Course Title: Riemannian Geometry  
Fall 2005
Course Number: MATH 6170 - 1
Instructor: Andrejs Treibergs
Days: MW 12:55-1:25 in LCB 225
Office Hours: MWF 10:45 - 11:35 in JWB 224.
E-mail:   
Prerequisites: Some knowledge of differentiable manifolds (e.g. MATH 6510-6520 or consent of instructor.)
Text: Takashi Sakai, Riemannian Geometry, AMS 1996


       Homework Problems.


This course is useful for students of geometry, topology, geometric group theory, nonlinear analysis, general relativity ands graphic design.

Abstract. Recent progress by Perelman on Hamilton's Program to solve Thurston's Geometriztion Conjecture, which would imply the Poincare Conjecture, has the mathematical world extremely excited. Topologists are optimistic that Perelman's arguments will completely hold up under expert scrutiny.

The objective of this course is to start from basic notions from Riemannian Geometry and build to Perelman's Theorems. How does curvature influence on the local and global geometry and topology of a manifold? We shall discuss basic examples such as hyperbolic space and Riemannian surfaces in considerable detail. The principal tool is to use the curvature behavior of geodesics, which are length minimizing curves. We shall develop the intrinsic, classical and differential form notations in parallel. Later we shall prepare some geometric analysis tools such as the Ricci Flow, a systematic deformation that splits a manifold into understandable pieces, used by Perelman. We shall loosely follow Sakai's text for the bulk of the course.

Topics. We shall loosely follow Sakai's text for the bulk of the course. Topics include (depending on time):


Last updated: 8 / 31 / 5