Theorem

Let \(a \) be the root of a polynomial

\[f(x) = b_d x^d + \ldots + b_1 x + b_0 = 0, \]

where each \(b_i \in \mathbb{Z} \) and the polynomial has no rational roots. Then \(\exists C > 0 \) s.t. for any \(\frac{p}{q} \in \mathbb{Q} \) in reduced form

\[\left| q \alpha - p \right| \geq \frac{C}{q^{d-1}}. \]

\[\left| \alpha - \frac{p}{q} \right| \geq \frac{C}{q^d} \]

Proof: We know that \(f(\alpha) = 0 \)

idea:

look at \(f\left(\frac{p}{q} \right) \)
\[f(\frac{p}{q}) = b_d (\frac{p}{q})^d + \ldots + b_0 \]

combine into one fraction

\[= \frac{b_d p^d + b_{d-1} p^{d-1} + \ldots + b_0}{q^d} \]

\[\geq \frac{1}{q^d} \]

estimate \(f(\frac{p}{q}) \) another way?

\[f(\frac{p}{q}) = f(\frac{p}{q}) - f(\alpha) \]

by the mean value theorem,

\[\exists \ z \in (a, \frac{p}{q}) \ such \ that \]

\[|f(\frac{p}{q}) - f(\alpha)| = f'(z)(\frac{p}{q} - \alpha) \]

\[f'(z) \leq c \ when \ z \ is \ close \ to \ \alpha \]

for some \(c \).
So we have

\[
|f(\frac{p}{q})| = |f(\frac{p}{q}) - f(a)| = |f'(c)| |\frac{p}{q} - a| \\
\leq c |\frac{p}{q} - a|
\]

and \(\bigcirc\) and \(\bigcirc\bigcirc\) together imply

\[
|\frac{p}{q} - a| \geq \frac{\gamma c}{q^d}
\]
Series of exercises for today

1) Consider an expression of the form
 \[f(x) = \frac{ax + b}{cx + d} \quad a, b, c, d \in \mathbb{Z}. \]
 Show that
 \[\frac{1}{n + f(x)} \]
 is an expression of the same form.

2) If \(h \) has periodic continued fraction expansion then
 \[h = \frac{1}{n_1 + \frac{1}{n_2 + \cdots + \frac{1}{n_k + \cdots}}} \]
 for some \(k \).

3) Combine 1 & 2 to show that any fraction with periodic digits is a quadratic irrational
 (i.e., the root of a quadratic equation with integer coefficients)
Show that if \(\alpha = \frac{1}{a + \alpha} \), \(\alpha \) is a quadratic irrational.