Algebraic Geometry Seminar

Fall 2019 — Tuesdays 3:30 - 4:30 PM, location LCB 222

Date Speaker Title — click for abstract (if available)
August 20th
August 27th Leo Herr
University of Utah
Log Geometry and Gromov-Witten Theory
Log structures endow schemes with tropical/toric data in a natural way. The corresponding notion of ``differentials with log poles'' makes many mildly singular spaces appear smooth, including simple normal crossings and toric varieties. Stranger still, blowups are not only ``\'etale'' and proper, but ``monomorphisms'' with a natural functor of points! We will work out the example of log smooth curves in detail before seeing a number of payoffs this added structure has to offer. Time permitting, we will discuss an ongoing research direction concerning intersection theory in this setting.
September 3rd Matteo Altavilla
University of Utah
Moduli spaces on the Kuznetsov component of Fano threefolds of index 2
A Fano threefold Y of Picard rank 1 and index 2 admits a canonical semiorthogonal decomposition of its derived category; this decomposition comes with a non-trivial component Ku(Y) — called the Kuznetsov component — that encodes most of the geometry of Y. I will present a joint work with M. Petkovic and F. Rota in which we describe certain moduli spaces of Bridgeland-stable objects on Ku(Y), via the stability conditions constructed by Bayer, Macrì, Lahoz and Stellari. Furthermore, in our work we study the behavior of the Abel-Jacobi map on these moduli. As an application in the case of degree d = 2, we prove a strengthening of a categorical Torelli Theorem by Bernardara and Tabuada.
September 10th Adrian Langer
University of Warsaw
Smooth projective D-affine varieties
A D-affine variety is such a variety X that the category of D_X-modules behaves like the category of O_X-modules of an affine variety. Beilinson and Bernstein showed that complex generalized flag varieties are D-affine. It is a folklore conjecture that any smooth projective D-affine variety is of this form. I will talk about current state of this problem. In positive characteristic the problem is related to a new generalization of Miyaoka's generic semipositivity theorem.
September 17th Adrian Langer
University of Warsaw
Nearby-cycles and semipositivity in positive characteristic
I will talk about an analogue of Hodge theory in positive characteristic. In particular, I will show analogues of Schmid’s nilpotent orbit theorem and nearby cycles in positive characteristic. As an application I will prove some strong semipositivity theorems for analogs of complex polarized variations of Hodge structures. This implies semipositivity for the relative canonical divisor of a semistable reduction and it also gives some new results over complex numbers.
September 24th Juliette Bruce
University of Wisconsin
Semi-Ample Asymptotic Syzygies
I will discuss the asymptotic non-vanishing of syzygies for products of projective spaces, generalizing the monomial methods of Ein-Erman-Lazarsfeld. This provides the first example of how the asymptotic syzygies of a smooth projective variety whose embedding line bundle grows in a semi-ample fashion behave in nuanced and previously unseen ways.
October 1st Gebhard Martin
University of Bonn
Automorphisms of unnodal Enriques surfaces
It follows from an observation of A. Coble in 1919 that the automorphism group of an unnodal Enriques surface contains the 2-congruence subgroup of the Weyl group of the E_{10}-lattice. In this talk, I will explain how much bigger the automorphism group of an unnodal Enriques surface can be. Furthermore, I will determine the automorphism group of a generic Enriques surface with smooth K3 cover in arbitrary characteristic, improving the corresponding result of W. Barth and C. Peters for very general Enriques surfaces over the complex numbers.
October 8th Fall Break
October 15th Yuchen Liu
Yale University
Openness of K-semistability for Fano varieties
Recently, the question of whether one can construct nicely behaved moduli spaces for Fano varieties using K-stability has attracted significant interest. More precisely, the Fano K-moduli Conjecture predicts that K-polystable Fano varieties with fixed volume and dimension form a projective good moduli space. In this talk, I will explain the proof of openness of K-semistability for Fano varieties which is one major step in the Fano K-moduli Conjecture. Our proof is a combination of valuative criterion for K-semistability due to Fujita and Li, boundedness of complements due to Birkar, and approximation techniques. This talk is based on joint work with Harold Blum and Chenyang Xu.
October 22nd Lei Wu
University of Utah
October 29th Shuai Wang
Columbia University
Relative Gromov-Witten theory and vertex operators
We study the relative Gromov-Witten theory on T*P^1 \times P^1 and show that certain equivariant limits give us the relative invariants on P^1\times \P^1. By formulating the quantum multiplications on Hilb(T*P^1) computed by Devash Maulik and Alexei Oblomkov as vertex operators and computing the product expansion, we demonstrate how to get the insertion and tangency operators computed by Yaim Cooper and Rahul Pandharipande in the equivariant limits.
November 5th Max Kutler
Univeristy of Kentucky
November 12th
November 19th
November 26th
December 3rd Fabio Bernasconi
University of Utah

Archive of previous seminars.


This web page is maintained by Aaron Bertram, Christopher Hacon, and Karl Schwede.