Topics to Review

In studying this chapter, it will
help to keep in mind some spe-
cific examples of orthogonal func-
tions and their associated ex-
pansion theory. For example,
you might use Fourier series or
Bessel expansions as your basis
for comparison. Sections 6.1, 6.2,
and 6.4 are self-contained. Sec-
tions 6.1 and 6.2 develop the gen-
eral subject of Sturm-Liouville
theory for boundary value prob-
lemns associated with second order
linear ordinary differential equa-
tions. Section 6.4 develops a
corresponding theory for certain
fourth-order problems. In Sec-
tions 6.3 and 6.5 we look at spe-
cific classical applications of the
second and fourth-order theories,
respectively.

Looking Ahead...

The applications in this chap-
ter are some of the most beau-
tiful in physics and engineering.
They put together different theo-
ries and use almost all our knowl-
edge of special series expansions.
Even though these applications
are all classical, they are pre-
sented in a way that invites the
use of computers. For exam-
ple. in the hanging chain problem
(Section 6.3), the solution is car-
ried out to a point where it can
be fed into a computer to gener-
ate pictures that simulate the mo-
tion of the hanging chain. The
computer can be used in a simi-
lar way to illustrate the new ex-
pansion results arising in Sturm-
Liouville theory, especially the
complicated fourth-order expan-
sions and their related applica-
tions to the elastic vibrations of
beams (Sections 6.4, 6.5).

6

STURM-LIOUVILLE
THEORY WITH
ENGINEERING
APPLICATIONS

It is not once nor twice but times without number that the same ideas
make their appearance in the world.
-ARISTOTLE

In the previous chapters you may have noticed a common theme in
the solutions of the various boundary value problems. In each case,
after separating variables, we had to solve a boundary value problem
for an ordinary differential equation. Although the equations were
often different, their solutions shared the common properties of being
orthogonal and of having expansion theorems. We were then able
to express an arbitrary function in a series in terms of these special
orthogonal solutions. In this way, we encountered Legendre, Bessel,
Fourier, and other related expansions. Are these expansions isolated
theories that happened to share common properties, or are they part
of a general theory that unifies them all?

The main focus of this chapter is to develop a general theory that
encompasses all the specific expansion theorems considered previously,
including Fourier, Fourier sine, Fourier cosine, Bessel, and Legendre
expansions. This theory is named after Sturm and Liouville, who
developed it in the early part of the nineteenth century in their studies
of heat conduction problems, not long after the ground-breaking work
of Fourier.

Beyond its esthetic appeal, Sturm—Liouville theory has many ap-
plications in applied mathematics, physics, and engineering. We will
use it to obtain further expansion results rather than developing them
on a case-by-case basis. Several classical applications are presented
in this chapter, including the problems of the hanging chain (Sec-
tion 6.3), the vibrating beam (Section 6.5), and the theory of plates
and the biharmonic operator (Sections 6.6-6.7).
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6.1 Orthogonal Functions

You may recall from your first course in differential equations how certain
notions from linear algebra were crucial in studying solutions of differential
equations. For example, to check whether two solutions of a second order
linear differential equation yield the general solution, it is enough to show
that the determinant of a certain matrix (the Wronskian) is nonzero (see Ap-
pendix A.1). These and other notions, such as linear independence and basis,
contributed in an essential way to our understanding of solutions of differen-
tial equations. Similarly, our development of the theory of Sturm—Liouville
in this chapter will require notions from linear algebra that are somewhat
abstract but simple to explain in the context of a finite-dimensional vec-
tor space. For this reason, we start our discussion by reviewing some basic
concepts from linear algebra, specialized to vectors in three dimensions.

Recall that the inner product of two vectors € = (z1, x2, 23) and
y = (y1, ¥2, y3) is the number =+ y = (x,y) = z1y1 + Tay2 + z3y3. Two
nonzero vectors & and y are said to be orthogonal if x -y = 0. A set of
nonzero vectors is said to be orthogonal if any two distinct vectors from
this set are orthogonal. A simple example of an orthogonal set consists of
the vectors e; = (1,0, 0), ea = (0,1, 0), and es = (0,0, 1). The inner
product is also used to define the norm of a vector v by

3 1/2
(1) ol = /{0, 0) = (Z ) .

Here are two properties of the set {e;, ez, es} that we wish to investigate
for sets of functions:

e The set {e), ez, es} is complete. That is, if v is a vector that is
orthogonal to ey, es, and ez then v = 0.

e The set {e;, ey, es} is a generating set. That is, every vector v =
(v1, va, v3) can be written as

3
(2) v=> (v,e)e;.

Jj=1

Inner Products and Orthogonality of Functions

In defining the inner product of two vectors, we summed the products of their
components. To define the inner product of two functions, we will integrate
their product as follows. Let f and g be real-valued functions defined on an
interval (a, b) (the interval may be infinite). The inner product of f and
g, denoted (f, g), is the number



If f and g are complex-valued,
then define

b
(f,9) = / f(z)g(w) da.

ORTHOGONAL
FUNCTIONS

In the definitions of orthogo-
nality and norm, you should
use the appropriate definition
of (f,g) for complex-valued
functions.
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b
(3) (f,9) = / f(2)g(z) de

This terminology is the same as for the inner product of vectors because
the function (-, -) defined in (3) satisfies the same properties as the inner
product of vectors (see Exercise 21). We will assume that the functions are
real-valued and nice enough that all integrals of the form (3) exist. This is
for example the case, if the functions are piecewise continuous.

The functions f and g are called orthogonal on the interval (a, b) if

b
Rl e f(@)g(z)dz = 0.

We define the norm of f, denoted | f||, by

" 1/2
1l = (f,f>=(/ |f<w>|2dx) .

If ||fll < oo, we also say that f is square integrable on (a,b). If f is
real-valued, then |f(z)|? is simply f2(x). But if f is complex-valued, then
|£(2)|? = f(z)f(z). Note how both definitions, orthogonality and norm, are
based on the notion of inner products as they were in the finite-dimensional
case. (Compare with (2).) A set of functions {fi, f2, f3, ...} defined on
the interval (a,b) is called an orthogonal set if ||f,|| # 0 for all n, and
each distinct pair of functions from the set is orthogonal, that is, (f,, fm) =
0 for n # m. If, in addition, the norm of each f, is 1, the set is called an
orthonormal set. Hence, if we divide each function in an orthogonal set
by its norm we obtain an orthonormal set.

EXAMPLE 1 Orthogonal functions

Show that the set of functions f,(x) = sinnz (n =1, 2, ...) is orthogonal on the
interval [—m, 7| and obtain the corresponding orthonormal set.

Solution We need to show that ||sinnz| # 0 and each distinct pair of functions
in the given set is orthogonal. We have

. T " 1—cos2nz
||sinnx]|2v/ sinznxdm:/ fdl?:ﬂ'.

Thus the norm of sinnz is || sinnz| = /7 # 0. For m # n we have
™ 1 e
/ sinmx sinnx dx = 3 / [cos(m — n)x — cos(m +n)z]dx = 0.

To obtain an orthonormal set we divide each function by its norm, thus obtaining
functions of norm 1. The corresponding orthonormal set is
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sin x sin2x sin3z
ﬁ’ \/;T" ﬁ, ]

The next example deals with the trigonometric system from Fourier se-
ries. Note that this set has the set from Example 1 as a subset.

EXAMPLE 2 The trigonometric system
The set of functions

1, sinz, cosx, sin 2z, cos 2z, sin 3x, cos 3z, . ..

is orthogonal on the interval [—m, 7| (see Section 2.1). To obtain the corresponding
orthonormal set, we compute ||cosnz| = ||sinnz| = /7 #0, forn = 1,2, ....
Also, the norm of the function identically 1 over the interval [—m, 7] is equal to
V2w, Thus the orthonormal set is

1 sinx cosx sin2x cos2x sin3dx cos3z

VIrd VR VE D VE D VE VE D JE "

EXAMPLE 3 Legendre polynomials
It was shown in Section 5.6 that the Legendre polynomials satisfy

1 1
/_1P§(a:)dx: 2n2+l and /_1Pm(:c)Pn(rc) de =0 form#mn.

Thus the Legendre polynomials form an orthogonal set on [—1,1] . [

Generalized Fourier Series

Let A be a class of functions on (a,b). For example, A could be the class
of all continuous functions on (a, b); or A could be the class of all piecewise
smooth functions; or A could be the class of all square integrable functions
f on (a, b). Suppose fi, fa, f3, ... is an orthogonal set of functions in A.
As in the finite-dimensional case, the following questions arise:

1. Do the functions fy, f2, f3, ... generate A? That is, given a function
fin A, is it possible to express f as a series of the form

(4) f@) =" a;fi(z),
j=1

where the a;’s are real or complex numbers?
2. If the representation (4) is possible, how do we find the coefficients a;?

A complete treatment of these questions requires machinery that is beyond
the scope of this text. Without going far into the theory of orthogonal
functions, we will try to motivate the answers to these fundamental questions



THEOREM 1
GENERALIZED
FOURIER SERIES
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through examples. Starting with the second question, and taking a hint from
(1), our guess is that the coefficients in (4) should be given in terms of the
inner products of f with fi, f2, f3, .... To see this, we proceed as we have
done before with Fourier series. We multiply both sides of (4) by fx and
integrate term by term on the interval (a, b). This gives

b 00 b
[ @@ =Y a [ Hi)s) i
a j=1 ‘e

Because of orthogonality, the kth term is the only nonzero term on the right
side and so

[ 1@nwde=a [ e

The left side is the inner product of f and fi, and the integral on the right
side is the square of the norm of fx, so (f, fi) = ax||fx ||>. Thus

(f, fx) 1,
(5) a = = F(@) fu(z) dz .
1fell? 1 fell® /e
This motivates the following answer to the second question.
If f1, fo, f37 is a set of orthogonal functions (;11—(21; b) and if f can be
represented as a series in the form (4), then
00
, fa .f \
©) foy =3 Y oy
215

The series (6) is called a generalized Fourier series. Examples of such
series include Fourier, Legendre, and Bessel series of the previous chapters.

We now turn to the first question. Again, we take a hint from the
three-dimensional real vector space. For the classes of functions that we
will consider in this book, a set of orthogonal functions fi, f2, f3,...in A
generates A if and only if the the orthogonal functions fi, fo, f3, ... form
a complete set of functions in the following sense: If f is orthogonal to
every f;j,7=1,2,3, ..., then f must be identically 0.

In the case of Fourier series on the interval [—m, 7], the functions 1, cos z,
cos 2z, cos3x, ..., COSNL, ..., sinzx, sin2z, sin3x, ..., sinnz, ... form an
orthogonal set of functions on [—m, w]. By the Fourier series representation
theorem, this set also generates the class A of 2w-periodic, piecewise smooth
functions. What does completeness mean in this case? It means that if all
the Fourier coefficients of a function f are zero, then f must be identically
zero. This fact follows from the Fourier series representation theorem, since




330  Chapter 6 Sturm-Liouville Theory with Engineering Applications

ORTHOGONALITY
WITH RESPECT TO
A WEIGHT

if we set all the coefficients of f equal to 0, then the Fourier series of f is
identically 0. But the Fourier series converges to f, and so f must be zero.

To establish the completeness of a set of functions is difficult in general.
The good news is that most orthogonal sets of functions that we will en-
counter arise from solutions of ordinary differential equations that fit the
so-called Sturm—Liouville theory form. The completeness property of these
sets of functions is a consequence of general results from the Sturm—-Liouville
theory. (See Theorem 3, Section 6.2.)

Orthogonality with Respect to a Weight

What we have presented thus far can be extended to functions that are
orthogonal with respect to a weight function. We have encountered such
situations in the study of Bessel series. In general, if f and g are real-valued
functions on (a,b), we define their inner product with respect to the
weight w to be the number

b
(f,9) = / F(2)9(2) w(z) da.

We assume that w(z) is a nonnegative piecewise continuous function on
[a, b] that is not identically 0 on any subinterval of [a, b]. The corresponding
definition of orthogonality is as follows.

The functions f and g are orthogonal with respect to the weight function w
on the interval [a, b] if

b
[ 1@ u@ ds=o.

The norm of f with respect to the weight function w is

b 1/2
(7) IfIl = (/ |f<x:»lzw<x>dm> .

EXAMPLE 4 Orthogonality with respect to a weight

(a) The functions fn(z) = cosnz (n =1, 2, ...) satisfy ["_ fm(2)fn(z)dz =0 for
m # n. So these functions form an orthogonal set with weight function w(z) =1
on the interval (—m, 7).

(b) Let a1, ag, as, ... denote the positive zeros of the Bessel function Jy. From
Theorem 1, Section 4.8, we have fol Jo(amx)Jo(anx) zdx = 0 for m # n. Thus the
functions Jo(anz), n =1, 2, ... form an orthogonal set with respect to the weight
function w(z) = z on the interval (0, 1). [ ]

The following is the analog of Theorem 1 for expansions in series with
respect to functions that are orthogonal with respect to a weight.
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Although (8) looks identical
to (6), you should keep in
mind that computing the in-
ner products and norms in (8)
involves a weight function.

THEOREM 3
PARSEVAL’S
IDENTITY

Section 6.1 Orthogonal Functions 331

In Example 4(b) we observed that the functions Jy(a,x) are orthogonal
with weight w(z) = z on the interval (0,1). In Example 1 of Section 4.8
we derived the series expansion of the function f(z) = 1 in terms of this
orthogonal series. You should check that the series obtained there is the
same as that in (8).

We end this section with a statement of Parseval’s identity for complete
orthogonal systems.

As we have seen in Section 2.5 with Fourier series, Parseval’s identity
has many important applications. We can motivate it as follows. Since
the functions fi, fa2, f3, ... form a complete orthogonal set of functions
with respect to the weight w on [a,b], the function f can be represented
in a generalized series as in (8). If f is real-valued, multiply both sides of
(8) by f(z)w(x), and integrate over the interval [a, b]. Assuming that we
can integrate the series term by term and using the definition of the inner
product with respect to the weight w, we get (9). If f is complex-valued, we

multiply both sides of (8) by f(z)w(z) and repeat the same proof.

Exercises 6.1

In FExercises 1-8, show that the given set of functions is orthogonal with respect to
the given weight on the prescribed interval.

1. 1, sinwz, cos mx, sin 27z, cos 27z, sin 37z, cos 37z, .. .; w(z) =1 on [0,2].

2. f(z) is an even function, g(z) is an odd function; w(z) = 1 on any symmetric
interval about 0.

3. 1,z, -1+ 22%; w(z) = \/1-1_"5, on [—1,1]. (These are examples of Chebyshev
polynomials of the first kind. See Exercises 6.2 for further details.)

4. -3z +4z3, 1 — 822 + 8z%; w(x) = \/11—_1:7 on [—1,1].
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5.1, 2z, —1+42%; w(z) = V1 — 22 on [~1,1]. (These are examples of Chebyshev
polynomials of the second kind.)

6.1, 1—x, (2—4x+22)/2; w(z) = =% on [0,00). (These are examples of Laguerre
polynomials.)

7.1, 2z, -2 + 42%; w(z) = e on (—00,00). (These are examples of Hermite
polynomials. [Hint: Exercise 33(a), Section 4.7.]

8. (2—dx+2%)/2, —122+ 823 w(z) = e~ on [0, c0).

9. Determine the constants a and b so that the functions 1, z, and a + bz + 2

become orthogonal on the interval [—1, 1].

10. If the functions f(x) and g(z) are orthogonal with respect to a weight w(z)
on [0, L], what can be said about the functions f(ax) and g(ax) where a > 07
11. Compute the norms of the functions in Exercise 1.

12. Compute the norms of the functions in Exercise 5.
13. What is the orthonormal set corresponding to the Legendre polynomials on the
interval [—1,1]7

14. Show that if f and g are continuous functions on [a, b] that are orthogonal with
respect to the weight function 1, then either f or g must vanish somewhere in (a, b).

15. Show that if fi(z), f2(z), ... are orthogonal on [0, 1] with respect to the weight
z, then f1(y/x), f2(y/7), ... are orthogonal on [0, 1] with respect to the weight func-
tion 1.

16. Parseval’s identity for Fourier series. Specialize (9) to the trigonometric
system (of period 2p) to obtain (6) of Section 2.5.

17. Parseval’s identity for Legendre series. Use (9) to derive the identity

1 St 2A2
2 _ n
/_lf(a:) dm—;2n+l’

where A,, is the nth Legendre coefficient of f. (See Section 5.6.)

18. Parseval’s identity for Bessel series. Use (9) to derive the identity

R < R%2J2 (o)
ny: _ +1\%pj
/0 f@)xdr = E — 5 A?.,

J=1

where A; is the jth coefficient of the Bessel series expansion of f of order p, and
ap; is the jth positive zero of J,. (See Section 4.8.)

19. Sums of reciprocals of squares of zeros of Bessel functions. Derive the
o0

1 1
= —— . [Hint: Apply Exercise 18 with
4(p+1) ]; a2

R =1 to the Bessel series expansion found in Exercise 20, Section 4.8.]

following interesting formula:

20. By specializing Exercise 19 to the case p = %, derive the identity
1
7

.S

2 0o
Jj=1
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21. Show that the inner product satisfies the following properties:
(a) (af,g) =a(f,g) for any number a,

(B) (f+9,k) = (£,h) + (g, h),

(c) (f,f) >0 for any function f.

6.2 Sturm-Liouville Theory

REGULAR
STURM-LIOUVILLE
PROBLEM

In this section we explore the interplay between orthogonal functions, or-
thogonal expansions, and differential equations. We study the so-called
Sturm-Liouville problems, which comprise a general class of boundary value
problems with sets of solutions that have the property of being mutually
orthogonal. Moreover, a given function can be expressed as a generalized
Fourier series in terms of these sets of orthogonal solutions.

A regular Sturm—Liouville problem is a boundary value problem on
a closed finite interval [a, b] of the form

(1) [p(2)y] + lg(z) + Ar(z)ly =0, a<z<b,
(a) | ayla)+ coy'(a) =0,
(2) (b) { d1y(b) + day'(b) = 0.

where at least one of ¢; and ¢o and at least one of d; and dy are nonzero, and
A is a parameter. Equation (1) is said to be in Sturm—Liouville form.
We further assume the regularity conditions: p(z), p'(z), q(z), and r(z)
are continuous on the closed interval a < x < b, with p(z) > 0 and r(z) > 0
for a < z < b. Often there is no need to mention the interval a < z < b
explicitly, since a and b can be understood from the boundary conditions.

A singular Sturm—Liouville problem is a boundary value problem
consisting of equation (1) either on a finite interval where at least one of
the regularity properties fails or on an infinite interval. In this case the
boundary conditions are not always described by sets of equations like (2a)
and (2b). Typically, a Sturm-Liouville problem is singular either because it
occurs on an infinite interval, or because one or more of the coefficients goes
to 0 or co at an endpoint of the interval, or both. Indeed, it is convenient to
require that p(x), p'(x), ¢(z), and r(z) are continuous on the open interval
a <z <b, with p(z) >0 and r(z) > 0 for a <z < b. This will be the case
for all singular problems encountered in this book. We illustrate with some
examples.
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AY
y = sinh x
54
2 -1 *
0 | 2
51

Figure 1 sinhz is always in-
creasing.

EXAMPLE 1 Classical singular Sturm—Liouville problems
(a) Legendre’s equation (1 — z2)y”’ — 22y’ + n(n + 1)y = 0 can be put in the
Sturm—Liouville form

(1=22)y) +nn+1)y=0, —-1l<z<I,

with p(z) =1 — 2% q(z) =0, 7(z) = 1, and A = n(n + 1). Note that p(£1) = 0,
and so one of the regularity conditions is not satisfied.

(b) Parametric form of Bessel’s equation This refers to equation (18) in
Section 4.8. It is easy to check that this equation can be put in the Sturm-Liouville

form
2

[zy]" + {—% +/\2x]y:0, O0<z<a, yla)=0.

Sop(z) =r(z) =z, q(z) = —%, and the parameter is written as A>. The regularity
conditions are not all met, because ¢(z) is not defined at 0, and also p(0) = r(0) = 0.
Hence, this problem is a singular Sturm-Liouville problem. [ |

Clearly y = 0 is a solution of every Sturm—Liouville problem. The nonzero
solutions of a Sturm-Liouville problem are called the eigenfunctions of the
problem, and those values of A for which nonzero solutions can be found are
called the eigenvalues. In Example 2 we see how to determine eigenvalues
and eigenfunctions.

EXAMPLE 2 A regular Sturm-Liouville problem
Find the eigenvalues and corresponding eigenfunctions of the Sturm—Liouville prob-
lem

y'+dy=0, y(0)=y(r)=0.

Solution This differential equation fits the form of (1) with p(z) = 1, ¢(z) = 0,
and r(z) = 1. In the boundary conditions, a = 0 and b = 7, with ¢; = d; =1 and
¢y = do = 0, so this is a regular Sturm-Liouville problem.

We seek nonzero solutions of the problem. As is often the case with Sturm-
Liouville problems, the nature of the solution depends on the sign of A, so we
consider three cases.

CASE 1: A < 0. Let us write A = —a?, where & > 0. Then the equation becomes
vy’ — a’y = 0, and its general solution is ¥y = ¢y sinhax + cacoshaz.  We need
y(0) = 0, so substituting into the general solution gives c; = 0. Now using the
condition y(m) = 0, we get 0 = ¢; sinh o, and since sinhx # 0 unless z = 0 (see
Figure 1), we infer that ¢; = 0. Thus there are no nonzero solutions in this case.

CASE 2: X = 0. Here the general solution of the differential equation is y =
c1Z + ¢c2, and as in Case 1 the boundary conditions force ¢; and ¢s to be 0. Thus
again there is no nonzero solution.

CASE 3: ) > 0. In this case we can write A\ = a? with a > 0, and so the equation
becomes y” + a?y = 0. The general solution is y = ¢; cosaz + cosinax. From
y(0) = 0 we get 0 = ¢1¢0s80 + ¢cosin0, or 0 = ¢;. Thus y = cosinax. Now we
substitute the other boundary condition to get 0 = cosinam. Since we are seeking
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nonzero solutions, we take ¢y # 0. Thus we must have sinam = 0, and hence
a=1,2,3,.... Thismeans that, since A = o2, the problem has eigenvalues

AM=1 =4 A3=09, ...
and corresponding eigenfunctions
y1 =sinz, Yo = sin2z, y3 = sindz, ... .

We have let the constant c; be 1 in each case. All other eigenfunctions will be
nonzero multiples of these. [

We now describe some fundamental properties of eigenvalues and eigen-
functions of regular Sturm-Liouville problems, all of which are illustrated
by the solution to Example 2. In that example, the eigenvalues form an
increasing sequence of real numbers. Moreover, to each eigenvalue there cor-
responds just one linearly independent eigenfunction. For instance, when
A = 4 in Example 2, the corresponding eigenfunctions are all of the form
¢y sin 2z; that is, they are all multiples of sin 22. It can be checked easily that
the eigenfunctions sinx, sin2x, sin3z, ... form an orthogonal set over the
interval 0 < z < 7. As Theorems 1 and 2 below indicate, these observations
hold for all regular second order Sturm-Liouville problems. The proofs of
these theorems are found in Ordinary Differential Equations, 2nd ed., by G.
Birkhoff and G. Rota, Wiley, 1969.

The eigenvalues of a regular Sturm-Liouville problem are all real and form
an increasing sequence

>\1</\2</\3<"'

where A\j — 00 as j — o0.

Our next result deals with the orthogonality of eigenfunctions. This prop-
erty holds for regular as well as some singular Sturm—Liouville problems. To
understand the reason behind the orthogonality property, we start by de-
riving some consequences of the boundary conditions (2), in regular Sturm-
Liouville problems.

Let A; and Ag be two distinct eigenvalues of the regular Sturm-Liouville
problem (1)—(2), and let y; and yx denote their corresponding eigenfunctions.
From (2a) we have

ayjla) + cayila) =
ciyr(a) + coypla) =

In matrix form this becomes

s vl el =1
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CONDITION FOR
ORTHOGONALITY
IN SINGULAR
STURM-LIOUVILLE
PROBLEMS

THEOREM 2
UNIQUENESS AND
ORTHOGONALITY
OF
EIGENFUNCTIONS

Since not both ¢ and ¢o are 0, we must have that

yila) yi(a)] _
det [yk(a) yi(a)] =0,

or, equivalently, y(a)y;(a) — yj(a)y,(a) = 0. Similarly, since the eigenfunc-
tions satisfy (2b), we get that yk(b)y;(b) — y;(b)y;(b) = 0. Combining these
two identities and the fact that p(a) and p(b) are finite, we infer that

(3) () (wr(b)y;(b) — y; (B)yr(b)) — pla)(ykla)y;(a) — y;(a)yr(a)) = O.

As you will see from the proof of Theorem 2, it is precisely this equation
that will imply the orthogonality of the eigenfunctions.

In singular problems, since we may be dealing with infinite intervals, or
with functions that may be unbounded near the endpoints, instead of (2) we
will require a condition similar to (3), but stated using limits as follows.

Suppose that y; and yo are eigenfunctions of a Sturm-Liouville problem,
corresponding to two distinct eigenvalues A1 and A9, respectively. We require
that

(4) / !/ : / /

lim p(z) (y1(x)y2(x) = v2(2)p1(2)) — lim p(2) (s (2)y2(x) - va(z)31 (2)) = 0.

zla

As we just noted, (4) reduces to (3) for regular Sturm—Liouville problems;
and thus it holds for regular Sturm-Liouville problems. It also holds in many
important singular problems, such as Legendre’s and Bessel’s equations (see
Example 3, below).

For another interesting example where (4) holds, consider the case of (1)
when a and b are both finite and p(a) = p(b) > 0. Instead of (2), we require
that y(a) = y(b) and y'(a) = y'(b). These conditions appear frequently in
applications. They are called periodic boundary conditions. It is easy
to verify that (4) holds in this case.

(a) Each eigenvalue of a regular Sturm-Liouville problem has just one lin-
early independent eigenfunction corresponding to it. V

(b) Eigenfunctions corresponding to different eigenvalues of a regular
Sturm—Liouville problem are orthogonal with respect to the weight function
r(xz). This assertion is also valid for the other Sturm-Liouville problems
allowed by condition (4).

Proof (a) Suppose that y; and y» are two eigenfunctions corresponding to the
eigenvalue A\. 'We will show that y; and y, are linearly dependent by proving that
their Wronskian W (y;,v2) is 0. Recall that we need only prove that W(y;1,y2) =0



The reason we can use a
Wronskian argument to prove
the linear dependence of
and Yo is because y; and
yo are eigenfunctions corre-
sponding to the same eigen-
value, and hence they are so-
lutions of the same ordinary
differential equation. This ar-
gument will not work with
eigenfunctions corresponding
to distinct eigenvalues.
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at one point to show that W(y;,y2) = 0 (Theorem 7, Appendix A.1), so let us
evaluate the Wronskian at x = a. We have

Wy, y2)(a) = Ziggg Zyjzgzg

Since y; and yo satisfy (2a), we have

= y1(a)ys(a) — y2(a)yi(a).

Il

{ ay(a) + cayi(

a) =0,
c1yz2(a) + cayh(a) = 0.

{l

Note that if we take ¢; = ¢o =0, then the system of equations is satisfied. We also
know from our assumptions that the system is verified when not both ¢; and ¢c; are
zero. Thus the system of equations has more than one solution in ¢; and ¢;. This
can happen if and only if the determinant of the coefficient matrix is zero. That is,

yi(a)wh () — v ()yz(a) = 0, or, equivalently, W (ys, y2)(a) = 0.

(b) Suppose \; # Ay are eigenvalues of a Sturm-Liouville problem, with cor-
responding eigenfunctions y; and yi, respectively. Since y; and y;. are solutions of
(1), we have

[p(z)y;)" + [a(@) + Ajr(z)ly; = 0;
[p(2)yi]’ + [q(z) + Aer(@)]yx = 0.

We multiply the first equation by y, the second by y;, subtract, and simplify to
get
uk[P(@)y;]" — v lp(@)vhl” = (e = Aj)yiuer (@)

Since £ (p(@) (s, — v94)) = wnlp(@)yl]’ — v [p(@)y4)’ (use the product rule and
simplify to see this), we get

b b
(5) (Ak—%)/ y; (2)yk(z)r(z)de = /%(p(x)(yky}—yjyk)) dx

= p@) ) — vyl
= p(b)yk(b)y; (b) — y;(b)ys(b)]
—pla)[ye(a)y)(a) — y;(a)yi(a)].

Appealing to (4), we see that the right side of (5) is 0. Since A — A; # 0, we infer
that

b
/ yi(@)ye(z)r(z)dz =0,
Ja
that is, y; and y; are orthogonal with respect to the weight function r(z). |

Note that part (a) of Theorem 2 may fail for Sturm-Liouville problems
with periodic boundary conditions, because they do not satisfy (2a), as as-
sumed in the proof. In particular, the equation

y/,+)\y:O

with periodic boundary conditions y(—n) = y(n), y'(—7n) = ¢/(7) has eigen-
values A\, = n?,n =0, 1,2, ... and for each )\, with n > 1 there are two
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THEOREM 3
EIGENFUNCTION
EXPANSIONS

linearly independent eigenfunctions sinnz and cosnx (see Exercise 14). In
general, as illustrated by this example, in any second-order Sturm—Liouville
problem, each eigenvalue has at most two linearly independent eigenfunc-
tions corresponding to it. This is a consequence of the fact that we are
dealing with a second-order differential equation.

EXAMPLE 3 Legendre polynomials and Bessel functions

(a) Looking back at Example 1(a), we see that, when Legendre’s equation is put
in Sturm-Liouville form, the function p(xz) = 1 — z? satisfies p(+1) = 0. Thus (4)
holds, and so Theorem 2 implies that its eigenfunctions, the Legendre polynomials,
P.(z) (n=0,1,2,...), are orthogonal on the interval (—1,1) with respect to the
weight function r(z) = 1.

(b) In Example 1(b), we put the parametric form of Bessel’s equation in Sturm-—
Liouville form and obtained the functions p(z) = « and r(z) = . Using the fact
that p(0) = 0 and y(R) = 0, we see that (4) holds. Thus Theorem 2 implies that
the solutions of this equation, Jp(% ), 7=1,2, ..., are orthogonal on the interval
(0, R) with respect to the weight function r(z) = x.

It is interesting to note that we do not have to impose a boundary condition
(other than boundedness) at one of the singular points in (a) or (b). We do not
apply a boundary condition at p = 0 in cylindrical problems with Bessel functions,
or at x = %1 for Legendre polynomials. |

Eigenfunction Expansions

From Theorem 2 it follows that if \; < Ay < A3 < --- is the set of eigenvalues
for a regular Sturm-Liouville problem, then a corresponding set of eigenfunc-
tions {y1,¥y2,¥s, ...} is orthogonal with respect to the weight function r(z).
Thus, as in Section 6.1, we can find orthogonal expansions for suitable func-
tions in terms of yi, y2, y3, .... More precisely, we have the following
fundamental result in Sturm-Liouville theory. Recall that the inner prod-
uct (y;,ye) with weight r(z) is defined as f: y;yk7(z) dz and that the norm

llys1l is /(y5, y5)-

The series expansion is called the eigenfunction expansion of the func-
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tion f, and the coefficients A; are called generalized Fourier coefficients.
Fourier sine (for the corresponding regular Sturm—Liouville problem, see Ex-
ample 2 above) and cosine expansions provide illustrations of this theorem.
The full proof of Theorem 3 is beyond the scope of this book. But we can
derive the formula for the A;’s from Theorem 2 of Section 6.1. Beyond this,
it is clear that much more is true. We have already seen that the conclusion
of this theorem is valid for the singular cases of Legendre and Bessel series.
Thus, Legendre series and Bessel series are examples of eigenfunction ex-
pansions. Similarly, the example of Fourier series shows that the conclusion
also holds in a case where periodic boundary conditions are imposed.

Eigenfunction expansions arise naturally in the solution of applied prob-
lems. For example, when we studied heat conduction in a bar with one
radiating end (Example 2, Section 3.6), we encountered a regular Sturm-
Liouville problem. As a further illustration, which demonstrates the role of
the boundary conditions in determining the eigenvalues and eigenfunctions,
we solve a related problem with altered boundary conditions.

EXAMPLE 4 Eigenvalues and eigenfunctions
Find the eigenvalues and eigenfunctions of the regular Sturm-Liouville problem

X" 4+AX =0, X'(0)=0, X(1)+X'(1)=0.

Solution If A = 0, the general solution of the differential equation is X = az+b. It
is easy to check that the only way to satisfy the boundary conditions is to take a =
b=0. Thus A = 0is not an eigenvalue since no nontrivial solutions exist. If A < 0,
the general solution of the differential equation is X = ¢; cosh vV —=Az+c sinh V= z.
It is a straightforward exercise to check that no nontrivial solution of this form will
satisfy the boundary conditions. Thus there are no negative eigenvalues. When
A > 0, for convenience, we set A = p? and find that the general solution of the
differential equation is
X = Acosux + Bsinpx .

We now apply the boundary conditions:

X'(0)=0 = B=0
X)) +X'(1)=0 = A(cospy—pusiny)=0.

To ensure that we get nonzero eigenfunctions, we take A = 1 and set
cospu — psinp = 0;

equivalently,

(6) cotp=p.

Thus the eigenvalues A = p? correspond to the positive roots ;o of this equation.
If we plot the graphs of y = cot i and y = p, we see that these graphs intersect
infinitely often (see Figure 2 for an illustration). Thus, (6) has infinitely many
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roots. Although we cannot compute these roots in simple form, we can find their
numerical values and use them in our subsequent computations. For now, we
denote the roots by u1, g2, ..., tin,... and conclude that the eigenfunctions are

X=X,=cosp,x, n=12,....

The eigenvalues are u7, p3 , ..., p2,.... [ |
\ y
30 A/y= cot |
~9.53
20 by~ 3.43 Ky~ 6.44 H4

B ) ) “

Figure 2 Roots of cot p = . =30

EXAMPLE 5 Eigenfunction expansions

(a) Compute the first five eigenfunctions Xi(z), X2(z), ..., Xs(z) in Example 4
explicitly.
(b) Given f(z) =z(1 —z), 0 <2z < 1. What is the eigenfunction expansion of
f? Plot f and some partial sums of the eigenfunction expansion.
Solution (a) Figure 2 shows the graphs of ¥y = cot 4 and y = p.  According
to the solution of Example 4, to find the eigenvalues, we must solve the equation
cot i = . With the help of a computer system, we find the first five solutions to
be approximately

w1 = 0.860, po = 3.426, pz = 6.437, pg = 9.529, us = 12.645.
Thus the first five eigenfunctions are

X1(z) = cos(0.860x), Xa2(z)= cos(3.426 ),
Xs(x) = cos(6.437z), Xa(z)=1c0s8(9.529x), Xs(x)= cos(12.645z).

(b) By Theorem 3, the eigenfunction expansion of f is
oo
flz) = Z Ajcos p;x,
j=1
where

1 1
A= / z(1 —z)cos pz d:v// cos? iz dz
Jo 0

with the numerical values of the p;’s given in (a). We evaluate these coefficients
with the help of a computer and find

Ay = .189, Ay = —0.032, A3 = —0.091, A4 = —0.001, A5z = —0.025.



Figure 3 Eigenfunction ex-
pansion of f(z) =z(1 —z).
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Thus the eigenfunction expansion of f is

f(z) = .189c0s(0.860x) — 0.032 cos(3.426x) — 0.091 cos(6.437x)
~0.001 cos(9.529z) — 0.025 cos(12.645z) + - - - .

y=x(1-2)
A y
0.25
0.15
s3(x)
Ss(x)
0 0.5 e

As guaranteed by Theorem 3 and illustrated in Figure 3, the partial sums of
the eigenfunction expansion converge to f(z). |

Further information about the eigenfunctions in Examples 4 and 5 can
be obtained by quoting results from this section. For example, Theorem 2
implies the orthogonality of these eigenfunctions on the interval (0,1).

The problem that we consider next arises in the solution a heat equation
on a disk with Robin-type boundary conditions (Exercise 35). We will use
a notation that reflects this connection with the heat equation.

EXAMPLE 6 Bessel’s equation with Robin conditions
Find the eigenvalues and eigenfunctions of the singular Sturm—Liouville problem

rR'+ R +)XrR=0 (0<r<a), R'(a)=-rR(a)

Here k > 0 is a heat transfer constant or coefficient, and a > 0 is the radius of the
disk. Note that we do not give a boundary condition at the 0 endpoint. Instead,
we usually require that the solutions be bounded in the interval [0, a.

Solution We recognize the equation as a parametric form of Bessel’s equation of
order 0 (see Theorem 3, Section 4.8). Its bounded solutions in the interval [0, a
are of the form

R(r) = Jo(Ar),

where the eigenvalue A is determined from the boundary condition:
R'(a) = —kR(a) = MJj(Ma) = —rJo(Aa).

Does this equation have infinitely many solutions in A? Using facts from calculus
and properties of Bessel functions, it is not difficult to show that the answer is
affirmative (Exercise 36). Here we shall give an approximation of the roots. Using
the formula Ji(z) = —Ji(x) ((1), Section 4.8), the equation becomes

(7) A1 (aX) = kJp(aX).
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The fact that the roots of
the equations Jo(A) = AJ1(\)
and —\ = tan(\ + 7/4) are
approximately equal can be
used to estimate the eigenval-
ues in Example 6. For exam-
ple, by considering the verti-
cal asymptotes of the tangent,
can you justify the claim that,
for large k, Ax =~ % + kn?
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The graphs in Figure 4 suggest that indeed we do have infinitely many roots A = A,

k=1, 2,.... The first six of these, for the case Kk = a = 1, are shown in Table 1.
k 1 2 3 4 5 6
Ak 1.25578 | 4.07948 | 7.1558 | 10.271 | 13.3984 | 16.5312
Table 1. Positive roots of A\J;(A) = Jo(A).
by y= le(x) Y y=tan (A + /4)

A =m/4 ho=5n/4 \ A=9m/4
/

y=Jo() g g

1 / ~4o79 o, ~ 1.404 a, ~4.163 (| oy = 7.206

D . T VN
x N
A =~ 1256 >3z7,156 y=—2

Figure 5

A more accurate description of the eigenvalues can be obtained by appealing to
the asymptotic formulas for Bessel functions (Theorem 3, Section 4.9). We have

Jo(A) ~ y/Z cos(A — Z) and J1(\) ~ /2 cos(A — T — ). Hence the roots of
AJi(a)) = kJo(aA) are approximately the roots of the equation Acos(al - ST”) =
k cos(aX— I); and since cos(aA— 2E) = — cos(aA+T) and cos(aA— T ) = sin(aA+7),
the equation becomes

1 ™
8 —= X =t A+ =)
(8) - an (aX + 4)
The first six roots of this equation with £ = a = 1 (denoted «y) are shown in

Table 2 (Figure 5), whose entries should be compared with the entries in Table 1
(Figure 4):

k 1 2 3 4 5 6

o 1.40422 | 4.16275 | 7.20647 | 10.3069 | 13.4261 | 16.5537

Table 2. Positive roots of —\ = tan ()\ + %{—)

Because the asymptotic formulas for Bessel functions give better results for larger
values of A, the entries in Table 2 give a much better approximation for larger
eigenvalues. To each eigenvalue Ay corresponds one eigenfunction Ry (r) = Jo(Agr).
We took k = @ = 1 and plotted the eigenfunctions for £ = 1, 2, and 3 in Figure 6.
These should not be confused with the Bessel functions that arise from the solution
of the heat equation on a disk, with 0 boundary condition. The latter are equal to
0 when r = a, which is not the case with the functions shown in Figure 6. |
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Figure 6 Eigenfunctions in
Examples 6 and 7.
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EXAMPLE 7 Orthogonality
Show that the eigenfunctions in Example 6 are orthogonal on the interval (0, a),
with respect to the weight ». More explicitely, show that

-Q
/ JoNjr)Jo(Agr)rdr =0 (5 # k),
0
where Ay (k =1, 2, ...) are the positive roots of (7).

Solution It is enough to show that condition (4) is satisfied. The Sturm-Liouville
form of the equation is (recall the result of Example 1(b) with order p = 0):

PR+ NrR=0, 0<r<a, R(a)=-rR(a).

So in (4), take p(r) = r and let 4, and y2 be two eigenfunctions corresponding to
distinct eigenvalues. In our notation, (4) becomes

lim p(r)(ys (r)y2(r) = y2(r)p1 () = limp(r) (v (N)y2(r) = 2(r)a (1) = 0,

and since p(0) = 0, p(a) = a, and all the functions are continuous, the condition
becomes

a(y1(a)yy(a) — y2(a)y)(a)) = O; equivalently, yi(a)ys(a) — y2(a)yi(a) = 0.

At the endpoint r = a, we have y,(a) = —kyr(a). So the left side of the last
displayed condition becomes

y1(a)(=ry2(a)) — y2(a)(—ryr(a)) = 0,

which is a true statement. Hence (4) holds, and by Theorem 2 the eigenfunctions
are orthogonal with respect to the weight 7. |

Additional properties of the eigenfunctions in Examples 6 and 7 will
be investigated in the exercises. In particlar, the completeness property of
the eigenfunctions will be illustrated by studying the convergence of specific
eigenfunction expansions.

In Section 6.4, we will study Sturm—Liouville problems associated with
differential equations of order 4. This generalization is motivated by our
later study of the vibrations of a beam which will require the solution of
such problems.

Exercises 6.2
In Exercises 1-10, put the given equation in Sturm—-Liouville form and decide whether
the problem is regular or singular.

Lazy'+y + Ay =0, y(0) =0, y(1) =0
2.2y +y + Ay =0, y(1) =0, y(2) =0
3.2y’ +2¢y + Ay =0, y(1) =0, ¥(2) =0. [Hint: Multiply by x.]
4. y" +(z+ Ny =0, y(0) =0, y(1) =0.
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5.2y" —y + Azy =0, y(0) =0, y(1
6.y + [1A2]y = 0, y(1) =0, ( )=
7.9+ Ay =0, y(—-1) =0, y(1) =0.

8. (1—2%)y" — 22y + (1+ Azx)y =0, y(—1) =0, y(1) =0.
9. (1-z%)y" —2zy + My =0, y(-1) =0, y(1) =0.

10. v — 2=y + Ay =0, y(~1) =0, y(1) = 0.

In Ezercises 1120, determine the eigenvalues and eigenfunctions of the given Sturm-
Liowville problem.

) = 0. [Hint: Divide by z?.]

11. v" + Ay =0, y(0) = 0,y(27) = 0.

12. ¥ + Ay =0, y(0) =0, y(x/2) =0.

13. ¢y 4+ Ay =0, y(0) =0, y(7) =0

14. y' + 2y =0, y(—m) = y(n), y'(-m) =y (7).
15. 4" + Ay =0, y(0) =0, y(m) +y/(7) = 0.

16. v + Ay =0, y(0) +¢/(0) =0, y(27) = 0.

17.y" + My =0, y(0) +3/(0) =0, y(1) + (1) = 0.
18. 3/ + Ay = 0,y(0) + 24/(0) =0, y(1) = 0.

19.
20.

ﬁ— +Xz]y =0, 0 <2 <1, y(0) is finite, y(1) = 0.
y=0, 0 <z <3, y(0) is finite, y(3) = 0.

2y’ +y + [
zy’ +y + [~ + Az]

21. Show that the boundary value problem y"” — Ay = 0, y(0) =0, y(1) = 0 has
no positive eigenvalues. Does this contradict Theorem 17
22. Show that the boundary value problem 3" — Ay = 0, y(0) +¢'(0) = 0, y(1) +

y'(1) = 0 has one positive eigenvalue. Does this contradict Theorem 17

23. (a) Find the eigenfunction expansion of the function f(z) = =z,
using the eigenfunctions of the Sturm-Liouville problem of Example 2.

O<z<m,

(b) Plot the function and several partial sums of the eigenfunction expansion and
comment on the graphs.

24. Repeat Exercise 23 with the function f(z) =1, 0 <z < 7.
25. Repeat Exercise 23 with the function f(z) =sinz, 0 <z < 7.

26. (a) Approximate the numerical values of the first eight eigenvalues in the
Sturm-Liouville problem of Exercise 15, and describe the corresponding eigenfunc-
tions.

(b) Approximate the first eight nonzero terms of the eigenfunction expansion of
sinz. Plot the function and several partial sums of the expansion. Describe what
is happening in the picture that you obtain.

27. Expand the function f(z) =1, 0 < z < 7, in a series in terms of the eigenfunc-
tions of Exercise 26. Plot the function and the partial sums of the eigenfunction
expansion and comment on the graphs.

@ 28. Expand the function f(z) = sinnwz, 0 < 2 < 1, in a series in terms of the eigen-

functions of Example 5. Plot the function and the partial sums of the eigenfunction
expansion and comment on the graphs.
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29. Verify the orthogonality of the eigenfunctions of Exercise 11.
30. Verify numerically the orthogonality of the eigenfunctions of Example 5.

31. The second order, linear ordinary differential equation
(1 -2y’ —ay +n’y =0, -l<z<1,

where n =0, 1, 2, ..., is known as Chebyshev’s differential equation. We are
iterested in solving this equation with the boundary conditions y(1) = 1 and 3/(1)
is finite.
(a) Put the equation in Sturm-Liouville form and determine p(x), ¢(x), and r(x).
[Hint: First, divide through by (1 — z2)'/2)]
(b) Use the power series method, as we did in Section 5.5 with Legendre’s equation,
and show that Chebyshev’s equation has one polynomial solution of degree n. The
one that satisfies y(1) = 1 is called the Chebyshev polynomial of degree n and
is denoted by T, ().

It is a fact that the derivative of the nonpolynomial solution is not bounded at
x = 1. Thus T, (z) is the only solution that satisfies the boundary conditions.
(¢) Using (4), show that the Chebyshev polynomials are orthogonal on (—1,1) with

respect to the weight function r(z) = —=—.

32. (a) Show that the change of variables x = cos @ transforms Chebyshev’s equation
into i’ +ny =0, 0< @< 7.
(b) Conclude that two linearly independent solutions of Chebyshev’s equation are
y1(z) = y1(cos ) = cosnb and y2(x) = y2(cos #) = sinnd
(¢) Show that y5(z) is not bounded at x = 1. Hence y;(x) = cosnf is the only
solution that satisfies y(1) = 1 and '(1) is finite. Conclude that T,,(z) = cosn#.
As you know, cosné can be expressed as a polynomial in cos@. This polynomial
expression is precisely T,(z): for example, Ti(z) = cosf = x; Ta(z) = cos20 =
2¢c0s? @ —1 =222 — 1, and so on.
(d) Find T5(x) and Ty(z).
33. (a) Show that the eigenfunctions in Example 6 satisty

2

/O'a o)) *rdr = & ([Jo(ha)]” + [71(wa)]?).

[Hint: Exercise 36(b), Section 4.8.]
(b) Suppose that you know that the eigenfunctions form a complete set of orthogonal
functions on the interval (0, a). Show that if

fr)y = Acdo(r) (0<7 <a),

k=1

then
2 e
A = A al\er Ve dr
k QQ([JO(/\[(;@)]2+ [Jl()\ka)]2> ‘/0 () Jo(Aer)

34. Consider the eigenfunctions in the preceeding exercise, and take a = k = 1.
(a) Derive the following eigenfunction expansion of f(r) = 100 for 0 <r < 1:

J1(/\Ic)
i )\k([JO()\k)]2 + [Jl()\k)ig)

[ee]

100 = 200

Jo(AxT).
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(b) Show that Ji(\x) = JO( k) and conclude that 0 <7 < 1:

100 = 2002 T +/\2 [ (/\k)] 5 Jo(AkT).

W (c) Use the numerical values from Table 1 to obtain a six-term partial sum approxi-

mation of the function in part (b). Plot this partial sum to illustrate the convergence
of the eigenfunction expansion.

35. Project Problem: Heat problem on a disk with Robin conditions.
Use the method of separation of variable to solve the heat equation on a disk of
unit radius

u  O%*u 10u

- - iind <
5 (97"2+'r'87“’ 0<r<l1, t>0,

with initial temperature distribution u(r, 0) = 100 (0 < r < 1), and Robin boundary
condition

ou
E(r, t) = —u(l, t).

The problem models the temperature distribution in a plate with insulated lateral
surface, whose boundary is exchanging heat with the surrounding medium at a rate
proportional to the temperature at the boundary. Here the heat transfer constant
or convection constant s is equal to 1.

36. Fix a, s > 0 and let h(X) = kJo(aX) + AJj(ar), and A; and Ag be two distinct
consecutive zeros of Jo(a\) such that 0 < A\; < As.

(a) Show that h(A1) = A Jj(arr), h{A2) = AaJj(ars) and that h(aA;) and h(alsz)
have opposite signs. [Hint: Since A1, A2 > 0, it is enough to argue that the values
of the derivative of Jy at two consecutive roots of Jy must have opposite signs.]
(b) Conclude that h{aX) = 0 for some Az in the interval (A1, \2).

(c) Using the fact that Jy(a\) has infinitely many positive zeros, show that kJo(aA)+
Ji(aX) = 0 has infinitely many positive roots.

6.3 The Hanging Chain

X

0

Y

Figure 1 Hanging chain.

Having studied Sturm-Liouville theory for second order equations, we illus-
trate the theory as it applies to the oscillations of the hanging chain. This
problem played an important role in the development of the theory of par-
tial differential equations. It was while solving this problem that Daniel
Bernoulli first discovered Bessel functions in 1732. Although we link the
solution to general Sturm-Liouville theory, our presentation contains all the
necessary details to solve this problem based on the properties of Bessel
functions from Section 4.8.

To describe the equation governing the motion of the hanging chain, we
place the z-axis in a vertical position, pointing upward. Consider a chain
of length L, hanging down with one end fastened at z = L (Figure 1). The
small transverse oscillations of the chain are described by the boundary value



