Math 2270 - Lecture 11: Transposes and
Permutations

Dylan Zwick
Fall 2012

This lecture covers section 2.7 of the textbook.
1 Transposes

The transpose of a matrix is the matrix you get when you switch the rows
and the columns. For example, the transpose of
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We denote the transpose of a matrix A by A”. Formally, we define

is the matrix
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Example - Calculate the transposes of the following matrices
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The transpose of the sum of two matrices is the sum of the transposes
(A+ BT = AT+ BT

which is pretty straightforward. What is less straightforward is the rule
for products

(AB)T = BTAT

The book has a proof of the above. Check it out. Another proof is to
just look at the definition of matrix products and note

(AB)] = ABji =) AjBwi =) BuAj =Y BiLAy = (B"AT);
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The transpose of the identity matrix is still the identity matrix I7 = I.
Knowing this and using our above result it’s quick to get the transpose of
an inverse

AAT Y =T=1T = (AA )T = (A" HTAT

So, the inverse of AT is (A~!)7. Stated otherwise (AT)~! = (A~!)T. In
words, the inverse of the transpose is the transpose of the inverse.

Example - Find AT and A~ and (A™")T and (AT)™! for
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2 Symmetric Matrices

A symmetric matrix is a matrix that is its own transpose. Stated slightly
more mathematically, a matrix A is symmetric if A = A7. Note that, obvi-
ously, all symmetric matrices are square matrices.

For example, the matrix
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is symmetric. Note (A7!)T = (AT)™! = A7}, so the inverse of a sym-
metric matrix is itself symmetric.

For any matrix, square or not, we can construct a symmetric product.
There are two ways to do this. We can take the product RT R, or the prod-
uct RRT. The matrices RTR and RRT will both be square and both be
symmetric, but will rarely be equal. In fact, if R is not square, the two will
not even be the same size.

We can see this in the matrix
-1 1 0
Re(0 4 )
The two symmetric products are
-1 0
-1 1 0 2 -1
wo(340)(74)-(3 )
0 -11 0 1 -1 2

-1 0
RTR=| 1 -1 (_01 —11(1)>= -1 2 -1
0 -1 1

These two symmtric products are unequal’, but both are symmetric.
Also, note that none of the diagonal terms is negative. This is not a coinci-
dence.

1They’re not even the same size!



Example - Why are all diagonal terms on a symmetric product non-
negative?
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Returning to the theme of the last lecture, if A is symmetric then the
LDU factorization A = LDU has a particularly simple form. Namely, if
A=ATthenU = LT and A= LDIL".

Example - Factor the following matrix into A = LDU form and verify
U=1LT



3 Permutation Matrices

A permutation matrix is a square matrix that rearranges the rows of an-
other matrix by multiplication. A permutation matrix P has the rows of
the identity I in any order. For n x n matrices there are n! permutation
matrices. For example, the matrix

P =
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Puts row 3 in row 1, row 1 in row 2, and row 2 in row 3. In cycle
notation? we’d represent this permutation as (123).

Example - What is the 3 x 3 permutation matrix that switches rows 1
and 3?

Now, if you recall from elimination theory we sometime have to switch
rows to get around a zero pivot. This can mess up our nice A = LDU
form. So, we usually assume we’ve done all the permutations we need to
do before we start elimination, and write this as PA = LDU, where P is a
permutation matrix such that elimination works. The book mentions this,
but says not to worry too much about it. I agree.

2Don’t worry if you don’t know what that means.
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