G&T topics Sp2025 - Problem Set 1

- (1) Show that if ω_1 and ω_2 are right Haar forms on a Lie group G, then $\omega_1 = \lambda \omega_2$ for some $\lambda \in \mathbb{R}$.
- (2) Show that if ω is a right Haar form and $g \in G$, then $(L_g)^* \omega$ is a right Haar form.
- (3) Show that if ω is a right Haar form, the map $\lambda: G \to \mathbb{R}$ defined by

$$\lambda(g) = \frac{(L_{g^{-1}})^* \omega}{\omega}.$$

is a well-defined homomorphism independent of the choice of ω .

- (4) Show that if G has a lattice, then it is unimodular.
- (5) Let X be an $n \times n$ matrix, and consider the Lie group $H = \mathbb{R} \ltimes_X \mathbb{R}^n$ whose multiplication is given by

$$(t, v) * (s, w) = (t + s, v + \exp(tX)w).$$

- (a) Show that this multiplication makes H a Lie group.
- (b) Identify a basis of the Lie algebra, and find the Lie brackets of the basis elements.
- (c) Show that H is solvable, and nilpotent if and only if the only eigenvalue of X is 0.
- (d) Find a matrix group isomorphic to H.
- (e) Show that H is unimodular if and only if Tr(X) = 0 (ie, det(exp(X)) = 1).
- (6) Show that the two suspension constructions described in class are smoothly conjugated (try it for suspending a Z-action first if you're stuck).
- (7) Let G be a Lie group, and let

$$\phi: TG \to G \times T_e G$$
 $\phi(v;g) = (g, dR_{g^{-1}}(v))$
w that ϕ is a diffeomorphism, and that $\phi(dR_e(v;h)) = (v;h)$

Show that ϕ is a diffeomorphism, and that $\phi(dR_g(v;h)) = (v;hg)$. Induce a trivialization of $T(G/\Gamma)$.

(8) Show that the group

$$H = \begin{pmatrix} 1 & * & * & \dots & * \\ 0 & 1 & * & \dots & * \\ 0 & 0 & \ddots & \dots & * \\ 0 & 0 & \dots & 1 & * \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix}$$

is nilpotent.

- (9) Show that if H is a connected solvable Lie group, then [H, H] is a nilpotent Lie group (you may use the theorems of Lie and Engel).
- (10) Show that for a Lie algebra \mathfrak{g} , the Killing for B is bilinear, symmetric and invariant under automorphisms of \mathfrak{g} . Compute the Killing form for $\mathbb{R} \ltimes_X \mathbb{R}^2$, $\mathfrak{so}(3)$ and $\mathfrak{sl}(2,\mathbb{R})$