
Chapter 1

The Real Numbers

This course has two goals: (1) to develop the foundations that underlie calculus
and all of post calculus mathematics, and (2) to develop students’ ability to
understand definitions and proofs and to create proofs of their own – that is, to
develop students’ mathematical sophistication.

The typical freshman and sophomore calculus courses are designed to teach
the techniques needed to solve problems using calculus. They are not primarily
concerned with proving that these techniques work or teaching why they work.
The key theorems of calculus are not really proved, although sometimes proofs
are given which rely on other reasonable, but unproved assumptions. Here we
will give rigorous proofs of the main theorems of calculus. To do this requires
a solid understanding of the real number system and its properties. This first
chapter is devoted to developing such an understanding.

Our study of the real number system will follow the historical development of
numbers: We first discuss the natural numbers or counting numbers (the positive
integers), then the integers, followed by the rational numbers. Finally, we discuss
the real number system and the property that sets it apart from the rational
number system – the completeness property. The completeness property is the
missing ingredient in most calculus courses. It is seldom discussed, but without
it, one cannot prove the main theorems of calculus.

The natural numbers can be defined as a set satisfying a very simple list
of axioms – Peano’s axioms. All of the properties of the natural numbers can
be proved using these axioms. Once this is done, the integers, the rational
numbers, and the real numbers can be constructed and their properties proved
rigorously. To actually carry this out would make for an interesting, but rather
tedious course. Fortunately, that is not the purpose of this course. We will not
give a rigorous construction of the real number system beginning with Peano’s
axioms, although we will give a brief outline of how this is done. However, the
main purpose of this chapter is to state the properties that characterize the real
number system and develop some facility at using them in proofs. The rest of
the course will be devoted to using these properties to develop rigorous proofs
of the main theorems of calculus.
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1.1 Sets and Functions

We precede our study of the real numbers with a brief introduction to sets and
functions and their properties. This will give us the opportunity to introduce
the set theory notation and terminology that will be used throughout the text.

Sets

A set is a collection of objects. These objects are called the elements of the set.
If x is an element of the set A, then we will also say that x belongs to A or x is
in A. A shorthand notation for this statement that we will use extensively is

x ∈ A.

Two sets A and B are the same set if they have the same elements – that is,
if every element of A is also an element of B and every element of B is also an
element of A. In this case, we write A = B.

One way to define a set is to simply list its elements. For example, the
statement

A = {1, 2, 3, 4}

defines a set A which has as elements the integers from 1 to 4.
Another way to define a set is to begin with a known set A and define a

new set B to be all elements x ∈ A that satisfy a certain condition Q(x). The
condition Q(x) is a statement about the element x which may be true for some
values of x and false for others. We will denote the set defined by this condition
as follows:

B = {x ∈ A : Q(x)}.

This is mathematical shorthand for the statement “B is the set of all x in A
such that Q(x)”. For example, if A is the set of all students in this class, then
we might define a set B to be the set of all students in this class who are
sophomores. In this case, Q(x) is the statement “x is a sophomore”. The set B
is then defined by

B = {x ∈ A : x is a sophomore}.

Example 1.1.1. Describe the set (0, 3) of all real numbers greater than 0 and
less than 3 using set notation.

Solution: In this case the statement Q(x) is the statement “0 < x < 3”.
Thus,

(0, 3) = {x ∈ R : 0 < x < 3}.

A set B is a subset of a set A if B consists of some of the elements of A –
that is, if each element of B is also an element of A. In this case, we use the
shorthand notation

B ⊂ A.

Of course, A is a subset of itself. We say B is a proper subset of A if B ⊂ A
and B ̸= A.



1.1. SETS AND FUNCTIONS 3

Figure 1.1: Intersection and Union of Two Sets.

For example, the open interval (0, 3) of the preceding example is a proper
subset of the set R of real numbers . It is also a proper subset of the half open
interval (0, 3] – that is, (0, 3) ⊂ (0, 3], but the two are not equal because the
second contains 3 and the first does not.

There is one special set that is a subset of every set. This is the empty set
∅. It is the set with no elements. Since it has no elements, the statement that
“each of its elements is also an element of A” is true no matter what the set A
is. Thus, by the definition of subset,

∅ ⊂ A

for every set A.
If A and B are sets, then the intersection of A and B, denoted A∩B, is the

set of all objects that are elements of A and of B. That is,

A ∩ B = {x : x ∈ A and x ∈ B}.

Similarly, the union of A and B, denoted A∪B, is the set of objects which are
elements of A or elements of B (possibly elements of both). That is,

A ∪ B = {x : x ∈ A or x ∈ B}.

Example 1.1.2. If A is the closed interval [−1, 3] and B is the open interval
(1, 5), describe A ∩ B and A ∪ B.

Solution: A ∩ B = (1, 3] and A ∪ B = [−1, 5).

If A is a (possibly infinite) collection of sets, then the intersection and union
of the sets in A are defined to be

⋂

A = {x : x ∈ A for all A ∈ A}

and
⋃

A = {x : x ∈ A for some A ∈ A}.

Note how crucial the distinction between “for all’ and “for some’ is in these
definitions.
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The intersection
⋂

A is also often denoted
⋂

A∈A

A or
⋂

s∈S

As

if the sets in A are indexed by some index set S. Similar notation is often used
for the union.

Example 1.1.3. If A is the collection of all intervals of the form [s, 2] where
0 < s < 1, find

⋂

A and
⋃

A.
Solution: A number x is in the set

⋂

A =
⋂

s∈(0,1)

[s, 2]

if and only if
s ≤ x ≤ 2 for every positive s < 1. (1.1.1)

Clearly every x in the interval [1, 2] satisfies this condition. We will show that
no points outside this interval satisfy (1.1.1).

Certainly an x > 2 does not satisfy (1.1.1). If x < 1, then s = x/2 + 1/2
(the midpoint between x and 1) is a number less than 1 but greater than x, and
so such an x also fails to satisfy (1.1.1). This proves that

⋂

A = [1, 2].

A number x is in the set
⋃

A =
⋃

s∈(0,1)

[s, 2]

if and only if
s ≤ x ≤ 2 for some positive s < 1. (1.1.2)

Every such x is in the interval (0, 2]. Conversely, we will show that every x in
this interval satisfies (1.1.2). In fact, if x ∈ [1, 2], then x satisfies (1.1.2) for
every s < 1. If x ∈ (0, 1), then x satisfies 1.1.2 for s = x/2. This proves that

⋃

A = (0, 2].

If B ⊂ A, then the set of all elements of A which are not elements of B is
called the complement of B in A. This is denoted A \ B. Thus,

A \ B = {x ∈ A : x /∈ B}.

Here, of course, the notation x /∈ B is shorthand for the statement “x is not an
element of B”.

If all the sets in a given discussion are understood to be subsets of a given
universal set X, then we may use the notation Bc for X\B and call it simply the
complement of B. This will often be the case in this course, with the universal
set being the set R of real numbers or, in later chapters, real n dimensional
space Rn for some n.
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Example 1.1.4. If A is the interval [−2, 2] and B is the interval [0, 1], describe
A \ B and the complement Bc of B in R.

Solution: We have

A \ B = [−2, 0) ∪ (1, 2] = {x ∈ R : −2 ≤ x < 0 or 1 < x ≤ 2},

while
Bc = (−∞, 0) ∪ (1,∞) = {x ∈ R : x < 0 or 1 < x}.

Theorem 1.1.5. If A and B are subsets of a set X and Ac and Bc are their
complements in X. then

(a) (A ∪ B)c = Ac ∩ Bc; and

(b) (A ∩ B)c = Ac ∪ Bc.

Proof. We prove (a) first. To show that two sets are equal, we must show that
they have the same elements. An element of X belongs to (A∪B)c if and only
if it is not in A ∪ B. This is true if and only if it is not in A and it is not in B.
By definition this is true if and only if x ∈ Ac ∩Bc. Thus, (A∪B)c and Ac ∩Bc

have the same elements and, hence, are the same set.
If we apply part (a) with A and B replaced by Ac and Bc and use the fact

that (Ac)c = A and (Bc)c = B, the result is

(Ac ∪ Bc)c = A ∩ B.

Part (b) then follows if we take the complement of both sides of this identity.

A statement analogous to Theorem 1.1.5 is true for unions and intersections
of collections of sets (Exercise 1.1.7).

Two sets A and B are said to be disjoint if A ∩ B = ∅. That is, they are
disjoint if they have no elements in common. A collection A of sets is called a
pairwise disjoint collection if A∩B = ∅ for each pair A,B of distinct sets in A.

Functions

A function f from a set A to a set B is a rule which assigns to each element
x ∈ A exactly one element f(x) ∈ B. The element f(x) is called the image of x
under f or the value of f at x. We will write

f : A → B

to indicate that f is a function from A to B. The set A is called the domain of
f . If E is any subset of A then we write

f(E) = {f(x) : x ∈ E}

and call f(E) the image of E under f .
We don’t assume that every element of B is the image of some element of

A. The set of elements of B which are images of elements of A is f(A) and is
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called the range of f . If every element of B is the image of some element of A
(so that the range of f is B), then we say that f is onto.

A function f : A → B is is said to be one-to-one if, whenever x, y ∈ A and
x ̸= y, then f(x) ̸= f(y) – that is, if f takes distinct points to distinct points.

If g : A → B and f : B → C are functions, then there is a function
f ◦ g : A → C, called the composition of f and g, defined by

f ◦ g(x) = f(g(x)).

Since g(x) ∈ B and the domain of f is B, this definition makes sense.
If f : A → B is a function and E ⊂ B, then the inverse image of E under f

is the set
f−1(E) = {x ∈ A : f(x) ∈ E}.

That is, f−1(E) is the set of all elements of A whose images under f belong to
E.

Inverse image behaves very well with respect to the set theory operations,
as the following theorem shows.

Theorem 1.1.6. If f : A → B is a function and E and F are subsets of B,
then

(a) f−1(E ∪ F ) = f−1(E) ∪ f−1(F );

(b) f−1(E ∩ F ) = f−1(E) ∩ f−1(F ); and

(c) f−1(E \ F ) = f−1(E) \ f−1(F ) if F ⊂ E.

Proof. We will prove (a) and leave the other two parts to the exercises.
To prove (a), we will show that f−1(E ∪ F ) and f−1(E) ∪ f−1(F ) have the

same elements. If x ∈ f−1(E ∪F ), then f(x) ∈ E ∪F . This means that f(x) is
in E or in F . If it is in E, then x ∈ f−1(E). If it is in F , then x ∈ f−1(F ). In
either case, x ∈ f−1(E)∪f−1(F ). This proves that every element of f−1(E∪F )
is an element of f−1(E) ∪ f−1(F ).

On the other hand, if x ∈ f−1(E) ∪ f−1(F ), then x ∈ f−1(E), in which
case f(x) ∈ E, or x ∈ f−1(F ), in which case f(x) ∈ F . In either case, f(x) ∈
E ∪ F , which implies x ∈ f−1(E ∪ F ). This proves that every element of
f−1(E)∪f−1(F ) is also an element of f−1(E∪F ). Combined with the previous
paragraph, this proves that the two sets are equal.

Image does not behave as well as inverse image with respect the set opera-
tions. The best we can say is the following:

Theorem 1.1.7. If f : A → B is a function and E and F are subsets of A,
then

(a) f(E ∪ F ) = f(E) ∪ f(F );

(b) f(E ∩ F ) ⊂ f(E) ∩ f(F );

(c) f(E) \ f(F ) ⊂ f(E \ F ) if F ⊂ E.
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Proof. We will prove (c) and leave the others to the exercises.
To prove (c), we must show that each element of f(E) \ f(F ) is also an

element of f(E \ F ). If y ∈ f(E) \ f(F ), then y = f(x) for some x ∈ E and y
is not the image of any element of F . In particular, x /∈ F . This means that
x ∈ E \ F and so y ∈ f(E \ F ). This completes the proof.

The above theorem cannot be improved. That is, it is not in general true
that f(E∩F ) = f(E)∩f(F ) or that f(E)\f(F ) = f(E \F ) if F ⊂ E. The first
of these facts is shown in the next example. The second is left to the exercises.

Example 1.1.8. Give an example of a function f : A → B for which there are
subsets E,F ⊂ A with f(E ∩ F ) ̸= f(E) ∩ f(F ).

Solution: Let A and B both be R and let f : A → B be defined by

f(x) = x2.

If E = (0,∞) and F = (−∞, 0), then E ∩ F = ∅, and so f(E ∩ F ) is also the
empty set. However, f(E) = f(F ) = (0,∞), and so f(E) ∩ f(F ) = (0,∞) as
well. Clearly f(E ∩ F ) and f(E) ∩ f(F ) are not the same in this case.

Cartesian Product

If A and B are sets, then their Cartesian product A×B is the set of all ordered
pairs (a, b) with a ∈ A and b ∈ B. Similarly, the Cartesian product of n sets
A1, A2, · · · , An is the set A1×A2× · · ·An of all ordered n-tuples (a1, a2, · · · , an)
with ai ∈ Ai for i = 1, · · · , n.

If f : A → B is function from a set A to a set B, then the graph of f is the
subset of A × B defined by {(a, b) ∈ A × B : b = f(a)}.

Exercise Set 1.1

1. If a, b ∈ R and a < b, give a description in set theory notation for each of
the intervals (a, b), [a, b], [a, b), and (a, b] (see Example 1.1.1).

2. If A,B, and C are sets, prove that

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).

3. If A and B are two sets, then prove that A is the union of a disjoint pair
of sets, one of which is contained in B and one of which is disjoint from
B.

4. What is the intersection of all the open intervals containing the closed
interval [0, 1]? Justify your answer.

5. What is the intersection of all the closed intervals containing the open
interval (0, 1)? Justify your answer.
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6. What is the union of all of the closed intervals contained in the open
interval (0, 1)? Justify your answer.

7. If A is a collection of subsets of a set X, formulate and prove a theorem
like Theorem 1.1.5 for the intersection and union of A.

8. Which of the following functions f : R → R are one to one and which ones
are onto. Justify your answer.

(a) f(x) = x2;

(b) f(x) = x3;

(c) f(x) = ex.

9. Prove Part (b) of Theorem 1.1.6.

10. Prove Part (c) of Theorem 1.1.6.

11. Prove Part (a) of Theorem 1.1.7.

12. Prove Part (b) of Theorem 1.1.7.

13. Give an example of a function f : A → B and subsets F ⊂ E of A for
which f(E) \ f(F ) ̸= f(E \ F ).

14. Prove that equality holds in Parts (b) and (c) of Theorem 1.1.7 if the
function f is one-to-one.

15. Prove that if f : A → B is a function which is one-to-one and onto, then
f has an inverse function – that is, there is a function g : B → A such
that g(f(x)) = x for all x ∈ A and f(g(y)) = y for all y ∈ B.

16. Prove that a subset G of A × B is the graph of a function from A to B
if and only if the following condition is satisfied: for each a ∈ A there is
exactly one b ∈ B such that (a, b) ∈ G.

1.2 The Natural Numbers

The natural numbers are the numbers we use for counting, and so, naturally,
they are also called the counting numbers. They are the positive integers
1, 2, 3, · · · .

The requirements for a system of numbers we can use for counting are very
simple. There should be a first number (the number 1), and for each number
there must always be a next number (a successor). After all, we don’t want to
run out of numbers when counting a large set of objects. This line of thought
leads to Peano’s axioms which characterize the system of natural numbers N:

N1. there is an element 1 ∈ N;

N2. for each n ∈ N there is a successor element s(n) ∈ N;
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N3. 1 is not the successor of any element of N;

N4. if two elements of N have the same successor, then they are equal;

N5. if a subset A of N contains 1 and is closed under succession (meaning
s(n) ∈ A whenever n ∈ A), then A = N.

Note: at this stage in the development of the natural number system, all we
have are Peano’s axioms; addition has not yet been defined. When we define
addition in N, S(n) will turn out to be n + 1.

Everything we need to know about the natural numbers can be deduced from
these axioms. That is, using only Peano’s axioms, one can define addition and
multiplication of natural numbers and prove that they have the usual arithmetic
properties. One can also define the order relation on the natural numbers and
prove that it has the appropriate properties. To do all of this is not difficult, but
it is tedious and time consuming. We will do some of this here in the text and
the exercises, but we won’t do it all. We will do enough so that students should
understand how such a development would proceed. Then we will state and
discuss the important properties of the resulting system of natural numbers.

Our main tool in this section will be mathematical induction, a powerful
technique that is a direct consequence of Axiom N5.

Induction

Axiom N5 above is often called the induction axiom, since it is the basis for
mathematical induction. Mathematical induction is used in making definitions
that involve a sequence of objects to be defined and in proving propositions that
involve a sequence of statements to be proved. Here, by a sequence we mean a
function whose domain is the natural numbers. Thus, a sequence of statements
is an assignement of a statement to each n ∈ N. For example, “n is either 1 or
it is the successor of some element of N” is a sequence of statements, one for
each n ∈ N. We will use induction to prove that all of these statements are true
once we prove the following theorem.

The following theorem states the mathematical induction principle as it ap-
plies to proving propositions.

Theorem 1.2.1. Suppose {Pn} is a sequence of statements, one for each n ∈ N.
These statements are all true provided

1. P1 is true (the base case is true); and

2. whenever Pn is true for some n ∈ N, then Ps(n) is also true (the induction
step can be carried out).

Proof. Let A be the subset of N consisting of those n for which Pn is true. Then
hypothesis (1) of the theorem implies that 1 ∈ A, while hypothesis (2) implies
that s(n) ∈ A whenever n ∈ A. By Axiom N5, A = N, and so Pn is true for
every n.
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Example 1.2.2. Prove that each n ∈ N is either 1 or is the successor of some
element of N .

Solution: If n is 1 then the statement is obviously true. Thus, the base case
is true. If the statement is true of n then it is certainly true of s(n), because
it is true of any element which is the successor of something in N. Thus, by
induction, the statement is true for every n ∈ N.

Another way to say what was proved in this example is that every natural
number except 1 has a predecessor. This statement doesn’t seem obvious at
this stage of development of N, but its proof was a rather trivial application of
induction.

Inductive Definitions

Inductive definitions are used to define sequences. The sequence {xn} to be
defined is a sequence of elements of some set X, which may or may not be a set
of numbers. We wish to define the sequence in such a way that x1 is a specified
element of X and, for each n ∈ N, xs(n) is a certain function of xn. That is, we
are given an element x1 ∈ X and a sequence of functions fn : X → X and we
wish to construct a sequence {xn}, beginning with x1, such that

xs(n) = fn(xn) for all n ∈ N. (1.2.1)

This equation, defining xs(n) in terms of xn, is called a recursion relation. Se-
quences defined in this way occur very often in mathematics. Newton’s method
from calculus and Euler’s method for numerically solving differential equations
are two important examples.

Theorem 1.2.3. Given a set X, an element x1 ∈ X, and a sequence {fn} of
functions from X to X, there is a unique sequence {xn} in X, beginning with
x1, which satisfies xs(n) = fn(xn) for all n ∈ N.

Proof. Consider the Cartesian product N × X – that is, the set of all ordered
pairs (n, x) with n ∈ N and x ∈ X. We define a function S : N×X → N×X by

S(n, x) = (s(n), fn(x)) (1.2.2)

We say that a subset E of N ×X is closed under S if S sends elements of E to
elements of E. Clearly the intersection of all subsets of N × X that are closed
under S and contain (1, x1) is also closed under S and contains (1, x1). This is
the smallest subset of N × X, that is closed under S and contains (1, x1). We
will call this set A.

To complete the argument, we will show that the set A is the graph of a
function from N to X – that is, it has the form {(n, xn) : n ∈ N} for a certain
sequence {xn} in X. This is the sequence we are seeking. To prove A is the
graph of a function from N to X we must show that each n ∈ N is the first
element of exactly one pair (n, x) ∈ A. We prove this by induction.
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The element 1 is the first element of the pair (1, x1), which is in A by the
construction of A. If there were another element x ∈ X such that (1, x) ∈ A,
then we could remove (1, x) from A and have a smaller set containing (1, x1)
and closed under S. This is due to the fact that (1, x) cannot be in the image
of S, since 1 is not the successor of any element of N by N3.

Now, for the induction step, suppose for some n we know that there is a
unique element xn ∈ X such that (n, xn) ∈ A. Then S(n, xn) = (s(n), fn(xn))
is in A. Suppose there is another element (s(n), x) ∈ A with x ̸= fn(xn)
and suppose this element is in the image of S – that is (s(n), x) = S(m,y) =
(s(m), fm(y)) for some (m,y) ∈ A. Then n = m by N4, and y = xn by the
induction assumption. Thus if (s(n), x) is really different from (s(n), fn(xn),
then it cannot be in the image of S. As before this means we can remove it
from A and still have a set closed under S and containing (1, x1). Since A is the
smallest such set, we conclude there is no such element (s(n), x). By induction,
for each element of N there is a unique element xn ∈ X such that (n, xn) ∈ A.
Thus, A is the graph of a function n → xn from N to X.

This shows the existence of a sequence with the required properties. We
leave the proof that this sequence is unique to the exercises.

Note that the proof of the above theorem used all of Peano’s axioms, not
just N5.

Using Peano’s Axioms to Develop Properties of N

In this subsection, we will demonstrate some of the steps involved in developing
the arithmetic and order properties of N using only Peano’s axioms. It is not a
complete development, but just a taste of what is involved. We begin with the
definition of addition.

Definition 1.2.4. We fix m ∈ N and define a sequence {m+n}n∈N inductively
as follows:

m + 1 = s(m), and

m + s(n) = s(m + n).
(1.2.3)

These two conditions determine a unique sequence {m + n}n∈N by Theorem
1.2.3.

By the above definition, the successor s(n) of n is our newly defined n+1. At
this point we will begin using n + 1 in place of s(n) in our inductive arguments
and definitions.

Example 1.2.5. Using the above definition and Peano’s axioms, prove the
associative law for addition in N. That is, prove

m + (n + k) = (m + n) + k for all k, n,m ∈ N.

Solution: We fix m and n and, for each k ∈ N, let Pk be the proposition
m + (n + k) = (m + n) + k. We prove that Pk is true for all k ∈ N by induction
on k.
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The base case P1 is just

m + (n + 1) = (m + n) + 1. (1.2.4)

which is the recursion relation (1.2.3) used in the definition of addition once we
replace s(n) with n + 1. Thus, P1 is true by definition.

For the induction step, we assume Pk is true for some k – that is, we assume

m + (n + k) = (m + n) + k.

We then take the successor of both sides of this equation to obtain

(m + (n + k)) + 1 = ((m + n) + k) + 1.

If we use (1.2.4) on both sides of this equation, the result is

m + ((n + k) + 1) = (m + n) + (k + 1).

Using (1.2.4) again, this time on the left side of the equation, leads to

m + (n + (k + 1)) = (m + n) + (k + 1).

Since this is proposition Pk+1, the induction is complete.

Example 1.2.6. Using Definition 1.2.4 and Peano’s axioms, prove that 1+n =
n + 1 for every n ∈ N.

Solution: Let Pn be the statement 1 + n = n + 1. We prove by induction
that Pn is true for every n. It is trivially true in the base case n = 1, since P1

just says 1 + 1 = 1 + 1.
For the induction step, we assume that Pn is true for some n – that is we

assume 1 + n = n + 1. If we add 1 to both sides of this equation (i.e. take the
successor of both sides), we have

(1 + n) + 1 = (n + 1) + 1.

By Definition 1.2.4, the left side of this equation is equal to 1 + (n + 1). Thus,

1 + (n + 1) = (n + 1) + 1.

Thus, Pn+1 is true if Pn is true and the induction is complete.

A similar induction, this time on m, with n fixed can be used to prove the
commutative law of addition – that is, m + n = n + m for all n,m ∈ N. The
base case for this induction is the statement proved above. The associative law
proved in Example 1.2.5 is needed in the proof of the induction step. We leave
the details to the exercises.

We leave the definition of multiplication in N to the exercises. Its definition
and the fact that it also satisfies the associative and commutative laws follows
a pattern similar to the one above for addition. Once multiplication is defined,
we can define factors and prime numbers:
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Definition 1.2.7. If a number n ∈ N can be written as n = mk with both
m ∈ N and k ∈ N, then k and m are called factors of n and are said to divide
n. If n ̸= 1 and the only factors of n are 1 and n, then n is said to be prime.

The order relation in N can be defined as follows:

Definition 1.2.8. If n,m ∈ N, we will say that n is less than m, denoted
n < m, if there is a k ∈ N such that m = n + k. We say n is less than or equal
to m and write n ≤ m if n < m or n = m.

Some of the properties of this order relation are worked out in the exercises.
One of these is that each factor of n is necessarily less than or equal to n
(Exercise 1.2.7).

Example 1.2.9. Prove that each natural number n > 1 is a product of primes.
Solution: Here we understand that a prime number itself is a product of

primes – a product with only one factor. Note that if k and m are two numbers
which are products of primes, then their product km is also a product of primes.

Let the proposition Pn be that every m ∈ N, with 1 < m ≤ n, is a product
of primes.

Base case: P1 is true because there is no m ∈ N with 1 < m ≤ 1.
Induction step: suppose n is a natural number for which Pn is true. Then

each m with 1 < m ≤ n is a product of primes . Now n + 1 > 1 and so it is
either a prime, or it factors as a product km with k and m not equal to 1 or
n + 1. In the first case, Pn+1 is true. In the second case, both k and m are less
than n + 1 and, hence, less than or equal to n. Since Pn is true, k and m are
products of primes. This implies that n + 1 = km is also a product of primes
and, in turn, this implies that Pn+1 is true.

By induction, Pn is true for all n ∈ N and this means that every natural
number n > 1 is a product of primes.

Additional Examples of the Use of Induction

At this point we leave the discussion of Peano’s axioms and the development of
the properties of the natural numbers. The remainder of the section is devoted
to further examples of inductive proofs and inductive definitions. Some of these
involve the real number system, which won’t be discussed until Section 1.4.
Never-the-less we are happy to anticipate its development and use its properties
in these examples.

Example 1.2.10. Prove by induction that every number of the form 5n − 2n,
with n ∈ N is divisible by 3.

Solution: The proposition Pn is that 5n − 2n is divisible by 3.
Base case: Since 5 − 2 = 3, P1 is true;
Induction step: We need to show that Pn+1 is true whenever Pn is true. We

do this by rewriting the expression 5n+1 − 2n+1 as

5n+1 − 5 · 2n + 5 · 2n − 2n+1 = 5(5n − 2n) + (5 − 2)2n.
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If Pn is true then the first term on the right is divisible by 3. The second term
on the right is also divisible by 3, since 5−2 = 3. This implies that 5n+1 −2n+1

is divisible by 3 and, hence, that Pn+1 is true. This completes the induction
step.

By induction (that is, by Theorem 1.2.1), Pn is true for all n.

Example 1.2.11. Define a sequence {xn} of real numbers by setting x1 = 1
and using the recursion relation

xn+1 =
√

xn + 1. (1.2.5)

Show that this is an increasing sequence of positive numbers less than 2.
Solution: The function f(x) =

√
x + 1 may be regarded as a function from

the set of positive real numbers into itself. We can apply Theorem 1.2.3, with
each of the functions fn equal to f , to conclude that a sequence {xn} is uniquely
defined by setting x1 = 1 and imposing the recursion relation (1.2.5).

Let Pn be the proposition that xn < xn+1 < 2. We will prove that Pn is
true for all n by induction.

Base Case: P1 is the statement x1 < x2 < 2. Since x1 = 1 and x2 =
√

2,
this is true.

Induction Step: Suppose Pn is true for some n. Then xn < xn+1 < 2. If we
add one and take the square root, this becomes

√
xn + 1 <

√

xn+1 + 1 <
√

3.

Using the recursion relation (1.2.5), this yields

xn+1 < xn+2 <
√

3

Since
√

3 < 2, Pn+1 is true. This completes the induction step.
We conclude that Pn is true for all n ∈ N.

Binomial Formula

The proof of the binomial formula is an excellent example of the use of induction.
We will use the notation

(

n
k

)

=
n!

k!(n − k)!
.

This is the number of ways of choosing k objects from a set of n objects.

Theorem 1.2.12. If x and y are real numbers and n ∈ N, then

(x + y)n =
n
∑

k=0

(

n
k

)

xkyn−k.
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Proof. We prove this by induction on n.

Base Case: Since

(

1
0

)

and

(

1
1

)

are both 1, the binomial formula is true

when n = 1.
Induction Step: If we assume the formula is true for a certain n, then mul-

tiplying both sides of this formula by x + y yields

(x + y)n+1 = x
n
∑

k=0

(

n
k

)

xkyn−k + y
n
∑

k=0

(

n
k

)

xkyn−k

=
n
∑

k=0

(

n
k

)

xk+1yn−k +
n
∑

k=0

(

n
k

)

xkyn−k+1.

(1.2.6)

If we change variables in the first sum on the second line of (1.2.6) by replacing
k by k − 1, then our expression for (x + y)n+1 becomes

xn+1 +
n
∑

k=1

(

n
k − 1

)

xkyn−k+1 +
n
∑

k=1

(

n
k

)

xkyn−k+1 + yn+1

= xn+1 +
n
∑

k=1

[(

n
k − 1

)

+

(

n
k

)]

xkyn+1−k + yn+1.

(1.2.7)

If we use the identity (to be proved in Exercise 1.4.17)

(

n
k − 1

)

+

(

n
k

)

=

(

n + 1
k

)

,

then the right side of equation (1.2.7) becomes

xn+1 +
n
∑

k=1

(

n + 1
k

)

xkyn+1−k + yn+1 =
n+1
∑

k=0

(

n + 1
k

)

xkyn+1−k.

Thus, the binomial formula is true for n + 1 if it is true for n. This completes
the induction step and the proof of the theorem.

Exercise Set 1.2

In the first seven exercises use only Peano’s axioms and results that were proved
in Section 1.2 using only Peano’s axioms.

1. Prove the commutative law for addition, n + m = m + n, holds in N. Use
induction and Examples 1.2.6 and 1.2.5.

2. Prove that if n,m ∈ N, then m + n ̸= n. Hint: use induction on n.

3. Use the preceding exercise to prove that if n,m ∈ N, n ≤ m, and m ≤ n
then n = m.
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4. Prove that the order relation on N has the transitive property: if k < n
and n < m, then k < m.

5. Use the preceding exercise and Peano’s axioms to prove that if n ∈ N,
then for each element m ∈ N either m ≤ n or n ≤ m. Hint: use induction
on n.

6. Show how to define the product nm of two natural numbers. Hint: use
induction on m.

7. Use the definition of product you gave in the preceding exercise to prove
that if n,m ∈ N then n ≤ nm.

For the remaining exercises you are no longer restricted to just using Peano’s
axioms and their immediate consequences.

8. Using induction, prove that n2 + 3n + 3 is odd for every n ∈ N;

9. Using induction, prove that 7n − 2n is divisible by 5 for every n ∈ N.

10. Using induction, prove that
n
∑

k=1

k =
n(n + 1)

2
for every n ∈ N.

11. Using induction, prove that
n
∑

k=1

(2k − 1) = n2 for every n ∈ N.

12. Finish the prove of Theorem 1.2.3 by showing that there is only one se-
quence {xn} which satisfies the conditions of the theorem.

13. Let a sequence {xn} of numbers be defined recursively by

x1 = 0 and xn+1 =
xn + 1

2
.

Prove by induction that xn ≤ xn+1 for all n ∈ N. Would this conclusion
change if we set x1 = 2?

14. Let a sequence {xn} of numbers be defined recursively by

x1 = 1 and xn+1 =
1

1 + xn
.

Prove by induction that xn+2 is between xn and xn+1 for each n ∈ N.

15. Mathematical induction also works for a sequence Pk, Pk+1, · · · of propo-
sitions, indexed by the integers n ≥ k for some k ∈ N. The statement is:
If Pk is true and Pn+1 true whenever Pn is true and n ≥ k, then Pn is
true for all n ≥ k. Prove this.

16. Use induction in the form stated in the preceding exercise to prove that
n2 < 2n for all n ≥ 5.
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17. Prove the identity

(

n
k − 1

)

+

(

n
k

)

=

(

n + 1
k

)

,

which was used in the proof of Theorem 1.2.12.

18. Write out the binomial formula in the case n = 4.

19. Prove the well ordering principal for the natural numbers: each non-empty
subset S of N contains a smallest element. Hint: apply the induction axiom
to the set

T = {n ∈ N : n < m for all m ∈ S}.

20. Use the result of Exercise 1.2.19 to prove the division algorithm: If n and
m are natural numbers with m < n, and if m does not divide n, then
there are natural numbers q and r such that n = qm+r and r < m. Hint:
consider the set S of all natural numbers s such that (s + 1)m > n.

1.3 Integers and Rational Numbers

The need for larger number systems than the natural numbers became apparent
early in mathematical history. We need the number 0 in order to describe
the number of elements in the empty set. The negative numbers are needed
to describe deficits. Also, the operation of subtraction leads to non-positive
integers unless n − m is to be defined only for m < n.

Beginning with the system of natural numbers N and its properties derivable
from Peano’s axioms, the system of integers Z can easily be constructed. One
simply adjoins to N a new element called 0 and, for each n ∈ N a new element
called −n. Of course, one then has to define addition and multiplication and an
order relation “≤” for this new set Z in a way that is consistent with the existing
definitions of these things for N. When addition and multiplication are defined,
we want them to have the properties that 0+n = n, and n+(−n) = 0. It turns
out that these requirements and the commutative, associative and distributive
laws (described below) are enough to uniquely determine how addition and
multiplication are defined in Z.

When all of this has been carried out, the new set of numbers Z can be shown
to be a commutative ring, meaning that it satisfies the axioms listed below.

The Commutative Ring of Integers

A binary operation on a set A is rule which assigns to each ordered pair (a, b)
of elements of A a third element of A.

Definition 1.3.1. A commutative ring is set R with two binary operations,
addition ((a, b) → a + b) and multiplication ((a, b) → ab), that satisfy the
following axioms:


