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In today’s lecture, we’ll investigate how Fourier series can be used to
solve differential equations of the form:

ma” + kx = F(t),

and the properties of these solutions.

Today’s lecture corresponds with section 9.4 of the textbook. The as-
signed problems are:

Section9.4-1,2,3,19, 20

Applications of Fourier Series

Let’s investigate the situation of undamped motion of a mass m on a
spring with Hooke’s constant k£ under the influence of a periodic force F'(t).
As we've learned, the displacement from equilibrium satisfies:

mz” (t) + kx(t) = F(t).
The general solution to this system will be an equation of the form:

z(t) = ¢1 coswot + cosinwot + x,(t),



where wy = \/k/m is the natural frequency of the system and z,(t)
is a particular solution to the differential equation. Here we want to use
Fourier series to find a periodic particular solutions of the differential equa-
tion, which we will denote z,,(¢) and call the steady periodic solution.

We will assume for simplicity that F'(¢) is an odd functions with period
2L, so its Fourier series has the form

If n/L is not equal to w, for any positive integer n, we can determine
a steady periodic solution of the form

nmt
Top(t Z b, sin —

by substituting the series into our differential equation and equating
the coefficients. Let’s see an example of how to do this.

Example - Suppose that m = 2kg, k = 32N/m, and that F'(¢) is the odd
periodic force with period 2s given in one period by

10N O0<t<1;
F(t)_{ —10N 1<t<?2.

Solution - By essentially the same computation we did three lectures
ago, we can calculate that the Fourier series of F'(t) is

_40 =L sin ((2n + 1)7t)
0= 2n+1

n=0

If we plug this into the right side of our differential equation, and plug
in the solution



Tep(t) = Z b, sinnrt,
n=1

we get

= , 40 X sin ((2n + 1)7t)
2_2 _
g b (—2n°m + 32) sinnnt = — ngzo ] .

Equating coefficients we get b,, = 0 for n even, and for n odd we get

20
(2n+ 1)7(16 — (2n + 1)%72)°

b2n+1 =

So, our steady periodic solution is

_@ - sin ((2n + 1)7t)
G (2n +1)(16 — (2n + 1)272)°

n:O

l’sp

Now, what happens if n7/L happens to equal w, for some value of n?
In this case, we get resonance, or, more precisely, pure resonance. The
reason is that the equation

ma” + kx = By sin wyt

has the resonance solution

B
x(t) = _QmJZJOtCOS wot

if wg = y/k/m. The particular solution we get using Fourier series
methods is then



. nmt
tcoswot—l—z (o —n27r2/L2)Sn 7
n#N

Example - Suppose that m = 2 and k = 32. Determine whether pure
resonance will occur if F(t) is the odd periodic function defined in one
period to be:

10 O<t<m
(a)'F<t)_{ —10 7<t<2r

(b) - F(t) = 10t, for —m < t < 7.

Solution -

(@) - The natural frequency is wy = 4, and the Fourier series of F'(t) is

40 1 1
F(t) = — <sint+§sin3t+gsin5t+--->.

Pure resonance does not occur because there is no sin 4¢ term in the
Fourier series.

(b) In this case the Fourier series is

n+1

=20 Z sin nt.

Pure resonance does occur because of the presence of the term con-
taining the factor sin 4t.

Even if we don’t have resonance, we can have near resonance, where
a single term in the solution has a frequency that is close to the natural
resonant frequency, and is magnified.
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Example - Find a steady periodic solution to
2" + 10x = F(¢),

where F(t) is the period 4 function with F(¢) = 5t for —2 < ¢t < 2 and
Fourier series

o0
20 )t onnt
= — sin

n=1

Solution - Following the same procedure we used in the first example
we obtain the relation

an (_n s
n=1

sin — = — sin .
2 T n 2

n=1

) ot 20 o= (=1 nnt

We equate coefficients of like terms and then solve for b, to get the
steady periodic solution

80w 1)nt nt

T n:1n40—n27r2 2

Top(t
t ot t
~ (.8452) sin % — (24.4111) sin % — (0.1738) sin 3% T

The very large magnitude of the second term is because wy = /10 is

very close to T = 2.



