
Chapter 2

1-Dimensional Waves

In this Chapter we first consider first order PDE and then move to 1-
dimensional wave equation which we analyze by the method of characteristics.

2.1 First order PDEs

2.1.1 Introduction

Consider PDE
aut + bux = 0. (2.1.1)

Note that the left-hand expression is a derivative of u along vector field
` = (a, b). Consider an integral lines of this vector field:

dt

a
=

dx

b
. (2.1.2)

Remark 2.1.1. (a) Recall from ODE course that an integral line of the
vector field is a line, tangent to it in each point.

(b) Often it is called directional derivative but also often then ` is normalized,
replaced by the unit vector of the same direction `0 = `/|`|.

2.1.2 Constant coe�cients

If a and b are constant then integral curves are just straight lines t/a�x/b =
C where C is a constant along integral curves and it labels them (at least as
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long as we consider the whole plane (x, t)). Therefore u depends only on C:

u = �
� t
a
�

x

b

�
(2.1.3)

where � is an arbitrary function.
This is a general solution of our equation.
Consider initial value condition u|t=0 = f(x). It allows us define �:

�(�x/b) = f(x) =) �(x) = f(�bx). Plugging in u we get

u = f
�
x� ct

�
with c = b/a. (2.1.4)

It is a solution of IVP
(
aut + bux = 0,

u(x, 0) = f(x).
(2.1.5)

Obviously we need to assume that a 6= 0.
Also we can rewrite general solution in the form u(x, t) = f(x�ct) where

now f(x) is another arbitrary function.

Definition 2.1.1. Solutions u = �(x� ct) are running waves where c is a
propagation speed.

visual examples

2.1.3 Variable coe�cients

If a and/or b are not constant these integral lines are curves.

Example 2.1.1. Consider equation ut+tux = 0. Then equation of the integral
curve is dt

1 = dx

t
or equivalently tdt� dx = 0 which solves as x�

1
2t

2 = C
and therefore u = �(x�

1
2t

2) is a general solution to this equation.
One can see easily that u = f(x�

1
2t

2) is a solution of IVP.

Example 2.1.2. (a) Consider the same equation ut + tux = 0 but let us
consider IVP as x = 0: u(0, t) = g(t). However it is not a good problem:
first, some integral curves intersect line x = 0 more than once and if in
di↵erent points of intersection of the same curve initial values are di↵erent
we get a contradiction (therefore problem is not solvable for g which are not
even functions).
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x

t

(b) On the other hand, if we consider even function g (or equivalently
impose initial condition only for t > 0) then u is not defined on the curves
which are not intersecting x = 0 (which means that u is not defined for
x > 1

2t
2.)

In Part (a) of this example both solvability and uniqueness are broken;
in Part (b) only uniqueness is broken. But each integral line intersects
{(x, t) : t = 0} exactly once, so IVP of Example 2.1.1 is well-posed.

2.1.4 Right-hand expression

Consider the same equation albeit with the right-hand expression

aut + bux = f, f = f(x, t, u). (2.1.6)

Then as dt

a
= dx

b
we have du = utdt + uxdx = (aut + bux)

dt

a
= f dt

a
and

therefore we expand our ordinary equation (2.1.2) to

dt

a
=

dx

b
=

du

f
. (2.1.7)
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Example 2.1.3. Consider problem ut + ux = x. Then dx

1 = dt

1 = du

x
.

Then x � t = C and u �
1
2x

2 = D and we get u �
1
2x

2 = �(x � t) as
relation between C and D both of which are constants along integral curves.
Here � is an arbitrary function. So u = 1

2x
2 + �(x� t) is a general solution.

Imposing initial condition u|t=0 = 0 (sure, we could impose another
condition) we have �(x) = �

1
2x

2 and plugging into u we get

u(x, t) =
1

2
x2

�
1

2
(x� t)2 = xt�

1

2
t2.

Example 2.1.4. Consider ut + xux = xt. Then dt

1 = dx

x
= du

xt
. Solving the

first equation t� ln(x) = � ln(C) =) x = Cet we get integral curves.
Now we have

du

xt
= dt =) du = xtdt = Ctetdt

=) u = C(t� 1)et +D = x(t� 1) +D

where D must be constant along integral curves and therefore D = �(xe�t)
with an arbitrary function �. So u = x(t� 1) + �(xe�t) is a general solution
of this equation.

Imposing initial condition u|t=0 = 0 (sure, we could impose another
condition) we have �(x) = x and then u = x(t� 1 + e�t).

2.1.5 Linear and semilinear equations

Definition 2.1.2. (a) If a = a(x, t) and b = b(x, t) equation is semilinear.
In this case we first define integral curves which do not depend on u and
then find u as a solution of ODE along these curves.

(b) Furthermore if f is a linear function of u: f = c(x, t)u+ g(x, t) original
equation is linear. In this case the last ODE is also linear.

Example 2.1.5. Consider ut + xux = u. Then dt

1 = dx

x
= du

u
. Solving the first

equation t� ln(x) = � ln(C) =) x = Cet we get integral curves. Now we
have

du

u
= dt =) ln(u) = t+ ln(D) =) u = Det = �(xe�t)et

which is a general solution of this equation.
Imposing initial condition u|t=0 = x2 (sure, we could impose another

condition) we have �(x) = x2 and then u = x2e�t.
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Example 2.1.6. Consider ut + xux = �u2. Then dt

1 = dx

x
= �

du

u2 . Solving the
first equation we get integral curves x = Cet. Now we have

�
du

u2
= dt =) u�1 = t+D =) u = (t+ �(xe�t))�1.

which is a general solution of this equation.
Imposing initial condition u|t=0 = �1 we get � = �1 and then u =

(t� 1)�1. This solution “blows up” as t = 1 (no surprise, we got it, solving
non-linear ODE.

2.1.6 Quasilinear equations

Definition 2.1.3. If a and/or b depend on u this is quasininear equation.

For such equations integral curves depend on the solution which can lead
to breaking of solution. Indeed, while equations (2.1.7)

dt

a
=

dx

b
=

du

f
.

define curves in 3-dimensional space of (t, x, u), which do not intersect, their
projections on (t, x)-plane can intersect and then u becomes a multivalued
function, which is not allowed.

Example 2.1.7. Consider Burgers equation ut + uux = 0 (which is an ex-
tremely simplified model of gas dynamics). We have dt

1 = dx

u
= du

0 and
therefore u = const along integral curves and therefore integral curves are
x� ut = C.

Consider initial problem u(x, 0) = g(x). We take initial point (y, 0), find
here u = g(y), then x � g(y)t = y (because x = y + ut and u is constant
along integral curves) and we get u = g(y) where y = y(x, t) is a solution of
equation x = g(y)t+ y.

The trouble is that by implicit function theorem we can define y for all
x only if @

@y

�
y + g(y)t

�
does not vanish. So,

g0(y)t+ 1 6= 0. (2.1.8)

This is possible for all t > 0 if and only if g0(y) � 0 i.e. f is a monotone
non-decreasing function.
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Figure 2.1: Integral lines for Burgers equation if f(x) = tanh(x).

Equivalently, u is defined as an implicit function by

u = g(x� ut). (2.1.9)

Then the implicit function theorem could be applied i↵

@

@u

�
u� g(x� ut)

�
= 1 + g0(x� ut)t 6= 0,

which leads us to the previous conclusion.
So, classical solution breaks for some t > 0 if g is not a monotone

non-decreasing function. A proper understanding of the global solution for
such equation goes well beyond our course. Some insight is provided by the
analysis in Section 12.1

Example 2.1.8. Tra�c flow is considered in Appendix 2.1.A.

2.1.7 IBVP

Consider IBVP (initial-boundary value problem) for constant coe�cient
equation (

ut + cux = 0, x > 0, t > 0,

u|t=0 = f(x) x > 0.
(2.1.10)

The general solution is u = �(x� ct) and plugging into initial data we
get �(x) = f(x) (as x > 0).
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Figure 2.2: Integral lines for Burgers equation if f(x) = � tanh(x).

So, u(x, t) = f(x� ct). Done!—Not so fast: f is defined only for x > 0
so u is defined for x � ct > 0 (or x > ct). It covers the whole quadrant if
c  0 (so waves run to the left) and only in this case we are done.

On the other hand, if c > 0 (waves run to the right) u is not defined as
x < ct and to define it here we need a boundary condition at x = 0.

So we get IBVP (initial-boundary value problem)

8
><

>:

ut + cux = 0, x > 0, t > 0,

u|t=0 = f(x) x > 0,

u|x=0 = g(t) t > 0.

(2.1.11)

Then we get �(�ct) = g(t) as t > 0 which implies �(x) = g(�1
c
x) as

x < 0 and then u(x, t) = g(�1
c
(x� ct)) = g(t� 1

c
x) as x < ct.

So solution is

u =

8
<

:

f(x� ct) x > ct,

g(t�
1

c
x) x < ct.

(2.1.12)

Remark 2.1.2. Unless f(0) = g(0) this solution is discontinuous as x = ct.
Therefore it is not a classical solution–derivatives do not exist. However
it is still a weak solution (see Section 11.4) and solution in the sense of
distributions (see Section 11.1).
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c(⇢) c(⇢)⇢

v(⇢)

⇢̄⇢⇤

Problems to Section 2.1

Problem 1. (a) Draw characteristics and find the general solution to each
of the following equations

2ut + 3ux = 0; ut + tux = 0;

ut � tux = 0; ut + t2ux = 0;

ut + xux = 0; ut + txux = 0;

ut + x2ux = 0; ut + (x2 + 1)ux = 0;

ut + (t2 + 1)ux = 0; (x+ 1)ut + ux = 0;

(x+ 1)2ut + ux = 0; (x2 + 1)ut + ux = 0;

(x2
� 1)ut + ux = 0.

(b) Consider IVP problem u|t=0 = f(x) as �1 < x < 1; does solution al-
ways exists? If not, what conditions should satisfy f(x)? Consider separately
t > 0 and t < 0.

(c) Where this solution is uniquely determined? Consider separately t > 0
and t < 0.

(d) Consider this equation in {t > 0, x > 0} with the initial condition
u|t=0 = f(x) as x > 0; where this solution defined? Is it defined everywhere
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in {t > 0, x > 0} or do we need to impose condition at x = 0? In the latter
case impose condition u|x=0 = g(t) (t > 0) and solve this IVBP;

(e) Consider this equation in {t > 0, x < 0} with the initial condition
u|t=0 = f(x) as x < 0; where this solution defined? Is it defined everywhere
in {t > 0, x < 0} or do we need to impose condition at x = 0? In the latter
case impose condition u|x=0 = g(t) (t > 0) and solve this IVBP;

(f) Consider problems (d) as t < 0;

(g) Consider problems (e) as t < 0;

Problem 2. (a) Find the general solution to each of the following equations

xux + yuy = 0,

xux � yuy = 0

in {(x, y) 6= (0, 0)}; when this solution is continuous at (0, 0)? Explain the
di↵erence between these two cases;

(b) Find the general solution to each of the following equations

yux + xuy = 0,

yux � xuy = 0

in {(x, y) 6= (0, 0)}; when this solution is continuous at (0, 0)? Explain the
di↵erence between these two cases;

Problem 3. In the same way consider equations

(x2 + 1)yux + (y2 + 1)xuy = 0;

(x2 + 1)yux � (y2 + 1)xuy = 0.

Problem 4. Find the solutions of
(
ux + 3uy = xy,

u|x=0 = 0;

(
ux + 3uy = u,

u|x=0 = y.

Problem 5. Find the general solutions to each of

yux � xuy = x; yux � xuy = x2;

yux + xuy = x; yux + xuy = x2.

In one instance solution does not exist. Explain why.
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Problem 2. (a)

ut + 3ux � 2uy = x; ut + xux + yuy = x;

ut + xux � yuy = x; ut + yux + xuy = x;

ut + yux � xuy = x.

(b) Solve IVP u(x, y, 0) = 0.

Problem 3. (a) Find the general solution to each of the following equations

ut + 3ux � 2uy = u; ut + xux + yuy = u;

ut + xux � yuy = u; ut + yux + xuy = u;

ut + yux � xuy = u; ut + 3ux � 2uy = xyu.

(b) Solve IVP u(x, y, 0) = f(x, y).

2.3 Homogeneous 1D wave equation

2.3.1 Physical examples

Consider equation
utt � c2uxx = 0. (2.3.1)

Remark 2.3.1. (a) As we mentioned in Subsection 1.4.1 this equation de-
scribes a lot of things.

(b) c has a dimension of the speed. In the example above c is a speed of
sound.

Example 2.3.1. (a) This equation describes oscillations of the string Exam-
ple 1.4.1.

(b) It also describes 1-dimensional gas oscillations (see Example 1.4.3).

(c) Further, this equation with c = ck also describes compression-rarefication
waves in the elastic 1-dimensional media. Then u(x, t) is displacement along
x.

(d) And also this equation with c = c? < ck also describes sheer waves
in the elastic 1-dimensional media. Then u(x, t) is displacement in the
direction, perpendicular to x.
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2.3.2 General solution

Let us rewrite formally equation (2.3.1) as

(@2
t
� c2@2

x
)u = (@t � c@x)(@t + c@x)u = 0. (2.3.2)

Denoting v = (@t + c@x)u = ut + cux and w = (@t � c@x)u = ut � cux we
have

vt � cvx = 0, (2.3.3)

wt + cwx = 0. (2.3.4)

But from Section 2.1 we know how to solve these equations

v = 2c�0(x+ ct), (2.3.5)

w = �2c 0(x� ct) (2.3.6)

where �0 and  0 are arbitrary functions. We find convenient to have factors
2c and �2c and to denote by � and  their primitives (a.k.a. indefinite
integrals).

Recalling definitions of v and w we have

ut + cux = 2c�0(x+ ct),

ut � cux = �2c 0(x� ct).

Observe that the right-hand side of (2.3.5) equals to (@t + c@x)�(x + ct)
and therefore (@t + c@x)(u� �(x+ ct)) = 0. Then u� �(x+ ct) must be a
function of x� ct: u� �(x+ ct) = �(x� ct) and plugging into (2.3.6) we
conclude that � =  (up to a constant, but both � and  are defined up to
some constants).

Therefore
u = �(x+ ct) +  (x� ct) (2.3.7)

is a general solution to (2.3.1). This solution is a superposition of two waves
u1 = �(x + ct) and u2 =  (x � ct) running to the left and to the right
respectively with the speed c. So c is a propagation speed.

Remark 2.3.2. Adding constant C to � and �C to  we get the same solution
u. However it is the only arbitrariness.

Visual examples (animation)
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2.3.3 Cauchy problem

Let us consider IVP (initial–value problem, aka Cauchy problem) for (2.3.1):

utt � c2uxx = 0, (2.3.8)

u|t=0 = g(x), ut|t=0 = h(x). (2.3.9)

Plugging (2.3.7) u = �(x+ ct) +  (x� ct) into initial conditions we have

�(x) +  (x) = g(x), (2.3.10)

c�0(x)� c 0(x) = h(x) =) �(x)�  (x) =
1

c

Z
x

h(y) dy. (2.3.11)

Then

�(x) =
1

2
g(x) +

1

2c

Z
x

h(y) dy, (2.3.12)

 (x) =
1

2
g(x)�

1

2c

Z
x

h(y) dy. (2.3.13)

Plugging into (2.3.7)

u(x, t) =
1

2
g(x+ ct) +

1

2c

Z
x+ct

x�ct

h(y) dy +
1

2
g(x� ct)�

1

2c

Z
x�ct

h(y) dy

we get D’Alembert formula

u(x, t) =
1

2

⇥
g(x+ ct) + g(x� ct)

⇤
+

1

2c

Z
x+ct

x�ct

h(y) dy. (2.3.14)

Remark 2.3.3. Later we generalize it to the case of inhomogeneous equation
(with the right-hand expression f(x, t) in (2.3.8)).

Problems to Section 2.3

Problem 1. Find the general solutions of

utt � uxx = 0; utt � 4uxx = 0;

utt � 9uxx = 0; 4utt � uxx = 0;

utt � 9uxx = 0.
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Problem 2. Solve IVP
(
utt � c2uxx = 0,

u|t=0 = g(x), ut|t=0 = h(x)
(2..1)

with

g(x) =

(
0 x < 0,

1 x � 0,
h(x) = 0;

g(x) =

(
1 |x| < 1,

0 |x| � 1,
h(x) = 0;

g(x) =

(
1� |x| |x| < 1,

0 |x| � 1,
h(x) = 0;

g(x) =

(
1� x2

|x| < 1,

0 |x| � 0,
h(x) = 0;

g(x) =

(
cos(x) |x| < ⇡/2,

0 |x| � ⇡/2,
h(x) = 0;

g(x) =

(
cos2(x) |x| < ⇡/2,

0 |x| � ⇡/2,
h(x) = 0;

g(x) =

(
sin(x) |x| < ⇡,

0 |x| � ⇡,
h(x) = 0;

g(x) =

(
sin2(x) |x| < ⇡,

0 |x| � ⇡,
h(x) = 0;
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g(x) = 0, h(x) =

(
0 x < 0,

1 x � 0;

g(x) = 0, h(x) =

(
1� x2

|x| < 1,

0 |x| � 0;

g(x) = 0, h(x) =

(
1 |x| < 1,

0 |x| � 1;

g(x) = 0, h(x) =

(
cos(x) |x| < ⇡/2,

0 |x| � ⇡/2;

g(x) = 0, h(x) =

(
sin(x) |x| < ⇡,

0 |x| � ⇡.

Problem 3. Find solution u = u(x, t) and describe domain, where it is
uniquely defined

utt � uxx = 0;

u|t=x2/2 = x3;

ut|t=x2/2 = 2x.

Problem 4. (a) Prove that if u solves the problem

8
><

>:

utt � c2uxx = 0 �1 < x < 1,

u|t=0 = g(x),

ut|t=0 = 0,

(2..2)

then v =
R

t

0 u(x, t
0) dt0 solves

8
><

>:

vtt � c2vxx = 0 �1 < x < 1,

v|t=0 = 0,

vt|t=0 = g(x).

(2..3)

(b) Also prove that if v solves (2..3) then u = vt solves (2..2).
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(c) From formula

u(x, t) =
1

2

�
g(x+ ct) + g(x� ct)

�
(2..4)

for the solution of (2..2) derive

v(x, t) =
1

2c

Z
x+ct

x�ct

g(x0) dx0 (2..5)

for the solution of (2..3).

(d) Conversely, from (2..5) for the solution of (2..3) derive (2..4) for the
solution of (2..2).

Problem 5. Find solution to equation

Autt + 2Butx + Cuxx = 0 (2..6)

as

u = f(x� c+ 1t) + g(x� c+ 2t) (2..7)

with arbitrary f, g and real c+ 1 < c2.

(a) What equation should satisfy c1 and c2?

(b) When this equation has such roots?

Problem 6. A spherical wave is a solution of the three-dimensional wave
equation of the form u(r, t), where r is the distance to the origin (the
spherical coordinate). The wave equation takes the form

utt = c2
�
urr +

2

r
ur

�
(spherical wave equation). (2..8)

(a) Change variables v = ru to get the equation for v: vtt = c2vrr.

(b) Solve for v using

v = f(r + ct) + g(r � ct) (2..9)

and thereby solve the spherical wave equation.
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(c) Use

v(r, t) =
1

2

⇥
�(r + ct) + �(r � ct)

⇤
+

1

2c

Z
+r � ctr+ct (s) ds (2..10)

with �(r) = v(r, 0),  (r) = v + t(r, 0) to solve it with initial conditions
u(r, 0) = �(r), u+ t(r, 0) =  (r).

(d) Find the general form of solution u to (2..8) which is continuous as
r = 0.

Problem 7. Find formula for solution of the Goursat problem

utt � c2uxx = 0, x > c|t|; (2..11)

u|x=�ct = g(t), t < 0; (2..12)

u|x=ct = h(t), t > 0. (2..13)

as long as g(0) = h(0).

Problem 8. Find solution u=u(x,t) and describe domain, where it is uniquely
defined

u+ tt� u+ xx = 0, (2..14)

u|+ t = x2/2 = x3, |x|  1, (2..15)

u+ t|+ t = x2/2 = 2x |x|  1. (2..16)

Explain, why we imposed restriction |x|  1?

Problem 9. Often solution in the form of travelling wave u = �(x� vt) is
sought for more general equations. Here we are interested in the bounded
solutions, especially in those with �(x) either tending to 0 as |x| ! 1

(solitons) or periodic (kinks). Plugging such solution to equation we get
ODE for function �, which could be either solved or at least explored. Sure
we are not interested in the trivial solution which is identically equal to 0.

(a) Find such solutions for each of the following equations

u+ tt� c2u+ xx+m2u = 0; (2..17)

u+ tt� c2u+ xx�m2u = 0; (2..18)

the former is Klein-Gordon equation. Describe all possible velocities v.
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(b) Find such solutions for each of the following equations

ut �Kuxxx = 0; (2..19)

ut � iKuxx = 0; (2..20)

utt +Kuxxxx = 0. (2..21)

Problem 10. Look for solutions in the form of travelling wave for sine-Gordon
equation

utt � c2uxx + sin(u) = 0. (2..22)

observe that resulting ODE is describing mathematical pendulum which
could be explored. Describe all possible velocities v.

Problem 11. Look for solutions in the form of travelling wave for each of
the following equations

utt � uxx + u� 2u3 = 0; (2..23)

utt � uxx � u+ 2u3 = 0; (2..24)

(a) Describe such solutions (they are called kinks). Describe all possible
velocities v.

(b) Find solitons. Describe all possible velocities v.

Problem 12. For a solution u(x, t) of the wave equation utt = c2uxx, the
energy density is defined as e = 1

2

�
u2
t
+ c2u2

x

�
and the momentum density as

p = cutux.

(a) Show that
@e

@t
= c

@p

@x
and

@p

@t
= c

@e

@x
. (2..25)

(b) Show that both e(x, t) and p(x, t) also satisfy the same wave equation.

Problem 13. (a) Consider wave equation utt � uxx = 0 in the rectangle
0 < x < a, 0 < t < b and prove that if a and b are not commensurable (i.e.
a : b is not rational) then Dirichlet problem u|t=0 = ut=b = u|x=0 = u|x=a = 0
has only trivial solution.

(b) On the other hand, prove that if a and b are commensurable then there
exists a nontrivial solution u = sin(px/a) sin(qt/b).
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Problem 14. Generalize Problem 6: A spherical wave is a solution of the
n-dimensional wave equation of the form u(r, t), where r is the distance to
the origin (the spherical coordinate). The wave equation takes the form

utt = c2
�
urr +

n� 1

r
ur

�
(spherical wave equation) (2..26)

(a) Show that if u satisfies (2..26), then r�1@ru(r, t) also satisfies (2..26) but
with n replaced by n+ 2.

(b) Using this and Problem 6: write down spherical wave for odd n.

(c) Describe spherical wave for n = 1.

Remark 2..4. For even n spherical waves do not exist.

2.4 1D-Wave equation reloaded:
characteristic coordinates

2.4.1 Characteristic coordinates

We realize that lines x+ ct = const and x� ct = const play a very special
role in our analysis. We call these lines characteristics. Let us introduce
characteristic coordinates (

⇠ = x+ ct,

⌘ = x� ct.
(2.4.1)

Proposition 2.4.1. The following equality holds:

utt � c2uxx = �4c2u⇠⌘. (2.4.2)

Proof. From (2.4.1) we see that x = 1
2(⇠+⌘) and t = 1

2c(⇠�⌘) and therefore
due to chain rule v⇠ =

1
2vx +

1
2cvt and v⌘ =

1
2vx �

1
2cvt and therefore

�4c2u⇠⌘ = �(c@x + @t)(c@x � @t)u = utt � c2uxx.
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Therefore wave equation (2.3.1) becomes in the characteristic coordinates

u⇠⌘ = 0 (2.4.3)

which we rewrite as (u⇠)⌘ = 0 =) u⇠ = �0(⇠) (really, u⇠ should not depend
on ⌘ and it is convenient to denote by �(⇠) the primitive of u⇠). Then
(u � �(⇠))⇠ = 0 =) u � �(⇠) =  (⌘) (due to the same arguments) and
therefore

u = �(⇠) +  (⌘) (2.4.4)

is the general solution to (2.4.3).

2.4.2 Application of characteristic coordinates

Example 2.4.1. Consider Goursat problem for (2.4.3):

u⇠⌘ = 0 as ⇠ > 0, ⌘ > 0

u|⌘=0 = g(⇠) as ⇠ > 0,

u|⇠=0 = h(⌘) as ⌘ > 0

where g and h must satisfy compatibility condition g(0) = h(0) (really
g(0) = u(0, 0) = h(0)).

Then one can see easily that u(⇠, ⌘) = g(⇠) + h(⌘)� g(0) solves Goursat
problem. Plugging (2.4.1) into (2.4.4) we get for a general solution to (2.3.1)

u = �(x+ ct) +  (x� ct) (2.4.5)

which is exactly (2.3.7).

2.4.3 D’Alembert formula

So far we achieved nothing new. Consider now IVP:

utt � c2uxx = f(x, t), (2.4.6)

u|t=0 = g(x), (2.4.7)

ut|t=0 = h(x). (2.4.8)
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It is convenient for us to assume that g = h = 0. Later we will get rid of
this assumption. Rewriting (2.4.6) as

ũ⇠⌘ = �
1

4c2
f̃(⇠, ⌘)

(where ũ etc means that we use characteristic coordinates) we get after
integration

ũ⇠ = �
1

4c2

Z
⌘

f̃(⇠, ⌘0) d⌘0 = �
1

4c2

Z
⌘

⇠

f̃(⇠, ⌘0) d⌘0+�0(⇠)

with an indefinite integral in the middle.
Note that t = 0 means exactly that ⇠ = ⌘, but then u⇠ = 0 there. Really,

u⇠ is a linear combination of ut and ux but both of them are 0 as t = 0.
Therefore �0(⇠) = 0 and

ũ⇠ =
1

4c2

Z
⇠

⌘

f̃(⇠, ⌘0) d⌘0

where we flipped limits and changed sign.
Integrating with respect to ⇠ we arrive to

ũ =
1

4c2

Z
⇠hZ ⇠

0

⌘

f̃(⇠0, ⌘0) d⌘0
i
d⇠0 =

1

4c2

Z
⇠

⌘

hZ ⇠
0

⌘

f̃(⇠0, ⌘0) d⌘0
i
d⇠0+ (⌘)

and  (⌘) also must vanish because u = 0 as t = 0 (i.e. ⇠ = ⌘). So

ũ(⇠, ⌘) =
1

4c2

Z
⇠

⌘

hZ ⇠
0

⌘

f̃(⇠0, ⌘0) d⌘0
i
d⇠0. (2.4.9)

We got a solution as a double integral but we want to write it down as
2-dimensional integral

ũ(⇠, ⌘) =
1

4c2

ZZ

�̃(⇠,⌘)

f̃(⇠0, ⌘0) d⌘0d⇠0. (2.4.10)

But what is �̃? Consider ⇠ > ⌘. Then ⇠0 should run from ⌘ to ⇠ and
for fixed ⇠0, ⌘ < ⇠0 < ⇠ eta should run from ⌘ to ⇠0. So, we get a triangle
bounded by ⇠0 = ⌘0, ⇠0 = ⇠ and ⌘0 = ⌘:
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⇠0

⌘0

⇠
0 =

⌘
0

⇠0
=
⇠

⌘0 = ⌘

�̃(⇠, ⌘)

(⇠, ⌘)

x0

t0

(x, t)

(x� ct, 0) (x+ ct, 0)

x
0 =

x�
c(t

�
t0 )

x 0
=
x+

c(t
�
t 0)

�(x, t)

But in coordinates (x, t) this domain �(x, t) is bounded by t = 0 and
two characteristics passing through (x, t):

So, we get

u(x, t) =
1

2c

ZZ

�(x,t)

f(x0, t0) dx0dt0. (2.4.11)

because we need to replace d⇠0d⌘0 by |J | dx0dt0 with Jacobian J .

Exercise 2.4.1. Calculate J and justify factor 2c.

Remark 2.4.1. (a) Formula (2.4.11) solves IVP for inhomogeneous wave
equation with homogeneous (that means equal 0) initial data, while (2.3.14)
solved IVP for homogeneous equation with inhomogeneous initial data. Due
to linearity we will be able to combine those formulae!

(b) Both (2.4.11) and (2.3.14) are valid for t > 0 and for t < 0.
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Example 2.4.2. (a) Find solution u(x, t) to

4utt � 9uxx =
x

t+ 1
�1 < x < 1, �1 < t < 1, (2.4.12)

u|t=0 = 0, ut|t=0 = 0. (2.4.13)

(b) If (2.4.12)–(2.4.13) are fulfilled for �3 < x < 3 only, where solution is
uniquely defined?

Solution. (a) Using D’Alembert formula

u(x, t) =
1

12

Z
t

0

Z
x+3(t�⌧)/2

x� 3
2 (t�⌧)/2

⇠

⌧ + 1
d⇠d⌧

=
1

24

Z
t

0

�
x+ 3

2(t� ⌧)
�2

�
�
x�

3
2(t� ⌧)

�2

⌧ + 1
d⌧

=
1

4

Z
t

0

x(t� ⌧)

⌧ + 1
d⌧

=
1

4
x
�
(t+ 1) ln(t+ 1)� t

�
.

(b) Solution is uniquely defined at points (x, t) such that the base of the
characteristic triangle is contained in [�3, 3]:

x =
3t/

2�
3

x =
�3t/2

�
3

x =
3t/2 +

3

x =
�
3t/

2 +
3

t = �1

x

t
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Example 2.4.3. Find solution u(x, t) to

utt � 4uxx = sin(x) sin(2t) �1 < x < 1, �1 < t < 1, (2.4.14)

u|t=0 = 0, ut|t=0 = 0. (2.4.15)

Solution. Using D’Alembert formula

u(x, t) =
1

4

Z
t

0

Z
x+2(t�⌧)

x�2(t�⌧)

sin(⇠) sin(2⌧) d⇠d⌧

=
1

4

Z
t

0

sin(2⌧)
⇣
cos(x� 2t+ 2⌧)� (cos(x+ 2t⌧2� ⌧)

⌘
d⌧

=
1

2

Z
t

0

sin(2⌧) sin(x) sin(2t� 2⌧) d⌧

where we used cos(↵)� cos(�) = 2 sin
�
�+↵

2

�
sin

�
��↵

2

�
.

Then

u(x, t) =
1

2

Z
t

0

sin(2⌧) sin(x) sin(2t� 2⌧) d⌧

=sin(x)

Z
t

0

⇣
cos(2t� 4⌧)� cos(2t)

⌘
d⌧

=sin(x)
h
�
1

4
sin(2t� 4⌧)� ⌧ cos(2t)

i⌧=t

⌧=0

=sin(x)
h1
2
sin(2t)� t cos(2t)

i
.

Problems to Section 2.4

Problem 1. Solve IVP
8
><

>:

utt � c2uxx = f(x, t);

u|t=0 = g(x),

ut|t=0 = h(x)
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with

f(x, t) = sin(↵x), g(x) = 0, h(x) = 0;

f(x, t) = sin(↵x) sin(�t), g(x) = 0; h(x) = 0;

f(x, t) = f(x), g(x) = 0, h(x) = 0; (a)

f(x, t) = f(x)t, g(x) = 0, h(x) = 0, (b)

in the case (a) assume that f(x) = F 00(x) and in the case (b) assume that
f(x) = F 000(x).

Problem 2. Find formula for solution of the Goursat problem
8
><

>:

utt � c2uxx = f(x, t), x > c|t|,

u|x=�ct = g(t), t < 0,

u|x=ct = h(t), t > 0

provided g(0) = h(0).
Hint. Contribution of the right-hand expression will be

�
1

4c2

ZZ

R(x,t)

f(x0, t0) dx0dt0

with R(x, t) = {(x0, t0) : 0 < x0
� ct0 < x� ct, 0 < x0 + ct0 < x+ ct}.

Problem 3. Find the general solutions of the following equations:
8
>><

>>:

uxy = uxuyu
�1;

uxy = uxuy;

uxy =
uxuyu

u2 + 1
;

Problem 4. (a) Find solution u(x, t) to

8
<

:
utt � uxx = (x2

� 1)e�
x2

2 ,

u|t=0 = �e�
x2

2 , ut|t=0 = 0.

(b) Find limt!+1 u(x, t).


