Problem Set 4 - pre-REU 2024

- 1. Prove the main classification theorem for Markov dynamics:
 - **Theorem.** Let f_1 and f_2 be piecewise increasing, expanding, Markov interval maps on [0,1). If f_1 and f_2 have the same associated graph (with the same labeling), then f_1 and f_2 are conjugated by an increasing bijection $h:[0,1) \to [0,1)$.
- 2. Give an example of an expanding, piecewise increasing, Markov system for which there is more than one forbidden terminating repeated digit.
- 3. Give an example of a piecewise increasing, expanding, Markov system for which every periodic orbit has even period.
- 4. Show that any piecewise increasing Markov system has a periodic orbit.
- 5. A piecewise differentiable system $f:[0,1)\to[0,1)$ is called eventually expanding if there exists some $\lambda\in(1,\infty)$ and $n\in\mathbb{N}$ such that $(f^n)'(x)\geq\lambda$ for all $x\in[0,1)$. Show that the main classification theorem still holds for eventually expanding systems.
- 6. Give an example of a piecewise increasing system which is Markov and eventually expanding, but not expanding.
- 7. Give an example of a piecewise increasing system which is Markov, but not eventually expanding.
- 8. Show that any continuous circle map of degree k has the Markov property relative to its coding intervals.
- 9. A self-conjugacy of a dynamical system $f: X \to X$ is a map $h: X \to X$ such that $h \circ f = f \circ h$. Find all continuous self-conjugacies of E_k . (* If you're feeling bold, try to prove that you answer is correct)
- 10. * Consider a piecewise increasing, expanding interval map $f:[0,1) \to [0,1)$ with discontinuities d_1, \ldots, d_{k-1} , let $d_0 = 0$, and $d_k = 1$. An post-discontinuity is any endpoint of $f^n([d_i, d_{i+1}))$ for some $i = 1, \ldots, k-1, n \geq 1$. Show that f is Markov relative to its continuity domains if and only if every post-discontinuity is a discontinuity.
- 11. * Show that if there are only finitely many post-discontinuities, listed $\{0 = b_0, b_1, \dots, b_\ell = 1\}$, then f has the Markov property relative to the intervals $I_j = [b_j, b_{j+1})$.
- 12. * Give an example of a piecewise increasing, expanding interval map which is not Markov relative to its continuity domains, but it Markov relative to another collection of intervals.
- 13. * Fix a <u>real</u> number $\beta > 1$. Consider the piecewise increasing, expanding interval transformation

$$f(x) = \beta x - |\beta x|$$

For which values of β is this transformation Markov relative to some collection of intervals?