MATH 3210 Spring 2024 Second Midterm Exam

Professor: Y.P. Lee

Solution

Problem 1	30	
Problem 2	20	
Problem 3	20	
Problem 4	10	
Problem 5	20	

Total 100 _____

(a) What is a *Dedekind cut*?

(b)How do you identify a Dedekind cut with a real number?

Solution. (a) A subset $L\subset \mathbb{Q}$ is called a Dedekind cut if it satisfies the following three conditions:

- (A) $L \neq \emptyset$ and $L \neq \mathbb{Q}$,
- (B) L has no largest element,
- (C) if $x \in L$, then so is every $y \in \mathbb{Q}$ with y < x.
- (b) Let $a \in \mathbb{R}$, then the corresponding Dedekind cut is

$$L_a := \{ x \in \mathbb{Q} : x < a \}.$$

	I	

Make an educated guess of the limit and then prove your guess of

$$\lim_{n \to \infty} \frac{2n^2 + 1}{n^2 + 1}$$

by the **definition**.

Solution.

$$\lim_{n \to \infty} \frac{2n^2 + 1}{n^2 + 1} = 2$$

Proof. $\forall \varepsilon > 0$, let N > 0 be any real number such that

$$|\frac{1}{N^2 + 1}| < \varepsilon.$$

Then $\forall n > N$, we have

$$\frac{2n^2+1}{n^2+1} - 2| = |\frac{1}{n^2+1}| < |\frac{1}{N^2+1}| < \varepsilon$$

Γ]
]

Let $\{a_n\}$ be a sequence of real numbers such that $\lim a_n = 0$, and let $\{b_n\}$ be a bounded sequence. Prove that $\lim a_n b_n = 0$ by definition.

Solution. $\{b_n\}$ bounded implies that $\exists M > 0$ such that $|b_n| < M$.

 $\lim a_n = 0 \Leftrightarrow \forall \varepsilon_a, \exists N_a, \text{ such that } \forall n > N_a, \text{ we have } |a_n - 0| < \varepsilon_a.$

Now we show $\lim a_n b_n = 0$. $\forall \varepsilon$, choose $\varepsilon_a = \varepsilon/M$ and get the corresponding N_a . Let $N = N_a$. Then $\forall n > N$, we have

$$|a_n b_n - 0| < |a_n| M < \varepsilon_a M = \varepsilon.$$

Let $\{s_n\}$ be the sequence of partial sums of a series with non-negative terms. That is,

$$s_n = \sum_{k=1}^n a_k, \quad a_k \ge 0, \, \forall k \in \mathbb{N}.$$

Prove that $\lim s_n$ exists.

Solution. $\{s_n\}$ is a non-decreasing sequence. By Theorem 2.4.6, every monotone sequence has a limit. \Box

Prove that a sequence which satisfies $|a_{n+1} - a_n| < 2^{-n}$ for all n is a Cauchy sequence.

Solution. $\forall \varepsilon$, let $N \in \mathbb{R}$ satisfying

$$2^{-N+1} < \varepsilon.$$

Without loss of generality, assume m > n. Then $\forall m, n > N$, we have $|a_m - a_n| < |a_m - a_{m-1}| + \cdots + |a_{n+1} - a_n| < 2^{-m+1} + \cdots + 2^{-n} < 2^{-n+1} < 2^{-N+1} < \varepsilon$. Therefore, $\{a_n\}$ is a Cauchy sequence by definition.

Alternatively, one can try to show that $\lim a_n$ exists as a real number, and use Theorem 2.5.8.