 , t) and consider the geodesics ΓL,γ−
(m+1,s), Γ

R,θ+
(m,s), Γ

L,γ−
(n+1,t),

and ΓR,θ+
(n,t) . By the coalescence of geodesics (Theorem 4.3(iv)), there exist coalescence points zγ−

and zθ+ such that ΓL,γ−
(m+1,s) and ΓL,γ−

(n+1,t) match beyond zγ− and ΓR,θ+
(m,s) and ΓR,θ+

(n,t) match beyond zθ+.

Choose a u ∈ ΓR,θ+
(n,t) such that zγ− ∨ zθ+ ≤ u coordinatewise. Then ΓR,θ+

u will continue along with

ΓR,θ+
(n,t) , but Γ

L,γ−
u will eventually have to separate from ΓR,θ+

(n,t) at some point z = (ℓ, r) to coalesce

with ΓL,γ−
(m+1,s) (and ΓL,γ−

(n+1,t)). By Lemma 6.2, it follows that [(ℓ − 1
2 , r), (ℓ +

1
2 , r)] is an instability

edge in S [γ,θ]. Then z⋆ = (ℓ + 1
2 , r) ∈ S [γ,θ] is between ΓL,γ−

(m+1,s) and ΓR,θ+
(m,s), as well as between

ΓL,γ−
(n+1,t) and ΓR,θ+

(n,t) and thus by Lemma 7.13 is a NE ancestor of both x⋆ and y⋆. �

Theorem 7.17. The following holds for all ω ∈ Ω10 and θ ≥ γ > 0. Every pair of instability points
x⋆,y⋆ ∈ S [γ,θ] have a common SW descendant z⋆ ∈ S [γ,θ].

Proof. Write x⋆ = (m + 1
2 , s) and y⋆ = (n + 1

2 , t) and suppose x⋆ and y⋆ do not have a common

descendant in S [γ,θ]. By Lemma 7.2, there are infinite down-left paths on S [γ,θ] out of each of x⋆

and y⋆. Therefore, without loss of generality, we continue the proof under the assumption that
m = n and t > s.

Again, by Lemma 7.2, there exist sequences sk and tk, k ≤ m+1, such that sm+1 = s, tm+1 = t,
and for all k ≤ m we have that (k− 1

2 , sk−1) ∈ S [γ,θ] is a descendant of (k+ 1
2 , sk) and (k− 1

2 , tk−1) ∈
S [γ,θ] is a descendant of (k + 1

2 , tk). Since we assumed that x⋆ and y⋆ do not share a common
descendant and that s < t, we must also have sk < tk for all k ≤ m.
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Figure 7.4. The proof of Theorem 7.17.

Take k < ℓ ≤ m. By Lemma 7.13, being a NE ancestor of (k+ 1
2 , sk), (ℓ+

1
2 , sℓ) must be between

ΓL,γ−
(k+1,sk)

and ΓR,θ+
(k,sk)

. Since sℓ < tℓ, (ℓ +
1
2 , tℓ) is to the right of ΓL,γ−

(k+1,sk)
. But since y⋆ does not

share a descendant with x⋆, (k+ 1
2 , sk) cannot be a descendant of (ℓ+ 1

2 , tℓ) and hence, by Lemma

7.13, (ℓ + 1
2 , tℓ) must be to the right of ΓR,θ+

(k,sk)
. Therefore, we have shown that for all k < ℓ ≤ m,

ΓR,θ+
(k,sk)

passes between (ℓ+ 1
2 , sℓ) and (ℓ+ 1

2 , tℓ) when it crosses level ℓ+ 1
2 .

Furthermore, since (k − 1
2 , sk−1) is a descendant of (k + 1

2 , sk), the latter must be to the left of

ΓR,θ+
(k−1,sk−1)

, which implies that this geodesic has to remain entirely to the right of ΓR,θ+
(k,sk)

.

For k < ℓ ≤ m let πk
ℓ be the first entry point of ΓR,θ+

(k,sk)
at level ℓ + 1 and, hence, the last exit

point of the geodesic from level ℓ. This means that the geodesic crosses level ℓ + 1
2 at (ℓ+ 1

2 , π
k
ℓ ).

The above observations then show that for each k ≤ k′ < ℓ ≤ m we have sℓ ≤ πk
ℓ ≤ tℓ and πk′

ℓ ≤ πk
ℓ .

Thus, for each ℓ ≤ m there exists a subsequence kj and a πℓ ∈ [sℓ, tℓ] such that π
kj
ℓ ր πℓ as

j → ∞. By the diagonal trick, we can extract a single subsequence that works for all ℓ ≤ m
simultaneously.
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Let Γ be the bi-infinite up-right path that enters each level ℓ + 1 at (ℓ + 1, πℓ), for ℓ ≤ m, and

from (m+1, πm) and on follows ΓL,θ+
(m+1,πm). Then, by the definition of {πℓ : ℓ ≤ m}, for each ℓ ≤ m,

the portion of Γ that goes between levels ℓ+ 1 and m+ 1 is the limit of the corresponding portion

of ΓR,θ+
(kj ,skj )

as j → ∞. Consequently, the piece of Γ from level ℓ+1 and on matches ΓL,θ+
(ℓ+1,πℓ)

for all

ℓ ≤ m. This implies that Γ is a bi-infinite geodesic, which is prohibited by Theorem 4.16. �

We close this section with two properties relating S [γ,δ], δ > γ > 0, to Sθ, θ ∈ [γ, δ].

Lemma 7.18. For all ω ∈ Ω10 and δ > γ > 0, S [γ,δ] =
⋃

θ∈[γ,δ]∩Θω Sθ.

The last result of this section gives one practical use for S [γ,δ]. It says that we can approximate
Sθ (e.g. for simulation purposes) by S [γ,δ] with γ < θ < δ and δ − γ small.

Lemma 7.19. For all ω ∈ Ω10 and θ > 0, Sθ =
⋂

γ<θ<δ S [γ,δ].

We defer the proofs of Lemmas 7.18 and 7.19 to the end of Section 9, as they rely on theorems
concerning competition interfaces.

Remark 7.20. The points in the union
⋃

δ>γ>0 S [γ,δ] =
⋃

θ∈Θω Sθ are all of Z × R. Curiously, the

vertical edges do not fill out all of R2 but rather, by Theorem 4.13 and Theorem 9.1(a) below, form
a Hausdorff 1

2 dimensional dense subset of R2.

8. Shocks and their relation to the instability graph

Recall that (m, s) is called a θ�-shock point if (m, s) ∈ NUθ�
1 , where NUθ�

1 is defined in (4.6). As
a first observation, the following Lemma notes that for any θ > 0 and � ∈ {−,+}, the θ� shocks,
on any level, are nowhere dense. This contrasts with the fact that, almost surely, for any m ∈ Z,
the set

⋃

θ>0

⋃

�∈{−,+}{s : (m, s) ∈ NUθ�
1 } = CIm is dense in R (Theorem 4.13).

Lemma 8.1. The following holds for all ω ∈ Ω10, γ > 0, and m ∈ Z. The set
⋃

θ≥γ

⋃

�∈{−,+}{s :

(m, s) ∈ NUθ�
1 } is nowhere dense.

Proof. By Theorem 4.13, for any rational r, there exists a t > r such that ΓL,γ−
(m,r) goes through

(m, t). By the geodesics ordering, ΓS,θ�
(m,r) also goes through (m, t), for any θ ≥ γ, � ∈ {−,+}, and

S ∈ {L,R}. Thus, for any s ∈ [r, t), (m, s) 6∈ NUθ�
1 . The claim now follows from the fact that

rational numbers are dense. �

We begin the study of the properties of shock points by showing that there is a θ+ shock under
each left endpoint of a maximal instability interval and that there are no θ+ shocks under any
other points in the interval. The contents of the next five lemmas are summarized in Figure 8.1.

Lemma 8.2. The following holds for all ω ∈ Ω10, θ ≥ γ > 0, m ∈ Z, and s < t. Suppose
{(m+ 1

2 , r) : s ≤ r ≤ t} ⊂ S [γ,θ]. Then (m, s) ∈ NUθ+
1 if, and only if, (m+ 1

2 , s) is an improper [γ, θ]-

instability point. Consequently, for any r ∈ (s, t), (m, r) 6∈ NUθ+
1 . Furthermore, (m, t) 6∈ NUθ+

1 .

Proof. Lemma 7.4 implies that {(m+ 1
2 , r) : s < r < t} is a proper instability interval. The first two

claims then follow directly from Lemmas 7.9 and 7.10. This also implies the last claim if (m+ 1
2 , t)

is a proper instability point. If, on the other hand, it is an improper instability point, then the last

claim follows from Lemma 7.11 and the fact that ΓL,γ−
(m,t) is always above both ΓL,θ+

(m,t) and ΓR,θ+
(m,t). �

Next, we show that there cannot be a γ− shock under the left endpoint of an instability interval
and that each γ− shock under an instability interval must have an instability edge going through it.
Together, this and the previous lemma show that θ+ and γ− shocks are distinct under instability
intervals. They also show that there are no θ+ or γ− shocks under right endpoints of maximal
instability intervals.
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Lemma 8.3. The following holds for all ω ∈ Ω10, θ ≥ γ > 0, m ∈ Z, and s < t. Suppose
{(m + 1

2 , r) : s ≤ r ≤ t} ⊂ S [γ,θ]. If (m, s) ∈ NUγ−
1 , then (m + 1

2 , s) is a proper [γ, θ]-instability

point. Furthermore, [(m− 1
2 , s), (m+ 1

2 , s)] is a [γ, θ]-instability edge.

Proof. If (m, s) ∈ NUγ−
1 , then ΓR,γ−

(m,s) goes through (m, r) for each r > s close enough to s. This

implies that for such r, ΓR,γ−
(m,s) ∩ ΓL,θ+

(m,r) 6= ∅. By Lemma 6.1, this implies that Bγ−(m, s,m, r) =

Bθ+(m, s,m, r) for all r > s close enough to s. But since (m + 1
2 , r) ∈ S [γ,θ] for all r ∈ (s, t),

Theorem 5.6(iv) implies that Bγ−(m, s,m+ 1, s) < Bθ+(m, s,m+ 1, s), which says that (m+ 1
2 , s)

is a proper [γ, θ]-instability point.

Next, note that (m, s) ∈ NUγ−
1 implies that ΓL,γ−

(m,s) goes up to (m+1, s) while, since (m+ 1
2 , s) is

proper, Lemma 7.9 implies that ΓR,θ+
(m,s) and ΓL,θ+

(m,s) both go right from (m, s). Lemma 4.15 implies

then that these two geodesics are equal. But then ΓR,θ+
(m,s) = ΓL,θ+

(m,s) cannot reconvene with ΓL,γ−
(m,s)

because that would violate the fact that ΓL,θ+
(m,s) is a leftmost point-to-point geodesic between any of

its points (Theorem 4.3(v)). Now Lemma 6.2 implies that [(m − 1
2 , s), (m + 1

2 , s)] is an instability
edge. �

The next lemma says that shock points that are not below instability points are simultaneously
θ+ and γ− shock points. By Lemma 8.2, each left endpoint of an instability interval has a θ+
shock point below it and, by Theorem 4.7(iii), this shock point will have an accumulation of θ+
shock points to its left. The following lemma then says that these are also γ− shock points.
Consequently, we see that there are infinitely many simultaneous γ− and θ+ shock points outside
instability intervals.

Lemma 8.4. The following holds for all ω ∈ Ω10 and θ ≥ γ > 0. Take (m, s) ∈ NUγ−
1 ∪ NUθ+

1 .

Then (m+ 1
2 , s) /∈ S [γ,θ] if and only if (m, s) ∈ NUγ−

1 ∩NUθ+
1 .

Proof. If (m+ 1
2 , s) ∈ S [γ,θ], then Lemmas 8.2 and 8.3 imply that (m, s) 6∈ NUγ−

1 ∩NUθ+
1 .

For the other direction, suppose that (m + 1
2 , s) /∈ S [γ,θ] and (m, s) ∈ NUθ+

1 \ NUγ−
1 . Then

(m, s) ∈ NUθ+
1 implies that ΓR,θ+

(m,s) goes right while ΓL,θ+
(m,s) and hence also ΓL,γ−

(m,s) go up. But then

(m, s) 6∈ NUγ−
1 implies that ΓR,γ−

(m,s) goes up as well and Lemma 4.15 implies that ΓR,γ−
(m,s) = ΓL,γ−

(m,s).

Since (m+1
2 , s) /∈ S [γ,θ], ΓL,γ−

(m+1,s)∩Γ
R,θ+
(m,s) 6= ∅. Since ΓL,γ−

(m,s) goes up, this implies that ΓL,γ−
(m,s)∩Γ

R,θ+
(m,s) 6=

∅, which in turn says that ΓR,γ−
(m,s) ∩ ΓR,θ+

(m,s) 6= ∅. Since these two geodesics split at (m, s), we get a

contradiction with ΓR,γ−
(m,s) being a right-most point-to-point geodesic between any of its two points

(Theorem 4.3(v)).

A similar contradiction is obtained from assuming that (m+ 1
2 , s) /∈ S [γ,θ] and (m, s) ∈ NUγ−

1 \
NUθ+

1 . This proves the lemma. �

The next lemma shows that there are infinitely many γ− shocks under each instability interval.
Since we have shown that a maximal instability interval has only one θ+ shock, located below its
left endpoint, and that shocks outside instability intervals are simultaneously θ+ and γ− shocks,
while shocks under proper instability points are only γ− shocks, we now see that there are many
more γ− shocks than there are θ+ shocks.

Lemma 8.5. The following holds for all ω ∈ Ω10, θ ≥ γ > 0, m ∈ Z, and s < t. Suppose
{(m + 1

2 , r) : s ≤ r ≤ t} ⊂ S [γ,θ] and that (m, s) is an improper [γ, θ]-instability point. Then there

is a sequence sk ∈ (s, t], strictly decreasing to s, and such that (m, sk) ∈ NUγ−
1 \NUθ+

1 for all k.
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Proof. By Lemma 8.2 (m, s) ∈ NUθ+
1 . Consequently, ΓR,θ+

(m,s) goes right from (m, s) while ΓL,θ+
(m,s) goes

up, causing ΓL,γ−
(m,s) to also go up. By Lemma 8.3, (m, s) 6∈ NUγ−

1 , which implies that ΓR,γ−
(m,s) goes

up. Thus, ΓR,θ+
(m,s) and ΓR,γ−

(m,s) split immediately, but ΓL,θ+
(m,s) and ΓL,γ−

(m,s) do not. This implies that

(m, s) ∈ NUθ+
1 \ NUγ−

1 . The claim now follows from Theorem 4.7(iv) and Lemma 8.2. �

In contrast, the next result shows that there are no shocks to the immediate right of a right
endpoint of an instability interval.

Lemma 8.6. The following holds for all ω ∈ Ω10, θ ≥ γ > 0, m ∈ Z, and s < t. Suppose
{(m + 1

2 , r) : s ≤ r ≤ t} ⊂ S [γ,θ] and that (m, t) is an improper [γ, θ]-instability point. Then there

exists an ε > 0 such that for any r ∈ [t, t+ ε], (m, r) 6∈ NUγ−
1 ∪NUθ+

1 .

Proof. By Lemma 7.11, ΓL,γ−
(m,t) proceeds rightwards out of (m, t). By the ordering of geodesics, this

implies that ΓR,γ−
(m,t) , Γ

L,θ+
(m,t), and ΓR,θ+

(m,t) also proceed rightwards out of (m, t), which prevents having

any shock points (m, r) for r ≥ t close enough to t. �

Next, we note that above each right endpoint of a maximal instability interval there is a γ−
shock that is not a θ+ shock.

Lemma 8.7. The following holds for all ω ∈ Ω10 and θ ≥ γ > 0. Suppose that for some m ∈ Z

and s < t, {(m+ 1
2 , r) : s < r < t} is a proper [γ, θ]-instability interval. If (m+ 1

2 , t) is an improper

[γ, θ]-instability point, then (m+ 1, t) ∈ NUγ−
1 \NUθ+

1 .

Proof. This follows immediately from Lemmas 7.11, 8.2, and 8.3. �

To complete the picture, the next two lemmas show that the γ− shocks beneath an instability
interval occur precisely at the points where a rightmost vertical instability edge passes through.
This aligns with the facts that, on each level, there are countably many shock points and a set of
instability edges with Hausdorff dimension 1

2 .

Lemma 8.8. The following holds for all ω ∈ Ω10, θ ≥ γ > 0, m ∈ Z, and s ∈ R. Suppose
[(m+ 1

2 , s), (m+ 3
2 , s)] is a [γ, θ]-instability edge and for some t > s, [(m+ 1

2 , r), (m+ 3
2 , r)] is not

a [γ, θ]-instability edge for all r ∈ (s, t). Then (m+ 1, s) ∈ NUγ−
1 .

Proof. By Lemma 6.2, the geodesic ΓR,θ+
(m+1,s) goes right, the geodesic Γ

L,γ−
(m+1,s) goes up to (m+2, s),

and the two never touch again. Since no geodesics go up twice in a row (Proposition 4.14), the
latter geodesic must turn right from (m + 2, s). Thus, there exists some t′ ∈ (s, t) such that the

geodesic ΓR,θ+
(m+1,s) goes through (m + 1, t′) and the geodesic ΓL,γ−

(m+1,s) goes through (m + 2, t′). If

for some r ∈ (s, t′), the geodesic ΓL,γ−
(m+1,r) were to go up, then it would continue with the geodesic

ΓL,γ−
(m+1,s) and thus never again touch the geodesic ΓR,θ+

(m+1,r) (which follows the geodesic ΓR,θ+
(m+1,s)).

Then, [(m + 1
2 , r), (m + 2

3 , r)] would be a [γ, θ]-instability edge. The assumptions of the lemma

prevent that and hence for any r ∈ (s, t′), the geodesic ΓL,γ−
(m+1,r) must go right. By the convergence

in (4.5), the geodesic ΓR,γ−
(m+1,s) must go right and since the geodesic ΓL,γ−

(m+1,s) goes up we have that

(m+ 1, s) ∈ NUγ−
1 . �

Lemma 8.9. The following holds for all ω ∈ Ω10, θ ≥ γ > 0, m ∈ Z, and s ∈ R. Suppose that for
some sequence sn that strictly decreases to s, [(m+ 1

2 , sn), (m+ 3
2 , sn)] is a [γ, θ]-instability edge for

all n. Then (m+ 1, s) 6∈ NUγ−
1 .

Proof. By Lemma 6.2, for all n, the geodesic ΓL,γ−
(m+1,sn)

goes up. By the convergence in (4.5), the

geodesic ΓR,γ−
(m+1,s) goes up and hence (m+ 1, s) 6∈ NUγ−

1 . �
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The following corollary is an interesting contrast to Lemma 7.12.

Corollary 8.10. The following holds for all ω ∈ Ω10, θ ≥ γ > 0, m ∈ Z, and s ∈ R. Suppose
[(m− 1

2 , s), (m+ 1
2 , s)] is a [γ, θ]-instability edge. Then there is either a decreasing sequence sn ց s

or an increasing sequence sn ր s (or both) such that [(m− 1
2 , sn), (m+ 1

2 , sn)] is a [γ, θ]-instability
edge for all n.

Proof. Suppose that there does not exist a decreasing sequence sn ց s as in the claim. Then
Lemma 8.8 implies that (m, s) ∈ NUγ−

1 . By Lemmas 7.2 and 7.3, (m − 1
2 , s) is part of a [γ, θ]-

instability interval. Then Lemma 8.3 implies that (m− 1
2 , s) is a proper [γ, θ]-instability point and

Lemma 7.5 implies that there exists an r < s such that [(m− 1
2 , r), (m+ 1

2 , s)] is a [γ, θ]-instability
interval. The left density of shocks (Theorem 4.7(iii)) and Lemma 8.3 imply now the existence of
an increasing sequence sn ր s as in the claim. �

We summarize the above results in the following theorem. See Figure 8.1. Theorem 3.7 comes
as the special case when γ = θ ∈ Θω.

Theorem 8.11. The following holds for all ω ∈ Ω10 and θ ≥ γ > 0. Suppose that for some m ∈ Z

and s < t, {(m+ 1
2 , r) : s ≤ r ≤ t} is a [γ, θ]-instability interval and that (m+ 1

2 , s) and (m+ 1
2 , t)

are improper [γ, θ]-instability points.

(i) (m, s) ∈ NUθ+
1 \ NUγ−

1 and (m+ 1, t) ∈ NUγ−
1 \NUθ+

1 .

(ii) For any r ∈ (s, t), (m, r) 6∈ NUθ+
1 . Furthermore, (m, r) ∈ NUγ−

1 if, and only if, [(m −
1
2 , r), (m+ 1

2 , r)] is a [γ, θ]-instability edge that is right-isolated among [γ, θ]-instability edges.

(iii) For any r ∈ (s, t) with (m, r) ∈ NUγ−
1 , [m− 1

2 , r), (m+ 1
2 , r)] is a [γ, θ]-instability edge.

(iv) There exists an ε > 0 such that for any r ∈ [t, t+ ε], (m, r) 6∈ NUγ−
1 ∪NUθ+

1 .

(v) For any r ∈ R such that (m + 1
2 , r) 6∈ S [γ,θ], (m, r) is either in NUγ−

1 ∩ NUθ+
1 or not in

NUγ−
1 ∪NUθ+

1 .

(vi) There exist sequences r′n ր s and r′′n ց s such that (m, r′n) ∈ NUγ−
1 ∩ NUθ+

1 and (m, r′′n) ∈
NUγ−

1 \NUθ+
1 for all n.

m

m+ 1
2

m+ 1

m+ 3
2

m+ 2

± ± ± + − − −

+ − −±± −−

Figure 8.1. An illustration of Theorem 8.11. Circles with − refer to γ− shock points,
circles with + refer to θ+ shock points, and circles with ± refer to points that are simulta-
neously γ− and θ+ shock points.

Remark 8.12. Parts (i), (ii), (v), and (vi) in the above theorem give a natural injection that shows
there are infinitely many more γ− shocks than there are θ+ shocks. As mentioned in Remark 5.10,
repeating our results for the instability graph S(γ,θ) gives a similar statement about γ+ shocks and
θ− shocks, for all θ > γ > 0. Putting these results together shows that P-almost surely, for any
�,�′ ∈ {−,+} and any θ > γ > 0, there are many more γ� shocks than there are θ�′ shocks. This
quantifies the following statement: The number of shock points in NUθ�

1 increases as θ� decreases.
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Remark 8.13 (Reconstructing S [γ,θ] from shocks). Knowledge of NUθ+
1 and NUγ−

1 can allow one to

sketch a skeleton of the instability graph S [γ,θ] through the following algorithm:

(1) Mark all solely θ+ shocks a half level up. I.e. if (m, s) ∈ NUθ+
1 \ NUγ−

1 , mark the point
(m+ 1

2 , s). These are the left endpoints of maximal instability intervals.

(2) For each point that you marked in (1), say for example (m+ 1
2 , s), find the rightmost solely

γ− shock up a half level from the marked point (e.g. (m+ 1, t) ∈ NUγ−
1 \ NUθ+

1 for s < t)
and left of the next marked point on level (m+ 1

2 ). Half a level down from this point, e.g.

(m+ 1
2 , t) is the right endpoint of the instability interval that began at your marked point

(m+ 1
2 , s).

(3) Find the remaining solely γ− shock points and draw vertical instability edges through

these points. E.g. if (m, r) ∈ NUγ−
1 \ NUθ+

1 is such a solely γ− shock point, then draw an
instability edge between (m+ 1

2 , r) and (m− 1
2 , r).

What is missing, however, is a Hausdorff dimension 1/2 set of vertical instability edges (Theorem
7.8(v)) that do not go through any shock points. It is natural that these intervals cannot be
reconstructed from shock points because there are only countably many shock points (Theorem
4.7(ii)). We will see in the next section that these edges can be recovered from the knowledge of
competition interface starting points.

Recall the ancestry relationship between shock points, given in Definition 3.4. We show that this
induces a tree structure.

In our next lemma we show that even though shock points are left-dense (Theorem 4.7(iii)), they
do not have descendants on the same level.

Lemma 8.14. The following holds for all ω ∈ Ω10, θ > 0, and � ∈ {−,+}. Take (m, s) ∈ NUθ�
1 .

Then for any r < s with (m, r) ∈ NUθ�
1 , (m, r) is not a descendant of (m, s).

Proof. Since ΓL,θ�
(m,s) goes vertically from (m, s) and ΓR,θ�

(m,r) converges to ΓL,θ�
(m,s) as r ր s, there exists

a sequence rk that increases to s as k → ∞ with ΓR,θ�
(m,rk)

going through (m + 1, rk), for each k.

Now take any r < s and choose k large enough so that r < rk < s. Then ΓR,θ�
(m,r) goes up at or

before (m, rk) and hence strictly before reaching (m, s). Consequently, (m, r) is not a descendant
of (m, s). �

Next, we show that the SW descendants of a shock point are totally ordered by the ancestry
relation.

Lemma 8.15. The following holds for all ω ∈ Ω10, θ > 0, and � ∈ {−,+}. Take x,y, z ∈ NUθ�
1 .

Assume that x and y are both SW descendants of z. Then either x is a SW descendant of y or y

is a SW descendant of x.

Proof. For (m, s) ∈ Z×R let C(m,s) denote the set of sites (n, t) ∈ Z×R that are strictly between

Γγ,L�

(m,s) and Γγ,R�

(m,s). Let C(m,s) denote the closure of C(m,s), i.e. the set of sites that are weakly

between the two geodesics.
Suppose y is not a NE ancestor of x and x is not a NE ancestor of y. Then y is strictly outside Cx

and x is strictly outside Cy. Since for any S, S′ ∈ {L,R}, Γγ,S�

y coalesces with Γγ,S′
�

x as soon they

meet, the geodesic Γγ,S�

y cannot penetrate to region Cx and the geodesic Γγ,S′
�

x cannot penetrate
to region Cy. This implies that Cx and Cy are disjoint.

Since z is a NE ancestor of both x and y, it must be in both Cx and Cy. Therefore, it belongs

to a common part of the boundary of the two regions. That is, either z ∈ Γγ,L�

x ∩ Γγ,R�

y or

z ∈ Γγ,R�

x ∩ Γγ,L�

y .
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Since Γγ,L�

z proceeds vertically from z and since Proposition 4.14 prevents geodesics from having

two consecutive vertical steps, the only place where z can be on Γγ,L�

x or Γγ,L�

y is at a corner where

the geodesic comes in horizontally and then moves immediately up. But since Γγ,R�

z proceeds

horizontally from z, z cannot be at a corner where Γγ,R�

x or Γγ,R�

y arrives horizontally and then

moves immediately up. Thus, z cannot belong to Γγ,L�

x ∩ Γγ,R�

y nor to Γγ,R�

x ∩ Γγ,L�

y , arriving at a
contradiction. �

Working towards establishing the tree structure of shocks, we demonstrate that each shock
point has a unique SW descendant on the next level down. This is the shock points “immediate”
descendant, which we call the shock point’s child.

Lemma 8.16. The following holds for all ω ∈ Ω10, θ > 0, and � ∈ {−,+}. For each (m, s) ∈ NUθ�
1

there exists a unique t < s such that (m − 1, t) ∈ NUθ�
1 and (m − 1, t) is a descendant of (m, s).

Furthermore, if s1 < s2 are such that (m, s1), (m, s2) ∈ NUθ�
1 and (m − 1, ti) is the unique SW

descendent of (m, si) for each i ∈ {1, 2}, then t1 ≤ t2.

Proof. Take (m, s) ∈ NUθ�
1 . Then ΓL,θ�

(m,s) must immediately proceed upwards to (m + 1, s). By

Proposition 4.14, ΓL,θ�
(m−1,s) must initially proceed laterally on level m− 1, going through (m− 1, s′)

for some s′ > s. Define

t = inf
{

r ≤ s : ΓL,θ�
(m−1,r) goes through (m− 1, s′)

}

.(8.1)

The above set is not empty as it contains s. Also, t > −∞ since otherwise we would have a
non-degenerate bi-infinite geodesic, which is prohibited by Theorem 4.16.

Note that for any r ∈ (t, s′), ΓL,θ�
(m−1,r) goes through (m− 1, s′). In particular, (m− 1, r) 6∈ NUθ�

1

for all such r. Since ΓL,θ�
(m−1,r) converge to ΓR,θ�

(m−1,t) as r ց t, we get that ΓR,θ�
(m−1,t) must go to the

right out of (m− 1, t).

If ΓL,θ�
(m−1,t) were to proceed horizontally, then the fact that ΓL,θ�

(m−1,t) is the limit of ΓL,θ�
(m−1,r) as

r ր t would imply that for r < t close enough to t, ΓL,θ�
(m−1,r) must go rightwards and merge with

ΓL,θ�
(m−1,t), which by proceeding to the right will have to continue going to the right until it reaches

(m, s′). But then the definition of t as an infimum would imply that t ≤ r, which would be a

contradiction. Therefore, ΓL,θ�
(m−1,t) must proceed upwards immediately to level m. In particular, we

have that t < s and that (m− 1, t) ∈ NUθ�
1 .

That (m− 1, t) is a descednent of (m, s) follows from the fact that ΓL,θ�
(m−1,t)

has to remain to the

left of ΓL,θ�
(m,s) while ΓR,θ�

(m−1,t) proceeds to (m− 1, s′) and hence has to remain below ΓL,θ�
(m,s).

We have shown so far that (m − 1, t) is the rightmost descendant of (m, s) on level m − 1. By
Lemma 8.15 any other descendant of (m, s) on level m − 1 must be a descendant of (m − 1, t).
However, Lemma 8.14 implies that (m−1, t) does not have any descendants on level m−1. Hence,
(m− 1, t) is the only descendant of (m, s) on level m− 1.

For the monotonicity claim, observe that if s′1 and s′2 denote the times defining t1 and t2,
respectively, via (8.1), then we can assume s′1 < s′2 (since s1 < s2) and then (8.1) implies that
t1 ≤ t2. �

Lemma 8.17. The following holds for all ω ∈ Ω10, θ > 0, and � ∈ {−,+}. Suppose (m, s) ∈ NUθ�
1

has a NE ancestor. Then it has infinitely many NE ancestors on level m+ 1.

Proof. Note that Lemma 8.16 implies that (m, s) cannot be the descendant of (m + 1, s). (This
also follows from Proposition 4.14.) Therefore, if (m, s) has a NE ancestor, it must have a NE

ancestor (m + 1, t) with t > s. This means that (m + 1, t) is to the left of ΓR,θ�
(m,s) and strictly to
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the right of ΓL,θ�
(m,s). By Theorem 4.7(iii), there exists a sequence (m + 1, tk) ∈ NUθ�

1 such that tk

strictly increases to t as k → ∞. Then for each k large enough (m + 1, tk) is between ΓR,θ�
(m,s) and

ΓL,θ�
(m,s) and, therefore, is a NE ancestor of (m, s). �

The above lemmas establish that shocks have a forest structure. In the next lemma, we show
that the ancestry relation gives a single tree.

Lemma 8.18. The following holds for all ω ∈ Ω10, θ > 0, and � ∈ {−,+}. Take x,y ∈ NUθ�
1 .

Then x and y have a common SW descendant z ∈ NUθ�
1 .

Proof. The proof is similar to that of Theorem 7.17. Write x = (m, s) and y = (n, t). By Lemma
8.16 we can assume, without loss of generality, that m = n and s < t. Using Lemma 8.16 again, we
can find sequences sk and tk, k ≤ m, such that sm = s, tm = t, and for all k < m, (k, sk) ∈ NUθ�

1 is
the rightmost descendant of (k+1, sk+1) on level k and (k, tk) ∈ NUθ�

1 is the rightmost descendant
of (k+ 1, tk+1) on level k. Since s < t, we get sk ≤ tk for all k ≤ m. The assumption that x and y

have no common descendant implies then that in fact sk < tk for all k ≤ m.

The geodesics ΓR,θ�
(k,sk)

must now go between (ℓ, sℓ) and (ℓ, tℓ), for all k < ℓ ≤ m and, as in the

proof of Theorem 7.17, we can extract from this a bi-infinite geodesic which, by Theorem 4.16 has
zero P-probability of occuring. �

The next three lemmas demonstrate that both NUθ+
1 \NUγ−

1 and NUγ−
1 \NUθ+

1 also form trees.

Lemma 8.19. The following holds for all ω ∈ Ω10 and θ ≥ γ > 0. Take and (m, s) ∈ NUθ+
1 \NUγ−

1 .

Then all SW descendants of (m, s) in the NUθ+
1 tree are in NUθ+

1 \ NUγ−
1 .

Proof. By Lemmas 8.14, 8.15, and 8.16, it is enough to prove the claim for the immediate child of
(m, s), in the NUθ+

1 tree. Denote this by (m− 1, r), where r < s.
By Lemmas 8.2 and 8.4, (m+ 1

2 , s) must be the left endpoint of a [γ, θ]-instability interval. By

Lemmas 7.2 and (7.3), there must exist an r′ < s such that [(m − 1
2 , r

′), (m − 1
2 , s)] ⊂ S [γ,θ] and

(m− 1
2 , r

′) is an improper instability point. By Lemma 8.2, (m− 1, r′) ∈ NUθ+
1 \ NUγ−

1 and there

are no points in NUθ+
1 in the interval (r′, s) on level m− 1. Thus, r′ = r, i.e. (m− 1, r′) is the SW

child of (m, s) and so (m− 1, r) ∈ NUθ+
1 \ NUγ−

1 . �

Lemma 8.20. The following holds for all ω ∈ Ω10 and θ ≥ γ > 0. Take (m, s) ∈ NUγ−
1 \ NUθ+

1 .

Then all SW descendants of (m, s) in the NUγ−
1 tree are in NUγ−

1 \ NUθ+
1 .

Proof. By Lemmas 8.14, 8.15, and 8.16, it is enough to prove the claim for the immediate child of
(m, s), in the NUγ−

1 tree. Denote this by (m− 1, r), where r < s.
By Lemma 8.3, [(m+ 1

2 , s), (m− 1
2 , s)] must be a [γ, θ]-instability edge that, by Lemmas 7.2 and

7.3, goes down into a [γ, θ]-instability interval on level m− 1
2 . By Lemmas 7.2 and 7.3, (m− 1

2 , s)
cannot be the left endpoint of that instability interval, and thus there exists an r′ < s such that
[(m − 1

2 , r
′), (m − 1

2 , s)] ⊂ S [γ,θ] and (m − 1
2 , r

′) is an improper [γ, θ]-instability point. Then by

Lemma 8.5, there exists an r′′ ∈ (r′, s) such that (m− 1, r′′) ∈ NUγ−
1 . This implies that r ∈ [r′′, s).

In particular, (m− 1
2 , r) is proper and by Lemma 8.2, it is not in NUθ+

1 . �

A consequence of Lemmas 8.19 and 8.20 is that NUθ+
1 \ NUγ−

1 and NUγ−
1 \ NUθ+

1 are both

forests. Together with Lemma 8.18, we get that they, in fact, form subtrees of, respectively, NUθ+
1

and NUγ−
1 .

Lemma 8.21. For all ω ∈ Ω10 and θ ≥ γ > 0, NUθ+
1 \ NUγ−

1 is a subtree of the tree NUθ+
1 and

NUγ−
1 \ NUθ+

1 is a subtree of the tree NUγ−
1 .
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By Lemmas 8.2 and 8.4, shock points in NUθ+
1 \ NUγ−

1 are in one-to-one correspondence with
maximal [γ, θ]-instability intervals. Hence, Lemma 8.21 also says that maximal [γ, θ]-instability
intervals have a tree structure. In contrast, Lemma 8.5 says that each maximal instability interval
has infinitely many NUγ−

1 \ NUθ+
1 shock points under it. This motivates the following interesting

question: Can one balance the NUθ+
1 \NUγ−

1 tree by distinguishing a special shock point in NUγ−
1 \

NUθ+
1 , for each maximal instability interval, in such a way that these special shock points form a

subtree of the NUγ−
1 tree?

Since NUθ+
1 \NUγ−

1 is a subtree of NUθ+
1 , one may wonder about the structure of the remaining

points NUθ+
1 ∩NUγ−

1 inside the tree NUθ+
1 . The next lemma says that these points form “bushes”,

each of which has a finite number of generations. The same is true of NUθ+
1 ∩NUγ−

1 inside the tree

NUγ−
1 .

Lemma 8.22. For all ω ∈ Ω10 and θ ≥ γ > 0. Take (m, s) ∈ NUθ+
1 ∩ NUγ−

1 . Then (m, s) has a

SW descendant in NUθ+
1 \NUγ−

1 and a SW descendant in NUγ−
1 \ NUθ+

1 .

Proof. We prove the first claim, the second being similar.
By Lemma 8.4, (m + 1

2 , s) 6∈ S [γ,θ]. By Lemma 7.6, there exist s′ < s and s′′ > s such that

[(m− 1
2 , s

′), (m+ 1
2 , s

′)] and [(m− 1
2 , s

′′), (m+ 1
2 , s

′′)] are [γ, θ]-instability edges. Thus, there exists

an r′′ > s such that (m + 1
2 , r

′′) is the right endpoint of a [γ, θ]-instability interval. On the other

hand, if it were the case that (m + 1
2 , r) is a [γ, θ]-instability point for all r ≤ s′, then by Lemma

7.5 (m+ 1
2 , r) is improper for all r < s′. Lemma 7.9 implies then that ΓR,θ+

(m,r) goes through (m, s′),

which says that the path {Γt : t ∈ R} with Γt = (m, t) for t ≤ s′ and Γt = ΓR,θ+
(m,s′)(t) for t ≥ s′ is

a non-trivial bi-infinite geodesic. Since this is prohibited by Theorem 4.16, we get that there must
exist an r′ ≤ s′ such that (m+ 1

2 , r
′) is a left endpoint of a [γ, θ]-instability interval.

By Lemma 8.2, (m, r′) and (m, r′′) are in NUθ+
1 \NUγ−

1 . By Lemma 8.21, the two have a common

SW descendant (n, t) in the tree NUθ+
1 \ NUγ−

1 , which is a subtree of NUθ+
1 . By the monotonicity

in Lemma 8.16, (n, t) must be a SW descendant of (m, s) in NUθ+
1 \ NUγ−

1 . �

Proof of Theorem 3.6. The claims of the theorem follow directly from Lemmas 8.14-8.22. �

9. Competition interfaces and their relation to shocks and the instability graph

We now turn to the relationship between the instability graph and the starting points of com-
petition interfaces.

We show that points where left and/or right competition interfaces emanate and have an asymp-
totic direction in [γ, θ] are exactly those points where a [γ, θ]-instability edge descends. Furthermore,
we have the following trichotomy: the point is the left endpoint of a maximal [γ, θ]-instability in-
terval, positioned above a θ+ shock, and generates exclusively a right competition interface; or the
point is interior to a [γ, θ]-instability interval, situated above a γ− shock, and produces solely a
left competition interface; or the point is interior to a [γ, θ]-instability interval, and no shock exists
below it. In this case, both left and right competition interfaces emerge from the point, and they
match in this scenario.

Theorem 3.10 follows from the following by setting γ = θ ∈ Θω.

Theorem 9.1. The following hold for all ω ∈ Ω10, γ ≥ θ > 0, and (m, s) ∈ Z× R.

(a) [(m− 1
2 , s), (m + 1

2 , s)] is [γ, θ]-instability edge if, and only if, for some S ∈ {L,R}, ΓS,θ+
(m,s)

and ΓS,γ−
(m,s) split at (m, s) (i.e. [γ, θ] ∩ {θL(m,s), θ

R
(m,s)} 6= ∅).

(b) If (m + 1
2 , s) is the left endpoint of a maximal [γ, δ]-instability interval, then ΓR,θ+

(m,s) and

ΓR,γ−
(m,s) split at (m, s) but ΓL,θ+

(m,s) and ΓL,γ−
(m,s) do not. That is, γ ≤ θR(m,s) ≤ θ < θL(m,s).
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(c) If (m + 1
2 , s) is a proper [γ, δ]-instability point and (m, s) ∈ NUγ−

1 , then ΓL,θ+
(m,s) and ΓL,γ−

(m,s)

split at (m, s) but ΓR,θ+
(m,s) and ΓR,γ−

(m,s) do not. That is, θ ≥ θL(m,s) ≥ γ > θR(m,s).

(d) If [(m− 1
2 , s), (m+ 1

2 , s)] is an instability edge but (m, s) 6∈ NUγ−
1 ∪NUθ+

1 , then ΓL,γ−
(m,s) = ΓL,θ+

(m,s)

and ΓR,γ−
(m,s) = ΓR,θ+

(m,s) split at (m, s). That is, γ ≤ θR(m,s) ≤ θL(m,s) ≤ θ.

Proof. Part (a). Suppose that ΓR,θ+
(m,s) and ΓR,γ−

(m,s) split at (m, s). Then ΓR,θ+
(m,s) goes right while Γ

R,γ−
(m,s)

goes up. This forces ΓL,γ−
(m,s) to go up and Lemma 6.2 implies that [(m− 1

2 , s), (m+ 1
2 , s)] is a [γ, θ]-

instability edge. A similar argument works if ΓL,θ+
(m,s) and ΓL,γ−

(m,s) split at (m, s). One direction is

proved. Observe that Lemmas 7.2 and 8.3 imply that [(m− 1
2 , s), (m+ 1

2 , s)] is an instability edge
in each of the situations in parts (b-d). Therefore, proving these parts implies the other direction
in part (a).

Part (b). Lemma 7.5 implies that (m + 1
2 , s) is an improper [γ, θ]-instability point and Lemma

8.2 implies that (m, s) ∈ NUθ+
1 . This implies that ΓR,θ+

(m,s) goes right from (m, s) while ΓL,θ+
(m,s) goes

up, forcing ΓL,γ−
(m,s)

to also go up from (m, s), which means the last two geodesics do not split at

(m, s). Lemma 8.3 implies that (m + 1
2 , s) 6∈ NUγ−

1 and hence ΓR,γ−
(m,s) also goes up, which means

ΓR,γ−
(m,s) and ΓR,θ+

(m,s) split at (m, s).

Part (c). Since (m, s) ∈ NUγ−
1 , ΓL,γ−

(m,s) goes up while ΓR,γ−
(m,s) goes right, forcing ΓR,θ+

(m,s) to also go

right from (m, s). By Lemma 8.2, (m, s) 6∈ NUθ+
1 and hence ΓL,θ+

(m,s) must also go right. Part (c) is

proved.

Part (d). By Lemma 6.2, ΓR,θ+
(m,s) goes right while Γ

L,γ−
(m,s) goes up from (m, s). Since (m, s) is not a

θ+ nor a γ− shock point, ΓL,θ+
(m,s) must go right and ΓR,γ−

(m,s) must go up. The claim follows now from

Lemma 4.15.
The claims about the relationship between γ, θ, θL(m,s), and θR(m,s) all come from Theorem 4.12. �

We can now prove Lemmas 7.18 and 7.19.

Proof of Lemma 7.18. Lemma 7.1 implies that for any θ > 0, Sθ ⊂ S [γ,δ]. Thus, we have the
inclusion

⋃

θ∈[γ,δ]∩Θω Sθ ⊂ S [γ,δ]. We prove the other inclusion.

Suppose [(m − 1
2 , s), (m + 1

2 , s)] is a [γ, δ]-instability edge. By Theorem 9.1(a), there exists a

θ ∈ [γ, δ] ∩ {θL(m,s), θ
R
(m,s)}. By the same theorem, applied now to γ = θ, θ ∈ {θL(m,s), θ

R
(m,s)} implies

that [(m− 1
2 , s), (m+ 1

2 , s)] is a θ-instability edge and, in particular, θ ∈ Θω. Thus, we have shown

that all vertical instability edges in S [γ,δ] are also in
⋃

θ∈[γ,δ]∩Θω Sθ.

Next, suppose (m+ 1
2 , s) is an improper [γ, δ]-instability point. By Theorem 7.8(iv), (m+ 1

2 , s)
is either a left or a right endpoint of a maximal [γ, δ]-instability interval and by part (i) of the
same theorem, either [(m − 1

2 , s), (m + 1
2 , s)] or [(m + 1

2 , s), (m + 3
2 , s)] is a [γ, δ]-instability edge.

By what we proved above, this edge is in Sθ for some θ ∈ [γ, δ] ∩ Θω and hence so is (m + 1
2 , s).

Thus, improper [γ, δ]-instability points are all in
⋃

θ∈[γ,δ]∩Θω Sθ.

Now suppose (m+ 1
2 , s) is a proper [γ, δ]-instability point, i.e. Bγ−(m, s,m+1, s) < Bδ+(m, s,m+

1, s). We will prove that there exists a θ′ ∈ [γ, δ] ∩ Θω such that (m + 1
2 , s) is also a proper θ′-

instability point.
The above claim holds if (m+ 1

2 , s) is a proper δ-instability point or if it is a proper γ-instability

point. Assume, therefore, that (m+ 1
2 , s) is neither. Thus, Bδ−(m, s,m+1, s) = Bδ+(m, s,m+1, s)

and Bγ−(m, s,m+ 1, s) = Bγ+(m, s,m+ 1, s). Let

θ′ = inf
{

κ ∈ [γ, δ] : Bκ+(m, s,m+ 1, s) = Bδ−(m, s,m+ 1, s)
}

.
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By Theorem 4.1(v), Bκ+(m, s,m+ 1, s) = Bδ−(m, s,m+ 1, s) for κ < δ close enough to δ. Hence,
the set in the above infimum is not empty and θ′ < δ. Similarly,

Bκ+(m, s,m+ 1, s) = Bγ+(m, s,m+ 1, s) = Bγ−(m, s,m+ 1, s) < Bδ+(m, s,m+ 1, s)

for κ > γ close enough to γ. Hence, θ′ > γ.
By Theorem 4.1(iv), Bκ+(m, s,m+ 1, s) is right-continuous in κ. Consequently, Bθ′+(m, s,m+

1, s) = Bδ−(m, s,m + 1, s). If Bθ′−(m, s,m + 1, s) were equal to Bδ−(m, s,m + 1, s), Theorem

4.1(v) would imply that Bκ+(m, s,m+ 1, s) = Bθ′−(m, s,m+ 1, s) = Bδ−(m, s,m+ 1, s) for κ < θ′

close enough to θ′. This would contradict the definition of θ′. Hence, it must be the case that
Bθ′−(m, s,m+ 1, s) < Bθ′+(m, s,m+ 1, s), which means (m+ 1

2 , s) is a proper θ′-instability point

and is hence in
⋃

θ∈[γ,δ]∩Θω Sθ. �

Proof of Lemma 7.19. Lemma 7.1 implies that Sθ ⊂
⋂

γ<θ<δ S [γ,δ]. We prove the other inclusion.

Suppose [(m− 1
2 , s), (m+ 1

2 , s)] is an edge in S [γ,δ] for all δ > γ > 0 with θ ∈ (γ, δ). Then by The-

orem 9.1(a), [γ, δ]∩ {θL(m,s), θ
R
(m,s)} 6= ∅ for all such γ and δ, which implies that θ ∈ {θL(m,s), θ

R
(m,s)}.

The same theorem implies then that [(m− 1
2 , s), (m+ 1

2 , s)] is an edge in Sθ.

Suppose next (m+ 1
2 , s) ∈

⋂

γ<θ<δ S [γ,δ]. By Theorem 7.8(iv), if (m+ 1
2 , s) is an improper [γ, δ]-

instability point, then it is either a left or a right endpoint of a maximal [γ, δ]-instability interval
and by part (i) of the same theorem, either [(m − 1

2 , s), (m + 1
2 , s)] or [(m + 1

2 , s), (m + 3
2 , s)] is a

[γ, δ]-instability edge. By Lemma 7.1, this edge also belongs to S [γ′,δ′] for all γ′ ∈ (0, γ) and all
δ′ > δ. Thus, if for δk = θ + 1/k and γk = θ − 1/k, (m + 1

2 , s) is an improper [γk, δk]-instability

point for infinitely many k ∈ N, then it must be the case that either [(m − 1
2 , s), (m + 1

2 , s)] is a

[γ, δ]-instability edge for all δ > γ > 0 or [(m + 1
2 , s), (m + 3

2 , s)] is a [γ, δ]-instability edge for all

δ > γ > 0. By what we proved above, this edge is in Sθ and therefore so is (m+ 1
2 , s).

It remains to consider the case where there exists an ε > 0 such that (m + 1
2 , s) is a proper

[γ, δ]-instability point for all δ > γ > 0 with 0 < θ−ε < γ < θ < δ < θ+ε. This implies that for all
such γ and δ, Bδ+(m, s,m+ 1, s) > Bγ−(m, s,m, s+ 1). By Theorem 4.1(v), Bδ+(m, s,m+ 1, s) =
Bθ+(m, s,m + 1, s) for δ > θ close enough to θ and Bγ−(m, s,m + 1, s) = Bθ−(m, s,m + 1, s) for
γ < θ close enough to θ. Hence, Bθ+(m, s,m+1, s) > Bθ−(m, s,m, s+1) and (m+ 1

2 , s) is a proper
θ-instability point. The lemma is now proved. �

10. Proofs of general BLPP results

Proof of Proposition 4.14. Note that L(m,s),(n,t) = L(m,s),(n−2,t) implies L(m,s),(n,t) = L(m,s),(n−1,t).
On the event in part (a), take

m′ = min{ℓ ∈ [m,n] ∩ Z : L(m,s),(n,t) = L(m,s),(ℓ,t)}.

Then m ≤ m′ ≤ n − 2 and L(m,s),(ℓ,t) = L(m,s),(n,t) for all integers ℓ ∈ [m′, n]. In particular,
L(m,s),(m′,t) = L(m,s),(m′+2,t). This means that there exists a geodesic path from (m, s) to (m′+2, t)

that goes through (m′, t).
If m′ > m, then the definition of m′ implies that L(m,s),(m′−1,t) < L(m,s),(m′+2,t). This implies

that there are no geodesic paths from (m, s) to (m′ + 2, t) that go through (m′ − 1, t). Thus, the
geodesic from the previous paragraph must arrive at level m′ at some s′ ∈ [s, t). It then must
proceed from (m′, s′) to (m′, t) and hence must cross (m′, s′′) for some integer s′′ ∈ (s′, t). Then we
have L(m′,s′′),(m′,t) = L(m′,s′′),(m′+2,t). We have thus shown that on the event in part (a), we must
have L(m′,s′′),(m′,t) = L(m′,s′′),(m′+2,t) for some integer m′, some rational s′′, and some t > s′′. Thus,
to deduce the claim, it is enough to prove that for each integer m′ and rational s′′, there is zero P-
probability that there exists a t > s′′ with L(m′,s′′),(m′,t) = L(m′,s′′),(m′+2,t). By shift-invariance, we
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can assume m′ = 0 and s′′ = 0. Therefore, to prove that the event in part (a) has zero probability,
it suffices to show that

P{∃t > 0 : L(0,0),(0,t) = L(0,0),(2,t)} = 0.(10.1)

Similarly, to show that the event in part (b) has zero probability, it suffices to prove

P{∃t < 0 : L(−2,t),(0,0) = L(0,t),(0,0)} = 0.

This follows from by reflection symmetry. Therefore, we only show the proof of (10.1).
Define Yk(t) = L(0,0),(k−1,t) for k ∈ {1, 2, 3}. Observe that, P-almost surely, Y1(t) ≤ Y2(t) ≤ Y3(t)

for all t ≥ 0. Therefore, we want to show that

P{∃t > 0 : Y1(t) = Y2(t) = Y3(t)} = 0.(10.2)

When the above event occurs, we say that there is triple collision.
Denoting the i.i.d. Brownian environment on the first three levels by Bj, j ∈ {0, 1, 2}, we have

Y1(t) = B0(t),

Y2(t) = sup
0≤s≤t

{B0(s) +B1(t)−B1(s)} = B1(t) +A1,2(t), and

Y3(t) = sup
0≤s′≤s≤t

{B0(s
′) +B1(s)−B1(s

′) +B2(t)−B2(s)} = B2(t) +A2,3(t),

where

A1,2(t) = sup
0≤s≤t

{Y1(s)−B1(s)} and A2,3(t) = sup
0≤s≤t

{Y2(s)−B2(s)}.

Note that A1,2(0) = A2,3(0) = 0 and both A1,2 and A2,3 are nondecreasing and only increase at
t ≥ 0 such that Y2(t) = Y1(t) and Y3(t) = Y2(t), respectively. Thus, the processes Yk, k ∈ {1, 2, 3},
satisfy Definition 1.6 in [59] with drift coefficients gk = 0, diffusion coefficients σ2

k = 1, and collision

coefficients q+k = 1 and q−k = 0 for k ∈ {1, 2, 3}. Then (10.2) follows from Theorem 1.9(i) in [59].

Strictly speaking, the display above Definition 1.6 in [59] requires q+k , q
−
k ∈ (0, 1). The proof of the

theorem, however, does not use this condition and works as is in the extreme case where q+k = 1

and q−k = 0. For the convenience of the reader, we give a quick sketch of the proof that fleshes out
why this works.

Let Z1(t) = Y2(t) − Y1(t) and Z2(t) = Y3(t) − Y2(t). Then, following Definition 2.8 in [59],
Z(t) = (Z1(t), Z2(t)) ∈ R2

+ is called the gap process. A triple collision is equivalent to having
Z(t) = (0, 0) and, therefore, we are aiming to show that

P{∃t > 0 : Z(t) = (0, 0)} = 0.(10.3)

By Lemma 2.9 in [59], the gap process Z is a two-dimensional semimartingale reflected Brownian
motion in R2

+ (Definition 2.3 in [59]) with zero drift, reflection matrix

R =

[

1 0
−1 1

]

,

and covariance matrix

A =

[

2 −1
−1 2

]

.

The proof of the lemma does not need the assumption that the collision coefficients are in (0, 1)
and works for the extreme case where q+k = 1 and q−k = 0.

Let D be the diagonal matrix with the same diagonal as A, i.e. D is twice the identity matrix.
Then we have RD + DR′ = 2A. By Definition 2.7 in [59], the non-smooth part of R2

+ is the set
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consisting of just the origin {(0, 0)}. Now (10.3) follows from Theorem 2.12(i) (and Remark 2.13).
The proof of the theorem only depends on the fact that

Q = I −R =

[

0 0
1 0

]

has nonnegative entries and a spectral radius less than one. (See Lemma 2.5(iii) in [59].) �

Proof of Lemma 4.15. First, note that Proposition 4.14 prohibits geodesics from taking multiple

consecutive vertical steps. Therefore, if ΓR,θ�
(m,t) and ΓL,θ�

(m,t) go vertically together they have to next

go to the right together. But Theorem 4.8(iv) in [62] says that the two geodesics can only separate
along the upward vertical ray from (m, t). Therefore, they either separate immediately at (m, t) or
else they have to stay together forever. �

Lemma 10.1. Fix integers m < k ≤ n and real numbers s < r < t. Then P-almost surely, (k, r)

is not a jump time for Γ
(n,t)
(m,s), meaning (k, r) it is not the first time Γ

(n,t)
(m,s) enters level k.

Proof. Due to Proposition 4.14, P-almost surely, if (k, r) is the first entry point of Γ
(n,t)
(m,s) at level k,

then there must exist rational r′ < r′′ with r′ < r < r′′ and such that Γ
(n,t)
(m,s) goes through (k−1, r′),

(k − 1, r), (k, r), and (k, r′′). Thus, it is enough to show that for each k ∈ Z and r′ < r < r′′,

P
{

{(k − 1, r), (k, r)} ⊂ Γ
(k,r′′)
(k−1,r′)

}

= 0.

Using shift-invariance, this is reduced to showing that for any s < t,

P
{

{(0, s), (1, s)} ⊂ Γ
(1,t)
(0,0)

}

= 0.(10.4)

In the above event, s is the first point where B0(s)+B1(t)−B1(s) reaches is maximum over the
interval [0, t]. This is the same as the location of the maximum of B0(s) −B1(s) over [0, t]. Since
B0 − B1 is itself a Brownian motion (with diffusion coefficient two), the location of its maximum
has a continuous distribution. This proves (10.4). �

The next proof uses a “scale-invariance” argument similar to the one in Proposition 34 in [12],
for the directed landscape model.

Proof of Theorem 4.16. First, recall that two-sided Brownian motion {B(t) : t ∈ R} is equal in
distribution to {qB(q−2t) : t ∈ R} for any q > 0. It then follows from the definition of last
passage time in BLPP that {L(m, s;n, t) : m ≤ n in Z, s < t in R} has the same distribution as

{qL(m, q−2s;n, q−2t) : m ≤ n in Z, s < t in R} for q > 0. Consequently,
{

Γ
(n,t)
(m,s) : m ≤ n in Z, s <

t in R
}

has the same distribution as
{

q2Γ
(n,q−2t)
(m,q−2s)

: m ≤ n in Z, s < t in R
}

.

By shift-invariance, if a bi-infinite geodesic exists with positive P-probability, then there exists a
bi-infinite geodesic that at some point enters level 0. Assume that the probability such a bi-infinite
geodesic exists is at least δ > 0. Given such a non-degenerate bi-infinite geodesic Γ, parametrize
it so that Γ(0) is its first entry time to level 0. If such a point does not exist, i.e. for some t ∈ R,
{(0, s) : s ≤ t} ⊂ Γ, then, since Γ is non-degenerate, it must leave level 0 at some point. In this
case, parametrize Γ so that Γ(0) is the last point of Γ on level 0.

With the above choice of parametrization, we have that for a > 0 small enough,

P
{

∃Γ : Γ is a bi-infinite geodesic, |Γ(0)| < a
}

> δ/2.

This and the above Brownian scaling of geodesic paths imply that for all q > 0

P
{

∃Γ : Γ is a bi-infinite geodesic, q2|Γ(0)| < a
}

> δ/2.

Taking q → ∞ gives

P
{

∃Γ : Γ is a bi-infinite geodesic,Γ(0) = 0
}

≥ δ/2.
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This contradicts Lemma 10.1. �

Acknowledgments. We thank Evan Sorensen for valuable discussions and comments and for
pointing us to [59], which helped prove Proposition 4.14.

Appendix A. Two additional results

We give here two more results that are not needed for our development, but that may be of
independent interest.

Lemma A.1. There exists an event Ω′
2 ∈ S with Ω′

2 ⊂ Ω2, P(Ω
′
2) = 1, and such that the following

holds for all ω ∈ Ω′
2. For any θ > 0, � ∈ {−,+}, (m, s) ∈ Z×R, and any semi-infinite geodesic Γ

emanating from (m, s), if ΓL,θ�
(m,s) � Γ � ΓR,θ�

(m,s), then Γ ∈
{

ΓL,θ�
(m,s),Γ

R,θ�
(m,s)

}

.

Proof. Suppose first that (m + 1, s) ∈ Γ. Then the coalescence in Theorem 4.3(iv) implies that

ΓL,θ�
(m+1,s) = ΓR,θ�

(m+1,s). This forces Γ to equal these two geodesics from (m+ 1, s) onwards. But then

Γ = ΓL,θ�
(m,s).

Similarly, if Γ moves to the right from (m, s), then there exists a t > s such that (m, s) ∈ Γ.

Again, coalescence implies that ΓL,θ�
(m,t) = ΓR,θ�

(m,t), which forces Γ = ΓR,θ�
(m,s). �

For the next result, we use the natural order relation on {−,+} which says that − � +.

Lemma A.2. There exists an event Ω′′
2 ∈ S with Ω′′

2 ⊂ Ω2, P(Ω
′′
2) = 1, and such that the following

holds for all ω ∈ Ω′′
2. Take δ > γ > 0, θ ∈ [γ, δ], and �

′ � � � �
′′ in {−,+}. Then NUγ�′

1 ∩NUδ�′′

1 ⊂
NUθ�

1 .

Proof. Take (m, s) ∈ NUγ�′

1 ∩NUδ�′′

1 . Then ΓL,γ�′

(m,s) and ΓL,δ�′′

(m,s) both go through (m+1, s) while ΓR,γ�′

(m,s)

and ΓR,δ�′′

(m,s) both proceed rightwards from (m, s). By the monotonicity of geodesics (4.4), this forces

ΓR,θ�
(m,s) to go through (m+1, s) and ΓR,θ�

(m,s) to go right from (m, s), which means (m, s) ∈ NUθ�
1 . �
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[62] Seppäläinen, T. and Sorensen, E. (2023). Global structure of semi-infinite geodesics and
competition interfaces in Brownian last-passage percolation. Probab. Math. Phys. 4 667–760.
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