Problem 1. Show that if \(M_i \) are compact, connected, oriented manifolds of the same dimension for \(i = 1, 2, 3 \), and \(f : M_1 \to M_2 \) and \(g : M_2 \to M_3 \) are \(C^\infty \) functions, then \(\deg(g \circ f) = \deg(g) \deg(f) \).

Problem 2. Show that if \(M \) and \(N \) are compact, connected and oriented manifolds of the same dimension, and \(F : M \to N \) has \(\deg(F) = 0 \), then \(F \) has a critical point.

Problem 3. Let \(A \) be an \(n \times n \) square matrix with integer entries, \(\mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n \) and \(F_A : \mathbb{T}^n \to \mathbb{T}^n \) be defined by

\[
F_A([x]) = [Ax]
\]

where the notation \([x]\) denotes the equivalence class \(x + \mathbb{Z}^n\).

1. Show that \(F_A \) is well-defined.
2. Compute \(\deg(F_A) \) by computing the signed number of preimages of a regular value of \(F_A \).
3. Compute \(\deg(F_A) \) by computing \(\int F_A^*\omega \), where \(\omega \) is the standard \(n \)-form \(dx_1 \wedge \cdots \wedge dx_n \).

Non-graded.

Problem 4. Let \(\Gamma \) be a countable group acting properly discontinuously on an oriented manifold \(M \) by diffeomorphisms. Show that the quotient manifold \(M/\Gamma \) is orientable if and only if every \(\gamma \in \Gamma \) is orientation-preserving.

Problem 5. Let \(\omega \) be a top form on a \(C^\infty \) manifold \(M \) and \(\varphi_t : M \to M \) be a flow on \(M \) generated by a vector field \(X \). Show that \(\varphi_t^*\omega = \omega \) for all \(t \in \mathbb{R} \) if and only if \(\iota_X\omega \) is closed. Use this to find a condition for a flow generated by a vector field \(X = \sum f_i \frac{\partial}{\partial x_i} \) to preserve the standard top form \(\omega = dx_1 \wedge \cdots \wedge dx_n \) on \(\mathbb{R}^n \).

Problem 6. Let \(f : M \to M \) be an orientation-preserving diffeomorphism of an oriented compact manifold \(M \). Fix a non-vanishing top form \(\omega_0 \). Show that there is a unique \(C^\infty \) function \(\lambda : M \to \mathbb{R} \) such that \(f^*\omega = e^\lambda \omega \), and \(f \) preserves some non-vanishing top form if and only if there exists a \(C^\infty \) function \(h : M \to \mathbb{R} \) such that

\[
\lambda = h \circ f - h.
\]

Problem 7. If \(G \) is a connected, compact Lie group, consider the squaring map \(s(g) = g^2 \).

(a) Show that if \(G = \mathbb{T}^n \), then \(\deg(s) = 2^n \). Check this formula both by computing the degree at a regular value, as well as using a volume form.

(b) Show that if \(G \) is the set of unit quaternions, then \(\deg(s) = 2 \) [Hint: Show that if \(g \neq \pm 1 \), then there is a unique 1-parameter subgroup passing through \(g \) and that any square root must belong to it]

Remark 1. If you know about the structure of compact Lie groups, you may try the following more difficult exercise: \(\deg(s) = 2^r \), where \(r \) is the maximal dimension of a connected abelian subgroup of \(G \).