1) Let \(F_{x,r} : \mathbb{R}^3 \to \mathbb{R} \) be defined by

\[
F_{x,r}(z) = \|x-z\|^2 - r^2
\]

Note that when \(r > 0 \), 0 is a regular value of \(F_{x,r} \) and \((F_{x,r})^{-1}(0)\) is the sphere of radius \(r \), centered at \(x \). Furthermore,
\((F_{x,r})^{-1}(0) = (F_{x_1,r_1})^{-1}(0) \) if and only if \((0,0)\) is a regular value of
\[
\mathcal{G}(z) = (F_{x_1,r_1}(z), F_{x_2,r_2}(z))
\]

Note that
\[
\begin{pmatrix}
1 & 2(z^{(1)} - x_1^{(1)}) & 2(z^{(2)} - x_1^{(2)}) & 2(z^{(3)} - x_1^{(3)}) \\
2(z^{(1)} - x_1^{(1)}) & 1 & 2(z^{(2)} - x_1^{(2)}) & 2(z^{(3)} - x_1^{(3)}) \\
2(z^{(2)} - x_1^{(2)}) & 2(z^{(3)} - x_1^{(3)}) & 1 & 2(z^{(3)} - x_1^{(3)}) \\
2(z^{(3)} - x_1^{(3)}) & 2(z^{(3)} - x_1^{(3)}) & 2(z^{(3)} - x_1^{(3)}) & 1
\end{pmatrix}
\]

This matrix has full rank if and only if its rows are linearly independent.

Hence, the intersection is non-transverse if and only if there exists \(z \in \mathbb{R}^3 \) belonging to the intersection such that

\[
(*) \quad z - x_1 = \lambda (z - x_2)
\]

for some \(\lambda \in \mathbb{R} \). By taking norms, and using that \(\|z - x_1\| = r_2 \), we conclude that \(|\lambda| = r_2 / r_1 \).

Finally, equation (*) implies that \(x_1, x_2, \) and \(z \) lie on the same line. It then follows that non-transversality occurs exactly when either:

\[
\|x_1 - x_2\| = r_1 - r_2 \quad \text{or} \quad \|x_1 - x_2\| = r_1 + r_2
\]
2) Define \(F: \mathbb{R}^2 \to \mathbb{R}^3 \) by

\[
F(x, y) = (x, y, f(x, y))
\]

Then \(F \) is a homeomorphism onto its image, and

\[
dF_{xy} = \begin{pmatrix}
1 & 0 \\
0 & 1 \\
f_x(x, y) & f_y(x, y)
\end{pmatrix}
\]

Since \(F \) is an immersion and homeomorphism onto its image, it is an embedding.

The tangent bundle to \(\Gamma_f \) is given by

(i) \(\text{span} \left\{ \begin{pmatrix} 1 \\ 0 \\ f_x(x, y) \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ f_y(x, y) \end{pmatrix} \right\} \)

and

(ii) \(\ker \phi^\perp \) where

\[
\phi_{x,y}(v_1, v_2, v_3) = v_3 - f_y(x, y)v_2 - f_x(x, y)v_1
\]

Finally, if \(f \) and \(g \) are \(C^0 \), note that \(\Gamma_f \) and \(\Gamma_g \) are intersect in \(f^{-1}(g(x, y)) \), where

\[
h(x, y) = g(x, y) - f(x, y).\]

Furthermore, the planes in (i) coincide for \(f \) and \(g \) if and only if

\[
\nabla f = \nabla g \quad \text{or} \quad \forall h = 0.
\]
Hence, we may find a transverse intersection when \(h \) has a regular value. By Sard's Theorem, the set of regular values has full measure, and by definition of \(h \), the image is a nontrivial interval unless \(\gamma_g \) is a constant, hence \(\gamma_g \equiv c \) for some \(c \) unless \(\nabla f \equiv \nabla g \).

3) Consider the function \(F(A, \nu) = A\nu \), so \(F : M_2(\mathbb{R}) \times S^1 \to \mathbb{R}^2 \). We claim that \(F \notin S^1 \). Indeed,

\[
\begin{align*}
&\Lambda F \left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}, \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix} \right) = \begin{pmatrix} 2\nu_1 + \beta \nu_2 \\ \alpha \nu_1 + \beta \nu_2 \end{pmatrix} \\
&\text{Therefore,}
\end{align*}
\]

\[
\begin{align*}
&dF \left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}, \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix} \right) \wedge \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix} = \\
&\begin{pmatrix} d\nu_1 + a\nu_1 + \beta\nu_2 + b\nu_2 \\ c\nu_1 + \alpha\nu_2 + \beta\nu_2 \end{pmatrix}, \nu_1 \nu_1 + \nu_2 \nu_2 = 0
\end{align*}
\]

Now, if \(F(A, \nu) \in S^1 \), then \(\nu \neq 0 \). Then by equation (\#), \(dF(A, \nu) \) is zero, by choosing \(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \) appropriately, and taking \(\nu = 0 \). By Sard's Theorem, for almost every \(A, F(A, S^1) \).
To see when the intersection is nontrivial, note that $F_A(v) = Av \in S^1$ if and only if $\|Av\| = 1$. Thus, we require that

$$\|A\| = \sup_{v \in S^1} \|Av\| \geq 1$$

and

$$\inf_{v \in S^1} \|Av\| \leq 1.$$

To see when F_A is an immersion, note that

$$T_{vS^1} = \mathbb{R} \cdot (-v_2/v_1).$$

Then

$$dF_A(v) (t(-v_2/v_1)) = tA(-v_2/v_1),$$

and this is nonzero at every point if and only if $\ker A = 0$. That is, when A is invertible. Since $(F_A)^{-1} = F_A^{-1}$, it follows that TFAE:

- F_A is an immersion
- F_A is an embedding
- A is invertible.
4) Let \(A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \), and note that

\[
F(A) = \begin{pmatrix} a^2 + bc & ab + bd \\ ac + cd & bc + d^2 \end{pmatrix}
\]

Therefore,

\[
dF(A) \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 0 & 0 & 2a & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ c & a & d & 0 & 0 \\ b & 0 & 0 & 0 & 0 \\ 0 & b & c & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}
\]