Here are the slides for my
Science Night Live talk.

(probability of having a red coin=60%, probability of going right with red coin=70%,
probability of going right with blue coin=40%, periodic boundary conditions)
I'm currently interested in studying random walks in random environments.
Click
here for a "popular" presentation of the model.
Here is my contribution to the field.
(a complete list of my publications is here)
- Georgiou N.,
Rassoul-Agha F.,
Seppäläinen T. and
Yilmaz A.
2013.
Ratios of partition functions for the log-gamma polymer.
Submitted.
- Rassoul-Agha F.
and
Seppäläinen T.
2013.
Quenched point-to-point free energy for random walks in random potentials.
To appear in Probab. Th. Rel. Fields.
- Rassoul-Agha F.
and
Seppäläinen T.
2012.
Quenched point-to-point free energy for random walks in random potentials.
(extended version) Preprint.
- Campos D.,
Drewitz A.,
Ramírez A.F.,
Rassoul-Agha F., and
Seppäläinen T.
2013.
Level 1 quenched large deviation principle for random walk in dynamic
random environment.
Bull. Inst. Math. Acad. Sin., 8, 1-29. Special Issue in honor of the 70th birthday of Raghu Varadhan.
- Rassoul-Agha F.,
Seppäläinen T. and
Yilmaz A.
2013.
Quenched free energy and large deviations for random walks in random potentials.
Comm. Pure Appl. Math., 66, 202-244.
- Rassoul-Agha F.
and
Joseph M.
2011.
Almost sure invariance principle for continuous space random walk in dynamic random environment.
ALEA Lat. Am. J. Probab. Math. Stat., 8, 43-57.
- Rassoul-Agha F.
and
Seppäläinen T.
2011.
Process-level quenched large deviations for random walk in random environment.
Ann. Inst. H. Poincaré Probab. Stat., 47, 214-242.
- Rassoul-Agha F.
and
Seppäläinen T.
2009.
Almost sure functional central limit theorem for ballistic
random walk in random environment.
Ann. Inst. H. Poincaré Probab. Stat., 45, 373-420.
- Rassoul-Agha F.
and
Seppäläinen T.
2007.
Almost sure functional central limit theorem for non-nestling
random walk in random environment.
Preprint.
- Rassoul-Agha F.
and
Seppäläinen T.
2007.
Quenched invariance principle for multidimensional ballistic random
walk in a random environment with a forbidden direction.
Ann. Probab., 35, 1-31.
- Balázs M.,
Rassoul-Agha F., and
Seppäläinen T.
2006.
The random average process and random walk in
a space-time random environment in one dimension.
Commun. Math. Phys., 266, 499-545.
- Rassoul-Agha F.
and
Seppäläinen T.
2006.
Ballistic random walk in a random environment with a forbidden direction.
ALEA Lat. Am. J. Probab. Math. Stat., 1, 111-147.
-
Rassoul-Agha F.
and
Seppäläinen T.
2005.
An almost sure invariance principle for random walks in a space-time
random environment.
Probab. Th. Rel. Fields, 133, 299-314.
-
Rassoul-Agha F. 2005.
On the zero-one law and the law of large numbers for a random walk in a mixing
random environment.
Electron. Comm. in Probab., 10, 36-44.
-
Rassoul-Agha F. 2004.
Large deviations for random walks in a mixing random environment
and other (non-Markov) random walks.
Comm. Pure Appl. Math., 57, no. 9, 1178-1196.
-
Rassoul-Agha F. 2003.
The point of view of the particle on the law of large numbers for
random walks in a mixing random environment.
Ann. Probab., 31, no. 3, 1441-1463.
Here are more papers on the subject of RWRE.
(Click on the journal's name
for published version and on the title for the "free" version)
Preprints (in order of appearance)
Reprints (in alphabetical order)
- Bandyopadhyay A. and
Zeitouni O. 2006.
Random Walk in Dynamic Markovian Random Environment.
ALEA Lat. Am. J. Probab. Math. Stat., 1, 205-224
-
Barlow M. 2004.
Random walks on supercritical percolation clusters.
Ann. Probab.,
32, no. 4, 3024-3084
- Berger N.
2008.
Limiting velocity of high dimensional random walk in random environment.
Ann. Probab.,
36, no. 2, 728-738
- Berger N. and
Biskup M.
2007.
Quenched invariance principle for simple random walk on percolation clusters.
Probab. Th. Rel. Fields, 137, 83-120
- Berger N.,
Gantert N., and
Peres Y.
2003.
The speed of biased random walk on percolation clusters.
Probab. Th. Rel. Fields, 126, 221-242.
- Biskup M.
and Prescott T.M.
2007.
CLT for random walk among bounded random conductances.
Electron. J. Probab., 12, paper no. 49, 1323-1348.
- Bolthausen E. and
Sznitman A-S. 2002.
On the static and dynamic points of views for certain random walks in
random environment. Methods and Applications of Analysis,
9, no. 3, 345--376
- Bolthausen E.,
Sznitman A-S., and
Zeitouni O. 2003.
Cut points and diffusive random walks in random environments.
Ann. Inst. H. Poincare Prob. & Stat., 39, 527-555.
- Bolthausen E. and
Zeitouni O. 2007.
Multiscale analysis of exit distributions for random walks in random environments.
Probab. Th. Rel. Fields, 138, 581-645.
-
Bramson M.,
Zeitouni O., and
Zerner M.P.W. 2006.
Shortest Spanning Trees and a Counterexample for Random Walks in Random
Environments.
Ann. Probab.,
34, no. 3, 821-856
-
Comets F.,
Gantert N. and
Zeitouni O. 2000.
Quenched, annealed and functional
large deviations for one-dimensional random walk in random
environment.
Probab. Th. Rel. Fields, 118, no. 1, 65-114.
(Erratum [ps], 2003)
-
Comets F. and
Zeitouni O. 2004.
A law of large numbers for random walks in random mixing environments.
Ann. Probab.,
32, 880-914
-
Comets F. and
Zeitouni O. 2005.
Gaussian fluctuations for random walks in random mixing environments.
Israel J. Math., 148, 87-114.
-
Dembo A.,
Peres Y. and
Zeitouni O. 1996.
Tail estimates for one-dimensional
random walk in random environment.
Commun. Math. Phys. 181, 667-684.
-
Gantert N. and
Zeitouni O. 1998.
Quenched sub-exponential tail
estimates for one-dimensional random walk in random environment.
Commun. Math. Phys., 194, 177-190.
- Goergen, L. 2006.
Limit velocity and zero-one laws for diffusions in random environment.
Ann. Appl. Probab., 16, 1086-1123.
- Goergen, L.
2008.
An effective criterion and a new example for ballistic diffusions in random environment. Ann. Probab., 36, No. 3, 1093-1133.
- Goldsheid, I.
2007.
Simple Transient Random Walks in One-dimensional Random Environment: the Central Limit Theorem. Probab. Th. Rel. Fields, 139, 41-64
- Greven A.
and Den Hollander F. 1994.
Large deviations for a random walk
in random environment.
Ann. Probab., 22, No. 3,
1381-1428.
- Joseph M.
2009.
Fluctuations of the quenched mean of a planar
random walk in an i.i.d. random environment with forbidden direction.
Electron. J. Probab., 14, 1268-1281.
- Kalikow S. 1981
Generalized random walk in a random
environment.
Ann. Probab. 9, No. 5, 753-768.
- Key E. S. 1984.
Recurrence and transience criteria
for random walk in a random environment.
Ann. Probab., 12, No. 2, 529-560.
-
Komorowski T. and Krupa G. 2003.
The Law of Large Numbers for Ballistic, Multi-dimensional Random Walks on Random
Lattices with Correlated Sites.
Ann. Inst. H. Poincare Prob. & Stat., 39, 263-285.
-
Komorowski T. and
Olla S. 2003.
A note on the central limit theorem for two-fold stochastic random walks in a
random environment.
Bull. Polish Acad. Sciences, 51, no. 2.
- Olla S. 2001.
Notes on the Central Limit Theorems for Tagged Particles and Diffusions in Random Fields.
Given at Etąts de la recherche: Milieux Alčatoires.
Panorama et Synthčses, 12, 75-100.
- Peterson J.
2009.
Quenched limits for transient, ballistic, sub-gaussian one-dimensional random walk in random environment.
Ann. Inst. H. Poincare Prob. & Stat., 45, 685-709.
- Peterson J. and
Zeitouni O. 2009.
Quenched limits for transient, zero-speed one-dimensional random walk in random environment.
Ann. Probab., 37, 143-188.
- Peterson J. and
Zeitouni O. 2009.
On the annealed large deviation rate function for a multi-dimensional random walk in random environment.
ALEA Lat. Am. J. Probab. Math. Stat., 6, 349-368.
-
Pisztora A.,
Povel T. and
Zeitouni O. 1999.
Precise large deviations estimates
for one-dimensional random walk in random environment.
Probab. Th. Rel. Fields, 113, 135-170.
-
Roitershtein A. 2004.
Limit theorems for one-dimensional transient random walks in Markov environments.
Ann. Inst. H. Poincare Prob. & Stat., 40, 635-659
- Roitershtein, A. 2005.
A log-scale limit theorem for one-dimensional random walks in random environments.
Electron. Comm. in Probab., 10, 244-253.
- Schmitz, T. 2006.
Diffusions in random environment and ballistic behavior.
Ann. Inst. H. Poincare Prob. & Stat., 42, 683-714.
- Schmitz, T. 2006.
Examples of condition (T) for diffusions in random environment.
Electron. J. Probab., 11, 540-562.
- Shen L. 2002.
Asymptotic properties of certain anisotropic walks in random media.
Ann. App. Prob., 12, 477-510.
-
Sidoravicius V.
and
Sznitman A-S. 2004.
Quenched invariance principles for walks on clusters of percolation or among
random conductances.
Probab. Th. Rel. Fields, 129, no. 2, 219-244
- Solomon F. 1975.
Random walks in random environment.
Ann. Probab., 3, No. 1, 1-31.
-
Sznitman A-S. 1998.
Brownian motion and random
obstacles. Proceedings International Congress of Mathematicians,
Berlin 1998, Documenta Mathematica, vol. III, 301-310.
-
Sznitman A-S. 1999.
Slowdown and neutral pockets
for a random walk in random environment.
Probab. Th. Rel. Fields, 115, 287-323.
-
Sznitman A-S. 2000.
Slowdown estimates and central limit theorem
for random walks in random environment.
J. Eur. Math. Soc., 2, 93-143
-
Sznitman A-S. 2001.
On a class of transient random walks in random environment.
Ann. Probab., 29, no. 2, 724-765.
-
Sznitman A-S. 2002.
An effective criterion for ballistic
behavior of random walks in random environment.
Probab. Th. Rel. Fields, 122, no. 4, 509-544.
-
Sznitman A-S. 2003.
On new examples of ballistic random walks in random environment.
Ann. Probab., 31, no. 1, 285-322.
-
Sznitman A-S. and
Zeitouni O. 2006.
An invariance principle for isotropic diffusions in random environments.
Invent. Math., 164, 455-567
- Sznitman A-S. and
Zerner M.P.W.
1999.
A law of large numbers for random walks in random environment.
Ann. Probab., 27, 1851-1869.
-
Tóth B. 1986.
Persistent random walks in random environment.
Probab. Th. Rel. Fields, 71, 615-625.
-
Varadhan S. R. S. 2003.
Large deviations for random walks in a random environment.
Comm. Pure Appl. Math., 56, no. 8, 1222-1245.
- Yilmaz A.
2009.
Large deviations for random walk in a space-time product environment.
Ann. Probab.,
37, 189-205.
- Yilmaz A.
2009.
Quenched large deviations for random walk in a random environment. Comm. Pure Appl. Math., 62, no. 8, 1033-1075.
- Yilmaz A.
2010.
Averaged large deviations for random walk in a random environment. Ann. Inst. H. Poincare Prob. & Stat., 46, 853-868.
-
Zerner M.P.W. 1998.
Lyapounov exponents and quenched large deviations for multidimensional random walk in
random environment.
Ann. Appl. Probab., 8, No. 1, 246-280.
-
Zerner M.P.W. 1998.
Lyapounov exponents and quenched large deviations for multidimensional random walk in
random environment.
Ann. Probab., 26, No. 4, 1446-1476.
-
Zerner M.P.W. 2000.
Velocity and Lyapounov exponents of some random walks in random environment.
Ann. Inst. H. Poincare Prob. & Stat., 36, No. 6, 737-748.
-
Zerner M.P.W. 2002.
A non-ballistic law of large numbers for random walks in i.i.d. random
environment.
Elect. Comm. in Probab., 7, paper
no. 19, 191-197
-
Zerner M.P.W. 2007.
The zero-one law for planar random walks in i.i.d. random environments revisited.
Elect. Comm. in Probab., 12, paper
no. 32, 326-335
-
Zerner M.P.W. and
Merkl F. 2001.
A zero-one law for planar random walks in
random environment.
Ann. Probab., 29, No. 4, 1716-1732.
Books and Reviews (in alphabetical order)
-
Gantert N. and
Zeitouni O. 1999.
Large deviations for one-dimentional
random walk in a random environment - a survey.
Proceedings of the conference on random walks, Budapest, 1998.
P. Revesz and B. Toth, editors. Bolyai society mathematical
studies 9, 127-165.
-
Sznitman A-S. 2006.
Topics in random walks in random environment.
School and Conference on
Probability Theory, 203-266, ICTP Lect. Notes, XVII, Abdus Salam
Int. Cent. Theoret. Phys., Trieste, 2004
-
Varadhan S. R. S. 2004.
Random walks in a random environment.
Proc. Indian Acad. Sci., Math. Sci., 114, No. 4, 309-318.
-
Zeitouni O. 2002.
Random walks in random environments.
Proceedings of the International Congress of Mathematicians,
Vol. III 117-127, Higher Ed. Press, Beijing.
-
Zeitouni O. 2004.
Random walks in random environments (Saint Flour 2001).
Lecture Notes in Mathematics, 1837, 189-312, Springer-Verlag, Berlin.
-
Zeitouni O. 2006.
Random walks in random environments.
J. Phys. A, 39, No. 40, R433-R464.
Last updated June 5, 2008
