G&T topics Sp2025 - Problem Set 2

- (1) A group action $G \curvearrowright X$ is called *group transitive* if $G \cdot x = X$ for some $x \in X$.
 - (a) Show that if $H \subset G$ is a closed subgroup, then the left-translation action $G \curvearrowright G/H$ is a group transitive action, and every C^{∞} group transitive action is C^{∞} conjugated to such an action.
 - (b) Show that a group transitive action is locally free if and only if H is discrete, where H is as above.
 - (Liouville theorem) Show that if $\mathbb{R}^k \cap X$ is a locally free C^{∞} group (c) transitive action, then X is a k-dimensional torus.
 - (d) Show that any cocycle $\varphi : \mathbb{R}^k \times X \to \mathbb{R}$ over a locally free group transitive action is cohomologous to a constant.
 - (e) Give an example of a group transitive action that has a cocycle which is not cohomologous to a constant.
- (2) Show that if $G \curvearrowright X$ is a group action, and μ is a G-invariant measure, and $\varphi: G \times X \to \mathbb{R}$ is a cocycle, then the map

$$\Phi_{\mu}(g) = \int_{X} \varphi(g, x) \, d\mu$$

is a homomorphism from G to \mathbb{R} . Furthermore, show that if φ is cohomologous to a constant cocycle, then Φ_{μ} is independent of μ . Does this hold for matrix-valued cocycles?

- (3) Show that every orientable principal \mathbb{R} -bundle has a continuous section.
- (4) Define $\beta(v, w) = v^T \begin{pmatrix} 0 & \text{id} & 0 \\ \text{id} & 0 & 0 \\ 0 & 0 & \text{id} \end{pmatrix} w$, hwere the matrix is a block square

matrix with blocks of size (p, p, q - p). Show that β has signature (q, p).

- (5) Verify computationally that $[\mathfrak{g}_r,\mathfrak{g}_{r'}] \subset \mathfrak{g}_{r+r'}$ for any roots r and r' of the Lie algebra $\mathfrak{so}(p,q)$ (You can use the matrix form of the Lie algebra above)
- (6) Identify an \mathbb{R} -split Cartan subalgebra for the standard bilinear form of signature (q, p): $\beta(v, w) = \sum_{i=1}^{q} v_i w_i - \sum_{i=q+1}^{q+p} v_i w_i.$
- (7) Recall that if $\mathfrak{a} \subset \mathfrak{g}$ is an \mathbb{R} -split Cartan subalgebra of a semisimple Lie algebra \mathfrak{g} , and $X \in \mathfrak{a}$, then

$$E_X^u = \bigoplus_{r \in \Delta: r(X) > 0} \mathfrak{g}_r$$

Show that if $X_1, \ldots, X_\ell \in \mathfrak{a}$, find a characterization of $E^u_{X_1, \ldots, X_\ell} :=$ $\bigcap_{i=1}^{\ell} E_{X_i}^u$. Show that for every root r, there exists X_1, \ldots, X_{ℓ} such that $E^u_{X_1,\ldots,X_\ell} = \oplus_{t>0} \mathfrak{g}_{tr}.$

- (8) Show that if \mathfrak{a} is an \mathbb{R} -split Cartan subalgebra, and $Z_{\mathfrak{g}}(\mathfrak{a}) = \mathfrak{a} \oplus \mathfrak{m}$ is the sum of \mathfrak{a} and a compact subalgebra \mathfrak{m} , then for every $Y \in \mathfrak{m}$, ad_Y preserves the root space decomposition and has purely imaginary eigenvalues.
- (9) Show that $Z_{\mathfrak{g}}(\mathfrak{a}) \oplus E_X^u$ is a subalgebra for every $X \in \mathfrak{a}$, and solvable when \mathfrak{m} is abelian.
- (10) Call an action $\alpha: H \curvearrowright X$ uniformly locally free if there exists a neighborhood $U \subset H$ containing $e \in H$ such that for every $x \in X$, $g \mapsto \alpha(g)x$ is injective from U. Call an action *pointwise locally free* if for every $x \in X$, $\operatorname{Stab}_{\alpha}(x)$ is a discrete subgroup of H.

- (a) Show that every uniformly locally free action is pointwise locally free.
- (b) Find an example of a uniformly locally free action which is not free.
- (c) Find an example of an action which is pointwise locally free, but not uniformly locally free.
- (d) Let G be a Lie group, and $H, Q \subset G$ be closed subgroups of G. Show that the translation action $\alpha : H \curvearrowright G/Q$ is pointwise locally free if and only if $H \cap gQg^{-1}$ is discrete in H for all $g \in G$.
- (e) * Let G be a semisimple Lie group, $\Gamma \subset G$ be a lattice, and $\varphi_t : G/\Gamma \to G/\Gamma$ be the homogeneous flow $\varphi_t(g\Gamma) = \exp(tX)g\Gamma$. Show that if φ_t is not uniformly locally free, then Γ is not cocompact, and $X \in \text{Lie}(G)$ is not \mathbb{C} -semisimple (ie, ad_X has a nontrivial Jordan block).