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Abstract

We extend a recent work by S. R. S. Varadhan [8] on large deviations for random

walks in a product random environment to include more general random walks

on the lattice. In particular, some reinforced random walks and several classes

of random walks in Gibbs fields are included. c© 2004 Wiley Periodicals, Inc.

1 Introduction

A process Px , taking values in (Zd)N, is called a random walk on Zd starting at

x , if there exists a function q on
⋃

n≥0(Z
d)n × Zd such that

Px(X0 = x) = 1 ,

Px(Xn+1 = Xn + z | An) = q((z1, . . . , zn), z) ,

where An = {X1 − X0 = z1, . . . , Xn − Xn−1 = zn}. Throughout this paper, we will

use zj ’s and xj ’s interchangeably, where zj = xj − xj−1 and x0 = x (the starting

point).

In part of this work, namely Sections 4 and 5, we focus on a special kind of

random walk, which is a random walk in a mixing random environment (RWRE).

In this model, an environment is a collection of transition probabilities

ω = (πxy)x,y∈Zd ∈ [0, 1]Z
d×Z

d

with
∑
y∈Zd

πxy = 1 .

Let us denote by � the space of all such transition probabilities. The space � is

equipped with the canonical product σ -field S and with the natural shift (θzω)x,y =

ωx+z,y+z for z ∈ Zd . Here, ωxy stands for the (x, y)th coordinate of ω ∈ �. We

will also use ωx = (ωxy)y∈Zd . On the space of environments (�,S), we are given

a certain θ-invariant probability measure P with (�,S, (θz)z∈Zd , P) ergodic. We

will say that the environment is i.i.d. when P is a product measure.

Let us now describe the process. First, the environment ω is chosen from the

distribution P. Once this is done, it remains fixed for all times. The random walk

Communications on Pure and Applied Mathematics, Vol. LVII, 1178–1196 (2004)
c© 2004 Wiley Periodicals, Inc.



LDP FOR MIXING RWRE AND OTHER RW 1179

in environment ω is then the canonical Markov chain (Xn)n≥0 with state space Zd

and transition probability

Pω
0 (X0 = 0) = 1 ,

Pω
0 (Xn+1 = y | Xn = x) = πxy(ω) .

The process Pω
0 is called the quenched law. The annealed law is then

P0 =

∫
Pω

0 dP(ω) .

The marginal of P0 on the space of walks is in fact a random walk on Zd .

To see this, we need to introduce the number of visits of the walk w =

(z1, . . . , zn), starting at 0, to site x in direction z, as

nxz(w) =

n−1∑
j=0

1I{xj =x,xj+1=x+z}(w) .

Indeed, one has

q(w, z) = EP

( ∏
x,y π

nxy(w)

x,x+y (ω)

EP
(∏

x,y π
nxy(w)

x,x+y

)πxn ,xn+z(ω)

)
.

In [8] Varadhan shows the existence of a convex, lower-semicontinuous rate

function for large deviations of the position Xn under the annealed measure P0,

when P is i.i.d. and satisfies the regularity condition.

HYPOTHESIS A There exists a deterministic function p0 : Zd → [0, 1] and three

deterministic constants—M > 0 (the range of the increments), κ ∈ (0, 1) (the

ellipticity constant), and c > 0—such that p0(z) = 0 for |z| > M , p0(e) > κ for

|e| = 1, and for all z ∈ Zd

P(p0(z) ≤ π0,z ≤ cp0(z)) = 1 .

Here and in the rest of the paper, | · | will denote the �1 distance on Zd so that

M = 1 means the walk is nearest-neighbor. The analogous regularity condition for

general random walks would be the following:

HYPOTHESIS A′ There exists a deterministic function p0 : Zd → [0, 1] and three

deterministic constants M > 0, κ ∈ (0, 1), and c > 0 such that p0(z) = 0 for |z| >

M , p0(e) > κ for |e| = 1, and for all z ∈ Zd and w = (z1, . . . , zn) ∈
⋃

m≥0(Z
d)m

with
∣∣zj

∣∣ ≤ M , when 1 ≤ j ≤ n,

p0(z) ≤ q(w, z) ≤ cp0(z) .

In the present paper we are interested in extending the result in [8] to the non-

i.i.d. case. The regularity condition will still be assumed to hold. We will use the

approach of the point of view of the particle, where we look at everything from

the walker’s point of view. The advantage of this approach is that it overcomes

the non-Markovian character of the annealed process. However, one then has to
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deal with the larger state space and the long memories of the walker. In [8] the

author overcomes these difficulties by using estimates, some of which depend on

the hypothesis that P is a product measure. We will show that these estimates in

fact hold for more general environments. In fact, we will show that the method,

introduced in [8], is general enough to include many other random walks.

In Section 2 we introduce further notation and describe the approach of the

point of view of the particle, mentioned above. We also state Theorem 2.1, which

just adapts the result of [8] to the case of general random walks. We then roughly

sketch the ideas of the proof, which is basically the same as in [8], and point out

the problems that need to be tackled in order to generalize the result of [8]. For

example, while q is well-defined for paths of finite length, defining transition prob-

abilities for the process of paths, shifted to be seen from the origin, is no longer

obvious, if the walk has a long history.

In Section 3 we give two examples of random walks other than random walks

in a random environment. Namely, we look at some reinforced random walks on

Zd . We show that a large-deviations principle for the position is satisfied, and we

discuss the zero set of the rate function.

In Section 4 we shift our interest to random walks in a mixing random environ-

ment. We introduce our mixing assumptions and define the transition probabilities,

mentioned above.

In Section 5 we state and prove our main theorem (Theorem 5.1), which is an

application of Theorem 2.1 to the case of random walks in certain Gibbs fields.

2 The Large-Deviations Principle

The method of the point of view of the particle consists of describing every-

thing, that is, the path and the environment (for RWRE), as seen from the walker.

Consider a walk of n ≥ 0 steps {x0 = 0, x1, . . . , xn}. Then, in the case of RWRE,

the environment, as seen from the walker at xn , would be ωn = θxn
ω. Also, in the

more general setup of general random walks, the path, as seen from xn , would be

(2.1) {x−n = −xn, x−n+1 = x1 − xn, . . . , x0 = 0} .

Since we know the path ends at 0, we will instead consider the increments

wn = (z−n+1 = x−n+1 − x−n, . . . , z0 = x0 − x−1) .

The collection of such paths will be denoted by Wn = {e : |e| ≤ M}n . Note

that W0 has only one element, which we will denote by φ. Furthermore, define

the space W∞ = {e : |e| ≤ M}−N of walks of infinite length ending at 0. Here

−N = {0,−1,−2,−3, . . . }. Let W =
⋃

n≥0 Wn ∪ W∞, and define xj (w) as in

(2.1) when −n ≤ j ≤ 0. Also, if n < ∞, define xj (w) = 	 (the cemetery state)

for j < −n and w ∈ Wn . Similarly, for n < ∞, zj = S (for “stop”) when j ≤ −n

and w ∈ Wn .
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Next, we define the number of visits to site x , in direction z, as

nxz(w) =
∑
j≤−1

1I{xj =x,xj+1=x+z}(w) ,

and then nx =
∑

z nxz is the number of visits to x , which might be finite or infinite.

Now, let us turn to the dynamics on these spaces. This will lead us to the first prob-

lem, caused by the long memory of the process, for example, when considering

random walks in mixing random environments.

First, for |z| ≤ M and w ∈ W, define the shifts T ∗ and Tz so that zj+1(T ∗(w)) =

zj (w), z0(Tz(w)) = z, and zj (Tz(w)) = zj+1(w) for j ≤ −1. Then any random

walk, defined by a given q, induces a Markov process Qw on the space
⋃

n Wn .

Indeed, starting from a state w = (z−n+1, . . . , z0) in Wn , for some n ≥ 0, the

walker moves one step in direction z to state Tzw. This happens with probability

q(w, z). For example, in the case of RWRE,

(2.2) q(w, z) = EP

( ∏
x,y π

nxy(w)

x,x+y (ω)

EP
(∏

x,y π
nxy(w)

x,x+y

)π0z(ω)

)
.

This is well-defined, since only a finite number of x’s is involved. The process

Qφ , starting with no history, corresponds to P0. Notice that one can also consider

Qw as generating a random walk (Xn)n≥1 in the future, with increments (Zn =

Xn − Xn−1)n≥1 and past w. The connection between these two points of view is

seen through the map zj = z0(wj ). We will still denote this process by Qw. In

order to allow this transient Markov chain to start from w in any larger space, we

need to extend q to be defined on that space. If P is a product measure, in the case

of a RWRE, then

q(w, z) = EP

( ∏
y π

n0y(w)

0y (ω)

EP
( ∏

y π
n0y(w)

0y

)π0z(ω)

)
,

and the same formula would be valid on W∞ whenever

lim
j→−∞

∣∣xj (w)
∣∣ = ∞ .

The subspace of such transient walks will be denoted by Wtr
∞, and we will use

Wtr =
⋃

n≥0 Wn ∪ Wtr
∞. If P is not a product measure or if we are dealing with a

more general walk, then one needs to address the question of defining q(w, z) for

w ∈ Wtr
∞ and |z| ≤ M .

If we view W as a subspace of W0 ∪ {S, e : |e| ≤ M}−N with the product

topology, then it is compact, and xj is continuous for all j ≤ 0. However, nxz , and

consequently q(w, z), will not be continuous, even when ∞ is added to compactify

the set of integers. To this end, one can always find a metric inducing a topology on

W that keeps the xj ’s continuous but also makes the nxz’s, as functions from W into

N̄ = {0, 1, . . . ,∞} with another suitable metric, continuous as well. Notice that,

in the i.i.d. case, the continuity of the nxz’s under this new topology makes q( · , z)
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continuous on Wtr. This is not always the case, once we do not have a product

environment. Thus, in Theorem 2.1 below, this continuity property becomes part

of the assumptions and has to be checked later in Theorems 3.3 and 5.1 when

Theorem 2.1 is invoked.

In any case, W is no longer compact for the new topology. However, using the

Stone-Čech compactification theorem, one can compactify W, guaranteeing, at the

same time, the existence of continuous extensions to the xj ’s, nxz’s, q( · , z)’s, Tz’s,

and T ∗. This is discussed in more detail in the proof of Theorem 2.1 below. Let us

denote this compactification of W by W.

Let I be the set of T ∗-invariant measures on W, and Ē the set of ergodic ones.

Similarly, let I (respectively, E) be the T ∗-invariant (respectively, ergodic) mea-

sures on W. Now that one has a Feller process on the compact space W, one can

use the standard large-deviations theory for the empirical measures

Rn = n−1

n∑
j=0

δTZj
···TZ1

φ .

The rate function in this case is given by

(2.3) J (µ) = sup
u∈C+(W)

∫
log

u(w)

(qu)(w)
µ(dw) ,

where C+(W) is the set of positive continuous functions on W, and

qu(w) =
∑

z

q(w, z)u(Tzw) .

Note, however, that, unless one has a transitivity condition, one can only have, for

G open,

lim
n→∞

n−1 sup
w

log Qw(Rn ∈ G) ≥ − inf
µ∈G∩E

J (µ) ;

see, for example, [3, 7]. This is useless in our case, and we will instead use the

ergodic theorem to prove the lower bound that we need.

On the other hand, because of the way q is defined, J (µ) is also the relative

entropy of the stationary process (Zn)n≥1 that µ generates, with conditional tran-

sitions q̂µ(w, z) = Eµ(Z1 = z | w) with respect to the Markov process Qφ . This

does not need any transitivity condition and depends only on compactness and the

Feller property; see [3, 7].

However, since distinct ergodic measures have disjoint supports, one can make

q̂µ universal over the ergodic ones, that is, independent of µ. Thus,

(2.4) J (µ) =

∫ ∑
z

q̂(w, z) log
q̂(w, z)

q(w, z)
dµ(w) .

The rate function J is then linear over T ∗-invariant measures. Notice that any

µ ∈ I generates a stationary process (Zn)n∈Z, and one can define its mean to be

m(µ) = Eµ(Z0) = Eµ(−X−1) .
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The contraction principle suggests then the rate function for the position Xn to be,

for ξ �= 0,

(2.5) H(ξ) = inf
µ∈E

m(µ)=ξ

J (µ) .

Note that the above infimum runs over measures in E , not Ē .

To state our next theorem, we will need the following notation: For � ∈ Sd−1

and � ⊂ Zd finite, connected, and with 0 ∈ �, let

W�,−
n = {w ∈ Wn : nx(w) = 0 for x · � > 0} ,

W�
n = {w ∈ Wn : z−n+1, . . . , z−n+1 + · · · + z0 ∈ �} ,

W� = {w ∈ Wtr
∞ : zi · � > 0 for i ≤ 0} .

Also, for w = (zj )−n< j≤0 ∈ Wn , define Tw = Tz−n+1
· · · Tz0

, and for w = (zj )j≤0 ∈

W∞, define w(n) = (zj )−n< j≤0 ∈ Wn . For a finite connected set C ⊂ Zd containing

0 and w ∈
⋃

n≥0 Wn , define

(2.6) σC,w = − lim
n→∞

n−1 log Qw(X j ∈ C, 1 ≤ j ≤ n) .

Finally, define the number

(2.7) H(0) = − log inf
θ∈Rd

sup
p∈K

∑
z

eθ.z p(z) ,

where K is the closure of the convex hull of the set of transitions {q(w, · ) : w ∈

W}. One then has the following theorem:

THEOREM 2.1 Let q be a transition probability for a random walk on Zd satisfying

the regularity hypothesis A
′
. Assume also that the following five requirements are

met:

(i) There exists a function q̄(w, z), defined for all w ∈ Wtr and z with |z| ≤ M,

such that q̄ coincides with q on
⋃

n Wn. We will still use the notation q

instead of q̄.

(ii) For all z fixed with |z| ≤ M, q( · , z) as defined above is continuous for the

topology on W, restricted to Wtr, that makes the xj ’s and nxz’s continuous.

(iii) There exists a function H(n, S,Z), for each n ≥ 0, S ⊂ Zd , and Z =

(zi )i≥0, such that

(a) H(n, S,Z) depends only on z1, . . . , zn.

(b) If limn→∞ n−1(z1 + · · ·+ zn) = ξ �= 0 and supx∈S x · � < ∞ for some

� ∈ Sd−1 with ξ · � > 0, then supn H(n, S,Z) < ∞.

(c) There exists a constant C such that, for w1, w2 ∈ Wtr, one has

(2.8)

∣∣∣∣log
d Qw1

d Qw2

∣∣∣∣
Fn

(Z)

∣∣∣∣ ≤ C H(n, S(w1) ∪ S(w2),Z) ,

where Fn is the σ -field generated by Z1, . . . , Zn, and S(w) = {x :

nx(w) > 0}.
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(iv) The following condition is satisfied, for every � ∈ Sd−1, w2 ∈ W�, and

� ⊂ {x ∈ Zd : x · � ≥ 0} finite, connected, and containing 0:

(2.9) lim
A→∞

sup
n,m≥1
|z|≤M

sup
w1∈W�

n

w3∈W
�,−
m

∣∣∣∣log
q(Tw1

T
w

(A)
2

w3, z)

q(Tw1
w2, z)

∣∣∣∣ = 0 .

(v) For any sequence (CL) of finite, connected subsets that increase to Zd and

always contain 0, we have

(2.10) sup
w∈

⋃
n≥0 Wn

inf
L

σCL ,w ≤ H(0) ,

where σC,w and H(0) are defined in (2.6) and (2.7) above.

Then the random walk satisfies a large-deviations principle for the position, with a

convex, lower-semicontinuous rate function H, continuous at 0, and given by (2.5),

for ξ �= 0 and by (2.7) for ξ = 0.

REMARK 2.2 This theorem mainly reformulates the result of Varadhan [8] for

the case of more general random walks. The only novelty in our theorem is the

introduction of only five requirements that need to be checked to extend Varad-

han’s proof and result to a wider class of applications. If one uses H(n, S,Z) =∑n
j=0 1IS(xj ), then these requirements are automatically satisfied, in [8], due to the

i.i.d. assumption on the environment. They become part of the hypotheses in the

more general case. Having done that, the proof of [8] still applies. Nevertheless,

we will sketch it to point out where the five requirements come into play.

REMARK 2.3 One notices that the first four requirements are direct conditions on

q, while the fifth requirement is not. We believe that (v) follows from (i)–(iv).

However, we do not prove that in this paper. Instead, we show that it is satisfied in

all the examples we consider. In fact, condition (v) says that the annealed rate at 0

is no larger than the quenched one. This is, of course, a known fact in the case of

random walks in random ergodic environments, due to Jensen’s inequality.

REMARK 2.4 Due to the last theorem in [8, theorem 8.1], one also knows that the

set of zeros of H is either a single point or a line segment containing 0. Moreover,

at each extreme ξ �= 0 of this set, one has a unique measure α that is invariant and

ergodic for q with m(µ) = ξ . The proof is independent of the i.i.d. assumption

and works as long as (2.8) is satisfied.

REMARK 2.5 The min-max representation of H(0) in (2.7) implies that H(0) = 0

if and only if one has nestling; that is, 0 is in the range of the drift {D =
∑

z zp(z) :

p ∈ K}. In the case of random walks in a random environment, this set is the same

as the closure of the convex hull of the support of the drift D(ω) = Eω
0 (X1); see

Remark 5.2 below.

PROOF: The first hypothesis of the theorem is needed to define the process

Qw. The second hypothesis makes it a Feller process on a larger space W. Indeed,
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as mentioned above, one can always choose a topology that makes the xj ’s and

nxz’s continuous. The shifts T ∗ and Tz are thus continuous as well. Furthermore,

hypothesis (ii) then says that q( · , z) is continuous on Wtr under this new topology.

Considering the countable family {xj , nxz, q( · , z), Tz, T ∗} of continuous functions

on Wtr, one can use the Stone-Čech compactification theorem (see, for example,

[4, theorem 8.2]) to compactify Wtr, which is dense in W, by embedding it in a

larger compact space W, so that W is also densely embedded in W and the above

functions admit continuous extensions. Of course, for T ∗, one has to exclude W0,

since it does not operate on that space.

For the lower bound, it is enough to consider open balls around some ξ �= 0

and obtain a lower bound for Qφ(|n−1 Xn − ξ | < ε). Recall that Qw generates a

process (Zn)n≥1, which we will still denote by Qw. Now if µ ∈ E is a measure

that forces the velocity to be ξ , that is, with m(µ) = ξ , then, since ξ �= 0 and

µ is stationary, the third requirement of Theorem 2.1 allows us to replace Qφ by

Qw, for µ-a.e. w, at no extra cost. But if one starts with a µ-typical w, then the

ergodic theorem implies that the price to pay for following the statistics of µ would

be J (µ). This provides the lower bound and follows from general principles. For

the actual proof, see [8, lemma 7.3].

From (2.7), one immediately deduces the upper bound at 0. Indeed,

n−1 log P0(Xn = 0) ≤ inf
θ∈Rd

n−1 log E0(e
θ.Xn ) ≤ −H(0) .

Next, one shows that limξ→0 H(ξ) = H(0). As in lemma 7.2 of [8], one can

use (2.3) to show that

(2.11) H(0) ≤ inf
µ∈I

m(µ)=0

J (µ) .

From this and the lower semicontinuity of J , it immediately follows that H(0) ≤

limξ→0 H(ξ). To show the other direction requires a combinatorial lemma.

LEMMA 2.6 Assuming (2.9) and (2.10) hold, one has

lim
ξ→0

H(ξ) ≤ H(0) .

PROOF: Fix � ∈ Sd−1 and w� ∈ W�. Let CL ⊂ Zd be a connected box of side

L , with 0 on its boundary, and such that, other than visiting 0, w� does not go inside

of CL . Define, for m ≥ 1, σL ,m = σ
CL ,w

(m)
�

. Then, for ε > 0, ∃µ̄ = µ̄L ,m,ε ∈ E

such that

J
w

(m)
�

(µ̄) ≤ σL ,m + ε ,

where Jw(µ) is the relative entropy of the process generated by µ to the pro-

cess Qw. Define β̄ as the countable product of independent copies of ν̄Cδn ⊗

µ̄n−Cδn−C L × γ̄C L . Here, ν̄Cδn is a Dirac mass over a deterministic path that goes

in direction � for Cδn steps, µ̄n−Cδn−C L is the marginal of the first n − Cδn − C L

increments under µ̄L ,m,ε, and γ̄C L , conditioned on knowing z1 · · · zn−C L , simply
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brings the walker, in C L steps, back to z1 + · · · + zCδn−1, closing the loop that it

goes through in the last n − Cδn steps. Finally, define ᾱ = ᾱL ,m,n,δ,ε,� as the nth

Cesaro mean of shifts of β̄.

Then one can estimate J
w

(m)
�

(ᾱ) as follows: We know that

J
w

(m)
�

(ᾱ) = n−1

n−1∑
i=0

∫ ∑
z

q̂ᾱ(w, z) log
q̂ᾱ(w, z)

q(w, z)
dβ̄ ◦ (T ∗)i (w) .

By ellipticity, the first Cδn terms can be bounded by Cδ log κ−1. Also, the last C L

terms can be bounded by C Ln−1 log κ−1. For Cδn ≤ i < n − C L , q̂ᾱ(w, z) can be

replaced by q̂µ̄((z1, . . . , zi−Cδn), z). This is because of the product structure of β̄.

One can then replace q(w, z) first by q(Tzi−Cδn
· · · Tz1

w�, z), and then replace the

latter by q(Tzi−Cδn
· · · Tz1

w
(m)

� , z). The sum of the terms for Cδn ≤ i < n − C L

then becomes

(1 − Cδ − C Ln−1)

N

N−1∑
i=0

∫ ∑
z

q̂µ̄((z1, . . . , zi ), z) log
q̂µ̄((z1, . . . , zi ), z)

q(Tzi
· · · Tz1

w
(m)

� , z)
dµ̄ ,

where N = n − Cδn − C L . The first replacement induces an error term that

depends only on A = C(δn − L) and that decays to 0 with n, due to the decay

condition (2.9). The second replacement induces an error that depends only on

A = m and will be denoted by εm . It also decays to 0 with m due to (2.9). By

bounded convergence, the above expression converges to (1 − Cδ)J
w

(m)
�

(µ̄) as n

grows, and, therefore, one has for n large enough

H(δ�) ≤ J
w

(m)
�

(ᾱ)

≤ Cδ log κ−1 + C Ln−1 log κ−1 + σL ,m(1 − Cδ) + 2ε(1 − Cδ) + εm .

Taking n to infinity and then ε to 0, one has

H(δ�) ≤ Cδ log κ−1 + σL ,m(1 − Cδ) + εm .

By (2.10), we have infL σL ,m ≤ H(0). Thus,

H(δ�) ≤ Cδ log κ−1 + H(0)(1 − Cδ) + εm .

Taking δ to 0 and m to ∞ completes the proof. �

The linearity of the rate function in (2.4), along with (2.11), easily yields the

convexity of H at 0. To prove the convexity of H away from 0, one considers

µ1, µ2 ∈ E , with m(µi ) = ξi and ξ1 and ξ2 being in a half-plane not containing

0. If one manages to approximate the measure µ = θµ1 + (1 − θ)µ2 ∈ I by a

sequence of measures µl ∈ E , with the same velocity m(µl) = m(µ), then the
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lower semicontinuity and the linearity of J imply

H(ξ) = inf
µ∈E

m(µ)=ξ

J (µ) ≤ inf
µ1,µ2∈E

m(µi )=ξi ,l≥1

J (µl)

≤ inf
µ1,µ2∈E
m(µi )=ξi

(θJ (µ1) + (1 − θ)J (µ2))

≤ θ H(ξ1) + (1 − θ)H(ξ2) .

It is always possible to approximate µ using averages of l translates of product

measures over distinct blocs of length l. The difficulty is to show that µl converges

to µ rather than to some other µ̄ ∈ I. This is where one needs to show that

the compactification W is only for convenience and does not affect things much.

Indeed, one can show that any measure µ̄ ∈ I in the set of limit points of (Rn)n≥1,

with m(µ̄) = ξ �= 0, can be written as µ̄ = ν̄1 + ν̄2, with ν̄1 ∈ I and m(ν̄1) = ξ .

The proof of this fact is another combinatorial lemma that essentially constructs

ν̄1 as the outcome of considering only the runs during which the walker does not

backtrack “too much,” making ν̄1(W
tr
∞) = 1. This construction is independent of

whether P is a product measure and is done in [8, sec. 6, theorem 6.1]. On the other

hand, the measure µ̄ will then be represented by measures in Ē with velocities ξ1 or

ξ2, and therefore so will be ν̄2. But since m(ν̄2) = 0 is not on the segment joining

these two vectors, ν̄2 = 0 and µ̄ = µ, leading to the convexity of H away from 0.

Finally, the upper bound, away from 0, follows easily from the large deviations

for (Rn), along with the above decomposition of µ̄, the linearity of J , inequality

(2.11), and the convexity of H . See the proof of theorem 3.1 in [8] for the details.

�

3 Large Deviations for Reinforced Random Walks: Two Examples

Consider a random walk given by

qe(w, z) =
nN

0z + 1∑
|z̄|≤M(nN

0z̄ + 1)

for |z| ≤ M and w ∈ Wtr. Here nN
xy = min(nxy, N ). Such a walk is called

the N -times edge-reinforced random walk. Another model is the N -times vertex-

reinforced random walk. In this case we have, for |z| ≤ M and w ∈ Wtr,

qv(w, z) =
nN

z + 1∑
|z̄|≤M(nN

z̄ + 1)

where nN
x = min(nx , N ).

REMARK 3.1 Usually, one takes M = 1 and does not include z = 0 in the defini-

tion of the above transition rules. This is not, of course, mandatory.
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Clearly, these two models satisfy hypothesis A′ as well as the first two require-

ments of Theorem 2.1. The third requirement of the theorem is also clearly satis-

fied, due to ellipticity, with H(n, S,Z) =
∑n

j=0 1ISM
(xj ), where SM = {x ∈ Zd :

dist(x, S) ≤ M} and M is the range of the increments. The fourth requirement is

satisfied due to the local nature of the models we are considering. In fact, the term

in (2.9) vanishes as soon as A > M . One also has the following lemma:

LEMMA 3.2 Condition (2.10) holds.

PROOF: Let CL be a sequence of finite connected subsets, all containing 0 and

increasing to Zd .

First, notice that H(0) = 0, since uniform transitions clearly belong to K.

Second, notice that, by standard arguments, as in [8, sec.7], one has

(3.1) inf
L

(
− lim

n→∞

n−1 log P̃0(X j ∈ CL , 1 ≤ j ≤ n)
)

≤

lim
n→∞

(pn)−1 log P̃0(X pn = 0) = 0 ,

where p is the period of P̃0 and P̃0 is the symmetric random walk on Zd that jumps

from each site x , with equal probability, to one of the sites in {x + z : p0(z) > 0}.

See also Lemma 5.5 for a sketch of the proof of (3.1)-like statements.

Now, take γ > 0, and let L be such that

− lim
n→∞

n−1 log P̃0(X j ∈ CL , 1 ≤ j ≤ n) ≤ γ .

Then, for this fixed L , the walk under Qw, with finite length history w, can first fill

out CL , visiting all sites and edges at least N times and returning to 0. This will

take only Cd,N L steps, with Cd,N being some constant that depends on d and N

only. Due to ellipticity, this procedure will not affect σCL ,w. But now, inside CL ,

the law of Qw is the same as P̃0. This shows that σCL ,w ≤ γ for all w. Taking L to

infinity and then γ to 0 finishes the proof. �

The following theorem is then a corollary of Theorem 2.1.

THEOREM 3.3 Both the N-times edge- and vertex-reinforced random walks satisfy

a large-deviations principle for the position. Moreover, the only zero of the rate

function is at 0.

PROOF: The proof of the statement about the zeros of the rate function follows

from Remark 2.4. Indeed, as we mentioned in Remark 2.4, the set of zeros of the

rate function is either a single point or a segment passing through 0. But since both

models are isotropic, this set has to be the singleton {0}. �

One has the following consequence of the above theorem:

COROLLARY 3.4 Both the N-times edge- and vertex- reinforced random walks

satisfy a law of large numbers with zero velocity:

P0

(
n−1 Xn → 0

)
= 1 .
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4 Mixing Random Environments

We now switch back to random walks in mixing random environments. First,

we introduce some notation. For a set V ⊂ Zd , let us denote by �V the set of

possible configurations ωV = (ωx)x∈V and by SV the σ -field generated by the

environments (ωx)x∈V . For a probability measure P, we will denote by PV the

projection of P onto (�V ,SV ). For ω ∈ �, we will denote by Pω
V the regular con-

ditional probability, knowing SZd−V on (�V ,SV ). Furthermore, for � ⊂ V , Pω
V,�

will denote the projection of Pω
V onto (��,S�). Also, we will use the notation

V c = Zd − V , ∂r V = {x ∈ Zd − V : dist(x, V ) ≤ r} with r ≥ 0, and |V | will

denote the cardinality of V . Finally, for ω, ω ∈ �, V, W ⊂ Zd with V ∩ W = ∅,

we will use (ωV , ωW ) to denote ωV ∪W such that ωV = ωV and ωW = ωW .

Consider a reference product measure α on (�,S) and a family of functions

U = (UA)A⊂Zd , called an interaction, such that UA ≡ 0 if |A| > r (finite range),

UA(ω) depends only on ωA, β = supA,ω |UA(ω)| < ∞ (bounded interaction), and

Uθ x A(θ xω) = UA(ω) (shift invariant). One can then define the specification

dP
ωV c

V

dαV

(ωV ) =
e−HV (ωV |ωV c )

ZV (ωV c)
,

where

ZV (ωV c) = Eα(e−HV (ωV |ωV c ))

is the partition function and

HV (ωV | ωV c) =
∑

A:A∩V �=φ

UA(ω)

is the conditional Hamiltonian. The parameter β > 0 is called the inverse temper-

ature. One can ask whether this system of conditional probabilities arises from a

probability measure and whether such a measure is unique. In [2], the authors in-

troduce a sufficient condition for this to happen. The Dobrushin-Shlosman strong-

decay property holds if there exist G, g > 0 such that for all � ⊂ V ⊂ Zd finite,

x ∈ ∂r V , and ω, ω ∈ �, with ωy = ωy when y �= x , we have

(4.1) Var
(
Pω

V,�, Pω̄
V,�

)
≤ Ge−g dist(x,�) ,

where Var( · , · ) is the variational distance Var(µ, ν) = supE∈S
(µ(E) − ν(E)). If

the above condition holds, then there exists a unique P that is consistent with the

specification (P
ωV c

V ). Moreover, we have, for all ω ∈ �,

(4.2) lim
dist(�,V c)→∞

Var
(
Pω

V,�, P�

)
= 0 .

If the interaction is translation-invariant and the specification satisfies (4.1), then

the unique field P is also shift-invariant; see [5, sec. 5.2].

One should note that (4.1) is satisfied for several classes of Gibbs fields. In

particular, in the high-temperature region (that is, when β is small enough; class

A in [1]), in the case of a large magnetic field (class B in [1]), and in the case of

one-dimensional and almost one-dimensional interactions (class E in [1]); see [1,
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theorem 2.2] for the proof and for the precise definitions of the above classes. It is

worthwhile to note that these classes are closed under perturbations by any 0-range

interaction. This will be our second condition on the environment P.

HYPOTHESIS B The probability measure P is the unique Gibbs field corresponding

to a finite range interaction such that any perturbation of it by a 0-range interaction

φ satisfies (4.1), with constants G(φ) and g(φ).

We are now ready to address the first two requirements of Theorem 2.1. Let P

be the unique Gibbs field corresponding to a given translation-invariant interaction

U of finite range r . For w ∈ Wtr
∞, define the new interaction U w such that

U w
A (ω) =

{
UA(ω) if |A| �= 1

U{x}(ω) − φw
x (ω) if A = {x}

where φw
x (ω) =

∑
z nxz(w) log πx,x+z(ω), which is bounded, due to hypothesis A.

If U satisfies hypothesis B, then U w satisfies (4.1), and one has a unique Gibbs

field Pw corresponding to U w. We will use H w
V for the conditional Hamiltonian of

the partition U w. Let q̄(w, z) = EP
w
(π0z).

LEMMA 4.1 The transition probability q̄ is well-defined for w ∈ Wtr. Moreover, q̄

coincides with q, defined in (2.2), on
⋃

n Wn.

PROOF: The first part of the lemma is trivial. Furthermore, by (2.2), one has,

for a fixed w ∈
⋃

n Wn ,

q(w, z) = EP

( ∏
x,y π

nxy(w)

x,x+y (ω)

EP
(∏

x,y π
nxy(w)

x,x+y

)π0z(ω)

)

= lim
V ↑Zd

Eα

(
e−HV (ωV |ωV c )

ZV (ωV c)

e
∑

x∈V φw
x (ω)

EP
ωV c

V (e
∑

x∈V φw
x )

π0z(ω)

)

= lim
V ↑Zd

Eα

(
e−HV (ωV |ωV c )e

∑
x∈V φw

x (ω)

Eα(e−HV ( · |ωV c )e
∑

x∈V φw
x )

π0z(ω)

)

= lim
V ↑Zd

Eα

(
e−Hw

V (ωV |ωV c )

Eα(e−Hw
V ( · |ωV c ))

π0z(ω)

)

= lim
V ↑Zd

E(Pw)
ωV c

V (π0z) = q̄(w, z) .

�

We will keep using the notation q instead of q̄. Next, we address the question

of continuity of q( · , z).

LEMMA 4.2 Consider the topology on W that makes the xj ’s and nxz’s continuous

and restrict it to Wtr. Then q( · , z), defined in Lemma 4.1, is continuous for all z

with |z| ≤ M. Moreover, if Qw is the process of increments (Zn)n≥1, starting with
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history w ∈ Wtr and defined using transitions q, then we have, for z1, . . . , zn ∈ Zd

and w ∈ Wtr,

Qw(Z1 = z1, . . . , Zn = zn) = q̄(w, z1) · · · q̄(T z1+···+zn−1w, zn)

= EP
w

(π0z1
πz1,z1+z2

· · · πz1+···+zn−1,z1+···+zn
) .

(4.3)

PROOF: Clearly, formula (4.3) is correct for w ∈
⋃

n Wn . Therefore, to prove

both statements of our lemma, one only needs to consider a finite � ⊂ Zd and look

at

Var
(
Pw

�, Pw̄
�

)
≤ Var

(
P

w,ωV c

V,� , P
w̄,ωV c

V,�

)
+ Var

(
Pw

�, P
w,ωV c

V,�

)
+ Var

(
Pw̄

�, P
w̄,ωV c

V,�

)
.

Because of the continuity of the nxz’s, one has that, for fixed �, V , and ωV c , P
w̄,ωV c

V,�

converges weakly to P
w,ωV c

V,� , as w̄ converges to w. This has two consequences. On

the one hand, this implies that if w̄ is close enough to w, then (4.1) is satisfied

for Pw̄ with constants 2G(w) and g(w); see [1, prop. 3.2]. Therefore, inequality

(4.2) holds for all Pw̄, with w̄ close enough to w. One can then choose V such

that dist(V c,�) is large enough, and the last two terms in the above sum are small,

uniformly in w and w̄. On the other hand, if w̄ is close enough to w, the number of

visits to sites inside V will be the same for both walks, and the first term will then

vanish. This proves the continuity of Pw in w, as well as (4.3). �

5 The Large-Deviations Principle for RWRE

We have the following theorem:

THEOREM 5.1 Let P satisfy hypotheses A and B. Then the annealed random walk

P0 in environment P satisfies a large-deviations principle for the position, with a

convex, lower-semicontinuous rate function H given by (2.5) and (2.7).

REMARK 5.2 Notice that in the case of a random walk in a random environment,

the subadditivity of − log π(n)
xx (ω) allows us to write

H(0) = inf
n

(−n−1 log π
(n)

00 (ω))

for ω ∈ supp(P); see [8, sec. 7]. This implies that (2.7) also holds when K, the

closure of the convex hull of {q(w, · ) : w ∈ W}, is replaced by K̂, the closure of

the convex hull of the transitions {π0,·(ω) : ω ∈ supp(P)}; see [8, lemma 7.1].

PROOF: Lemmas 4.1 and 4.2 show that the first two requirements of Theo-

rem 2.1 are satisfied. Thus, we need only the following three lemmas:

LEMMA 5.3 Define q and Qw as in Lemmas 4.1 and 4.2. Let

H(n, S,Z) =

n∑
i=0

e−g dist(xi ,S) .

Then there exists a constant C for which (2.8) holds.
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PROOF: Let w̄ = (z1, . . . , zn), S = {x0, x1, . . . , xn}, and S̄ = S − (S(w1) ∪

S(w2)). By (4.3), one has

d Qw1

d Qw2

∣∣∣∣
Fn

(Z) =
EP

w1
(∏

y,x∈S
π

nxy(w̄)

x,x+y

)
EPw2

(∏
y,x∈S π

nxy(w̄)

x,x+y

) .

Due to the ellipticity condition, one can replace S by S̄ and bound the missing terms

by C
∑n

j=0 1IS(w1)∪S(w2)(xj ) for some deterministic constant C . Therefore, we only need

to bound, both above and below and uniformly in V , the quantity

E
P

w1,ωV c

V,S̄

(∏
y,x∈S̄ π

nxy(w̄)

x,x+y

)
E

P
w2,ωV c

V,S̄

(∏
y,x∈S̄ π

nxy(w̄)

x,x+y

) .

Thus, we are led to bounding dP
w1,ωV c

V,S̄
/dP

w2,ωV c

V,S̄
. However,

dP
w1,ωV c

V,S̄

dP
w2,ωV c

V,S̄

= EP
w2,ωV c

V

(
dP

w1,ωV c

V

dP
w2,ωV c

V

∣∣∣∣ SS̄

)

= EP
w2,ωV c

V

(
Z

w2

V (ωV c)e−H
w1
V (ωV |ωV c )

Z
w1

V (ωV c)e−H
w2
V (ωV |ωV c )

∣∣∣∣ SS̄

)

= EP
w2,ωV c

V

(
EP

ωV c

V

(∏
y,x∈V π

nxy(w2)

x,x+y

)
EP

ωV c

V

(∏
y,x∈V π

nxy(w1)

x,x+y

)
∏

y,x∈V π
nxy(w1)

x,x+y (ωV )∏
y,x∈V π

nxy(w2)

x,x+y (ωV )

∣∣∣∣ SS̄

)

=
EP

ωV c

V

(∏
y,x∈V −S̄ π

nx,x+y(w2)

x,x+y

)
EP

ωV c

V

(∏
y,x∈V −S̄ π

nxy(w1)

x,x+y

) E
P

w2,ωV c ,ω
S̄

V −S̄

(∏
y,x∈V −S̄ π

nxy(w1)

x,x+y∏
y,x∈V −S̄ π

nxy(w2)

x,x+y

)
.

Now, the last expectation in the above series of equalities is equal to

∫ ∏
y,x∈V −S̄ π

nxy(w1)

x,x+y∏
y,x∈V −S̄ π

nxy(w2)

x,x+y

∏
y,x∈V −S̄ π

nxy(w2)

x,x+y e−HV (ωV −S̄ |ωV c ,ωS̄)

E
P

ωV c ,ω
S̄

V −S̄

(∏
y,x∈V −S̄ π

nxy(w2)

x,x+y

)
ZV −S̄(ωV c , ωS̄)

dα(ωV −S̄) ,

and therefore

dP
w1,ωV c

V,S̄

dP
w2,ωV c

V,S̄

(ωS̄)

is equal to

EP
ωV c

V

(∏
y,x∈V −S̄ π

nxy(w2)

x,x+y

)
EP

ωV c

V

(∏
y,x∈V −S̄ π

nxy(w1)

x,x+y

) E
P

ωV c ,ω
S̄

V −S̄

(∏
y,x∈V −S̄ π

nxy(w1)

x,x+y

)
E

P
ωV c ,ω

S̄

V −S̄

(∏
y,x∈V −S̄ π

nxy(w2)

x,x+y

) .
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We are then reduced to bounding, for w ∈ {w1, w2}, both above and below and

uniformly ω ∈ �, the term

EP
ωV c

V

(∏
y,x∈V −S̄ π

nxy(w)

x,x+y

)
E

P
ωV c ,ω

S̄

V −S̄

(∏
y,x∈V −S̄ π

nxy(w)

x,x+y

) .

Noticing that the numerator is an integral of the denominator and that the above

product is actually running over the set V ∩ S(w), it all boils down to bounding

from above the quantity

(5.1)
dP

ωV c ,ωS̄

V −S̄,V ∩S(w)

dP
ωV c ,ω̄S̄

V −S̄,V ∩S(w)

(ωV ∩S(w)) .

We will do this first for ωS̄ and ω̄S̄ that differ only at a point x ∈ S̄. In this case, we

have

dP
ωV c ,ωS̄

V −S̄,V ∩S(w)

dP
ωV c ,ω̄S̄

V −S̄,V ∩S(w)

(ωV ∩S(w)) = E
P

ωV c ,ω̄
S̄

V −S̄

(
dP

ωV c ,ωS̄

V −S̄

dP
ωV c ,ω̄S̄

V −S̄

∣∣∣∣ SV ∩S(w)

)
(ωV ∩S(w)) .

Notice that F = dP
ωV c ,ωS̄

V −S̄
/dP

ωV c ,ω̄S̄

V −S̄
is bounded by C1 = C1(β, r), and if we

denote by B(x, r) the subset of elements of Zd within distance r from x , then F is

S(V −S̄)∩B(x,r)-measurable. If, moreover, B(x, r) ∩ S(w) = ∅, then one has

E
P

ωV c ,ω̄
S̄

V −S̄

(
dP

ωV c ,ωS̄

V −S̄

dP
ωV c ,ω̄S̄

V −S̄

∣∣∣∣ SV ∩S(w)

)
(ωV ∩S(w)) = E

P
ω̄

S̄
,ωV c ,ωV ∩S(w)

(V −S̄)−S(w),(V −S̄)∩B(x,r) (F) .

Therefore, using the validity of the Dobrushin-Shlosman condition for our case,

one has

dP
ωV c ,ωS̄

V −S̄,V ∩S(w)

dP
ωV c ,ω̄S̄

V −S̄,V ∩S(w)

(ωV ∩S(w)) −
dP

ωV c ,ωS̄

V −S̄,V ∩S(w)

dP
ωV c ,ω̄S̄

V −S̄,V ∩S(w)

(ω̄V ∩S(w))

≤ C1 var
(
P

ω̄S̄ ,ωV c ,ωV ∩S(w)

(V −S̄)−S(w),(V −S̄)∩B(x,r)
, P

ω̄S̄ ,ωV c ,ω̄V ∩S(w)

(V −S̄)−S(w),(V −S̄)∩B(x,r)

)
≤ C2e−g dist(x,S(w)) .

Integrating ω̄(V −S̄)∩S(w) out, one has the upper bound

dP
ωV c ,ωS̄

V −S̄,(V −S̄)∩S(w)

dP
ωV c ,ω̄S̄

V −S̄,(V −S̄)∩S(w)

≤ 1 + C2e−g dist(x,S(w)) .

For the case where B(x, r) ∩ S(w) �= ∅, we simply use the upper bound C1.

Then, for a general ωS̄ and ω̄S̄ , one has the upper bound to (5.1),

C
card({x∈S:B(x,r)∩S(w) �=∅})
1

∏
x∈S−S(w)

(
1 + C2e−g dist(x,S(w))

)
≤ C

∑
x∈S e−g dist(x,S(w))

3 .
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We therefore have the bound

d Qw1

d Qw2

∣∣∣∣
Fn

(Z) ≤ C̄ H(n,S(w1)∪S(w2),Z) .

�

Notice now that if one has supx∈S x · � = D < ∞ and n−1xn → ξ , then

dist(xn, S) ≥ (xn · � − D) ∼ nξ · � and supn H(n, S,Z) < ∞, fulfilling the third

requirement of Theorem 2.1.

LEMMA 5.4 Condition (2.9) is satisfied.

PROOF: Fix an � ∈ Sd−1, a w2 ∈ W�, and a finite connected � ⊂ {x ∈ Zd :

x · � ≥ 0} containing 0. Recalling (4.3), one has

q(Tz−1
· · · Tz−m+1

w, z) =
EP

w
(π0z−m+1

· · · πz−m+1+···+z0,z−m+1+···+z0+z)

EPw
(π0z−m+1

· · · πz−m+1+···+z−1,z−m+1+···+z0
)

.

Considering that, for any m ≥ 1 and w1 = (z−m+1, . . . , z0) ∈ W�
m , both functions

appearing inside the expectations in the above ratio are S�+{0,z}-measurable, one

needs only to show that

lim
A→∞

sup
w3∈∪W

�,−
m

sup
ω�

∣∣∣∣∣∣
dP

T
w

(A)
2

w3

�

dP
w2

�

(ω�) − 1

∣∣∣∣∣∣ = 0 .

Notice that for V ⊂ Zd containing �, one has

sup
w3∈∪W

�,−
m

sup
ω�,ωV c

∣∣∣∣∣∣∣
dP

T
w

(A)
2

w3,ωV c

V,�

dP
w2,ωV c

V,�

(ω�) − 1

∣∣∣∣∣∣∣ = 0

as soon as A > dist(0, V c).

On the other hand, it is not hard to show that for a Gibbs field Q satisfying (4.1),

one has

sup
ωV c ,ω�

∣∣∣∣ dQ�

dQ
ωV c

V,�

− 1

∣∣∣∣ ≤ Cd Ge−0.5g dist(�,V c) ,

with the same inequality for dQ
ωV c

V,�/dQ�; see, for example, [6, lemma 9]. But,

since for each fixed � ⊂ V and ωV c , P
T

w
(A)
2

w3,ωV c

V,� converges weakly to P
w2,ωV c

V,� as

A grows to ∞, one can consider that, for A large enough, G(T
w

(A)
2

w3) = 2G(w2)

and g(T
w

(A)
2

w3) = g(w2); see [1, prop. 3.2]. Therefore, for A large enough,

dP
T

w
(A)
2

w3

�

dP
w2

�

(ω�) =
dP

T
w

(A)
2

w3

�

dP
T

w
(A)
2

w3,ωV c

V,�

(ω�)
dP

w2,ωV c

V,�

dP
w2

�

(ω�) ≤

(
1 + 2Cd G(w2)e

−0.5g(w2) dist(�,V c)
)(

1 + Cd G(w2)e
−0.5g(w2) dist(�,V c)

)
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with a similar inequality for the lower bound. Thus,

lim
A→∞

sup
w3∈

⋃
W

�,−
m

sup
ω�

∣∣∣∣∣∣
dP

T
w

(A)
2

w3

�

dP
w2

�

(ω�) − 1

∣∣∣∣∣∣ ≤ C̄d G(w2)e
−0.5g(w2) dist(�,V c) .

To conclude the proof, one increases V to Zd . �

LEMMA 5.5 Condition (2.10) holds.

PROOF: Let CL be a sequence of finite connected subsets, all containing 0 and

increasing to Zd . Fix an environment ω, and consider the quenched walk Pω
0 on

the countable space Zd . By standard arguments, as in [8, sec. 7], for example, we

know that

k = − lim
n→∞

n−1 log π(n)
xx (ω)

exists, is independent of x and ω, and is equal to − supω,F log ρ(π(ω)|F), where

the F’s are finite connected sets in Zd . Here π(ω)|F is the stochastic matrix that is

obtained by restricting π(ω) to F , and ρ is its spectral radius.

Let F be such that − supω log ρ(π(ω)|F) is close to its minimum k. By er-

godicity, there will be such a favorable spot F , P-a.s. Then the rate of spending a

long time in F is no worse than − supω log ρ(π(ω)|F), which is close to k; see, for

example, the discussion in [8, sec. 7]. This proves that infL σCL ,φ ≤ k.

If one starts with a nonempty history w of finite length, then one can use ellip-

ticity to clear the history. Namely, one has∣∣∣∣log
d Qw

d Qφ

∣∣∣∣ ≤ |S(w)| log κ−1 .

One then has infL σCL ,w ≤ k for all such w.

To finish the proof, for a random walk in a random environment, we notice that

k ≤ H(0). For this, see [8, lemma 7.2]. �

This completes the proof of Theorem 5.1. �
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