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Recall. Last time, we proved a lemma to set up for our next big theorem. We’ll restate them both
here.

Lemma. If f is an expanding circle map of degree k, then f has a fixed point (in fact, k − 1 fixed
points).

Theorem. If f is an expanding circle map of degree k, then f is conjugated to Ek by an invertible
continuous circle map whose inverse is a continuous circle map.

Remark. A corollary is like a theorem or lemma, but it has a proof that’s relatively short using
a previous theorem or lemma. A sketch of a proof is the general outline of how to write a proof
without any of the details filled in. This can be useful when giving the proof as an exercise or if
we believe something is true and plan to get back to the full proof later.

Corollary. If f is an expanding circle map, f is conjugated to an expanding circle map with a fixed
point at zero.

Sketch. Idea: “change the cut point to zero.”
Let p be a fixed point for f , and h(x) = x + p − ⌊x + p⌋. Then if g(x) = h−1(f(h(x))), g is

expanding and g(0) = 0.

⋆Exercise. Check the details of this sketch.

⋆Exercise. Prove the following: If f is conjugated to g, and g is conjugated to ℓ, then f is conjugated
to ℓ.

Remark. Themoral of the previous corollary and exercises is that when proving themain theorem,
we can assume without loss of generality that f(0) = 0.
Remark. Now, let d1, . . . , dk−1 denote the discontinuities of f , let d0 = 0, and let dk = 1. Consider
the graph:

Notice that since f(0) = 0, the first discontinuity must jump from 1 to 0, so limx→d−1
f(x) = 1.

Similarly, on the last interval, f must tend to either zero or one, but since it is expanding (so
increasing), it must limit to 1. Thus, f : [di, di+1) → [0, 1) is an increasing bijection for each i.



Let gi : [0, 1) → [di, di+1) denote the inverse of the restriction of f to [di, di+1). We call gi the
one-sided inverses of f . Indeed,

∀x ∈ [0, 1) | f(gi(x)) = x

∀x ∈ [di, di+1) | gi(f(x)) = x

In particular, the second equation doesn’t hold for all inputs x.

Example. E10(x) = 10x− ⌊10x⌋. Then di = i/10 for i = 0, . . . , 10. For x ∈ [di, di+1), we have

E10(x) = 10x− i

so we can find the inverse on this region by solving x = 10y − i. I.e.

gi(x) =
x

10
+

i

10

We can check the claimed properties now. For x ∈ [0, 1):

f(gi(x)) = f

(
x

10
+

i

10

)
= 10

(
x

10
+

i

10

)
−
⌊
10

(
x

10
+

i

10

)⌋
= x+ i− ⌊x+ i⌋
= x+ i− i

= i

and
gi(f(x)) = gi(10x− ⌊10x⌋)

=
10x− ⌊10x⌋

10
+

i

10

= x+
i− ⌊10x⌋

10

which may not equal x – we could be off by an integer multiple of 1/10th.

In fact, we can understand this directly. If we write out the decimal expansion of x as:

x = 0.u1u2u3 . . .

then
E10(x) = 0.u2u3u4 . . .

An inverse function should “undo” this and go backwards. I.e. it should shift the digits to the
right and put the first digit back in. But there are many choices for the first digit. gi specifically
picks the digit i:

gi(x) = 0.iu1u2u3 . . .

We’ll sometimes call this an insertion operation since we’ve inserted the digit i.
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Combinatorial words and Coding Intervals
Wecontinue toworkwith an expanding circlemap f of degree kwith one-sided inverses g0, . . . , gk−1.

LetA0 = 0, . . . , k − 1 denote the “standard alphabet” on k letters. A finite word inA0 is a list
of letters w = a1a2 . . . aℓ.
Remark. We should not think of this as the same as the word with infinitely many trailing zeros.
That will be a distinct word (this is different from our intuition about decimals).

Definition. The coding interval of f corresponding to w is the set

Iw = ga1(ga2(· · · (gaℓ([0, 1))) · · · ))

Lemma. For f and w as above,

Iw = {x ∈ [0, 1) : f i−1(x) ∈ [dai , dai+1)∀i = 1, . . . , ℓ}

Furthermore, for a fixed ℓ, [0, 1) is the union of all coding intervals for words of length ℓ.

Example. Let’s look again at E10. Then,

ga1(ga2(x)) = ga1(x/10 + a2/10)

= (x/10 + a2/10)/10 + a1/10

=
x

100
+

a1
10

+
a2
100

So, Ia1a2 is the set of points whose first two digits are a1a2.

0.a1a2 0.a1a25 0.a1a2999999 . . .

I.e. this is an interval of length 1
100

.

⋆Exercise. Prove the previous lemma.

Proof of main theorem. Recall our assumption is that f is expanding.
Suppose x ∈ [0, 1). Let wn denote the (unique) word of length n such that x ∈ Iwn .
CLAIM 1: wn+1 is the extension of wn by one letter on the right. This follows from the lemma

since f i−1(x) is prescribed by x for i = 1, . . . , n.
CLAIM 2: length(Iw) ≤ λ−n, where λ ∈ (1,∞) is such that f ′(x) ≥ λ for all x.
Indeed, differentiating f(gi(x)) = x gives f ′(gi(x))g

′
i(x) = 1, so

g′i(x) =
1

f ′(gi(x))
≤ 1

λ

Hence, for any x,

(ga1 ◦ ga2 ◦ · · · ◦ gan)′(x) ≤
1

λn
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So,

length(Iwn)

= (ga1 ◦ ga2 ◦ · · · ◦ gan)(1)− (ga1 ◦ ga2 ◦ · · · ◦ gan)(0) [increasing functions]

=
(ga1 ◦ ga2 ◦ · · · ◦ gan)(1)− (ga1 ◦ ga2 ◦ · · · ◦ gan)(0)

1− 0

= (ga1 ◦ ga2 ◦ · · · ◦ gan)′(c) for some c [MVT]
≤ λ−n

This proves claim 2. Note that as a result, given an infinite word w = a1a2a3 . . . an . . ., there is at
most one x in every Iwn , where wn is the finite truncation wn = a1 . . . an.

CLAIM 3: If w is a word that does not terminate in a repeating k−1 (i.e. it is not the case that
it ends with the digit k − 1 repeatedly after some finite prefix), there exists some point x such
that x ∈ Iwn for every n.

This is true by the nested interval property and the fact that the right endpoint of Iwn equals
the right endpoint Iwn+1 if and only if an+1 = k − 1. Let’s prove this “if and only if” subclaim.

Note:
Iwn+1 = ga1(ga2(· · · gan(gan+1([0, 1))) · · · ))

Comparing the right endpoints, we’re hoping that

ga1(ga2(· · · gan(gan+1(1)) · · · )) = ga1(ga2(· · · gan(1) · · · ))

Applying fn to both sides, we’re hoping that

gan+1(1) = 1

Since the image of gan+1 is the (an+1)
th coding interval, this is only possible for the last interval,

i.e. an+1 = k − 1. Conversely, if an+1 = k − 1, then gan+1(1) = 1 since this is the chosen fixed
point, and the argument works in reverse. This proves the subclaim and thus claim 3.

Therefore, for every x ∈ [0, 1), we have shown there exists a unique code w = a1a2a3 . . ..
Define

h(x) =
∞∑
n=1

an
kn

Tomorrow, to finish the proof, we will show that h is a conjugacy and that h is a continuous circle
map.
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