
Cubic Formula

The complex numbers were created (or they were discovered, depending
on your point of view) in the 16th century. Many people will tell you that
they were created to provide us with solutions to quadratic equations such
as x2 = −1. (There are no real numbers that are solutions to this equation,
but i,−i ∈ C are both solutions.) While many people will tell you this, it’s
not exactly true.

The complex numbers were created because they were useful in telling
mathematicians about real numbers, which were the numbers they cared
about at the time. Specifically, what complex numbers were originally used
for was to find real number solutions of cubic equations.

Mathematicians knew how to solve quadratic equations, equations of the
form ax2 + bx+ c = 0. They knew the quadratic formula, and the quadratic
formula tells you anything you want to know about the solutions of quadratic
equations. What they didn’t know was a cubic formula, a formula that could
solve cubic equations like ax3 + bx2 + cx + d = 0. (Here a, b, c, and d are
real numbers.) Mathematicians knew that cubic equations had solutions, and
they knew that the solutions of the equations they were interested in were
real numbers, but they couldn’t figure out what the solutions were until they
created the cubic formula. They discovered the formula in the 16th century,
and along with it the complex numbers were discovered, because it’s the
arithmetic of the complex numbers that makes the cubic formula work, even
if you’re only interested in finding solutions that are real numbers.

In this chapter, we’ll see how the cubic formula works, and how it uses
complex numbers to tell us about real numbers.

A Computation we’ll need later

Before we begin, we should make a quick digression. We’ll want to find
(2 + i)3. We have two options. We can multiply it out as (2 + i)(2 + i)(2 + i)
using the distributive law many times. Or, we can use the binomial theorem.
You may have seen the binomial theorem in Math 1050. It says that

(2 + i)3 = 23 + 3(22)i+ 3(2)i2 + i3
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Simplifying, we have

(2 + i)3 = 8 + 12i+ 6i2 + i3

= 8 + i12 + i26 + i2i

= 8 + i12− 6− i
= 2 + i11

We’ll need to know that (2 + i)3 = 2 + i11 later in this chapter.

A Simplification for cubics

In the chapter on Classification of Conics, we saw that any quadratic equa-
tion in two variables can be modified to one of a few easy equations to un-
derstand. In a similar process, mathematicians had known that any cubic
equation in one variable—an equation of the form ax3 + bx2 + cx + d = 0—
could be modified to look like a cubic equation of the form x3 + ax + b = 0,
so it was these simpler cubic equations that they were looking for solutions
of. If they could find the solutions of equations of the form x3 + ax + b = 0
then they would be able to find the solutions of any cubic equation.

Of the simpler cubic equations that they were trying to solve, there was an
easier sort of equation to solve, and a more complicated sort. The easier sort

were equations of the form x3 + ax + b = 0 where −
(
a
3

)3 − ( b2)2 ≤ 0. The

more complicated sort were equations x3 + ax + b = 0 where −
(
a
3

)3 − ( b2)2
was a positive number. We’re going to focus on the more complicated sort
when discussing the cubic formula. Figuring out how to solve these more
complicated equations was the key to figuring out how to solve any cubic
equation, and it was the cubic formula for these equations that lead to the
discovery of complex numbers.

* * * * * * * * * * * * *
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The Cubic formula

Here are the steps for finding the solutions of a cubic equation of the form

x3 + ax+ b = 0 if −
(a

3

)3
−
(b

2

)2
> 0

Step 1. Let D be the complex number

D = −b
2

+ i

√
−
(a

3

)3
−
(b

2

)2

Step 2. Find a complex number z ∈ C such that z3 = D.

Step 3. Let R be the real part of z, and let I be the imaginary part of z, so
that R and I are real numbers with z = R + iI.

Step 4. The three solutions of x3 + ax+ b = 0 are the real numbers 2R,

−R +
√

3I, and −R−
√

3I.

These four steps together are the cubic formula. It uses complex numbers
(D and z) to create real numbers (2R, −R +

√
3I, and −R−

√
3I) that are

solutions of the cubic equation x3 + ax+ b = 0.

* * * * * * * * * * * * *
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We’ll take a look at two examples of cubic equations, and we’ll use the
cubic formula to find their solutions.

First example
In this example we’ll use the cubic formula to find the solutions of the

equation
x3 − 15x− 4 = 0

Notice that this is a cubic equation x3 + ax + b = 0 where a = −15 and
b = −4. Thus,

−
(a

3

)3
−
(b

2

)2
= −

(−15

3

)3
−
(−4

2

)2
= −(−5)3 − (−2)2

= −(−125)− (4)

= 125− 4

= 121

and 121 is a positive number, so the cubic equation x3 − 15x− 4 = 0 is one
of the more complicated sorts of equations to solve, and it’s equations like
these that the cubic formula on the previous page is designed to solve. Now
let’s go through the four steps of the cubic equation and find the solutions of
x3 − 15x− 4 = 0.

Step 1. We need to find the complex number D. It’s given by

D = −b
2

+ i

√
−
(a

3

)3
−
(b

2

)2

= −−4

2
+ i
√

121

= 2 + i11

Step 2. We need to find a complex number z such that z3 = 2 + i11. We

saw earlier in this chapter that (2 + i)3 = 2 + i11, so we can choose

z = 2 + i
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Step 3. In this step, we write down the real (R) and imaginary (I) parts
of z = 2 + i. The real part is 2, and the imaginary part is 1. So

R = 2 and I = 1

Step 4. The three solutions of the equation x3 − 15x− 4 = 0 are the real
numbers

2R = 2(2) = 4

−R +
√

3I = −(2) +
√

3(1) = −2 +
√

3

−R +
√

3I = −(2)−
√

3(1) = −2−
√

3

We found the real number solutions— 4, −2 +
√

3, and −2 −
√

3 —of an
equation that had real number coefficients— −15 and −4 —using complex
numbers— 2 + i11 and 2 + 1. This is why the complex numbers seemed
attractive to mathematicians originally. They cared about complex numbers
because they cared about real numbers, and complex numbers were a tool
designed to give them information about real numbers.

Over the last several centuries, complex numbers have proved their useful-
ness in many other ways in mathematics. They are now viewed as being just
as important as the real numbers are.
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Second example
The previous example used a shortcut. In Step 2 of that example we didn’t

really have to go through any work to find the number z that had the property
that z3 = D. It was just given to us. In this second example, we’ll find the
number z in Step 2 from scratch.

Our second example of a cubic equation is x3 − 3x+
√

2 = 0.
It’s an equation of the form x3 + ax+ b where a = −3 and b =

√
2. To see

if we can use the cubic formula given in this chapter, we need to see if the
following number is positive:

−
(a

3

)3
−
(b

2

)2
= −

(−3

3

)3
−
(√2

2

)2
= −(−1)3 − (

√
2)2

22

= −(−1)− 2

4

= 1− 1

2

=
1

2

Of course 1
2 is positive, so we can proceed with the four steps of the cubic

formula to find the solutions of x3 − 3x+
√

2 = 0.

Step 1. We need to find the number D. Using the equation from Step 1,

D = −b
2

+ i

√
−
(a

3

)3
−
(b

2

)2

= −
√

2

2
+ i

√
1

2

= −
√

2√
2
√

2
+ i

√
1√
2

= − 1√
2

+ i
1√
2
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Step 2. We need to find a complex number z such that z3 = � 1p
2

+ i 1p
2

.
This will take a little bit of work.

Any complex number can be written in polar coordinates, so let’s write z
in polar coordinates:

z = r(cos(✓) + i sin(✓))

Notice that � 1p
2

+ i 1p
2

= cos
�

3⇡

4

�

+ i sin
�

3⇡

4

�

so to say that we want z3 =

� 1p
2

+ i 1p
2

, or equivalently that � 1p
2

+ i 1p
2

= z3, is to say that we want

cos
⇣3⇡

4

⌘

+ i sin
⇣3⇡

4

⌘

= [r(cos(✓) + i sin(✓))]3

= r3(cos(✓) + i sin(✓))3

Using De Moivre’s Formula, that means

cos
⇣3⇡

4

⌘

+ i sin
⇣3⇡

4

⌘

= r3(cos(3✓) + i sin(3✓))

The complex number on the left of the equation above has norm 1, so the
complex number on the right that it equals must also have norm 1. That is,
r3 = 1, which implies that r = 1. Therefore,

cos
⇣3⇡

4

⌘

+ i sin
⇣3⇡

4

⌘

= cos(3✓) + i sin(3✓)

The above equation equates two points on the unit circle. We can do this by
letting 3✓ equal 3⇡

4

so that

✓ =
1

3

⇣3⇡

4

⌘

=
⇡

4

Now we have found that

z = r(cos(✓) + i sin(✓))

= 1
⇣

cos
⇣⇡

4

⌘

+ i sin
⇣⇡

4

⌘⌘

= cos
⇣⇡

4

⌘

+ i sin
⇣⇡

4

⌘

=
1p
2
+ i

1p
2
354



Step 3. The real part of z = 1√
2

+ i 1√
2

is 1√
2
, and it’s imaginary part also

equals 1√
2
. That is,

R = I =
1√
2

Step 4. The three real number solutions of x3 − 3x+
√

2 = 0 are

2R = 2
( 1√

2

)
=

2√
2

=

√
2
√

2√
2

=
√

2

−R +
√

3I = −
( 1√

2

)
+
√

3
( 1√

2

)
=
−1 +

√
3√

2

−R−
√

3I = −
( 1√

2

)
−
√

3
( 1√

2

)
=
−1−

√
3√

2

As this example illustrates, the major work in applying the cubic formula
comes in Step 2, solving the equation of complex numbers z3 = D.
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Exercises

Use the First example from this chapter to find the solutions of the following
equations.

1.) (x− 2)3 − 15(x− 2)− 4 = 0

2.) loge(x)3 − 15 loge(x)− 4 = 0

All further exercises in this chapter have nothing to do with complex num-
bers.
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Match the functions with their graphs.

3.) f(x) + 1 4.) f(2x) 5.) f(x+ 1)

6.) 1
2f(x) 7.) f(x)− 1 8.) 2f(x)

9.) f(x− 1) 10.) f
(
x
2

)

f(x) A.) B.)

C.) D.) E.)

F.) G.) H.)
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Match the functions with their graphs.

11.) tan(x) 12.) cot(x)

13.) f(x) =

{
tan(x) if x ≤ 0;

cot(x) if x > 0.
14.) g(x) =

{
cot(x) if x < 0;

tan(x) if x ≥ 0.

A.) B.)

C.) D.)
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Match the functions with their graphs.

11.) tan(x) 12.) cot(x)

13.) f(x) =
{tan(x)cot(x) { cot(x)tan (x)

if x <0;
ifx 0.

if x <0;
if x >0.

A.)

C.)

14.) g(x) =

B.)

D.) I
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To find the solutions of an equation of the form h(x)f(x) = h(x)g(x), you
need to find the solutions of the following two equations:

h(x) = 0 and f(x) = g(x)

Find the solutions of the following equations.

15.) (x− 1)(x+ 3) = (x− 1)(x+ 4)

16.) (2x− 3)(x+ 1) = (2x− 3)(x+ 2)

17.) (x− 7) = (x− 7)(x+ 2)

18.) x2 = x

In the exercises from the last chapter we reviewed rules for when some
equations have solutions that can be found in one step. Those rules can be
expanded on to give us rules for a single step of a problem that might involve
several steps. These rules are listed below. Use them to solve the equations
in the remaining exercises.

• f(x)2 = c implies f(x) =
√
c or f(x) = −

√
c

• af(x)2 + bf(x) + c = 0 implies f(x) = −b−
√
b2−4ac
2a or f(x) = −b+

√
b2−4ac
2a

•
√
f(x) = c implies f(x) = c2

19.) (2x− 3)2 = 4 22.) (
√
x)2 − 5

√
x+ 6 = 0

20.)
√
x+ 4 = 3 23.) loge(x)2 = 25

21.) (ex)2 − 3ex + 2 = 0 24.)
√

2x− 3 = 5
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