APPENDIX A

ORDINARY
DIFFERENTIAL
EQUATIONS: REVIEW
OF CONCEPTS

AND METHODS

Among all the mathematical disciplines the theory of differential equations
s the most important. It furnishes the explanation of all those elementary
manifestations of nature which involve time.

~-SOPHUS LIE

A basic knowledge of ordinary differential equations is cssential for the de-
velopment of the main topics of this book. For example, solving a partial
differential equation by standard methods leads naturally to ordinary differ-
ential equations. In this appendix we provide a review of the basic techniques
that will be uscful in this book. Our brief presentation covers the essentials
of linear ordinary differential equations as taught in a first course on differ-
ential equations. In the first section we present the fundamental properties
of existence. uniqueness, and linear independence of solutions. The rest of
the chapter is devoted to the treatment of the basic tools for solving linear
ordinary differential equations, including series methods. This chapter is not
intended as a comprehensive treatment, but rather as a convenient reference
for topics that are needed in the book.
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A.1 Linear Ordinary Differential Equations

THEOREM 1
SOLUTION OF THE
FIRST ORDER
LINEAR
DIFFERENTIAL
EQUATION

The expression [ p(x) da rep-
resents  an  antiderivative of
p(r). and so it is defined up
to a constant C. In applying
(2). you should take the same
value of €' in both occurences
of [p(x)dv. Usually, the
most convenient choice is C =
0. (See FExample 1.)

An ordinary differential equation is an equation that involves an unknown
function y and its derivatives y") of order j. A linear ordinary differen-
tial equation in standard form is an equation

(1) y("‘) + Pu—1 (Jl'f)’y(n Dt pr(z)y + pol)y = g(r)

where n is called the order of the equation and p;(.) and g(x) are given
functions of x. The expression standard form refers to the fact that the
leading coefficient is 1. A solution of (1) on an interval I is any n times
differentiable function y = y(x) satisfying (1) on 1. The equation (1) is
homogeneous if g(z) = 0, otherwise it is nonhomogeneous.

The first- and second-order equations are of particular interest to us. We
can describe completely the solution of the first one, while discussion of the
second will occupy the rest of this appendix.

Suppose that p(x) and g(x) are continuous on the interval /. Then any
solution of the first-order linear differential equation

y +ple)y = g(x). xinl,

is of the form
(2) y=e" [p(e)de [(1+ / !](:I’)(.’fp(a')d"’.(l,r] ,

where [ p(a)de represents the same antiderivative of p(x) in both oc-
CUTCNCCS.

Proof Suppose y is a solution. Multiply the equation through by the integrating
factor pu(x) = e/ P4 and get

p@)ly' +pl)y] = g(x)p().
Since p'(x) = plz)p(x), by the product rule, the equation can be rewritten as
(x)y] = glx)p(x). Integrating both sides and dividing by u(«) yields the desired
solution. (Note that, since p(a) is an exponential function, it is nonzero for all .
and so we may divide by it.) [ |

EXAMPLE 1 A first-order differential equation
Using Theorem 1, we find all solutions of the differential cquation

’

Yy —y=2

The integrating factor is u(x) = ¢ {9 = ¢~ and hence the general solution is
2 8 H g

y = e"[C —2¢ "] = Ce* — 2, where C' is an arbitrary constant. |



THE WRONSKIAN
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In treating higher-order equations we are not so fortunate, in that, in
general, we do not have a closed form for the solutions. However, there
are fundamental results concerning the general form of the solutions that we
discuss in the remainder of this section. Important cases where solutions
are given explicitly are presented in Sections A.2 and A.3. Our discussion
focuses first on the homogeneous equation

(3) Y™ 4 o1 ()Y 4+ pr(2)y + po(z)y =0,

where all the coefficient functions are continuous on some fixed interval [.

We begin with a definition that is central to our treatment.

Let y1, yo, - .., yn be any n solutions to the homogeneous linear differential
equation (3). The Wronskian W (yy, s, ..., y,) of these solutions is given
by the following n x n determinant:

Ui Y2 oo Yn
/ / /
Y1 Y2 e Yn
IfV(yJ y Y2, - - >y‘ll) = : : : :
yinﬁ—l) yéﬂ—l) o y;bn—l)

We will sometimes use the alternative notation W(y1, yo, - . ., yn)(2), or sim-
ply W(z), to emphasize that the Wronskian is a function of z.

EXAMPLE 2 Computing Wronskians
(a) The equation y”” —y = 0 has solutions y; = e and yo = ¢ *. Their Wronskian
is

W (e, ™) =

-

A L U

o

(b) The cquation y” + y = 0 has solutions y; = cosz and y = sinz. Their
Wronskian is

cosx sinx

W (cosx,sinz) = ) = cos?r +sin’z = 1.
—sinz cosz

The next theorem gives an explicit form of the Wronskian in terms of
the cocflicient functions in (3).
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THEOREM 2
ABEL’S FORMULA
FOR THE
WRONSKIAN

Since the kev issuc is whether
7 vanishes or not, we cannot
divide by 11" to separate vari-
ables. An appeal to Theorem
1 is necessary.

THEOREM 3
EXISTENCE OF
FUNDAMENTAL
SETS OF SOLUTIONS

Let yy. yo. . ...y, be any n solutions to the homogeneous linear differential
equation (3). Then the Wronskian W (x) satisfies the first-order differential
equation

W () + poo1 ()W (x) =0. forain .

and hence

(1) ”-(I) = CaT T on - 1(r) l[_,..

Consequently, either W) # 0 for all w in I, or Wi(x) =0 on I.

The point of this theorem is that determining that W (x) # 0 for some x in
I allows us to conclude that W(a) 3 0 for all 2 in 1.

Proof For clarity’s sake, we give a proof only for n = 2. (The case n = 3
is treated in Exercise 31.) The same approach generalizes to higher dimensions
but requires a greater knowledge of lincar algebra. For n = 2, the equation is
g+ (@)Y 4 po(e)y = 0. and W(x) =y yh — y\y2. Since y; and y, are solutions,
we have

W) = yiyy =yl
gi[=pr(x)ys — po(x)y2| — [=pi(r)y) = pol@)yi]y2
—py (&)W (x).
This is a first-order differential equation for W (x). and (4) is an immediate conse-
quence of (2) in Theorem 1. [ |
It is crucial in applying Theorem 2 to put the equation in standard form
and verify the continuity of the coefficients. See Exercise 23.
We can now state a fundamental result in the theory of ordinary differ-
ential equations.

The homogeneous equation (3)
U+ pua ()y " e i)y 4 pola)y = 0.

where the coefficient functions p;(x) are all continuous on an interval /. has

n solutions yy. y2. . ...y, with nonvanishing Wronskian on /. Furthermore,
given any such set yy. yo. . ...y, and any solution y, then y = ¢y + cayp +
oo ey, for a unique choice of constants ¢y, ¢z, . ... ¢,. The set of solutions

Y1 Y. ...y, with nonvanishing Wronskian is called a fundamental set of
solutions.

Theorem 3 asserts that any linear homogeneous differential equation of order
n has n solutions that span the sct of all solutions of the equation. Note
that the theorem does not assert the uniqueness of a fundamental set. If
Y1, Y2, - - -, Yn 1S a fundamental set of solutions, then the linear combina-
tion y = ¢y + coya + - - - + ¢,y is referred to as the general solution.




THEOREM 4
SUPERPOSITION
PRINCIPLE

THEOREM 5
GENERAL
SOLUTION OF NON-
HOMOGENEOUS
EQUATIONS
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We have been using without verification that a linear combination of
solutions of a homogeneous linear equation is again a solution. This simple
fact. called the superposition principle, can be checked directly by appealing
to (3). We state it here for ease of reference.

Suppose that u(z) and v(x) are solutions of the linear homogeneous equation
(3) and let ¢ and d be any two numbers. Then the linear combination
cu(x) + dv(x) is also a solution of (3).

Nonhomogeneous Differential Equations
Let us recall from (1) the general nonhomogeneous equation

(5) y™ £ ()" Y pi ()Y + po(2)y = gla),

where the coefficient funetions and g(r) are all assumed to be continuous
on some interval I. If g(x) is replaced by 0, we call the resulting equation
the associated homogeneous equation. We know from Theorem 3 that
the associated homogeneous equation has a fundamental set of solutions y;,
Y2, - Yn.  We will show in Scetion A.2, using the method of variation of
parameters, that (5) has at least one solution that we will denote by y,
and call a particular solution. Now suppose that y is any other solution
of (5). It is a simple exercise to check that y — v, is a solution of the
associated homogeneous equation. By Theorem 3 we must have y — y, =
c1y1 + ey2 + -+ + ¢pyn. Thus. if y;, denotes the general solution of the
associated homogeneous equation, it follows that y =y, + y, (known as the
general solution of the nonhomogeneous equation). We have proved the
following important result.

Let yp, and Yp denoté} respectively, théigenerail'solutionvof theilvl(;mogeneous
equation associated with (5) and a particular solution of (5). Then any
solution y of (5) has the form

Y=1Yn +yp'

Often in applications we have to solve differential equations subject to
certain conditions; for example,

y' +y=c¢",  y(0)=0, y'(0)=1.

Such a problem is called an initial value problem, and the conditions are
called initial conditions. Typically we impose enough conditions to specify
a unique solution of the problem. Since the general solution of an nth order
linear differential equation has n arbitrary constants, we expect n conditions
to suffice.
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THEOREM 6
EXISTENCE AND
UNIQUENESS FOR
INITIAL VALUE
PROBLEMS

2¢5+2x+3
2e%— eX4 2x + 3

-1 0
/ !

—e2 4 2x +3

Figure 1 Various solutions
from Example 3.

V
2x+4
\
/4
- 0o 1 P

28— e+ 2x+3

Figure 2 Solution of the ini-
tial value problem in Exam-
ple 3 and its tangent line at
x = 0. It is the only curve
among those in Figure 1 that
goes through the point (0, 4)
and that has slope at a2 = 0
equal to ¢’ (0) = 2.
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Comnsider the initial value problem consisting of the linear differential equa-
tion (5) and the initial conditions

{n—1)

y(l‘o) = Yo, ‘y'(&l’o) = 316, cees y("—])(l»‘o) = s

= A : " .
where xq is in I and 3o, ¥, .. - y(()" ! are prescribed values. Then this

problem has a unique solution y on the interval 1.

Proof Let y, be a particular solution to (5) and let yi., 2, ..., ¥y, be a fundamental
set of solutions to the associated homogeneous equation. For clarity’s sake we take
n = 2, although the proof generalizes for arbitrary n. We need to solve the 2 x 2
system

ey (o) + cay2(zo) + yp(2o) = yo cryi(@o) + cayz(xo) = yo — yp(ro)
=4
c1yy (o) + cays(wo) + yp(z0) = v eyl (o) + cavy (o) = yi — y), (o)
for the unknowns ¢; and ¢, Since the determinant of the matrix of this svstem
is precisely the Wronskian and is nonzero by definition (see Theorem 3), it follows
that the system has a unique solution pair ¢1, ¢o. This proves the existence of the
solution of the initial value problem. To establish the uniquencss of the solution.
suppose that u(r) and v(z) are two solutions to the initial value problem. Let
w = u —v. Then w satisfics the associated homogencous cquation with 0 initial
values. We know from Theorem 3 that w = ay; + bys for some choice of a and b.
Now using the initial values of w and the fact that W (y;,y2)(x0) # 0, we infer that
a =b =0 and hence w = 0 implying that v = v. u

EXAMPLE 3 An initial value problem

You can (and should) check that the equation y" —3y' +2y = 4x has y, = 2z+3 asa
particular solution and that the associated homogeneous equation ¢ — 3y’ +2y = 0
has general solution y;, = cie” + c2¢?*.  (General techniques for deriving these
solutions will be developed in the next two sections.) Hence the general solution
of the nonhomogeneous equation is

: o, _
Y=y +y,=cre’ +coe” +20+3
(see Figure 1). Now suppose that we want to solve the initial value problem

y' =3y 42y =dw, y(0) =4, y(0) = 2.

Using the initial conditions, we get

y(0) =4 =c1 +c2 =1,
¥ (0) =2 = 1 + 2¢5 = 0.

This system has a unique solution ¢; = 2 and ¢ = —1. Hence the (unique) solution
of the initial value problem is y = 2¢* — e** + 2x + 3 (Figure 2). [ |



THEOREM 7
WRONSKIAN
CRITERION FOR
LINEAR
INDEPENDENCE
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We next present a brief discussion of linear independence of solutions
and its connection to fundamental sets.

The functions fi, fa, ..., f» defined on an interval [a, b] arc said to be
linearly independent on [a, ] if the only choice of the constants ¢j, ¢a, . . .,
cn for which the linear combination ¢y fi + ¢cafo + -+ + ¢, f,, vanishes iden-
tically on [a,b] is ¢ = ¢ = - -+ = ¢, = 0. Otherwise, the functions are said
to be linearly dependent. When n = 2, we note that linear dependence is
equivalent to one function bheing a constant multiple of the other. The fol-
lowing result shows a connection between the notion of linear independence
and fundamental sets.

Let yi.y2, . ... yn be any n solutions to the homogeneous linear differential
equation (3) with coefficients continuous on an interval I. The following are
equivalent:

(1) Y1, y2: - .. yn are lincarly independent on [

(i1) y1.y2. .. .. yn form a fundamental set of solutions of (3):

(i) Wy, y2. - -y yn) (o) # 0 for some xg in I;

(iv) Wiy y2. .... yn)(x) # 0 for all x in 1.

Proof Clearly (ii) < (iii)< (iv) follow fromm Theorems 2 and 3 and the deb-
nition of a fundamental set.  We conclude by proving (i) = (iii) and (iii) = (i).
We start with (iii) = (i). Suppose that yq1.y2, ...,y are any n solutions such that
1Y+ eoye+ - -+ cnyn = 0. By differentiating this equation n —1 times in suceession
and then setting x = g, we get a system of n linear homogeneous equations in the n
unknowns ¢j. ¢2,...,¢,. The determinant of the matrix of this system is precisely
W(xp), which is nonzcro by assumption. The nonvanishing of this determinant
implies that ¢; = ¢ = -+ = ¢, = 0, proving (iii) = (i). To complete the proof
it is enough to show (i) = (iii). The proof is by contradiction. We assuine that
Y1 Y2, -+ s Yo are linearly independent on I and that W (yy,y2, ..., y.)(20) = 0.
The vanishing of the Wronskian implies that there are constants ¢, co....,cy. 1Ot
all zero. such that all the initial values of y = ¢yyy +caye +- -+ ¢y, are 0 at xg (for
n = 2, this fact is clear). However. the solution w = 0 has the same initial values,
and so by the uniqueness part of Theorem 6, w = y = 0, implying that ¢; = ¢y = - -
= ¢, = 0 by the definition of linear independence, which is a contradiction. |

EXAMPLE 4 Fundamental sets of solutions, linear independence
We saw in Example 2 that ¢ and ¢ " are solutions of ¥/ — y = 0 and that W (e”",
e ") = =2 # 0. Thus, by Theorem 7. the general solution of the differential
equation is of the form y = ¢je” +c¢2 ™% and so any solution is a linear combination
of the functions " and e¢™*, which form a fundamental set of solutions.

It is worthwhile to note that the fundamental set of solutions is not unique. For
the equation at hand, you can casily check that coshx and sinh 2 are also solutions.
Their Wronskian is

lcoshz sinhz

W (cosh x,sinhz) = 's'inh v coshzl = cosh®x — sinh®x = 1.
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Thus, by Theorem 7, the general solution of the differential equation is also of the
form y = ¢; cosha + ¢asinh z. [ |

Thus far we have developed an understanding of the general form of the
solutions of linear diffcrential equations. However, aside from the first order
case, we have not developed techniques for finding explicit solutions. This
will occupy us throughout the remainder of this appendix, where we will
develop methods for solving certain important classes of higher order linear
differential equations.

Exercises A.1
In Ezercises 1-10, solve the given first order differential equation.

1.y +y=1 2.y +2zy = z. 3.y =—5y.

4.y =2y + 2. 5.9y —y =sinz. 6.y —2zy=ux>

7.2y +y =cosz. 8.y — —?u = z2. 9.y +tanzy = cosz.
10. ¢/ + tanxy = sec? 2.

In Exercises 11 -20, solve the given initial value problem.

11. ¢ =y, y(0)=1. 12. ¢y +2y =1, y(0) =2.

13. ¢ + 2y =z, y(0)=0. 14. ¢/ + £ =822 y(r) =1,

15. 0y + 2y =1, y(—1) = —2. 16. 2y’ — 2y =2, y(1) =0.

17. y +ytanz = tanz, y(0) = 1. 18. ¥ + ytanz = tanz, y(0) = 2.
19. ¢ + ey =e”, y(0) =2. 20.y' +y=-¢€", y(3)=0.

21. (a) Check that the functions

r

e’, e ", cosha, sinhz

are solutions of

(b) We know from Example 4 that {e”, ¢ *} and {cosh z,sinhz} are fundamental
sets of solutions. Express ¢ as a linear combination of the functions cosh x, sinh z.
(¢) Can you think of other fundamental sets of solutions?

22. Check that the functions €*, ¢~ %, cosha are solutions of
y//l _ :yf — 0.

{b) Show directly that W(e*,e *, coshz) = 0 and conclude that these functions
do not form a fundamental set.

(¢) Find a fundamental set of solutions by inspection. Justify your answer by
computing the Wronskian.

23. (a) Check that the functions xz, 2% are solutions of

2%y —2xy +2y=0.
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(b) Compute the Wronskian of the solutions.
(¢) Note that the Wronskian vanishes at z = 0. Does this contradict Theorem 27

24. (a) Check that the functions ¢, 1 + x are solutions of
vy (L+a)y +y=0.

(b) Check that both of these functions satisfy y(0) = 1 and '(0) = 1. Does this
contradict the uniqueness part in Theorem 67

(¢) Compute the Wronskian of the solutions and conclude that they arc linearly
independent on (U, ).

In FEzercises 25-30, solve the initial value problem consisting of the differential equa-
tion in Erample 3.

25. y(0) = 0, y'(0) = 0. 26. y(0) =1, y'(0) = 1.

27. y(1) =0, ¢’ (1) = 2. 28. y(1)=1,7'(1) = —1.
[Hint: In Exercises 27 and 28, it is easier to work with y, = crelt~ D 4 ('3(‘2(""‘”.
Why is this possible?]

29. y(2) =0, ¥ (2) = 1. 30.9(3)=3,9y(3)=3.

[Hint: In Exercises 29-30, usc a y;, that simplifies the computations as in the pre-
vious exercises.|

31. Project Problem: Abel’s formula for n = 3.

(a) Let yp, y2, y3 be any three solutions of the third order equation

y”’ + p,z(;[;)y” + pl(:z:)y' + I)O(I)y =0.

Derive the formulas for the Wronskian

Wy y2.y3) = (yovh — vaus)yy — (vivhs — viys)vs + (yivh — Y1 y2)ys
and

177

W (yi-y2.y3) = (yaus — vou3)y) — (nvh — v1us)ya + (niva — viy2)vs
b) Follow the proof of Theorem 2 to show that
I
W' = —po(z)W.

(¢) Derive Abel’s formula for n - 3.

32. (a) Show that W(z3.|2?]) = 0 for all . (The function |2?3| is differentiable
for all . Can you sec why?)

(b) Show. however, that . |3 are lincarly independent on the real line.

(¢c) Does this contradict Theorem 77 Justify your answer.
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A.2 Linear Ordinary Differential Equations with Constant Coefficients
The general form of the nth order homogeneous linear differential
equation with constant coefficients is

(1) any™ +a, 1y 4+t ary + aoy =0,

where each a; is a constant and a,, # 0. The equation can be put in standard
form by dividing through by the leading coefficient a,. This important
class of equations is needed throughout this hook. Our presentation will
emphasize the second-order case, which is by far the most useful.

The simple first-order case of (1) suggests that we try

y=e
in solving the general case. Since
Z/, - Ae/\a;, yll — /\‘26/\3;7 y('n—L) — /\n,—-]G/\J:’ y(u,) - /\nel\vﬂ)
substituting these into (1), we get
(AN + an A" a N+ ap)e™ = 0.

Thus y = e

equation

is a solution to (1) if A is any root of the characteristic

an A"+ ap A4 as ) +ap = 0.

The roots of this equation are called the characteristic roots. For future
use, we define the characteristic polynomial

p(A) = ap ' + ap A" - ad + ap.

In the case when this polynomial has n distinct characteristic roots Ay, A9,
. A, the general solution of (1) is

Y= c1eMF 4 e 4 e

Equivalently, a fundamental set ol solutions is given by

(2) e”\”, e et

AT Aol

This follows from the nonvanishing of the Wronskian W{e¢ ,ett

et ). See Exercise 77.
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EXAMPLE 1 Hyperbolic functions

The equation y”” — 2y = 0 (p = 0) occurs frequently in this book. Its characteristic
equation is
N —p?=0.

with characteristic roots Ay = p and Ay = —pu. Thus a fundamental set of solutions
is {e!'*, e "=} As we observed following Example 4 of the previous section, the
fundamental set of solutions is not unique. In fact, we now describe another sct
that is more convenient in some applications. Recall the definition of the hyperbolic
functions
e + e HT eHT g hT
coshpyr = ——— and sinhper = ————
2 2

Since these are linear combinations of functions from the fundamental set of so-
lutions, they are themselves solutions of the differential equation. You could also
verify the last assertion directly by using the derivative formulas

d : d .
— cosh px = pusinh pr  and  — sinh g = pcosh p.
dax dx
Computing the Wronskian of cosh px and sinh pa:. we find
=]

coshpz  sinhpz | 7 5 5
psinh e pcosh x| u (cosh® px = sinh® ) = p # 0.

Il

W ( cosh pz:, sinh pur)

By Theorem 7 of Appendix A.1 (with n. = 2), we conclude that cosh pa: and sinl gex
form a fundamental set of solutions and so the general solution of the differential
equation is of the form y = ¢; cosh pa + ¢ sinh pz. Basic propertics of cosh pa and
sinh uz are illustrated by the graphs shown in Figure 1. |

EXAMPLE 2 Characteristic equation with distinct real roots
The third-order equation y"”’ — y” — 6y’ = 0 has characteristic equation

A A2 -6M=0.

Since this equation factors as A(A — 3)(A + 2) = 0, we get the characteristic roots

A =0, = 3. A3 = —2. Thus the general solution of the differential equation
is Yy = ¢ + coe® + ez . Obscrve that {1,€37, e 27} is a fundamental set of
solutions. You should check that W (1, e, e ) # 0. [ ]

In the case of n distinct roots, the functions in (2) can still be used
as a fundamental set even when some or all of the characteristic roots are
complex numbers. However, for practical purposes, it is preferable to have
real-valued functions. This can be done by using the fact that for any
nonreal root . = a +i8 (8 # 0) of a polynomial with real coefficients its
complex conjugate I = a — (3 is also a root (Figure 2). We illustrate this
technique with a simple but very important example.
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EXAMPLE 3 Trigonometric functions
The characteristic equation of 4" + k%y 0 (k > 0) is

A2+ k2 =0.

Its characteristic roots are Ay = ik and A\ = —ik. Thus a fundamental set of
solutions is {¢#**, ¢~ #4} We now describe an alternative fundamental set of real-
valued solutions. The construction is similar to the one we used in constructing
the hyperbolic cosine and sine solutions in the previous example. Recall Euler's
identity: e** = coskx + isinkx. Consider the following solution, which is formed
by taking a particular linear combination from the fundamental set of solutions:

(’U“:—}-l ikx

Y1 = g

= coskz.

(cos ka + isinkx + cos kx — isin kx)

| =

Thus ¥, = cos kx is a solution of the differential equation, which is a fact that you
can verify directly. Similarly, the linear combination (e"“ = (s’"k'")/2i yields the
solution y, = sinkx. Clearly, ¥ and gy are real-valued and linearly independent
(check their Wronskian). Thus the general solution of 4" + A%y = 0 (k > 0) is
y = ¢ coska + cosinkx. ]

In the previous example, the characteristic roots were purely imaginary
(their real parts = 0). The next example illustrates a case in which the
characteristic roots have nonzero real parts. The solutions will involve real
exponential functions, along with cosines and sines.

EXAMPLE 4 Complex characteristic roots
The characteristic roots of the equation y” — 4y’ + 5y = 0 are \; = 2 + 4 and
A2 = 2 — 4. From (2), the functions e?*)* and e~ )7 form a fundamental set
of solutions. We next show how to obtain real-valued solutions. Using Euler’s
identity, e’ = cos# + isin @, we have

e(2ti)e — p2roiz — e“*(cosx +7sinx).

» . () — 3\ Qe .. . . "
Similarly, e>~9% = ¢2*(cosz — isinz). By taking sums and differences of these
solutions, we arrive at the solutions 2 e** cosx and 2i¢* sinz. Thus €** cosx and
e?® sin 2 are two real-valued solutions. We have

2z 20 o3
. e - e** cosx et sin
W(e cosz,e™sinz) = |, . o
€*(2 cosx —sinxz)  €**(2 sina + cosx)
= ¢ ((2sinz +cosx) cosz — (2cosx —sinx)sin)

= eM(cos®z +sin®z) = ' #£0.
Do g, . . +
We conclude that e2* cos z and €2* sin 2 form a fundamental set of solutions. Note

that in the case of two solutions, we could have verified that the set is fundamental
by simply observing that one is not a constant multiple of the other. ]
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Figure 3 Solutions from Ex-
ample 6(a).
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In general, when we have complex characteristic roots, these roots come
in conjugate pairs. A fundamental set of real-valued solutions is obtained
by replacing the pair of functions e**, e/* in (2) by

(3) e cos Bz, " sinfBx

for each nonreal pair of characteristic roots it = o« £ i3. Let us illustrate the
pairing of complex roots with one more example.

EXAMPLE 5 Pairing complex characteristic roots
Find a fundamental set of solutions of ¢/ —y = 0.
Solution Let us find the characteristic roots:

N-1=0 = A-DA+A+1)=0
IAVE] 1 V3
= /\1—1:/\2*_‘2“"/:7,/\3———5—57.

We have one real root and two complex conjugate roots. To the real root corresponds

the solution y; = €*, and to the pair of complex conjugate roots correspond the
two solutions yo = e~ */% cos (*@Js) and y3 = e~ /2 sin (—‘gj—m) The functions 1. y2,

and y3 form a fundamental set of solutions. |

Thus far we have not dealt with the case of a repeated root p of the
characteristic polynomial of multiplicity m > 1. If we try to use (2), we get
the function e** repeated m times, and hence we do not obtain a fundamental
set. The following example illustrates how to resolve this problem.

EXAMPLE 6 Repeated roots of the characteristic polynomial

(a) The second-order equation y” +2y'-+y = 0 has characteristic polynomial (A+1)
which has —1 as a root of multiplicity two. One solution of the equation is e™*. A
simple verification shows that the function ze™* is also a solution of the differential
equation, which is also independent of e™*. We conclude that ¢=* and ze™* form
a fundamental set of solutions (Figure 3). (We note that the method of reduction
of order, presented in the next section, provides a straightforward way to obtain
the second solution ze™".)

(b) The third-order equation y"”" —6y"” + 12y’ — 8y = 0 has characteristic polynomial
(A — 2)3, which has 2 as a root of multiplicity three. Onc solution of the equation
is e2*. Taking a hint from the previous example, we try y = ze>* for a sccond
solution. We have

2
»

Y =e*(1+2x), o' =41 +z), o' =4e*"(3+ 2x).
Plugging into the equation, we obtain

4('2"'(3 + 2z) — 24¢27(1 4+ x) + 1227 (1 + 2x) — 82e* = 0.
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Note that there are m linearly
independent solutions corre-
sponding to repeated roots of
order .

Thus y = ze** is a solution. For a third solution of the differential equation, we
modify the first solution by multiplying by 2, and try y = x%¢**. You can check

that

Y =2ze*(1+1x), 3y’ =2*"(1+4z+22%), 3" = 1e* (3 + 6z + 2z?),

and that 22¢>" is a solution. It is casy to check that the solutions 2%, we?", z2e*
are linearly independent, and hence they form a fundamental sct of solutions of the
differential equation. |

This example motivates the following prescription for obtaining a funda-
mental set of solutions of (1) in the case when multiple roots occur. Let p be
a repeated root having multiplicity m. In (2), we replace the m occurrences
of e#* by the following m functions:

m,—le;m:_

(4) et et

To obtain a fundamental set of solutions of (1), make this replacement for
each repeated characteristic root. (Keep in mind that the multiplicity m
may vary from one root to another.)

Finally, if 4 = « 4 i3 is a nonreal repeated characteristic root of multi-
plicity m, to get a fundamental set of real-valued solutions we combine the
previous methods and find that the 2m functions associated with the roots
w and [ are

(5) €% cos Bz, xe*®cosPBx, ..., ™ e cos 3x;

n—1

e* gin fx, re**sindx, ..., a €™ sin 3x.

For ease of reference, we restate in the following box the results of our
discussion in terms of general solutions of (1). For convenience we view a
nonrepeated characteristic root as a root of multiplicity m = 1.
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X(sinx +cosx), y
COS X — X COS X+Sin X

|

COSX +.x COSx

Figure 4 Various solutions
from Example 7(b).
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EXAMPLE 7 Fourth-order equations

Find the general solution of the following equations:
(a) ') — 16y = 0;

(b) y + 2" +y = 0.

Solution (a) The characteristic equation is A* — 16 = 0, with characteristic roots
£2 and £2¢. Thus, the general solution is

y = c16*" + coe ™2 + d) cos 2z + dy sin 2.
(b) The characteristic cquation is
(A +1)?=0 or (A—i)*(N+19)*=0.
Thus the characteristic roots are 7 and —i with multiplicity 2 cach. Accordingly,
the general solution is
Y = €1 COST + Coxcosx + dysinx + daxsin.

Figure 41 shows some specific solutions that are obtained by assigning different val-
ues to the constants ¢y, co, dy, da. | |

In the second-order case, we have a simpler form of the general solution
which we now describe. You will be asked to verify these solutions in the
exercises.
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GENERAL
SOLUTION OF THE
SECOND-ORDER
LINEAR
HOMOGENEOUS
EQUATION WITH
CONSTANT
COEFFICIENTS

We now turn our attention to nonhomogencous second-order equations
with constant coefficients.

The Method of Undetermined Coefficients

The study of various physical systems often leads to the cquation
(7) ay” + by’ + ey = g(x).

The general solution of the associated homogeneous equation vy, has already
been given explicitly. Thus, to find the general solution of (7), it is enough by
Theorem 5 of the previous section to find a particular solution y,. Finding y,
depends on the nonhomogencous term ¢. In many intercsting cases, the form
of g allows us to guess the form of y,, up to a set of unknown coefficients. This
method is called the method of undetermined coefficients. We illustrate
it with examples. We also note that in other cases where the method of
undetermined coefficients does not work, we can use variation of parameters,
as described in the next section.




THE METHOD OF
UNDETERMINED
COEFFICIENTS
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EXAMPLE 8 A simple undetermined coefficients problem

Find the general solution of the given nonhomogeneous equation.
() ¥/ =4y +5y=e". (b) y' +2 +y=e".

Solution (a) The associated homogeneous equation is solved in Example 4. We
have y;, = c1e*® cosx 4 c3 e??sinz. To determine the general solution, it remains
to find y,,. Since the right side of the equation is ¢” it makes sense to try y, = Ae”,
where A is an unknown constant yet to be determined. A computation shows that
Yy — 4y, + 5y, = 2Ae". Jur y, to be a solution we must set A = -12- Thus the
general solution is y = ¢; e>* cos T + coe?T sinx + %ex .

(b) The associated homogeneous equation is solved in Example 6. We have y;, =
cre” " + coze™™.  To find y, it is pointless to try Ae™™ or Axe " since both of
these solve the homogencous equation. We modify our guess to y, = Ax%e ",
Differentiating y,,, we find

y;, =2Aze " — Az’e™", y;,' =24e % —4Aze™" + Az?e*.

Hence y, + 2y, +yp = 2Ae™". For y, to be a solution we must choose 4 =
Thus the general solution is y = cje™ + come ™™ + %:r"’e"".

me-

The procedure we have used above is covered by the following gencral
rules.
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EXAMPLE 9 The method of undetermined coefficients
Use the method of undetermined coeflicients to find the general solution of

y' =3y +2y =2

Solution It is straightforward to see that y, = ¢;e” + c2¢**. From (9), we see
that y, = A2® + Ba? + C. + D. Note that none of these terms appears in the
expression of y,. We have

y, — 3y, +2y, = 6Ar+2B- 3(3Az2+ 2Bz +C)+ 2(Az® + Bz? + Cz + D)
= 2423+ (—94 +2B)2? + (64— 6B + 2C)z + 2B — 3C + 2D.

For y, to be a solution, A, B, C, and D must satisfy

2.‘4 = ]_
-9A +2B =0
6A —-6B +2C =0
2B -3C 42D =0
The solution of this linear system is A = %, B = %, T %l— D = % Thus
1 5,9, 21 45

Yy = =& - — I —
g 4 1 g

and the general solution is obtained by adding on yy,. [ |

EXAMPLE 10 The method of undetermined coefficients
Use the method of undetermined coefficients to find the general solution of

y' =3y + 2y =e"cosux.

Solution According to (9), we take vy, = Ae” cosx + B e sinw. Since neither of
these terms appears in the expression of y;, (see Example 9). there is no need for
modification. Now yj, = (A+ B)e” cosx +(—A+ B)e” sina and y,, = 2B e” cosx —
2A e* sinx, and hence

Yp —3Yp +2yp = —(A+ B) ¢" cosz + (A~ B)e" sina.

For y, to be a solution, we must solve A+ B = —1 and A — B = 0. From this we
get y, = —% e’ cosa — %«-" sinx and hence the general solution is
r 2 1 o :
y = cre’ + ce”" — 7€ (cosa + sin.r). u

EXAMPLE 11 Using the superposition rule

Consider the equation ¥ + 4y = e72* + 3sin2z. It is easy to see that
Yp = €1 COS 204 -+ Cosin 2.0,

The term e ~*" requires a term A e~ 2% in Yp. The term 3 sin 2z suggests the expres-

sion B cos 2z + (7 sin 2z, but because these terms appear in yy, we must introduce
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an extra factor of z (the characteristic polynomial has distinct roots). Hence we
take

Yp = A¢ 20 4 Bxcos2z + C sin 2z.

Solving for A, B, and C' as before, we find y, = %(.-21' — 3 2 cos 2. [ |

Note that even though the nonhomogeneous term g(z) in the equation
of Example 11 has no cosine term in it, the particular solution does have
one. This emphasizes the necessity of including both cosine and sine terms

in y, even when only one of thesc appears in g(x).

Exercises A.2
In Frcreises 1-24, find the general solution of the given equation.

1.y -4y +3y=0. 2.¢y" -y —6y=0. 3.9" -5y +6y=0.
4.2y -3y +y=0. 5y’ +2y +y=0. 6.4y" — 13y +9y =0.
T.4y" —4y' +y=0. 8. 49y"—-12y +9y=0. 9.¢y" +y=0.

10. 9¢y" +4y=0. 11.y” —4y =0. 12. y" +3y' +3y =0.
13.y" +4y +5y=0. 14.y" -2y +5y=0. 15. 4" + 6y + 13y =0.
16. 2¢y" — 6y +5y=0.17. ¢y" - 2¢y" + ¢/ = 0. 18. 4" —3y" +2y =0.
19. y) — 29" +y = 0. 20. y —y =0.

21. y" - 3y"+ 3y —y=0. 22. y" +y=0.

23. 4™ — Gy + 8y — 3y =0. 24,y 14y + 6y +4y +y=0.

In Exercises 25-44, find the general solution of the given equation using the nethod
of undetermined coefficients.

25.y" — 4y + 3y = ", 26.y' — ¢y — 6y = e".

27.y" -5y +6y=¢e" +u. 28.2y" — 3y +y = €% +sinz.
29. ¢y —4d4y +3y=xe ", 30.y" —4y = coshz.

31. y' + 4y =sin’ x. 32. y" + 4y = xsin2z.

33. y" +y=cos?z. 34. y" + 2y + 2y =¢ " cosz.
35. ¢ +2y +y=e". 36. ' +2y +y=ze " +6.
37. Yy —y -2y =z — 4. 38. 4" +1y —2y =22+ zc".
39.y +2y=2x +sinzx. 40. y + 2y =sinz.

41. 2y —y = e?7. 42,y — Ty = ¢ + cos.r.

43. "+ 9y =y, _, Hnnr 4.y +y =30, 2

In Fzercises 45-54, find the solution of the associated homogeneous equation and
state the form of a particular solution. Do not solve for the coefficients. Be sure
to modify by r or x* as appropriate.

45.y" — 4y + 3y = e*®sinhz. 46. y" — 4y 4+ 3y = ¢” sinh 2z.
47. y" + 2y + 2y =cosx + 622 — e “sinz.
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48. y'" — y = coshx + cosh 2z.
49. ¢’ —
50. y"
51. 9" +4y = ¢€?
52. y"
53.

3y 4 2y =3a'le’ +xe % cos3a.
— 3y +2y =2 "+ Tz
#(sin 2z + 2 cos 2x).

2

+ 4y = xsin 22 + 2 €%* cos 2z.

y' =2y +y=6r—e". 54.y" — 3y +2y ="+ 3¢ 25

In Ezercises 55-60, find the gencral solution of the given equation. Since an arbi-
trary parwincter appears in the equation, you have to distinguish separate cases.
55. ¢y — 1y + 3y = ™", 56. y"
58. ¥ + 9y = sinwu.
60. v + by +y =sinux.

—_ ~l'y’ + 4‘!/ = ™
57. y" + 4y = coswz.
59. y” + w?y = sin 2z.

In Exercises 61-70, solve the given initial value problem.

61.y" -4y =0, y(0)=0, y'(0)=3.
62.y"+2y +y=0, y0)=2, y(0)=-1.
63.4y" -4y +y =0, y(0)=-1, 4/(0)=1.
64. vy + y=0, y(w) =1, y(m)=0.

65. 9" -5y +6y=¢", y(0)=0, ¢(0)=0.
66. 2y" — 3y +y =sinz, y(0)=0, v (0)=0.
67.y" -4y +3y=ze ", y(0)=0, ¢y(0)=1
68.y' —4y=coshz, y(0)=1, ¢'(0)=0.

69. v’ + 4y = cos 2z, y(m/2) =1, ¥ (w/2) =0.

70,y + 9y =Y, B, y(0) =0, y/(0) =2

Integrals via undetermined coefficients. In Frercises T1-74, compute fJ
by solving y' = g(x) using the method of undetermined coefficients.

1. g(z) = 72. €* cos 2z.

73. g(z) = e*® cos bx. 74.

dx

e’ sinx.

e sin bx.

Given n numbers A1, A2, ..., A, we define the Vandermonde determinant
V(A1, A2, ..., Ay) to be
1 1 e 1
/\1 /\2 )‘n
X/l'x,— 1 /\72‘:.-—1 /\;;— 1

75. Compute V(A[, A\2) and show that it is nonzero if and only if A} # A,.

76. Show that V(A1, Ao, Az) = (As — A2)(A3 — A1)(A2 — Ay) and conclude that
V (A1, A2, Az) # 0 if and only if all the A’s are distinct.

77. It is a fact that V(A Ao, ..., A\n) # 0 if and only if all the A's are distinct (see
Exercise 78). Usc this fact to prove that the Wronskian W (e 1<, ¢ V2, .| ¢?n7) £

0 if all the A's are distinct.
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78. (a) Based on Exercisc 76, guess the formula for V(Ay, Ag, ..., A,). Verify your
guess forn =2, 3, 4.
(b) Using (a), show that V (A, A2, ..., A,;) # 0if and only if all the A’s are distinet.

A.3 Linear Ordinary Differential Equations
with Nonconstant Coefficients

Note that the equation is in
standard form. That is, the
leading coefficient is 1.

REDUCTION OF
ORDER FORMULA

Before you apply this formula,
be surc that your equation is
in standard form.

In the previous two sections we saw that the general solution of the second-
order linear differential equation

(1) y" +p(a)y + q(z)y = g(x)

is of the form y = yj + y,, where ¥, is the general solution of the associated
homogeneous equation and y, is any particular solution of (1). We obtained
a complete description of the solution when the coefficient functions arc
constants and ¢ is of a special form. In this section we present two general
methods for handling the cases not covered by the previous section. The
first one is usually applied when solving for y;, and the second one can he
used to find y,. We end the section by applying these methods to solve the
important class of Euler equations.

Reduction of Order
For second-order linear differential equations, we know that

Yn = c1y1 + coyo,

where y; and ys are linearly independent solutions of the homogencous equa-
tion

(2) Y’ +p(2)y +q(r)y =0.

Suppose that we know one nontrivial solution to (2), say y;. The method of
reduction of order allows us to find a second solution yo such that y; and yo
are independent.

A second linearly independent solution of (2) given y; is

o~ Tpla)da
(3) Y2 =y / ————dx.
Yi

Since we are sccking only one independent solution, we can assign any fixed
values to the constants of integration appearing in this formula. We will
often neglect these constants.

Proof We know that cy; is a solution of (2). But of course this solution is lincarly
dependent. with 4.  The idea is to find a nonconstant function ¢(x) such that
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v(z)yy is a solution. Substituting y = ¢(x)y; into (2), we get

Y+ @)y +alz)y = (v + 200" +y)v) + p(@) (e + viv) + g(e)ye
= pv” + 2yt pla)y)v' + () + pla)y] + g(x)y)v
v + (2] + pla)y v’

I

because y{ + p(x)y] + q(z)yn = 0. Hence. for y = wy; to be a solution to (2), v
must satisfy y1v” + (2y) + p(x)y1)v’ = 0. This is a first-order equation in o' (hence
the name reduction of order). Equivalently,

u
"+ (2“”—1 + p(:r:)) v 0,
Y

and thus by Theorem 1, Section A.1, we find

e~ [ p(eYdz

v (z) =

2
Yi

(We have taken the constant in this theorem to be 1, since we are only interested
in one solution.) Hence (3) follows by integrating and multiplying by y;. The
linear independence of 1 and y2 can be checked by computing the Wronskian. See
Exercise 41. |

EXAMPLE 1 Reduction of order in the presence of a double root

Ay Given that y; = e* is a solution to ¥ — 2y + y = 0, a second linearly independent
ot solution is obtained from (3), as follows (Figure 1):
3 N Yo = e””'/ PZ' dx = ze”. B
(e¥)?

et

The characteristic equation in Example 1 has 1 as a double root. We

! ¥ could have used the methods of the previous section to write down the second

] - solution. However, the point of Example 1 is to show how reduction of order

-1 0 1 can be used to derive such solutions.

Figure 1 Solutions in Exam-

ple 1.
EXAMPLE 2 Applying the reduction of order formula

Given that " is a solution of zy"” — (14 z)y" +y = 0, a second linearly independent
solution is obtained by appealing to (3). We have

» J(L i) de g o d
e . @ . .
Yo = (‘I/ —( JA)A, de = ! / Li 37 dr = ¢! / xe Udax.
(3‘ D) - 6..( &

Observe that before evaluating (3), we must put the equation in standard form.

_ Integrating by parts, we find
.’]'("Aldil Lz L —x —x i
y2=¢e"(—xe " —e )= —ar—1.

= -zt - "+ 0 At this point, we may use yp = = + 1. |
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Variation of Parameters

In this part, we suppose that we know the solution of the associated homoge-
neous equation (2) and describe a general method for generating a particular
solution of (1). This method is called variation of parameters.

A particular solution of (1) is given by

(e ()
4 pF= i Wb
() Y, Yl /W ly') (l+y2 "I/(ylvy'_)) g

where y; and yo are linearly independent solutions of (2), and W (yy, y2) =
nYh — yYiyo is the Wronskian of y; and ys.

As in the reduction of order method, we can neglect the constants of inte-
gration.

Proof Since ¢y, + coys 1s a solution of the homogencous equation, our hope is
Y Y 2

that by allowing functions instcad of constants we can generate a solution of the

nonhomogeneous equation. We thus try

(5) y = u1(x)y; + uz(z)yo

and solve for u; and us. Since we have two unknown functions and only one equation
to satisfy, we are free to impose onc additional relation between 11 and ug. As you
will sec, the following condition simplifies the computation:

(6) ) (@) + uh(a)ye =
We now compute using (5) and (6):

1

Y = w (@)Y +ua(x)yy; v = ur(x)y! + ue(2)yh + wi(z)yy + us(x)yh.

Substituting these and (5) in the left side of (1) we get

THplr)y +alx)y = (ui(z)y +ua(e)yy + w2yl + uslr)ys)
+p(@) (wi(z)y) + ua(2)ys) + q(z)(ui(@)yr + w2 (2)y2)
= wi(r) (¥ + ple)y) +a(x)y)
5 ’
+ua(r) (yy + p(a)ys + Q(.’lf)?,jz)J—i-'l.L/l(:I?)yll + up (1) Y.
=0

Therefore, recalling (6), we will have a solution if u; and us satisfy
yruy (x) + yaus(z) = 0,
itk (z) + yhuh(z) = g().

The determinant of this system is precisely Wy, y2), which is nonzero since y, and
yo are linearly independent. Solving this system, we get the unique solutions

111!1(97)
Wy, y2)

-.1/29(33)
W(y1. y2)

' .
u; = and  u,
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Integrating and substituting in (5) yields (4). [ |

EXAMPLE 3 Variation of parameters
Given that y; = z and y, = x4 are solutions of 22y" —4ay’+4y = 0, find a particular
solution of

22y — duy + 4y = 322

Solution We have
W(y1,y2) = W(z,z*) = 3z

We put the equation in standard form, apply (4), and get

—3z* 3z 1 3 .
yp:f/ 3 d:v%—:c"/@dx:-—rz—ia:z:—E:cz. ]

We end this section with a discussion of a class of differential equations
with important applications.

Euler Equations
The differential equation
(7) 22y +azy + Py =0,

where o and (8 are constants, is known as Euler’s equation. It is the sim-
plest example of a second-order linear differential equation with nonconstant
coefficients for which we have an explicit solution. Motivated by the first-

order version of this equation, zy’ + ay = 0, which has solution y = z7%, we
try

(8) y=a"

as a solution of (7). Plugging »" into the equation, it follows that r must be
a root of

(9) r(r—1)+ar+=0.

This quadratic equation, known as the indicial equation, is the key to
solving (7), in the same way that the characteristic equation is the key to
solving an equation with constant coefficients. As expected, the solutions
will depend on the nature of the roots, referred to as the indicial roots.

If we put the general Euler’s equation in standard form, the coefficients
of y' and y are not defined at z = 0. Because of this problem at 0, the
cases £ > 0 and z < 0 are to be treated separately. In fact, in most
applications we are only interested in the case @ > 0. For completencss, in
the following box we present the solution of Euler’s equation in both cases
using the absolute value.
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Clearly when 2 > 0 we may drop the absolute values.

Proof For clarity’s sake, we take z > 0. Case I follows immediately from (8) and
the fact that W(z™,z2"2) = (ro —ry)z™ 7271 £ 0 for z > 0. Case II is derived via
reduction of order. Using y; = 2™ in (3), we get

— [ & dx

eI ¥ i

y2=$r‘/Tdm=mT‘ /:z: a2 e,
3 £r N

But because 7, is a double root of the indicial equation (10), we have 2r; = r; +
rg = —(a—1). So z 272" = 71 and the integral evaluatcs to Inz, implying
y=zMInz.

In Case III, two linearly independent complex-valued solutions are formally
given by %t and 2%, We interpret these as e'™#(¢+®) and e'" #(¢=ib) and proceed
to derive real-valued solutions. From Euler’s identity, we have

eln:z:(a+ib) — et Inz iblna _ :L'“[COS(b ln.r) + isin(b ln:c)],

and, similarly,
eln xz(a—ib) _ ¢ [COS(b In ;1,‘) — 1 sin(b In 117)] .

Taking linear combinations, we arrive at the desired real solutions as we did previ-
ously when dealing with constant coefficient equations having complex characteris-
tic roots. Linear independence follows by computing the Wronskian and is left as
Exercise 42. |

There is a close similarity between the solution to Euler’s equation and
the solution to the constant coefficient equation. Indeed, the change of
variables ¢ = Inz in Euler’s equation transforms it to an equation with
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Figure 2 Solutions in Exam-
ple 4. Notice that % is not
defined at z = 0 and x is
not differentiable at = = 0.
These solutions are valid for

> 0, where the differential
equation is defined.
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constant cocthicients.
solution of Fuler’s

This provides an alternative derivation of the general
equation. See Exercisec 43.

EXAMPLE 4 Euler’s equation
Solve 222y + 5y — 2y =0 for > 0.

Solution We rewrite the equation as 2%y” + 2 zy’ —y = 0. From (10), the indicial

equation is 72 + 37 — 1 = 0, which factors as (7 —3)(r+2) =0. We get the indicial
roots ry = §, 72 = —2. Thus by Case I, the general solution is y = ¢;/x + <. The
general solution is illustrated in Figure 2. |

Note that when x < 0, the solution in Example 4 becomes

Exercises A.3

In Exercises 1-20, verify that the given function is a solution of the given equation.
and then find the general solution using the reduction of order formula.

Yy 2y -3y =0, uy =e’.
Ly =5y +6y=0, y =e*
cxy’ =@ +a)y +3y =0,
—2-2)y —2y=0,
Ly 4y =0,
LY+ 9y =0,

y1=e".
yr = e =,
Y1 = €OS 2.
y1 = sin 3.

" —y=0, wy = coshu.

Y2y +y=0, p=e".
(L —a?)y” = 2xy + 2y =0,
(1 =2%)y —2xy =0,

2%y +ay —y =0,

CD(D_\ICDU\POONI—\

Yy = &.

—
o

'y1:1.

[
ot

Y1 = a.

=
Do

. a,‘,Qyu _ a:y’ +y= O, Yy = .
22y + oy +y=0, y =cos(lnz).

ho=1/ V.

[
[N U

c2ty 22y + Ty =0,

15. 2y" +2y +4day =0, y =0

16. 2y +2y —axy=0, yn <.

17. zy” +2(1 —x)y +(r—2)y=0, y =¢*.

18. (z—1)%y" = 3(x -1y +4y =0, = (x—1)%
19. 2%y"” 21‘J+9y—0 Yy = x”.

20. (02 —22)y" — (* = 2)y +2(0 -y =0, y =e'.
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In Ezercises 21-30, find the general solution of the given equation using the method
of variation of parameters. Take x> 0.

21. ¢’ — 4y + 3y =e7°. 22.y" — 15y +56y =" + 1227,
23. 3y"” + 13y’ + 10y = sinz. 24. ¢y + 3y ==z.

25. ¢y +y =secz. 26. y"”" +y =sinxz + cosx.

27. 29" — (1 +z)y +vy = 2> 28. 2y — (1 +2)y +y=a'e".
[Hint: 3y =1+ z,y2 = "] [Hint: Exercise 27.]

29. 2%y + 3ay +y = V. 30. 22y +zy +y=x.

In Exercises 3140, solve the given Euler equation. Take x > 0, unlcss otherwise
stated.

31. 2%y + 4xzy' + 2y = 0. 32. 2%/ +xy' — 4y = 0.

33. z%y” + 3z +y = 0. 34.42%" +8zy +y=0.

35. 2%y +zy + 4y =0. 36. 42% +4zy +y =0.

37. 2% + Txy + 13y =0. 38. 2%y —xzy +5y=0.

39. (z —2)%/" +3(z—2)y +y =0 40. (z+ 1% " + (z+ 1)y +y=0
(z > 2). (z > —1).

[Hint: Let t =2 — 2. [Hint: Let t =z + 1]

41. Compute W (y1,y2) with yo given by (3) and conclude that the reduction of
order formula yields a second linearly independent solution.

42. Let y; and y2 be the solutions of Euler’s equation in Case III. Show that
W (y1,92) = £2%7% and conclude that 1, and y, are linearly independent for z > 0.

43 Show that the change of variables ¢t = Inax (x > 0) transforms Euler’s cquation
(7) to the equation

d?y dy

dt2 +( — 1>a?+_dyzo

with constant coefficients.

44. An alternative solution of Euler’s equation. Using Exercise 43 and the
solution of (6), Section A.2, derive the three cases of the general solution of Euler’s
equation.

45. Reduction of order formula from Abel’s formula.

(a) Use Abel’'s formula (Theorem 2, Scction A.1) to conclude that
Y1ys — Yiye = Ce I P o,

where y; and y, are any two solution of (2).

(b) Given yy, set (" = 1in (a) and solve the resulting first-order differential equation

in y2, thereby deriving (3).

46. Reduction of order for nonhomogeneous equations. In this exercise we
demonstrate that the method of reduction of order also applies to nonhomogeneous
equations given a solution y; to the associated homogeneous equation. Thus, given
Y1, we may solve (1) directly without recourse to the method of variation of param-
eters.
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(a) Show that if we want to solve (1) and carry out the proof of (3) we arrive at

the equation
o+ ("—‘ ' p(m)) o = 9
A W

(b) Solve the equation using Theorem 1, Section A.1, and conclude that the general
solution of (1) is

e~ [p(z)dx
y:rlyl—i—czyl/—‘z dx
y I
— fp(J') dx “
+u1 /{y—gd-’f (/ yrel PE 4 g (o) dw) d:x
. 1

where the last two occurrences of [ p(z)dz represent the same antiderivative of
p(z).

In Frercises 47-50, find the general solution of the given equation by using the
method of Fzercise 46. To get a good feel for Erercise 46, we suggest that you
repeal its proof with at least one of the following excrcises.

a7.y" — 4y + 3y =€*, 1y = € .

48. 22y + 3z +y =z, Y1 = %

49. 3y" +13y + 10y = sinz, 1y, =€ *.

50. 2y’ —(1+z)y +y=23, y =e".

A.4 The Power Series Method, Part I

Power series will be used to solve ordinary differential equations, including
many important differential equations with nonconstant coefficients. such
as the Legendre and Bessel equations. In this section we review the basic
properties of power series, and present some techniques that will be needed
in the next sections.

A power series is a series of the form

(1) Zam(a:—a)m:a0+a1(3c—a)+a2(g;_a)2+...,

m=0

where a, ag, a1, ag, ... are constants and x is a variable. The series is said to
be centered at a. If the series is centered at a = 0, it takes on the simpler
form

o0
(2) Z amz™ = ag + a1 + agax 4+ - - - .

m=0

Given the power series (1), we define a function f(x) whose domain is the
set of all = for which the series converges, and whose value at every such «
is the sum of the series for that . We say that the power series represents
the function f(z).



Series converges
for|[x—a|<R.

. X
a-R a a+R
] [
N /

Series diverges
for|x—al|>R.

Figure 1 The interval of con-
vergence of a power series cen-
tered at the point x = a. The
series may converge or diverge
at the endpoints r = a + R.
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Recall from calculus that certain functions have a Taylor series represen-
tation centered at x = a of the form

T ) (z—a)2+- j(k()

(3) f(x) = f(0)+ !

(x—a)+ (z—a)+--
Thus a Taylor series is an example of a power series where the coefficients are
uniquely determined by f(z) and its derivatives. In fact, we have ag - f(a)
and ay, = f*)(a)/k!. The following list gives Taylor series representations of
some elementary functions, together with the domains for which the series
expansions are valid. All the series are centered at O.

1 = _
-z m=lt+zt+airat o, |z < 1;
-4 m=0
OC m 2 ,113
roo_ sl ol i _ <. .
¢t = Zm'_l+l+2'+3'+ oU <~ O
rn‘()
) o ( 1 mg 2m+1 B 1.3 175 ' o
sinx = Z (2m+1)' _'1‘—§T+§_“" —X <1 <X
" 2 4
(=1)mz*m z T 7 .
cosu = Z—W_I—Q_'_‘_I—’ —X <1 <0G,
m=0
o
‘ (_1)177,—{—] xm .’132 _1:3 ‘ »
NIRIRRS S i L R P
m=1 T 2 3
O i) [
N ( 1)m 2m+1 .'E3 )
tan ll’ = _— =7 - — — =, Ly ':l,
20 2m + 1 373 !
o 2m+1 .3 5
whor = i LE Coc < o
sinhx = ,,,Z:O Gm 1) =x+ 3 =+ 5 + , oC LX<l oC;
o0 2m. 2 4
coshx = =1+—=4+—=+"-, -0 < x < 00.
%(m)! ot T

As the preceding list indicates, a power series need not converge for all z.
We recall the following facts about the convergence of power series.

e The power series (1) always converges at its center z = a.

o If the series converges for values of = other than a, then these values
form an interval centered at a, called the interval of convergence. If
the interval is finite, then there is a number R > 0, called the radius
of convergence, such that the series converges at all 2 for which

x — a| < R, and diverges at all z for which |z — a| > R (Figure 1).

If the series converges only at z = a, we set R = 0, and if the series

converges for all z, we set R = co.

A function defined by a power series is said to be analytic on the interval
of convergence. (In Section 12.5 we used the term analytic to describe a
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complex function that is differentiable in an open subset of the plane. A
basic result from complex analysis tells us that this property is equivalent
to having a power series expansion. So the usage of the term analytic in this
section is consistent with our previous usage in Section 12.5.)

A useful test for finding the radius of convergence of a power series is the
ratio test, as illustrated by the following examples. (In some cases the root
test may be more convenient.)

EXAMPLE 1 Radius and interval of convergence
Consider the power series

Using the ratio test, we have that the series converges whenever the limit

(mA+1) sgmsny /™ 2 : m+1\ , _2?
4m+1 X L 4717,1 "= n,}lr,l}x 4dm = 7

is less than 1. That is, 2°/4 < 1 or 22 < 4. Thus, the interval of convergence
is |x| < 2, or (—2, 2). Since the series is centered at 0, the radius of convergence
is 2. The behavior of the series at the endpoints, = +2, is not determined by
the ratio test. In this example, you can check that the series diverges at x = £2.
Thus we can define a function for all 2 in (—2, 2) by the power series, as follows:
Flz) =30 ERTma2m For each value of  in (—2, 2), the series converges to a

m=1

real number, which is f(x). [

lim
TrL—+OC

EXAMPLE 2 A power series that converges for all «
Find the radius of convergence of the series

Z(lm“ not_e m
— 2 (m!) 2 16 288 '

Solution Evaluating the limit obtained from the ratio test. we find

g:'m‘—{»«l 2™ ) |£B|
= lim | /——=—5 =0
2mH(m + )2 [ 2m(m!)2 | m—oo \ 2(m + 1)2

for all . Thus the series converges for all z. The radius of convergence is oo, and
the interval of convergence is (—o0, 00). [

hm
T, =

EXAMPLE 3 A power series that converges only at its center
For the power series

me )" = (2= 1) +4(x - 1)?+27(z - 1) + 256(z — 1)* + -,
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we use the root test and get

lim /|m™(r —1)™| = lim mlr—1| = o0
mo 0

e X
for all  # 1. Thus the series diverges for all & # 1. The series is clearly convergent
when o = 1. The radius of convergence is 0. ]
Operations on Power Series
Power series are like polynomials of “infinite degree,” and like polynomials
they can be added, multiplied, differentiated, and integrated term-by-term.
We now recall how these operations apply.

Linear Combinations and Products. Consider the power series repre-
sentations

flx) = Z am(z—a)™ and g(x)= Z b (0 —a)™,

m=(0) m=0

with common center at a and radii of convergence R; > 0 and Ry > 0,
respectively. Then it is not difficult to show that for any real numbers o and
J, we have

af(x) + Bg(x) = Z (@ ay, + Bby)(z—a)™.
m=0

The multiplication of power series 1s done in much the same way as for
polynomials:

f(x) - g(z)
= (ao+a1(;v—a)+a2(:.v—a)2+---) : (b0+b1(m—a)+b2(;t —a)2+---)
= ag+by+ (aoln + a]bo)(x —a)+ (a,obg +arby + agbo)(.’I’ —a)?+---

[oe]

= Z (aobm +a1bp-1+---+ arn,bO) (’L _ a)m.

m=0

The power series of the linear combination « f + 3¢ and the product f - g
have radii of convergence at least as large as the smaller of Ry and Ry.

Differentiation and Integration of Power Series. A power series

(4) flz) =) am(x—a)" (jr—a| <R, R>0)

m=0

can be differentiated term-by-term to yield

(5) fl(x)=> man(z—a)"" (lz—al <R).

m=1
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Moreover, the series (4) and (5) have the same interval of convergence. The
proof is sketched in the exercises: it uses the notion of uniform convergence
and results about series of functions from Section 2.9. Since the differentiated
series (5) is itself a power series with interval of convergence equal to the
interval of convergence of the series (4), we can differentiate it again, and
again, and conclude that f is infinitely differentiable.

If we differentiate the power series k times, we find

o0
FH¥(z) = Z m(m—1)---(m—k+1a,(r—a)"* (Jr —al <R).

m=k

Setting x = a, all the terms cancel, except for m = k, and we get

—k!
- ~ (k)
@) =kk-1)---(k—k+1Da = ap= / k'(a).
Substituting back into (4), we obtain the Taylor series expansion of f(xz):
(k)
(6) Z. f m(,“ (z—a)™ (Ja—a|l <R).

This shows that every power series with a positive radius of convergence is
the Taylor series of the function f(x) that it represents. (In general, you
may not be able to express f(z) in terms of familiar elementary functions,
as shown in the list at the outset of the section.)

The power series (4) can be integrated term-by-term on any closed and
bounded subintervals of the interval of convergence, as follows. Let [b, ¢] be
a closed interval in the interval of convergence: then

rC ~ -C
/ fd =S am / (t—a)"
Jb m=0 b
0
— Z Qm ‘:(C _ a)m.—H _ (l) _ a_)m—H] ]
m=0 m+1

In particular, if x is in the interval of convergence, then

() dt = — q)"t!
/ 1) m+1(r a) ’

because
T 1 ) £x 1 )
/ (t _ )m dt = (t _ a)m+1 — (.’IY - (l)m r-vl.
a

m—+1 a m+ 1

The proof is also sketched in the exercises. Let us illustrate the usefulness
of term-by-term differentiation and integration by deriving new power series
from known ones, without performing excessive computations.



Section A.4 The Power Serics Method, Part I  A33

EXAMPLE 4 Differentiation and integration term-by-term
(a) Start with the geometric series

1 _ 2 .3 - m .
m—l+z+1 +.Cl-+"':mZ:OQZ (-l <z <1).

Differentiate both sides of the the first equality:

5
W:0+1+2m+3x2+~--:Zma:m"l ("‘1<.’E<1).
m=1

This gives the power series expansion of the function 1/(1 — z)2. Observe the
following two facts:

e The differentiated series has the same radius of convergence as the original
series.

e The index in the differentiated series starts at m. = 1, whereas in the original
series it starts at m = 0. This is clear since the term corresponding to m = 0
in the differentiated series is 0.

(b) Start with the geometric series in (a). For z in (—1, 1), we have

T 1 T .
/ ——dt = / (T+i+t2+ 2+ ) dt
Jo 1—1 0

x t2 f3 t4 T

—In(1 —t¢ = ({+— 4+ —+—4...
n )0 (+2+3+4+ )0
z? oz gl
—1In(l--r) = T T o
n(l--r) :c+2+3+4+

This gives the power series representation of In(1 — z), which is valid in the interval
—1 < & < 1. Note that we could have obtained this representation by replacing
x by —z in the expansion of In(1 + z) from the list given at the beginning of the
section. n

In the preceding examples, we used various operations on known series
to derive new power series expansions. Thus we claimed to have found the
power series expansions of 1/(1 — z)% and In(1 — z). The question that
comes to mind is whether there are other power series representations of
these functions. The answer is provided by the following important result.

T}ég: Identity Principle. Suppos.e flz) = Z.?,i..:o a‘m_(.?[,: —a)™ and g(z) =
Y o bm(z — @)™, where both series have positive radii of convergence. If
f(z) = g(z) for all z in an interval containing a, then a,, = by, for all m. In
other words, a power series representation is unique.

This is an immediate consequence of the fact that the coefficients in the
power series are determined from the values of the function and its derivatives
at £ = a (Taylor’s formula). So if f = g in an interval containing a, then
f™(a) = g{™)(a) for all m, which implies that the coefficients are the same
in both power series.
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We will often use the identity principle to determine the coefficients of a
power series that appears in an equation, as the following examples illustrate.

EXAMPLE 5 The identity principle
Determine a,,, if for all a: in the interval (-1, 1), we have

AN
Z (@i ~ 2m)a" = 0.
m=0
Solution By the identity principle, there is only one power series that vanishes
identically on (- 1, 1). and this is the power series whose coefficients are all equal
to 0. Thus a,, — 2m = 0 for all m, and so a,, = 2m. [ ]

EXAMPLE 6 Equation involving a power series

Determine a,, if for all &z in the interval (—1, 1), we have

X o0 J_
E amx™ + E M2 =  —
—0

m=0 m=0

Solution Combining the two series on the left, the equation becomes

(o]

Z (1 +m)a,,z™ =

=0

1
j -

To be able to proceed from this point, we express 1/(1—x) in a power series about 0
and use the identity principle to equate the corresponding coefficients of 2™. Thus

X0 o0
Z (14 m)ay,, =" = Z 2 = (14 m)ay, =1 for all m,
m=0 0

because all the coellicients in the expansion of 1/(1 — ) are equal to 1. Solving the
last equation, we find a,, = 1/(1 + m). Thus ap = 1, a; = 1/2, as = 1/3, and so
onN. |

Composition of Power Series. We know from calculus that if f(z) is
differentiable at * = o and g(z) is differentiable at f(a), then g(f(z)) is
differentiable at a. This fact remains valid if we replace differentiable by
analytic; that is, if f(2) has a power series expansion centered at a and g(z)
has a power series expansion centered at f(a), then g(f(x)) has a power
series expansion centered at a.

As an illustration, suppose that f(z) = (z — a)” and g(x) is analytic
at 0 (= f(a)). Then the power series of g(f(x)) about a is obtained by
substituting (z — a)™ in the power series expansion of g(x) about 0. For
example, substituting 2 by z? in the Taylor series expansion of ¢*, we obtain
the Taylor series of e,
ey 2m 4 ZZ'G

at N gt 0t (L
( —Zm!—l+1 +2!+3!+ (—o0 < @ < 00).
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Quotients of Analytic Functions. Suppose that f and g are analytic at
a and g(a) # 0. Then the quotient f/g is also analytic at a.

To see this, we view the function 1/g as the composition of g with the
function 1/x. The latter being analytic everywhere except at = 0 (Exer-
cise 25), it follows that 1/g is analytic at a if g(a) # 0. Now f/g = f-(1/g),
and the desired conclusion follows since the product of two analytic functions
is again analytic.

The following examples illustrate some useful techniques that can be used
when computing a power series of a rational function.

EXAMPLE 7 Power series of rational functions
Find the power series expansion at a = 0 of the given function, and determine the
raclius of convergence. ,
(a) - 1 - (b) 40”4 8r — 4

3+ 2r 3+ 2z
Solution (a) To find the power expansion, we try to relate the function to the
geometric series, which we recall in the following form:

Z = 1—iz (Ju) < 1).

m=0

If we can write L/(3 + 2x) in the form A/(1 — u) for some u, where A is a constant,
then we will be done. For this purpose, we proceed as follows:

11 1 1
3422 31-(-%) 31-w
where uw = —2x/3. Thus
1 . 1 - 2%\ m _ > 1 m2m ™
3+2’L‘4_3_Z(—‘?) —Z(_ ) 3m+1 "
m=0 m=0

Furthermore. the scries converges if and only if |u| < 1; equivalently, |-2x/3] < 1
or |x| < 3/2. Hence the series has radius of convergence equal to 3/2.
(b) Dividing the numerator by the denominator, we obtain

472 + 8 -4 7

=2z +1-— .
3+ 2z 3+ 2

Using the power series expansion from (a), we find

4 +8x — 4 = m 2™
W = 1+4+2zx-—T Z(-l)”w
) m=0
-l ao+ Y (L B sy
= L = - L —_— — —_—rT -~ —
3 " 9 27" T 243

1 32 ) 2777,:1:.‘”7,
— ——+_.11_7Z('1)rnw.
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The power scries has the same radius of convergence as the one in part (a). [
Shifting the Index in a Power Series. When using power series to solve
differential equations, we are often required to combine scveral power series
into a single one, as we did in Example 6. Suppose you want to combine the

expression
E 4 E (m+1)z™
m=0 im0

into one power series. Unlike what we did in Example 6, here we cannot
simply add terms with corresponding indices, because the variable x has a
different power in the general term of each series. To deal with this situation,
we can rewrite the first series in terms of ', as follows. Let m +1 =n. As
m varies from 0 to >0, n varies from 1 to co and the first series becomes

o0
ImH — 2 :33”.
0

n=1

X

m=

Now rewrite the index n as m, and you have

~ o0
2 : P § : M
m 1

m=0

So we were able to shift the index of the terms without changing the power
series. In general, the index m in a power series can be shifted by A units as

follows:
X oC
, m+k __ .
E am(x — a) = E k(2 —a)™.
m=s m=s+k

Thus, if we shift the index of summation by changing m to m — k in the
general term of the series, then we must increase the starting point of the
summation by k. We also have

2 X
Z am.('»l' — u)m = Z S Hv(l‘ . a)m—t—k.
M=s Wt

Thus, if we shift the index of summation by changing m to m + k in the
gencral term of the series, then we must decrease the starting point of the
summation by k.

EXAMPLE 8 Shifting indices
Write the following sum as a single power serics

o

X
§ ”Lwrn,~l + E 21::71+’l.

m=1 =0
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Solution Let us express both series in terms of 2. That means we must change m
to m + 1 in the first series, so that the exponent of z becomes (m +1) — 1 = m. In
the second series we must change m to m — 1. With this in mind, the serics become

o

Z (m+ L)z™ + i 2z™.

m=0 m=1

We can now combine the two series as

(o0} o< [ee]
0+ 1)z + Z (m+ )z™ + Z 22 =1+ Z (m + 3)z™.

m=1 m=1 me=1

Note how we split off the m = 0 term from the first series. since the second one
starts at m — 1. |

The following two examples illustrate some of the basic steps in the power
series method of the next section.

EXAMPLE 9 Combining power series and their derivatives

Suppose that y = Y~ ama™ is a power series with radius of convergence R > 0.

Find a power series representation for the expression
(1+2)y - 2y.

Solution A power series can be differentiated term-by-term within its radius of
convergence. So for |z| < R, we have

o0
y = E amma™ L.

m=1

Using that > o, ammz™ =32 a,mz™, we obtain

e o oc
1+z)y = (1+a2a) E amma™ ™ = E ammz™ t + E ™
m=1 m=1 m=1
oo 0
= E Q41 (777' + 1)$m + § amm:r.m.
m=0 m=1

The second series can be started at m = 0, since the term corresponding to m = 0
is 0. So

(1 'I’" r):lj, = [(’ITL + 1)0;77],-{—_]_ + m(lm}.f'm;

M8

=
3
I

[=}

(I1+xz)y -2y = [(fm + Damsr + mam}w’"’ -2 Z amx™

M3

il
o
3
|
o

NE

[(m + Dams1 + (m — 2)0,,7,];1"". -

3
Il
o
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EXAMPLE 10 Combining power series and their derivatives
Continuing the previous example, find a power series representation of

22y + (1+a)y — 2.

Solution Differentiating the power series of y twice, we obtain
oo [0 0]
= E amen(m — Dz™™2 = 2%y = E apen{m — 1)a"".
m=2 2

We now appeal to the result of the previous exercise and get

2y + (1 +a)y — 2y

Z amm(m — 1)z™ + Z 7n+l Y, 1+ (m— 2)(1,,”]

m=2 m—=0

To combine the two series, we split off the terms corresponding to m - 0 and 1
from the second series and get

22y +(x+ Dy’ — 2y

o
= (a; —2ap) + (2a2 — a;) + Z [aym(m — 1) + (m + Daggy + (m - 2)a,,]2™
m=2
o0
= 2(az —ag) + Z [(m + Damer + (1,7,l_('7')'2,2 - ‘2)]1""’. B
m=2

Exercises A.4
In Exercises 1-12, find the radius and interval of convergence of the given series.

[o &} oo s @ . P
17”' 3nt ‘,I.ITL O (__ 1)”! :1.'”’+2
1. Z 5m4+1 2. Z m! 3. Z om
m=0 m=0 m=0
m™ " (m—1)(m+ 3) ™
4. x - 2)". 5. _ .
Z ( ) Z m! 6 Z '
m=0 m= m=1
. = 8. i (x+ 1)"‘ 9 i [10(x + )]2”’
L= Inm’ < m? ' 1 (m!)?
m=a< m=1. m=
o0 5, %)
(9a)2m 2m (2 —2)" ml(z —2)™
10. E:O(W—'),, 11. 2;0 — 12. Tz: 10'" :

In Fxercises 13-20, use a Taylor series found in this section lo derive the Taylor
serics cepansion of the given function at 0. In each case, specify the radius and
interval of convergence.

a . T a T+ 2

Sz 4. —— 15— 1 212
1+z (1+4x)? (L+2)? | —ux

17. A+ 18. xIn(l+wx). 19. asinzcosx. 20. & sin(zr+1).

13.
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In Excreises 21 -24, use the geometric series to derive the Taylor series expansion of
the gioen function at 0. In each case, specify the radius and interval of convergence.
1 14 T4z 1
— 22. . 23. 3— . 24, ————
2 3z 2 — 3x 32 4 32 22 — 21+ 2

25. Let a be any real number # 0. Use ideas found in Example 7(a) to show that

Z( 1)71 (1 — CL)”

m—0

21.

with radius of convergence R = |a|. Thus 1/x is analytic everywhere cxcept at 0.

26. Let
) 22k l)k,r2k+1

Z ;‘1) 22;& and  g(x Z < ik + 1)122FT

Prove the following assertions. (a) Both power series converge for all x.

0) [e) = ~g(@). (@) [g()ds = @) +C. (@) [ f(z)de = (a)+C.
(The functions f and g are known as Bessel functions or order 0 and 1, respectively.
They are usually denoted by Jo(x) (for f(x)) and J;(z) (for g(x)). Bessel functions
are studied in detail in Chapter 4.)

27. Let f(x) be as in Excrcise 26. (a) Find f(0), f(0), f"(0).

(b) More generally, find f)(0), for k =0, 1. 2,

(c¢) Integrate term-by-term to find [0 x)dzx, then estimate the integral with
calculator.

28. Let f(x) =

£, Find f(0), f£(0), and f°9(0).

In Exercises 29-32, write the given expression as a single power series (and possibly
some lower power terms, as in Example 8).

"l
29. E —2§ ma™ !
m.

m=1 m=0
m+L
30. + E (m— Da™m~t
m!
m=1 m=3
m—l
31. 2z E 2vm +2x" + E 5
m=2 m=2 m+

C
32. (z+1) Z

In Ezercises 3340, suppose that y = Zi?:o amx” 18 a power series with a pos-

itive radius of convergence, and find a power serics representation for the given
eTPTESSLON.

33. ¢y +y. 34. ¢ +z%y. 35. (1 — x2)y” + 2zy'.

36. (2+x)y + 23y 37. 2%y +y. 38. ¢+ + ay.

39. a2y +y—e”. 40. (1 - r)y" + sinx.

tv
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41. Geometric series. Fix a real (or complex) number 2 such that |z| < 1, and
let 72 be a positive integer. (a) Show that

l+z+xi+- +a"=

(b) Conclude that the geometric series > oo ™ converges to 1/(1 — ) if |z] < 1
and diverges otherwise. [Hint: What are the partial sums? Also, 2" "' — 0 if and
only if [«] < 1.]

42. Uniform convergence of the geometric series. (a) Let p be any number
such that 0 < p < 1. Use the Weierstrass A-test to show that the geometric series
Yoo x™ converges uniformly for all z in [—p, p].
(b) Show that the differentiated series Yoo, ma™ ! converges uniformly on [ p, pl.
(¢) Justify term-by-term differentiation of the geometric scries. (Sce Theorem 5,
Section 2.9.)

43. Uniform convergence of power series. Suppose that ) "  amz™ has
radius of convergence R > 0. Let 7 be any real number such that 0 < r < R.

(a) Show that a,, " — 0. Conclude that |a,,7"| < M for some A > 0 and all m.
[Hint: Apply the nth term test to a convergent series.|

(b) For x such that |z| < », we have

X

|ama™] = lam|r™(|z]/r)™ < M(|z|/r)™.

Use these inequalities, the fact that |z|/r < 1, and the Weicrstrass A -test to con-

clude that Y ' a,x™ converges uniformly on [—7, 7].

44. Term-by-term differentiation of power series. (a) Show that if >°°  a,,z™

m=0

has radius of convergence R > 0, then $°°° . ma,,, 2™ ! has the same radius of con-
=) m=1 ¢

vergence. [Hint: Given 0 < |z| < R, let r be such that |@| < » < R. Then

Imama™ ' < m(|x|/r)" Ham|r™ . Use the fact that the geometric series can be

differentiated term-by-term (so Y m(|z|/r)™ ! is convergent); also prove and then

use that |a,,|r" ' < M for some M.]

(b) Show that the derivative of 3"~ ama™ is >~ | ma,x™ L.

(¢) Show that the derivative of f(z) = > ~_ am(z — a)™ (for |z —a| < R) is

fix) =30 mag(x—a)" ' (for

z —a|] < R). [Hint: Define g{z) = f(z + a).]
A.5 The Power Series Method, Part 11

The solutions of many differential equations have power series expansions.
For example, the solution of y' —y =0isy = Ce® ory = CY v o Lr. The
power series method, that we present in this section, allows us to find the
power series solution (when it exists) directly from the differential equation.
This method is very useful in solving a wide class of important second-order
linear differential equations with variable coefficients that cannot he solved
by the methods that we discussed in previous sections. The power series
method works as follows. First, assume that the solution is a power series.
Second, write cach term in the given differential equation as a power series.
Third, equate coefficients of the resulting series on both sides of the equation.




To combine the series. we need
to have the same powers of »
appearing in both. For this
purpose, we reindex the first
series by changing m to m+ 1.
The index of summation has
to be lowered by 1, and so the
first series will have to start at
0.
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Finally, solve for the unknown coefficients in the series representation of the
assumed solution.
Let us illustrate this by deriving the power series solution of ' —y = 0.

EXAMPLE 1 A first-order equation

Assuming that you know that the solution of 3 —y = 0 has a power series expansion
about 0, find this solution.

Solution Write y = Z?,__,O a,z'. Differentiating term-by-term we have y' =
S mama™ . If we substitute the power series of y and ¥ into the equation
and combine the series, we obtain

oo RN
B =1 mo__ .
E My~ — E amr” =0,
m=1 m=0
[o o] o0
E (m+ a4 2™ — E mx™ = 0;
m=0 in- =0
0
E [(m+ 1)anmt+s — amlz™ =0.
m=0

By the identity principle, (m + 1)a,,41 — @, = 0 for all m., and so

. Ay,

1 Aypt1 = .

() Lin+1 o+ 1

Thus,

a,=a gp= =20 =2 __ 00 el B0
tTRee e Ty MUy T T2y M4 T 1234

and in general a,, = ag/m'. Hence the solution is

r  xt a? é
Yy = ap 1+ﬂ+2!+3—!+--- = ape”’,

where ag accounts for the arbitrary constant that we would expect in the gencral
solution of a Arst-order linear differential equation. |

Recall from the previous section that reindexing a series works like a
change of variables in an integral. If k£ is a positive integer and you change
m to m + k inside the series. then the starting point of the series must be
lowered by k. If you change m to m —k, then the starting point of the series
must be raised by k.

An expression like (1) that gives each coefficient in terms of preceding
ones is called a recurrence relation. In Example 1 the recurrence relation
determines the coefficients in steps of one. That is, from ag we get aq,
from a; we get ag, and so on. In the nexi example, the recurrence relation
determines the coeflicients in steps of two.
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Change m to m. +2 in the first
series. and start the new series
at 0.

EXAMPLE 2 A familiar second-order equation
We know that two linearly independent solutions of the differential equation y”+y =
0 are y73 = cosz and yo = sinz. We also know that both of these solutions have
power series expansions about 0. Derive the power series solutions using the power
series method.
Solution If we assume that the differential equation has a power series solution
-
_ ot T - 2 s
Yy = AmT" = ag+ a1+ axx® + azx” +-- -,

m=0

then the derivatives of y are obtained by term-by-term differentiation:

X
. 2
y = E ma,z™ ' =ay + 2apx + 3aza® + - -,

m=1

oo
y' = Z m(m — 1) an ™% =200 +2-3azx + 3-dagrt + -
m=2

Substituting y and 3" into the equation, we obtain

~ s
Z 777,(’!TL - l)am‘l‘mm2 + Z a,a’t =0,
e 2 =0
o o0
Z (77?; x .l)('lTL + ].)ﬂm L2 ™ + Z l'l,,,v,’)T’” =0,
m=0 0

(e ¢]
E [(m+2)(m + Dam. 2 + aplz” =0.
m=0
Thus ]
1
(m+2)(m+1)
It is clear from this relation that ag determines ao, which in turn determines ay and
so on. Similarly, a; determines uy. which determines as. and so on. Thus the even
coeflicients are determined from ag and the odd cocfticients from ay:

Am42 = Ay -

1
I
az = — 00, a3 = "3t
o] i
- ] o - a3 — 1L
ay = —7302 = 3100, G5 = —54 = gay,
o, e 1
ag = —Fg5l4 = —giQo, Qr = —7.¢ = —7i01.

The pattern we see gives

an = (=1)* g8y o2+ = (1) iy

Writing the even-indexed and the odd-indexed terms separately, we get the solution
J_zk+1

o o0 ok ka o ok
'“*“'OAZ( oI ;)( R T

=0
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We recognize these series as the Tavlor series for the sine and cosine; thus. as we
already observed, y = agcosr ~a;sinx. |

Note that ag and a; account for the two arbitrary constants that we
expect in the general solution to a second-order differential equation.

In Examples 1 and 2 the solutions of the differential equations werc
familiar functions. The usefulness of the power series method, however, is
more appreciated when we use it to find solutions that are not combinations
of elementary functions. To apply the method, we need to know when does a
solution have a power series expansion. Consider what happens if we assume
that the solution of the differential equation xy’ +y = 0 has a power serics
expansion at 0. Setting y = Y >, amz™, then

o o< o
vy +y==zx E mamz™ ! + E amz’" = E (1 +m)a,x™.
m=0 m=0 m=0

So 2y’ +y = 0 implies that > (1 +m)ay2" - 0, which in turn implics
that (14+m)a, = 0 for all m. Since 14+m # 0, it follows that a,, = 0, which
implies that the solution is y = 0. But you can easily verify that y = ("/x is
a solution (you can derive the solution by using Theorem 1, Appendix A.1,
or by simply guessing it). Indeed. v/ = —C/z? and so 2/ +y = (—C/2)
(C/z) = 0. So the power series method did not work in this case. This is to
be expected since the solution is not even defined at # = 0 and so it cannot
possibly have a power series centered at 0.

Thus we cannot always assume that the solution has a power series ex-
pansion centered at a given point. The following theorem of Fuchs gives
sufficient conditions that justify using the power series method.

Suppose that the functions p(r). ¢(x), and g(x) have power series expansions
at r = a: then any solution of

. 1" / o AL

(2) y +p(e)y +qlr)y = g(x)

has a power series expansion at & = a. Thus any solution y can be expressed
as a power series centered at a,

o0

y= z am(x —a)™.

m=0

Morcover, the radius of convergence of this power series is at least as large

as the minimum of the radii of convergence of p. ¢. and g.

When p(x), g(x), and g(x) have power series expansions with positive radius
of convergence at x = a, the point a is called an ordinary point for the
equation (2).
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Note how the index of summa-
tion in the first sum dropped
by 2.

Since the existence of the solutions of (2) is guaranteed by Theorem 3,
Appendix A.1, the real purpose of Theorem 1 is to address the existence
of power series expansions of the solutions. For a proof of Theorem 1, see
Chapter 3 of Ordinary Differential Equations. by Garrett Birkhoff and Gian-
Carlo Rota, 2nd ed., Wiley, 1969. To appreciate the power of Theorem 1,
note that it asserts that a complicated equation such as y” + "y’ + cos 2y =
1/(1 +22) has a power series solution about z = 0 with radius of convergence
at least 1.

EXAMPLE 3 A second-order initial value problem
Solve the initial value problem

y' 4oy +y =0, y0): 0, y(0)=1

Solution Using the notation of Theorem 1, we let p(x) = r and g(x) = 1. Sinec
both functions have power series expansions at U (given by the functions themselves),
we can assume a solution of the form

xQ

0y s TN o a2

Yy = E A" = 0g +a1x -t 20" + -+ .
m=0

At the outset, we may use the initial conditions to find ap and @,;. We have

y(0) = ag + 10 + a20% + -+ = ag

¥ (0) =a; +2a0+3 az0® + - =a
and so the initial conditions imply that ap = 0 and a; = 1. Substituting the serics
for y and its derivatives into the differential equation yields

s )

(RN ~
g m(m — 1) @ 2™ 2 4 E ma,,r" + E ame™ =0

m=2 el =)

Shifting the index of summation in the first series yiclds

> ™~ AN

q ™ -
E (m+2)(m+ Dapi22™ + 2 ma,,z" + E O™ 0;
qn.—0 =1 m=0

20
(2a2 +ao) + E ((m 4+ 2)(m + 1) apy2 + may + ayJe™ = 0.
m=1
Equating the constant term to zero gives as = —ag/2 and equating the coefficients
of the series to zcro yields the recurrence relation
-1

Az = —— @
m- 7')’]4—1»—2

m -

As in the preceding example, ag determines the coefficients with even indices and
a; those with odd indices. Since ag = 0, we get az = 0, ay = 0, and so on. For



27 n=2
1 n=4
\ n=3
-1 0 | \2 "x
n=1
/ -1

Figure 1 Polynomial (degree
2n 1 1) approximation of the
solution in Example 3.
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the coecfficients with odd indices. the recurrence relation gives

ar = 1:
S DU |
az = —3a1 = —7,
L,
a5 = —5a3 = 53>
Y U
ar = =705 = —753
The pattern that emerges is
_ (="
Q2k+1 =

135 (2k+1)

Substituting these values for the coefficients into y, we get the solution to the given
initial value problem

1 3.1 5 1 7 (=1)% 2k+1
Y= Tyt st Pt T s kvt
This solution can be expressed in a more compact form (sce Exercise 23). |

Polynomial approximations of the solution of Example 3 are graphed in
Figure 1. The more terms we include, the better the approximation is on a
larger interval. Note that all the polynomials satisfy the initial conditions.

It is useful to remark that when solving initial value problems like Ex-
ample 3, using the power series method, we always have

y(0) =ap and %/(0) = a.

As should be expected, it is not always possible to find simple patterns for
the coefficients in the solution. In such cases we can determine as many terms
of the series as we wish in order to obtain a Taylor polynomial approximation
of the solution.

EXAMPLE 4 Approximation by a Taylor polynomial
Find a fourth degree Taylor polynomial approximation of the solution of the initial
value problem

yll + 6,.1'1/ — ('Ob'-T, y(o) = 17 y,(O) = O

Solution In the notation of Theorem 1, we have p(z) = 0, ¢(z) = ", and g(z)
cosx, and each of these functions has a power serics expansion at 0, valid for all
z. Hence we have a power series solution, centered at 0 with an infinite radius of
convergence. Let us write this series as a Tavlor series in the form

X

L) 0
y=S L0

m!
=0
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n=4
Figure 2 Polynomial (degree
n) approximation of the solu-
tion.

Our goal is to determine the first five coefficients, ag. ay, ..., as, in order to obtain
a Taylor polynomial approximation

y'0) 2, y"(0) 5

, 40 )
Py(x) =y(0) + ¢ (0)ax + T + TR + Y 4!( ).r‘.

Instead of using the power series method, we will use the differential equation and
the initial conditions dircetly. Indeed the initial conditions, y(0) = 1 and +'(0) = 0,
give us immediately the first two coefficients of the Taylor polynomial. From the
differential equation, we have

17

y' = —e"y+cosi.
y'(0) = —e%(0) 4+ cos(0) = (=1)(1) +1 =0;
y" o= [ —e*y + cos :z:]' = —e'y — ey —sinu,
y"(0) = —ey(0) — €% (0) —sin(0) = —1;
y = [y +y) sina] = ey +y) — € (Y +1") — cosa,
g0 = -1-1=-2.

Thus Py(x) = 1—(1/3023 — (2/4)x? = 1—x3/6 — 2*/12 is the fourth-degree Taylor
polynomial approximation of the solution.
We can continue this procedure and find as many terms as we please. Here is
the seventh-degree Taylor polynomial approximation
1, 1 , 1 4 19

Prr)=1->2° - —at4+ —ab + 2o
7(2) 6% "12% "1 Tso0a0°

On the interval [—1, 1], the graph of the approximating polynomial of degree 4 is
indistinguishable from the graph of the polynomial of degrec 7 (Figure 2). This
suggests that on this interval we have a good approximation with a polynomial of
degree 4. However, as we move away from the center, more terms are needed to get
a good approximation. |

In second-order homogeneous problems, it is instructive to identify lin-
early indepcndent solutions y; and y2. As we saw in Examples 2 and 3. the
recurrence relations allowed us to solve for the coefficients a,,, m > 2, in
terms of ag and a;. We can define y; by taking ap = 1, a; = 0 and ¥y, by
taking agp = 0, a;, = 1. Then the general solution can be written as

Yy = c1y1 + cu2.

In terms of initial value problems, it is casily seen that y; satisfies the initial
values y1(a) =1, ¥} (a) = 0. Similarly, y» satisfies y2(a) = 0, y4(a) == 1.

The following cxample deals with a particular case of a Legendre's dif-
ferential equation. A detailed treatment of these equations is presented in
Sections 5.5 and 5.6. This treatment is one of the most important applica-
tions of the power series method in this book.
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EXAMPLE 5 A Legendre’s differential equation
Solve the initial value problem

(1 -2y’ — 22y +12y =0, »(0)=0, ¢ (0)=1.
Solution Put the equation in standard form:

2x 12
” 7 -
B 2y+1—\r2yi0'

1
Y 1=z

In the notation of Theorem 1, we have p(z) = ~2z/(1 —z?) and ¢(z) = 12/(1 — z°).
From the geometric series, . ~_ 2™ = 1/(1 — z), which is valid for |z| < 1, we

obtain
Z z: 2
> x a.nd > T2 m—H
1—=x -z
m=0 m=0

where both scries converge for all |z2| < 1 or |z| < 1. From this it follows that
p(z) and g(r) have power series expansions about 0 with radius of convergence
equal to 1. Theorem 1 guarantees that the solution has a power series expansion
at 0 with radius of convergence at least equal to 1. To find this solution, plug
Y= Z:fjo anmz™ and its first and second derivatives into the equation and get

X0 0
(1- :):2) Z m(m — 1)a,xc™ - 22 E ma,, ™ 412 E amx™ = 0;
m=2 m=1 m=0
o o0
E m(m — 1)a,,a™ 2 — Z m(m — Dayz™
m=2 m=2
[oe] oo
-~ Z 2mam ™ + 12 E Amt™ =0
m=1 m=0

Changing m to m -+ 2 in the first series in the second equation and simplifying,

O xXo
Z (m -+ 2)(m + Dappox™ — Z m(m — 1)a,,xz™
m=0 m=1
—Z?ma,”r +12Zam =0,
m=0
(m—3)(m+4)
209 + 12ag + Z (m+2)(m + 1)am .2 + am ( —m(m — 1) — 2m + 12)] T

m L

where we have split off the m = 0 terms from the series in order to start all of them
at m = 1. Setting the coefficients in the series equal to 0 and simplifying, we obtain
the relations

m—3)(m+ 4
2a9 +12a0 = 0; ami2 =am Em T 2;Em n 1;

(m >1).

The initial conditions determine ag and a;. Indeed, ap = y(0) = 0 and a; = y'(0) =
1. The two step-recurrence relation determines the remaining coefficients. From
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ao = 0, we get that ax = 0, a4 = 0, and, more generally. az, = 0 for all & > 0.

We now turn to the odd indices. Taking m = 1 in the recurrence relation, we
obtain: agz = a;(—10)/6 = —5/3. Next, we take m = 3 and find as = 0. and so
ar = 0, ag = 0, and, more generally, asg4+) = 0 for all £ > 1. Thus the solution is a
polynomial:
Yy =a1x+ (13:1:3 =I— :—).173.
3
This can be verified directly from the equation: 3 =1 — 522, ¢ = —10x, so0
5. . 5 - .

(1—2®)y" — 22y’ +12y = (1 — 2°)(-10z) - 22(1 — 52%) + 12(x — 551”‘) = 0.

The initial conditions are obviously verified. |

Recall that Theorem 1 guarantees that the power series solution will
have a radius of convergence at least as large as the smallest of the radii of
convergence of the power series expansions of the coefficient functions p(x:)
and ¢(«). Keep in mind, though, that the solution may have a larger radins
of convergence. In Example 5 one solution is a polynomial of degree 3; in
particular, its radius of convergence is infinite.

We next derive the general solution of the equation in Example 5.

EXAMPLE 6 General solution of a Legendre’s differential equation
Find two linearly independent solutions of Legendre’s equation

(1 — 2%y — 22y + 12y = 0.

Solution In Example 5 we found one particular solution, y; = = —(5/3)x®. To find
a second linearly independent solution, we return to the recurrence relation that we

found in the previous solution and let ag be arbitrary. This gives ag = ag ((2';3(1:] =
—1)(6 1)(8 .
—bag. ayg = az((,f)gé‘i) = 3ap, g = Q4 Eb;((;: = %a,o, and so on. Thus,

6

2 1 4
y2 = ao(l — 6% + 3z" + za® +---).
3
The solution is an infinite power series in even powers of x. Unlike y;, yo has
infinitely many nonzero terms. O

The fact that Legendre’s equation in Example 5 has a polynomial solution
and an infinite series solution is not a coincidence. Indeed this will happen
every time the equation can be put in the form (1 r?)y”—2zy'+n(n+1)y = 0
for some nonnegative integer n. (In Example 5, we have n = 3.) Many
interesting facts about Legendre’s equation can be found in Sections 5.5 and
5.6.
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Exercises A.5

In Ezercises 1 12, show that 0 is an ordinary point, and then find the power se-
ries solutions centered at 0. In each case, write down the recurrence relation for
the coefficients, and compute at least three nonzero terms from cach power series
solution.

1.y +2xy = 0. 2.y +y=0.

3.y +y=nu. 4.y + (cosx)y = 0.
59" —y=0. 6.y —y=ucx.

7.9 —ay +y=0. 8.y +2y +2y=0.
9.9 +2zy +y=0. 10. y" +zy +y = 0.

11.y" =2y +y =0, y(0)=0, y'(0)=1

12. y" -2y +y==a, y(0)=2,4(0)=1.

In Exercises 13-16, use the power series method to solve the given Legendre’s dif-
ferential equation.

13. (1 —22)y” — 229/ +2y =0, y(0) =0, ¥ (0) =3.

14. (1 —a?)y” — 22y + 6y =0, y(0) =1, 4/(0) = 1.

15. (1 —x2)y” — 229/ + 12y =0, »(0) =1, ¥'(0) =0.

16. (1 —22)y" — 22y’ +2y =0, y(0) =1, ¥ (0) =0.

17. Find two linearly independent solutions of (1 — z2)y” — 223y’ + 2y = 0 on the

interval —1 < 2 < 1. [Hint: From the power series method, one solution is a first
degree polynomial. You may use the reduction of order formula to find a second

linearly independent solution.]

18. Find two linearly independent solutions of (1 — z2)y” — 2zy’ + 6y = 0 on the
interval -1 < x < 1.

In Ezercises 19-22, (a) justify the existence of a power serics solution centered at
0, and then find a fifth-degree Taylor polynomial approximation of the solution. (b)
With the help of a computer, find higher-degree Taylor polynomials that approa-
wmate the solution. Plot them on the interval [—2, 2], and then decide the lowest
degree needed in order to obtain a good approzimation of the solution on the interval
[_17 l]

19.y" —y/ +2y =", y(0) =0, ¥'(0) = 1.

20. " + (sinz)y =z, y(0) =0, ¥'(0) = L.

21. y" + "y =10, y(0) =1,y'(0) =0.

22.y" +xy=coshz, y(0)=0,¢(0)=1.

23. Show that the solution in Example 3 is

B (—1)k2* k' 2kl
i Z (2k + 1)! '

24. Airy’s differential equation. In this exercise, we find a series solution of
Airy’s equation
Y’ —xy =0.
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(a) State why the solutions of the differential equation have power scries solutions
with infinite radius of convergence.

(b) Assume that y = > ~_ant™. Show that as = 0 and derive the three-step
recurrence relation

(m+2)(m + L)ay42 = ap1, m=123,....

(¢) Show that the general solution is

y = Qo

a,dn
1
+Z (3n)(3n —1)(3n.—3) ...3- 2]

n=1

a1

1n+'l
v Z (3n + 1)(371)(31) -2)...4- ‘3] '

QQ_ (d) Write y = apy1 +a1y2 and plot scveral polynomial approximations of y; and ys.
Note that for negative values of 2 the graphs look like those of sina and cos.r, and
for positive values of = the graphs look like those of ¢®. kxamine the differential
equation and give a reason for these observations.

25. Solve the following initial value problem for Airy’s equation:
y'—ay =0, y(0)=1 y'(0)=0.

26. The sine and cosine functions. In this exercise, we show how a differential
equation can be used to derive properties of its solutions. We refer to the differential
equation of Example 2 with the two linearly independent solutions

Z(— 1 2% and S(z) = Z( D 2A . l) L2k

k=0

We pretend for now that we do not recognize these functions as the sine and cosine
functions, and we derive their basic properties from the differential equation.

(a) Show that C’(2) = —S(2) and S'(z) = C(x).

(b) Using Abel’s form of the Wronskian, show that C?(x) + S%(z) = 1.

(¢) Using the fact that any solution of the differential equation y”’ +y = 0 is a linear
combination of C'(x) and S(x), show that S(x+a) = S(a)C(a)+ C(x)S(a). [Hint:
Show that S(z + a) is a solution and conclude that S(x + a) = ¢, S(2) + caC(x).
Determine the constants by evaluating at x = 0.]

(d) Establish the identity

Cx +a) = C(z)C(a) — S(x)S(a).

(e) Which trigonometric identities are implied by (c¢) and (d)?
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A.6 The Method of Frobenius

While the method of power series is useful in many situations, and perhaps
the most widely applicable method that we have developed thus far, there
are still important differential equations that cannot be fully understood by
this method. For example, consider Bessel’s equation

22y + 2y + (2% —ply = 0.

Putting it in standard form, we see that x = 0 is not an ordinary point.
Hence, Theorem 1 of Appendix A.5 does not apply. For applications, it
is of particular importance to understand the behavior of the solutions af
2 = 0. To this end, we will develop a generalization of the power scries
method, known as the method of Frobenius.

Consider the homogeneous differential equation

(1) v +p(x)y +q(z)y =0.

Recall that a is an ordinary point of the differential equation if p and g have
power series expansions at a. Otherwise, a is called a singular point. If a
is an ordinary point, then we know from our work in the preceding section
that the solutions of this equation have power series expansions at the point
x = a. If a is a singular point, then the method of power series fails, as our
next example shows.

EXAMPLE 1 An equation for which the power series method fails
Consider the differential equation zy” + 2y’ + zy = 0.

(a) Determine whether x = 0 is an ordinary or singular point.

(b) Apply the method of power series at = 0 to the differential equation.
Solution (a) We have p(z) = 2/z, and g(x) = 1. Since p(z) does not have a
power series expansion at 2 = 0, the point x = 0 is a singular point of the equation.
(b) We assume that y has a power series representation centered at x = 0, y =
Y yamz™. Substituting into the differential equation and reindexing as needed

gives

xC ) o<
E 'ITI,(’I'I?, — 1)(1.,“.77777_1 + E 27namm‘m’“1 + § (L,,,.’l’m+1 =0;

m=2 m=1 m=0

o< 0 x
E (m + 1)77”’0’77!+1'rm + 2 2("” + 1)am+115n7 + E am—lmm =0
m=1 m=0 m=1

'
20‘1 + Z [7”’(771' + 1)am+1 -+ 2(‘"1 + ])CLm+1 + ar;t—l]-"m = 0.

m=1

Equating coefficients, we find that a; = 0 and

m(m + 1)ams+1 + 2(m + 1)a,41 +am—1 =0, for all m,
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from which we get the two-step recurrence relation

1
[4 1 =- P Ay —1 -
m+ ('ITL+2)(‘TTL+].) m
Since a; = 0, it follows that a3 = a5 = a7 = --- = 0. For the cven indexed
coefficients we have . .
a9 — _‘—S—an = vg(l.o
A A |
WY a4 = 75302 = 5o
_ _ 1 _ 1
1 aeg = —ROA = —ﬁ(l().

It is clear how this sequence continues. Thus one solution is

z?2 zh 26 agp 3 oz 27 sina
X y=qll-mt -t =— (-t -4 | =
/\\‘} \T‘//\ S0 35T z 3 5Tl 7
0
simz  (Figure 1).

x

Figure 1 Graph of y =
(Note that the function 1‘;}‘— has a power series expansion at z = 0 that converges
for all x.) Since the differential equation is of second order, we need two linearly
independent solutions. The method of power series yielded only one solution and
hence failed to give the general solution. To get a second linearly independent
solution, we can use the method of reduction of order, which gives (you should

check this)
Cos T

xT
(See also Exercise 29.) [ ]
Put simply, the method of power series failed to generatc both linearly

independent solutions in Example 1 because one of those solutions is not a
power series. To see why, we write

cosT 4 z? ozt ab
B T
T 2! !

This is not a power series, since it contains a negative power of . It turns
out that if the singular point of a differential cquation is not “very bad”
then the solutions follow a pattern similar to that of Example 1. That is,
at least one solution is a power series multiplied by z". We devote the rest
of this section to making this idea precise. For simplicity, we consider only
series expansions about z = 0, although analogous methods apply for series
expanded about an arbitrary = = a.
Suppose that z = 0 is a singular point of the equation

(2) y" +p(2)y +qlz)y = 0.

We say that 2 = 0 is a regular singular point of the equation if both of
the functions zp(z) and 22q(z) have power series expansions at x = 0. (This
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is what we mean by a singularity that is not “very bad.”) The Frobenius
method that we now describe applies to equations for which = 0 is a
regular singular point. For clarity’s sake, we restrict our attention to the
case £ > 0. The case z < 0 is handled similarly (or can be reduced to the
case x > 0 by the change of variables t = —z). Motivated by Example 1,
we try a series solution of the form

~o
(3) Yy = x” (ao +a1z + (1-2.’172 + .- ) — Z Clm:l'H‘m

m=0
with ag # 0. Such a series is called a Frobenius series. We have

o0

y = Z o (7 4+ m)z" "1
m=0
and
o]
’,lj”: Zam(r+’m)(r+m—1) = 2
m=0

(Observe that the index of summation begins at 0 in both these scrics.
Why?) Thus (2) becomes

oo
Z o (7 4+ M) (r + m — 1)2” T2

m=0

Zamr'i‘m r+m-— 1+Q(T)Zam r+m:0_

m=0

We factor = from the second series and z? from the third to make all expo-
nents the same and get

(4) Zam(r+m)(r+m )zt
m -0

+ zp(x Zamr+m) rtm=2 4 22q(z Zamar+m~:0.

m=0

Since by assumption z = 0 is a regular singular point, the functions zp(x)
and z2g(.r) have power series expansions about 0, say

zp(x) = po + 1@ + paz’ + - -

and
IzQ(-T) =qo+ QT+ gt + -
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Substituting these into (4) gives

00
Z U (’]" -+ T}’L) (7" “+1m — l).’L’T' tm—2
,m’=0
o0
+(p0 +p1x + pga;z + .. ) Z - (,,, . I'TI‘)J"' L2
m=0
x
+(q0 + qz + qgrr2 + ) Z a,,,»,;_r:""’”"_g —0.
m=0

The total coefficient of cach power of = on the left side of this equation
must be 0, since the right side is 0. The lowest power of & that appears
in the equation is z" 2. Its coefficient is agr(r — 1) + poapr + goap =
aplr(r — 1)+ por + qo] = 0. Since ap # 0, » must be a root of the indicial
equation

(5) r(r—1)+ por +qo = 0.

The roots of this equation are called the indicial roots and are denoted by
r1 and 7o with the convention that r; > 7o whenever they are real. Note
that po and go are easily determined, since they are the values of ap(r) and
2?q(z) at £ = 0. Once we have determined 7, and ry , we substitute 1 in
(4) and solve for the unknown coefficients a,, as we would do with the power
series method. This will determine a first solution of (2). Summing up, we
have the following important result.

THEOREM 1 |If = =0isa regular sinétllé;l' point of the equation
FROBENIUS 4 )
METHOD FIRST y +p(@)y + qlx)y =0,

SOLUTION then one solution is of the form

1 = |zf™ (au + x4+ asz? + ). ay # 0,

where 71 is a root of the indicial equation (5). with the convention that r
is the larger of the two roots when both roots are real.

For a proof of this theorem. see Chapter 9 of Ordinary Differential Fqua-
tions by Garrett Birkhoff and Gian-Carlo Rota. 2nd ed., Wiley, 1969. It can
be shown that if zp(2) and 22¢(z) have power series expansions that converge
for |z| < R, then the series solution will converge for 0 < |z| < R.

Note that Theorem 1 says nothing about a second solution of (2). This
solution may have one of three forms, as described in the following box. The
proofs are presented in an appendix at the end of this section.
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THE FROBENIUS
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Suppose that r=01isa regular singular point of the differential equation
v+ ()Y + qlr)y = 0.

and let r; and ry denote the indicial roots.  The differential equation has
two linearly independent solutions y; and yo, as we now describe.
Case 1. If | — 75 is not an integer. then

o0 o
- r ..'I” p s ) I‘g 4 AN p -
th = |z E G2y 3 =1z} 5 b, ag # 0 and by # 0.
m={) m=()

Case 2. If r = r| = . then

X x
yr =217 ama™, g2 =yilnfa|+ 2] Y bua™. ag # 0.
m=0) m=1

Case 3. If r; — ro is a positive integer. with 7 > r9. then

i - TR el ]\ 4 ka1 Jn
yr = |2 E ama™,  yo = kyy Inje] + x| E B .
m=() m=()

where ag # 0., by # 0 (A may or may not be 0).

Thus we find two linearly independent Frobenius serics solutions in (fase 1
and also in Casce 3 when £ = 0. Otherwise. we can find only one Frobe-
nius series solution, and any linearly independent solution must involve a
logarithmic term. In computing y; and yo it is convenient to take ag = 1
and by = 1; then the two arbitrary constants will appcar when writing the
general solution in the form of an arbitrary linear combination of y; and ys.

EXAMPLE 2 Frobenius method: r; — rs is not an integer
Solve the differential equation

1 1
12 / ~
y' '+ —y ——y =0, x>0.
Y 2x Y dr Y
Solution Theorem 1 applics, since both zp(x) = % and x%g(x) = — Sa have power

serics expansions at o« = 0. Morcover, py = 15 and gg = 0, so the indicial equation
and indicial roots are

r=0.

0,

= % and 7y = 0.

r{r—1)+

9
72— Ly

o=

(Following our convention, we choose r; > r3.) Since r; — 72 is not an integer,
the solutions are given by Case I of the Frobenius method. The next step is to
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determine the unknown coefficients in the series solutions.

It is more convenient

to work with the differential equation if we multiply both sides by 4u:

dzy’ + 2y —y =0.
Substituting y = 2% a,,2™*" into the equation gives
o0
Z Aa(m+r)(m+71 — 1)xTN+r—]
m=0

—+ Z 20m (m + 1) ol o

m=0

E a,,hlx’"“_l =0.

{(We have shifted the index in the third series to match all the exponents of z.)

Adding the terms corresponding to m = 0 and setting the coefficient of z

equal to 0 gives us the indicial equation

dagr(r — 1) + 2apr = 0,
. 1
r? — 5T = 0 (since agp # 0).

Setting the sum of the coefficients of 2™+7~1

O+4r—1

equal to 0 gives us

(6) dam(m+7r)(m+7r— 1)+ 2a,m(m+7) — ap—1 = 0.

At this point, we treat separately the case 1 = % and 7o = 0. When r = —12-, the

recurrence relation (6) becomes

1 1 1
dam,(m + 5)(771 + 5 1) + 2a,,(m + 5) — Q1 =0
1
Ugp = ——————————Qyp—1 -
™ dm(2m 1)
From this recurrence relation we get the pattern
1 1 a 1 1
a1 = 500 = o a — a3 = —a
_ 1 1 B 1 -
I R TR F R T Tha
1 1
a3 = ——as = —a
Ter
Thus a,, = m ap, and hence the solution corresponding to r = % and ag = 1is

o0

1 o
= _— 7 - £
vl ZZ:O 2m + 1)!

For r = 0 we get the recurrence relation (6):

dam(m — 1) 4+ 2am m = @ypeq = 0

1
am = ) Qmp—1-

2m(2m —1



r Y 1 + 72 + x2/4)
4 coshVx
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Figure 2 Solutions and par-
tial sumi approximation from
Example 2.

-
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8
6
4
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0 1L 2 3 456

Figure 3 Approximation of

yy near 0. Notice the blow-up

due to the term %
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This gives the following pattern for the coefficients:

1 1 1 1

ay = 2——100 = 5190 a4 = ﬁaa 8'
1 1 1 1

ay = mal = aao, as = mael = l_O!ao’
1 1

az = 6'50:2: 600

It is clear that a,, =
ap = 11s

ﬁ)—!ao, and hence the solution corresponding to r = 0 and

-y

m=0 (2771)'

Thus the general solution of the differential equation is ¥ = ¢ y1 + c2y2, where ¢;
and ¢y are arbitrary constants. |

The solutions in Example 2 can be simplified as

y1 =sinh vz and yp = cosh V/z,

Do you see why? [Hint: Write 2™ as (y/z)?™.] We can verify the validity of
these solutions by plugging them into the differential equation. In Figure 2
we compare the graphs cosh \/z and the partial sums of y;. Notice how
the partial sums of 1o approximate the real solution. With the aid of a
computer system, you can do the same for ;.

z > 0.

EXAMPLE 3 Case of a double root r = r; = o
Solve the differential equation

(7) 2y +3zy +(1—z)y=0, z>0.
Solution We easily verify that pg = 3, go = 1, and so the indicial equation is
2 +2r+1=0. We have a double root » = —1, and so we are in Case 2. Let

Y1 = Yoo Gm®™ 1 with ag # 0. Substituting in (7), after some computations as
in Example 2, we arrive at the recurrence relation
A,

Am+l = — 5 -
1T m+1)2

Taking ap = 1, we get the first solution

_ e 1 ,77‘14—1 1 :EZ Ts fl'4
yl—mz_:o(m!)z.l - 1+r+—+%+ﬁ+

(An approximation of y, is shown in Figure 3, using a partial sum of the infinite
serics. The details of the derivation of y; are left to Exercise 30.) According to
(ase 2, we try for a second solution

[o ]
y=y1lnz+ Y bpa™ !

m=1
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Substituting in (7) and simplifying, we get

=0
(8) [12J’1' + 31:y§ + (1= 2)y]Ina + (2ay] + 2y1)
+ Z ))n m — 1) m — 2 ,”NJ + Z 3[)1” m — III—I
m=1 m=
+ Z b'm,:l'mh Z by 1™ R 0.
m=1 m=

The coefficient of Inx in (8) is 0, since y; is a solution of (7). From the series
representation of y; we see that

>
m — 1
21,.1/ + 2[1 — 2 ‘ m~l 4 m—l
ey £ (m!)? Zo (m!)
m

, x
m~l _ § m—l
('m — (m — l)hn'

After substituting this into (8) and combining terms with like powers, we arrive at
the equation

o0
2 L2 m—1
(2+b1)+ Z (m + m*b,, _bm—l) a™m =0,

m=2

Thus b; = —2, and the recurrence relation for the b,,’s is

1 2
b i - Y bITI— e T ANl T .
" m? ( Y - 1)!777!)

From this relation we can calculate as many cocfficients as we wish, although it
would be difficult to find a closed formula for b, in terms of m. Using the first five
coefficients, we have

. 11 . 25 . 137
y mfl o (2+ §~T"+ —.172+ 9 ;T‘S_{__&_J.'l + )

= 0 108 3. 456 432,000

Hence the general solution of (7) is

y = ayrt ey

= (¢ +c2lnm) Z 7!

|
m=0 (771

(o 3ijr U, 25 5 187
J— R 4 — _l . o A e
2 108 31567 T 432,000 )

where ¢; and ¢y are arbitrary constants. [ |
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EXAMPLE 4 Case r; — r2 is an integer
Solve the differential equation

(9) 22y —ay + (x-3)y=0. z>0.
Solution We have pg = —1, g9 = —3, and so the indicial equation is 7> —2r —3 = 0.
The indicial roots are r; = 3 and 7o = —1. We are in Case 3. For a first solution

we try y1 = > . _oamx™ 3. Substituting in (9) and solving for the coefficients

am, we arrive at the recurrence relation

-1
Am = m(lm—h
from which we get
1 1 1 1
10 =apz®|[1—- = — g% - 3 gt — ).
(10) i = o ( 55 60" "1,260" T 30,320"

The details are left as an exercise (Exercise 31). The second solution is of the form

0
y=ky;Inx + Z bnx™

m=0

where k£ may or may not be 0. We substitute this in (9), simplify, use the fact that
y; is a solution, and get

=0

A\

[2%y) — zy; + (z = 3)y] Inz + 2k(zy) — u1)

oo o0
+ Z b (m — 1)(m — ‘.2).;7:""1 - Z by, (T — 1):17’”_L
m=0

m=0

- i 3b"77:l’.r'1’_] + i b?n.—l.L'mjl = 0.

m=0 =1

The lowest power of = appearing in the term 2k(zy) - y,) is x®, so we obtain the
following equation upon simplification:

(11) (bo — 3b1) + (by — 4bg)x + (by — 3b3)x? + 2k(zy) — y1)

o~
+ 3 [bm(m? — 4m) + b1]2™ 1 = 0.

m=d

Taking by = 1, setting the first three coefficients equal to 0, and solving, we obtain

b

Il

Now from (10) it follows that

3 1 . 1
el —ua) = 2% {223 — 2 pt 4 — 5 - —_ .64 ...
l’“(l.yl yl) (Il 5"{‘ +15'I" 2521: + ’
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and so, setting the coefficient of 23 in (11) equal to 0, we get

4k + by = 0.
Thus k = —1b3 = —z1-. We can now continue to use (11) to ﬁncl as many of the
coefficients by, bs, ... as we wish, by setting the coefficients of #1, 2° ... in turn
equal to zero. Omitting the details, we find that by is arbitrary (so we choose
by = 1), and so bs = — 2. Hence
Lo N T I I
Yo = ——— 1y Inx - —r+ —x"+ =2 +a" — —u ]
G PVES 37T 127 T 36 600
So the general solution of (9) is
Yy = ay t+cy
(e Inx 1 1 " 1 2 1 S 1 4
= —(y —— — J Y » e A
T 60" 1,260 ' 1,032
+epz! 1+11+1'r'3 Losy oo 12 g
— — 2 —_ " "{". — —r - e e .
2 377127 736 600
where ¢; and ¢ are arbitrary constants. |

In the preceding example the second solution y» contained a logarithmic
term, since the constant & turned out to be nonzero. On the other hand,
Example 1 deals with a Case 3 equation in which this does not happen.

Indeed, the indicial equation is 7(r — 1) + 2 = 0 with roots r, = 0 and
ro = —1 that differ bV a positive integer, and the solutions of the equation,
1y = 30Z and yp = %52 do not contain a logarithmic term.

Use of the Reduction of Order Formula

In all threc cases of the Frobenius method, once we have found v; (using
Theorem 1), a second solution can be derived by using the reduction of
order formula:

- o— [ p(x)du
(12) (@) = (@) [ e
vi(z)
To get the series for ys, we expand the integrand and integrate term by
term. This process is illustrated by our next example and is justified in the
appendix of this section. The task of expanding is greatly simplified with
the help of a computer.

EXAMPLE 5 The reduction of order formula
Find the general solution of the differential equation

22y +xy + (2% - Dy =0, x>0.

Solution The indicial equation is r?—1 = 0 with indicial roots r; = 1 and ry = —1.
(Note that the indicial roots differ by an integer, so we cannot assume at the outset
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that the solutions are both of the form (3).) By Theorem 1, one solution is of the
form y, = x™ >0 amax™ with 7 = 1. Plugging in the differential equation and
solving for the coeflicients as in the previous examples, we find

r? o x® 28 rto
Py mp— 1 - 4= - - : c
"= ( § T102 9,216 ' 737.230  88,473.600 )

(Exercise 32). We find a second lincarly independent solution with the help of the
reduction of order formula. Putting y; in (12) we get

—~ [1/xdz

€ : 1

ya(x) = wn /—2 N =
. !/1 r

1

= Y / » (1 s o - P ).2 dx

r? r® @ :
3 + 192 ~ 9.216 + 737.280 88.473.600 +

1

- yl / 1 > 10 dtr
J 3 _ x? 524 7S Ta%  lla L.
! (1 T T 102 ~ 1608 T T22.880 _ 7.372.800 T )

(Squaring)

1 1 7r 1923 149 29 803 =7
= i — 4 + + + + + -] dr

23 4z 192 ' 4.608 ' 368,640 ' 22,118,400
(Series expansion or long division)
-1 1 7z 197 149 z© 803 z®
4 (W Tt s Y8432 T 3211810 T 176,047,200 T )
(Integrate term by term)
Inx -1 7 1921 14925 803" )

= et (52 " 384 T 18,432 T 2.211.840 T 176,947,200 T

This determines a second linearly independent solution. |

Example 5 shows that the reduction of order formula is a handy tool for
checking for the presence of a logarithmic term in the solution.

Appendix: Further Proofs Related to the Frobenius Method
In this appendix we use the reduction of order formula to derive the second solution
in the Frobenius problems. given the first one by Theorem 1. We restrict our
attention to the case xr > 0.

Recall that 2p(x) has a power series at 2 = 0. Thus we have

xp(x) = po+pixtped oo,
p
plr) = [—U +pLFppr 4o

x
We denote the function py + pex + - -+ by a(x) (note that a(z) has a power series
expansion at x = 0), and so

Po
p(r) = = + a(x).

Integrating and taking the exponential, we get

(13) e~ Pt dT — =P (),
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where G is the function e~ /2@ 4% "and, in particular, G(0) # 0. (Note that G has
a power series expansion at z = 0.) Now, using Theorem 1, we can write

1 1

(14) S = 27 H(il,),
l a’

o

where H(z) =1 /(Z::O amz™). Since ag # 0, the function H(z) has a power
series expansion at 0 and H(0) # 0. Combining (12), (13), and (14), we find that

(15) o = / =P K () da,

where K (x) has a power series expansion about 0, and K(0) # 0. We write

K(z) =ko+ kiz + 1€'211'12 + e ko # 0.
At this point, we establish a connection between 71, r3, pg. Since r; and 79 are the
roots of equation (5), we have 71 + 72 = 1 — pg. Thus (15) becomes

(16) Y2 =0 /LL'(TI "'2"'1)(160 + kvz + kox® + - dx, ko #0.

Note that a logarithmic term in yo will appear if and only if a term in ! occurs

in the integrand (after multiplying through by z~("="2+1))  This is why r; — ro
determines the nature of the second solution.

Case 1: Ifr; —ry is not an integer, clearly there can be no term in 2~!, and hence
no logarithmic term in ys.

Case 2: If r; =13, then the very first term yields the logarithmic term in ys, since
ko # 0.

Case 3: If ry — o is a positive integer, say r| — r2 = n, we may or may not have
a logarithmic term, depending on whether k., is 0.

Exercises A.5
In Ezcrcises 1-6, decide whether r = 0 is an ordinary point or a singular point. In
case it is a singular point, determine if it is a reqular singular point.

1.y" + (1 —22)y + 2y =0.
3. 23y + 2% +y=0.
5. 2%y + (1—e)y +ay=0.

. N 1
2. 2y’ +sinzy + Ly =0.

R p 1 _
4.sinzy” +y' + ;y=0.
6. 3xy” +2y — 3%'!/ = (.

In Ezercises 7-22, (a) check that x = 0 is a regular singular point. (b) Determine

which case of the Frobenius method applies.
terms in each of two linearly independent scrics solutions.

T.4xy” + 6y +y=0.

9.42%y" — ldzy + (20 —x)y = 0.
11.2z2¢" +(1+2)y +y =0.
13.2¢" +(1—xz)y +y=0.

15. 29" +2(1+ )y + (¢ +2)y =0.

(¢) Determine at least three nonzero
Take x > 0.

8.4zy" +6y —y=0.

10. 4z 9" 4+ 2y +y =0.

12y = =y + Ly =0.

4. 2y +2y —zy = 0.

16. 2?y" + v + (2% — %)y = 0.
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17. 22y +4ay + (2—- 2%y =0. 18. zy/' +(x+2)y +(x+ 1)y = 0.
19. xy” + 3y + Ly =0. 20. 22y +4xy’ + (2+2%)y =0.
2L oy’ +y -y =0. 22. 42y +2y +ry=0.

In Ezercises 23 -28, determine which case of the Frobenius method applies. and then
solve the equation using Theorem 1 and reduction of order as we did in Example 5
Does your second solution contain a logarithmic term?

23. 402y’ — 14x ;t/’ +(20+x)y=0, x>0

24. y" — '” v+ s5=zy=0 a>0

25. " + sy = y:O., z > 0.
26.;/”—“J+ =~y =0,r>0.

27. x(1 —x)y" + (1 —3x)y —y=0, 0<xz<l
28. x(1 —ax)y" — %y =0, O0<xr<l.

29. (a) Make the change of variables u = xy in the differential equation of Example
1 and show that it becomes v + u = 0.
(b) Use (a) to derive the solutions y, =

cos T
r

30. Derive the first solution in Example 3.
31. Supply the details leading to the first solution in Example 4.

32. Supply the details leading to the first solution in Example 5

Euler's equation can be used to illustrate the solutions in all three cases of the
Frobenius mcthod. In Exercises 33-36, (a) show that x = 0 is a regular singular
point, and determine which case of the Frobenius method applics. (b)) Find two
linearly independent solutions. using the methods of Scction A.3.

33.y" + 1y — Zy=0. 34. 1/’+ y——y:().

35. 4 + Ly + 5=y =0. 36. y' + 52y + 32y =0.

37. (a) Show that = = 0 is a regular singular point of the differential equation
(sina)®y” + tanxy’ + (cosz)*y = 0.

(b) Find the indicial roots and determine which case of the Frobenius method ap-
plies.

(c) Verify that y; = sin(In(sinz))) and yp = cos(In(sinx))) are solutions of the
differential equation for 0 < @ < R, where R is a positive number. How large can
R be?

(d) Make a change of variables u = sinz and transform the given equation to an
Euler equation. Then derive the solutions given in (c).

@ (e) Plot the graphs of the solutions. Explain the behavior of the graphs near 0

and 7
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38. Consider the equation
zy' —(24+z)y +2y=0, x>0

(a) Show that xz = 0 is a regular singular point. Find the indicial equation and
the indicial roots, and conclude that we are in Case 3 of the Frobenius method.
(b) Use the method of Frobenius to find a Frobenius series solution corresponding
to the larger root 7.

(¢) Identify the solution in (b) as 3!(¢" — 1 —u — J—;—)

(d) Even though the roots differ by an integer, there exists a sccond Frobenius
series solution. Using the method of Frohenius, show that ¢ or 1+ & + 22/2 can
be taken as a second solution. [Hint: Argue that the coefficient by is arbitrary.]

39. Consider the equation
2y —(n+a2)y +ny=0, x>0,

where n is a nonnegative integer.
(a) Show that z = 0 is a regular singular point. Find the indicial equation and
the indicial roots, and conclude that we are in Clase 3 of the Frobenius method.
(b) Use the method of Frobenius to find a Frobenius series solution corresponding
to the larger root 7.
(c) Identify the solution in (b) as

2 "

ne e —1—a— = —
(n = 1)l(e v 2 n!

).

(d) Using the method of Frobenius, show that ¢* or 1+ 2 + 2%/2+ - - -+ £ can be

i

taken as a second solution. [Hint: Argue that the coefficient b, 4, is arbitrary.]



