
MATH 3210 Spring 2024

Third Midterm Exam

Professor: Y.P. Lee

Solution

INSTRUCTION: Show all of your work. Make sure your answers
are clear and legible. Use specified method to solve the question. It is
not necessary to simplify your final answers.
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PROBLEM 1

Prove that the function f(x) = x sin 1
x
is uniformly continuous on (0, 1).

Solution. (HW §3.3 #10 and §3.1 #12)
1. We show that f is continuous at 0, if we define f(0) = 0.
∀ε > 0, let δ = ε > 0. Then ∀x, |x− 0| < δ, we have

|f(x)− f(0)| = |x sin 1

x
− 0| = |x|| sin 1

x
| ≤ |x| < δ = ε.

2. We show that f is continuous at a ∈ (0, 1].
In fact, away from 0, f(x) is differentiable and hence continuous

(Theorem 4.2.5). Alternatively, this can be proven by ε− δ definition.
3. Therefore, f is continuous on a closed bounded interval [0, 1] and
hence uniformly continuous on [0, 1] by Theorem 3.3.4. This implies
that f is uniformly continuous on (0, 1). □
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PROBLEM 2

Use the Intermediate Value Theorem to prove that, if n is a natural
number, then every positive number a has a unique positive nth root.

Solution. (HW §3.2 #10)
Let f(x) = xn. It is a smooth (and hence continuous) function on

R. Since a is a positive number, it is easy to see that

f(0) = 0 < a < f(a+ 1) = (a+ 1)n.

By the Intermediate Value Theorem, ∃c ∈ [0, a + 1] such that f(c) =
cn = a. Furthermore, f(0) ̸= a and f(a+ 1) ̸= a, c ∈ (0, a+ 1).

Since f ′(x) > 0 for x > 0, f is a strictly increasing function. There-
fore, the above c must be unique. Indeed, c = (a)1/n as f(c) = cn =
a. □
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PROBLEM 3

Prove that the sequence {x
n
} converges uniformly to 0 on each bounded

interval, but does not converge uniformly on R.
Solution. (HW §3.4 #1)

(1) Let I be a given bounded interval. Therefore, ∃M > 0 such that
∀x ∈ I, |x| < M . (More concretely, I = [a, b], (a, b), (a, b], [a, b) be a
bounded interval. Let 0 < M ∈ R such that |a| < M and |b| < M .)

∀ε > 0, let N = M
ε
. Then ∀x ∈ I, ∀n > N , we have

|x
n
− 0| = |x|

n
<

M

N
= ε.

This show that {x
n
} converges uniformly to 0 on I.

(2) Not converge uniformly: ∃ε > 0, such that ∀N , ∃x,∃n > N with
|x
n
− 0| ≥ ε.
Choose ε = 1. For any N , let (n, x) = (n, 2n), where n > N (e.g.,

n = N + 1). Then |x
n
− 0| = 2 > 1 = ε. □
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PROBLEM 4

Prove that if f is a differentiable function on (0,∞) and f and f ′ both
have finite limits at ∞, then limx→∞ f ′(x) = 0.

Solution. (HW §4.3 #5)
Apply MVT to [a, a+ 1]. Then, ∃ca ∈ [a, a+ 1] such that

(1) f ′(ca) = f(a+ 1)− f(a).

Note that ca depends on a. Then it is easy to see that as a → ∞, ca
goes to ∞ and the RHS of (1) goes to 0. This implies that

lim
x→∞

f ′(x) = 0.

Alternatively,
(1) Let limx→∞ f(x) = L ∈ R. This by definition means that ∀ε > 0,

∃N > 0, such that ∀x > N we have |f(x)− L| < ε.
(2) Let limx→∞ f ′(x) = L′ ∈ R. This by definition means that

∀ε′ > 0, ∃N ′ > 0, such that ∀x > N ′ we have |f ′(x)− L′| < ε′.
If L′ ̸= 0, let ε = L′

4
. By (1), we have a corresponding N . Let ε′ = ε

and we have a corresponding N ′ by (2).
Therefore, ∀x > Max(N,N ′) we have

(2) |f(x)− f(x+ 1)| ≤ |f(x)− L|+ |f(x+ 1)− L| < 2ε =
L′

2
.

By the Mean Value Theorem, we have c ∈ (x, x+ 1) such that

f ′(c) =
f(x+ 1)− f(x)

(x+ 1)− x
= f(x+ 1)− f(x).

By (2), we have

(3) |f ′(c)| = |f(x+ 1)− f(x)| < L′

2
.

However, c > x > N ′, therefore by (2) we have

(4) |f ′(c)− L′| < ε′ =
L′

4
.

Equations (3) and (4) give a contradiction. Hence L′ = 0. □
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PROBLEM 5

Find lim
x→0+

xx.

Solution. (HW §4.4 #10)

lim
x→0

xx = lim
x→0

ex lnx = elimx→0
ln x
1/x = e

limx→0
1/x

−1/x2 = elimx→0 −x = e0 = 1,

where Theorem 4.1.12 and the L’Hôpital’s Rule are used for the third
and the fourth =. □


