Drunken Sailors in Disordered Cities

Firas Rassoul-Agha

Department of Mathematics University of Utah

October 6, 2010

"If people do not believe that mathematics is simple,

• In mathematics, simplicity and abstraction can go a long way

- In mathematics, simplicity and abstraction can go a long way
- The drunken sailor story is to give a simple analogy with a mathematical object

- In mathematics, simplicity and abstraction can go a long way
- The drunken sailor story is to give a simple analogy with a mathematical object
- The object is Brownian motion: a random path

- In mathematics, simplicity and abstraction can go a long way
- The drunken sailor story is to give a simple analogy with a mathematical object
- The object is Brownian motion: a random path
- Has many applications

- In mathematics, simplicity and abstraction can go a long way
- The drunken sailor story is to give a simple analogy with a mathematical object
- The object is Brownian motion: a random path
- Has many applications
- Will reveal unexpected connections between seemingly different phenomena

Looks like stock prices!!

Looks like stock prices!! Will also see link to thermodynamics!

Random Path

Random Path

Random Path

This is Brownian motion

This is Brownian motion

• The eagle's eye view of the drunken sailor's path

This is Brownian motion

- The eagle's eye view of the drunken sailor's path
- It is a random path

Physics of Brownian Motion

Physics of Brownian Motion

Lucretius (60 BC), On the Nature of Things!!!

Physics of Brownian Motion

Lucretius (60 BC), On the Nature of Things!!!

Dutch physiologist Jan Ingenhousz (1785):

coal dust particles on surface of alcohol.

Physics of Brownian Motion

Lucretius (60 BC), On the Nature of Things !!!

Dutch physiologist Jan Ingenhousz (1785):

coal dust particles on surface of alcohol.

Scottish botanist Robert Brown (1827): pollen particles in water.

Physics of Brownian Motion

Lucretius (60 BC), On the Nature of Things!!!

Dutch physiologist Jan Ingenhousz (1785):

coal dust particles on surface of alcohol.

Scottish botanist Robert Brown (1827): pollen particles in water.

German physicist Albert Einstein (1905) and Polish physicist Marian Smoluchowski (1906): brought the object to the attention of physicists. Indirectly confirmed the existence of atoms and molecules.

Physics of Brownian Motion

French mathematician Louis Bachelier (1900): in his PhD thesis

"The theory of speculation", presented a stochastic analysis of

the stock and option markets.

French mathematician Louis Bachelier (1900): in his PhD thesis "The theory of speculation", presented a stochastic analysis of the stock and option markets.

> American mathematician Norbert Wiener (1923): proved the existence of Brownian motion (as a mathematical object) and set down a firm mathematical foundation for its further development and analysis.

French mathematician Louis Bachelier (1900): in his PhD thesis "The theory of speculation", presented a stochastic analysis of the stock and option markets.

> American mathematician Norbert Wiener (1923): proved the existence of Brownian motion (as a mathematical object) and set down a firm mathematical foundation for its further development and analysis.

Japanese mathematician Kiyoshi Itô (1942-1946): derived a calculus – and thereby a theory of stochastic differential equations – that is completely different from the classical theory.

French mathematician Louis Bachelier (1900): in his PhD thesis "The theory of speculation", presented a stochastic analysis of the stock and option markets.

> American mathematician Norbert Wiener (1923): proved the existence of Brownian motion (as a mathematical object) and set down a firm mathematical foundation for its further development and analysis.

Japanese mathematician Kiyoshi Itô (1942-1946): derived a calculus – and thereby a theory of stochastic differential equations – that is completely different from the classical theory.

American mathematician Monroe Donsker (1951): proved connection to drunken sailors.

This theory is nowadays at the very heart of the applications of probability theory to:

• mathematical finance

This theory is nowadays at the very heart of the applications of probability theory to:

- mathematical finance
- mathematical biology

This theory is nowadays at the very heart of the applications of probability theory to:

- mathematical finance
- mathematical biology
- turbulence

This theory is nowadays at the very heart of the applications of probability theory to:

- mathematical finance
- mathematical biology
- turbulence
- oceanography

This theory is nowadays at the very heart of the applications of probability theory to:

- mathematical finance
- mathematical biology
- turbulence
- oceanography

and more ...

Next 1: complex landscape (disordered city)

Accounts for inhomogeneity (particle-environment interaction)

Accounts for inhomogeneity (particle-environment interaction)

Applications:

Accounts for inhomogeneity (particle-environment interaction)

Applications:

• propagation of radioactivity in a rocky landscape

Accounts for inhomogeneity (particle-environment interaction)

Applications:

- propagation of radioactivity in a rocky landscape
- chromatin motion (trying to bind to a site on the complex DNA)

Accounts for inhomogeneity (particle-environment interaction)

Applications:

- propagation of radioactivity in a rocky landscape
- chromatin motion (trying to bind to a site on the <u>complex</u> DNA) and more...

Next 2: other drunken sailors

or cars...

Firas Rassoul-Agha, University of Utah

Drunken Sailors in Disordered Cities

Firas Rassoul-Agha, University of Utah

Drunken Sailors in Disordered Cities

Applications:
Particle-Particle Interaction

Applications:

• traffic models (actually used in Rome!)

Particle-Particle Interaction

Applications:

- traffic models (actually used in Rome!)
- disease propagation in a forrest

Particle-Particle Interaction

Applications:

- traffic models (actually used in Rome!)
- disease propagation in a forrest

and more

• Simple models can go a long way

- Simple models can go a long way
- Capture the essence of the problem

- Simple models can go a long way
- Capture the essence of the problem

• <u>Abstraction</u> reveals unexpected connections between seemingly different phenomena

- Simple models can go a long way
- Capture the essence of the problem

• <u>Abstraction</u> reveals unexpected connections between seemingly different phenomena

• Doesn't mean math involved couldn't be extremely hard and interesting all by itself!

- Simple models can go a long way
- Capture the essence of the problem

• <u>Abstraction</u> reveals unexpected connections between seemingly different phenomena

• Doesn't mean math involved couldn't be extremely hard and interesting all by itself!

"Everything should be made as simple as possible,

- Simple models can go a long way
- Capture the essence of the problem

• <u>Abstraction</u> reveals unexpected connections between seemingly different phenomena

• Doesn't mean math involved couldn't be extremely hard and interesting all by itself!

"Everything should be made as simple as possible, but not simpler."

Albert Einstein

- Simple models can go a long way
- Capture the essence of the problem

• <u>Abstraction</u> reveals unexpected connections between seemingly different phenomena

• Doesn't mean math involved couldn't be extremely hard and interesting all by itself!

"Everything should be made as simple as possible, but not simpler."

Albert Einstein

Thank You

Courtesy of Google:

Homer: free-online-games-free.com

Other cartoons: gstatic.com

Keys' logo: keysonmain.com

People Photos: wikipedia.org

Videos: youtube.com