Problem Set 1 - pre-REU 2024

- 1. Find the fixed points of $T(x) = x^2$ on \mathbb{R} .
- 2. Fix $p, q \in \mathbb{N}$. If $A = \{k \in \mathbb{N}_0 : kq \le p\}$, n is the maximal element of A and r = p nq, show that $0 \le r < q$.
- 3. Show that if x is fixed by T, then $T^n(x) = x$ for all $n \in \mathbb{N}$.
- 4. Show that if x is periodic for T, then there exists $q \in \mathbb{N}$ such that $\{n \in N : T^n(x) = x\} = \{kq : k \in \mathbb{N}\}.$
- 5. Show that if x is T-periodic, then $T^k(x)$ is T-periodic for all $k \in \mathbb{N}_0$.
- 6. Show that if $T^k(x)$ is periodic, then x is not necessarily periodic.
- 7. Let x be pre-periodic. Show that for every $r \in \mathbb{N}_0$ and $A_r := \{n \in \mathbb{N} : T^n(x) = T^r(x)\}$ is either $\{r\}$ or there exists $r' \in \mathbb{N}$ such that

$$A_r = \{kq + r' : k \in \mathbb{N}_0\}$$

- 8. Prove the exponent rule $T^{m+n}(x) = T^m(T^n(x))$ [*Hint*: Find a variable to induct on]
- 9. Let T(x) by given by a polynomial of degree d. What is the degree of the polynomial expression for $T^n(x)$?
- 10. Fix q and n. Consider the space $X = \{0, ..., q-1\}$ and the dynamical system

T(x) = the remainder of nx after division by q

Draw some pictures describing these dynamical systems for a few different values of n and q. Do you have any conjectures about which points will be periodic for T?