UNIFORM HYPERBOLICITY, COCYCLES AND RIGIDITY - PRELIMINARIES ON CODING

Definitions and Main Theorems

Theorem 0.1 (Hadamard-Perron Theorem). If $0 < \lambda < 1$ and $\gamma > 0$, then there exists $\eta = \eta(\lambda, \gamma)$ such that the following holds: Let $F_n : \mathbb{R}^m \times \mathbb{R}^{d-m} \to \mathbb{R}^m \times \mathbb{R}^{d-m}$, $n \in \mathbb{Z}$, be a sequence of C^r maps satisfying:

$$F_n(u,v) = (u,v) \cdot \begin{pmatrix} A_n & 0 \\ 0 & B_n \end{pmatrix} + \delta_n(u,v)$$

where $A_n \in GL(m, \mathbb{R})$ and $B_n \in GL(d-m, \mathbb{R})$ satisfy $||A_n^{-1}|| \leq \lambda$ and $||B_n|| \leq \lambda$ for every n, and $\delta_n : \mathbb{R}^d \to \mathbb{R}^m \times \mathbb{R}^d$ satisfes $||\delta_n||_{C^1} < \eta$ for every n. Then there exist a sequence of C^r functions $\varphi_n^u : \mathbb{R}^m \to \mathbb{R}^{d-m}$ and $\varphi_n^s : \mathbb{R}^{d-m} \to \mathbb{R}^m$ such that $||d\varphi_n^*|| \leq \gamma$ for every n, and if $W_n^u = \operatorname{graph}(\varphi_n^u) = \{(x, \varphi_n^u(x))\} \subset \mathbb{R}^d$ and $W_n^s = \operatorname{graph}(\varphi_n^s) = \{(\varphi_n^s(y), y)\} \subset \mathbb{R}^d$, then $F_n(W_n^*) = W_n^*$, and

$$W_n^s = \left\{ x \in \mathbb{R}^d : \lim_{m \to \infty} F_{n+m} \circ \dots \circ F_n(x) \to 0 \right\}$$

$$W_n^u = \left\{ x \in \mathbb{R}^d : \lim_{m \to \infty} F_{n-m} \circ \dots \circ F_{n-1}^{-1}(x) \to 0 \right\}$$

Corollary 0.2 (Stable and Unstable Manifold Theorem). If $f: X \to X$ is a C^r Anosov diffeomorphism, there exists some $\varepsilon > 0$ such that for every $x \in X$ there exist C^r -embedded manifolds $W^u_{\text{loc}}(x)$ and $W^s_{\text{loc}}(x)$ such that $T_yW^*_{\text{loc}}(x) = E^*(y)$ for every $y \in W^*_{\text{loc}}(x)$, *=s,u and if $d(y,x) < \varepsilon$, then $d(f^n(x), f^n(y)) < \varepsilon$ for every $n \ge 0$ and converges to 0 if and only if $y \in W^s_{\text{loc}}(x)$ and $d(f^{-n}(x), f^{-n}(y)) \le \varepsilon$ for every $n \ge 0$ and converges to 0 if and only if $y \in W^u_{\text{loc}}(x)$. They are unique in sufficiently small neighborhoods of x.

Definition 0.3. Fix an alphabet $\mathcal{A} = \{1, \dots, m\}$. Let $\Sigma_+ = \{(x_n)_{n=0}^{\infty} : x_n \in \mathcal{A} \text{ for every } n \in \mathbb{N}_0\}$ and $\Sigma = \{(x_n)_{n=-\infty}^{\infty} : x_n \in \mathcal{A} \text{ for every } n \in \mathbb{Z}\}$ be the set of one-sided sequences and two-sided sequences, respectively. Each comes equipped with the left-shift map

$$\sigma((x_n))_{\ell} = x_{\ell+1}.$$

Given an $m \times m$ matrix A, whose entries are all 0 or 1, call a (finite or infinite) sequence (x_n) A-admissible if $A_{x_n x_{n+1}} = 1$ for every relevant n. The Markov shift or subshift of finite type determined by A is the subset of Σ (or Σ_+) of A-admissible sequences, denoted by Σ^A (or Σ_+^A , respectively).

Definition 0.4. If $f: X \to X$ is a transformation of a compact metric space X, define a family of metric $d_{f,n}$ by $d_{f,n}(x,y) = \inf \{d(f^i(x), f^i(y)) : i = 0, ..., n-1\}$, and a Bowen ball at x of depth n to be the set $B_{f,n}(x,\varepsilon) = \{y \in X : d(f^ix, f^iy) < \varepsilon\}$ for every i = 0, ..., n-1.

An (n, ε) -net is a finite collection of points $\{x_j\}$ such that $X = \bigcup B_{f,n}(x_j)$. An (n, ε) -separated set is a finite collection of points $\{x_j\}$ such that the sets $B_{f,n}(x_j)$ are pairwise disjoint. Let $N(f, n, \varepsilon)$ denote minimal cardinality of an (n, ε) -net and $S(f, n, \varepsilon)$ denote the maximal cardinality of an (n, ε) -separated set.

Define the topological entropy of f as:

$$h_{\text{top}}(f) := \lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log N(f, n, \varepsilon) = \lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log S(f, n, \varepsilon)$$

Theorem 0.5. The topological entropy of a topologically mixing subshift of finite type Σ^A is the largest eigenvlue of A.

Definition 0.6. Given a finite partition of a measure space (X, μ) into measurable subsets $\mathcal{P} = \{P_1, \dots, P_n\}$, let $H(\mathcal{P}) = \sum I(\mu(P))$, where $I(x) = -x \log x$. The wedge of partitions $\mathcal{Q}_1, \dots, \mathcal{Q}_m$ is denoted by $\mathcal{Q}_1 \vee \dots \vee \mathcal{Q}_m$, and the atoms of the partition are sets of the form $Q_1 \cap \dots \cap Q_m$, where $Q_i \in \mathcal{Q}_i$ for every i. Given a μ -preserving transformation $T: X \to X$, let \mathcal{P}_n^T denote the partition $\mathcal{P}_n^T = \mathcal{P} \vee T^{-1}(\mathcal{P}) \vee \dots \vee T^{-(n-1)}(\mathcal{P})$.

The metric entropy or measure-theoretic entropy of T with respect to μ is:

$$h_{\mu}(f) := \sup_{\mathcal{D}} \lim_{n \to \infty} \frac{1}{n} H(\mathcal{P}_n^T).$$

A matrix B is called a stochastic matrix (subordinate to A) if all of its entries are nonnegative, the rows of B sum to 1, and $B_{ij} = 0$ if and only if $A_{ij} = 0$.

Theorem 0.7. Given a stochastic matrix B subordinate to A, if Σ^A is topologically mixing, there exists a unique left eigenvector p of B, and a σ -invariant probability measure μ_B on Σ^A such that for every finite A-admissible word $\omega = (\omega_1, \ldots, \omega_n)$, if $C_\omega = \{(x_n) \in \Sigma^A : (x_n) \text{ begins with } \omega\}$, then

$$\mu_B(C_\omega) = p_{\omega_1} \cdot \prod_{i=1}^{n-1} B_{\omega_i \omega_{i+1}}.$$

The metric entropy of σ with respect to μ_B is $\sum_{i,j} p_i I(B_{ij})$.

Exercises

Problem 1. Consider the function $d((x_n), (y_n)) = \begin{cases} 0, & x_n = y_n \text{ for every } n \\ 2^{-\ell}, & \text{where } \ell = \inf\{|n| : x_n \neq y_n\} \end{cases}$ Prove that d is a metric on Σ_+ and Σ . Describe $B((x_n), \varepsilon)$ for an arbitrary sequence (x_n) . Use this description to show that d induces the product topology, when Σ_+ and Σ are viewed as $\mathcal{A}^{\mathbb{N}_0}$ and $\mathcal{A}^{\mathbb{Z}}$, respectively. Show that the subshifts $\Sigma^A \subset \Sigma$ and $\Sigma^A_+ \subset \Sigma_+$ are closed, σ -invariant subsets.

Problem 2. Assume that a 0-1 matrix A has no rows or columns which have all zeroes. Show that a subshift Σ^A is topologically transitive if and only if for every pair $1 \leq i, j \leq m$ there exists some $n \in \mathbb{N}$ such that $(A^n)_{ij} \neq 0$. Show that it is topologically mixing if and only if there exists some $n \in \mathbb{N}$ such that every entry of A^n is nonzero.

Problem 3. Show that if f is an Anosov diffeomorphism of a compact manifold, then for sufficiently small ε , $\bigcap_{n\in\mathbb{N}} B_{f,n}(x,\varepsilon) = W^s_{\text{loc}}(x)$.

Problem 4. Let $f: X \to X$ and $g: Y \to Y$ be transformations of compact metric spaces. g is called a *factor* of f if there exists a continuous surjection $\pi: X \to Y$ such that $\pi \circ f = g \circ \pi$. Show that if g is a factor of f, then $h_{\text{top}}(g) \leq h_{\text{top}}(f)$. Furthermore, show that if there exists B such that $|\pi^{-1}(x)| \leq B$, then $h_{\text{top}}(g) = h_{\text{top}}(f)$.

Problem 5. Show that if $\mathcal{A} = \{0,1\}$, then the linear expanding map on the circle $L_2(x) = 2x \pmod{1}$ is a factor of Σ with factor map $\pi((x_n)) = \sum_{n=0}^{\infty} 2^{-(n+1)} x_n$. Furthermore, show that π is one-to-one, with the exception of a countable subset, on which π is 2-to-1.

Problem 6. Show that if $f: X \to X$ is a homeomorphism of a compact metric space, then $h_{\text{top}}(f) = h_{\text{top}}(f^{-1})$.

Problem 7 (Baby Brin-Katok Theorem/Pesin Entropy Formula). * Assume that X is a compact Riemannian manifold, and $f: X \to X$ is an Anosov diffeomorphism such that for every $x \in X$, if $v \in E^u_x$ then $||df(v)|| = \lambda \, ||v||$ and if $w \in E^s_x$, then $||df(w)|| = \mu \, ||w||$ for some fixed $\lambda > 1$ and $\mu < 1$ independent of x. Furthermore, assume that f preserves the Riemannian volume (ie, f^* vol = vol). Show that there exist 0 < c < C such that for every $x \in X$, $c\lambda^{dn} \leq \operatorname{vol}(B_{f,n}(x,\varepsilon)) \leq C\lambda^{dn}$, where $d = \dim(E^u)$. Conclude that the topological entropy of f is $d \log \lambda$.

Problem 8. * Fix a length N and let $\mathcal{L} \subset \mathcal{A}^N$ be a *language* consisting of words of length N. Say that a word $(x_n) \in \Sigma$ is \mathcal{L} -admissible if for every $m, (x_m, \ldots, x_{m+n-1})$ is in \mathcal{L} . Let $\Sigma^{\mathcal{L}}$ denote the set of infinite, \mathcal{L} -admissible sequences, and show that \mathcal{L} is shift-invariant and closed.

Now consider the set \mathcal{L} as the alphabet to define a shift, so that the letters of the alphabet are the collection \mathcal{L} of words of length N in \mathcal{A} . Define the adjacency matrix $A(\mathcal{L})$ such that if $\sigma_1, \sigma_2 \in \mathcal{L}$, then $A_{\sigma_1\sigma_2} = 1$ if and only if the last N-1 letters of σ_1 and first N-1 letters of σ_2 coincide. Show that the shifts on $\Sigma^{A(\mathcal{L})}$ and $\Sigma^{\mathcal{L}}$ are topologically conjugate. **Moral:** All finite language subshifts can be studied using 2-step subshifts.

Problem 9. * Prove that the global stable and unstable manifolds form a foliation using the following scheme:

- (1) Show that if $W^s_{loc}(x_1) \cap W^s_{loc}(x_2) \neq \emptyset$, then their union is a connected manifold of the same dimension (Use the uniquness and dynamical characterization)
- (2) Say that $W^s(x) = \{y \in X : d(f^n(x), f^n(y)) \to 0\}$. Show that if $z \in W^s(x)$, then $W^s_{loc}(z) \subset W^s(x)$. Define a topology on $W^s(x)$ in which $d(z_1, z_2) < \varepsilon$ if and only if $z_1 \in W^s_{loc}(z_2)$ and the points are ε -close on the local stable manifold.
- (3) Prove that $W^s(x)$ is an immersed submanifold without self-intersections.

(4) Given $x \in X$, define a map $\psi_x : W^s_{loc}(x) \times W^u_{loc}(x) \to Y$ by $(y, z) \mapsto W^u_{loc}(y) \cap W^s_{loc}(x)$. Prove that the map is well-defined and forms a foliation atlas, so that each W^u and W^s are continuous foliations with C^r -leaves.