Rotation Dynamics

What do we gain from the perspective of the circle as a set of equivalence classes?

Recall! The circle can be thought of as the set of equivalence classes

\[[x] = \{ \ldots, -4\pi + x, -2\pi + x, x, x + 2\pi, \ldots \} \]

"such that" \(x \) the integers

\[\{ k2\pi + x : k \in \mathbb{Z} \} \]

need to tell what the conditions on \(k \) are

in words:

"the set of all numbers \(2\pi k + x \), where \(k \) is an integer"
yesterday: the geometry of equiv. classes
today: the algebra of equivalence classes.

Idea: Develop addition on equivalence classes

Define: \(A + B := \{ x + y : x \in A, y \in B \} \)

example:

\[
A = \{1, 2, 3\}, \quad B = \{3, 4, 5\}
\]

\[
A + B = \{ 1 + 3, 1 + 4, 2 + 3, 2 + 4 \}
\]

\[
= \{ 4, 5, 5, 6 \} \quad \text{< duplicates listed once}
\]

Theorem: For any equiv. classes \([x]_E, [y]_E\),

\([x]_E + [y]_E = [x + y]_E\).

Proof: We’ll show that \([x]_E + [y]_E \leq [x + y]_E\) and

that \([x + y]_E \leq [x]_E + [y]_E\).
First: choose some $z \in [x]+[y]$.

By definition of set addition,

$$Z = (x + k \cdot 2\pi) + (y + l \cdot 2\pi)$$

for some $k, l \in \mathbb{Z}$.

$$= (x + y) + 2\pi(k + l)$$

Since $k + l$ is an integer, $z \in [x+y]$.

Now, we show that $[x+y] \subset [x]+[y]$.

Let $w \in [x+y]$.

So by definition,

$$w = x + y + 2\pi m$$

Can split m into the sum of any two integers whose sum is m. Simplest choice is 0 and m,

$$w = (x) + (y + 2\pi m)$$

Since $x \in [x]$ and $y + 2\pi m \in [y]$, we have
that \(w \in [x] + [y] \).

\[\rightarrow \square \]

means we've proved the thing we wanted to prove.

Observations

identity property

\((a) \ [0] + [x] = [x] \)

associativity property

\((b) \ ([x] + [y]) + [z] = [x] + ([y] + [x]) \)

existence of inverses

\((c) \ [-x] + [x] = [0] \)

these properties give that \(\mathbb{R}/2\pi \mathbb{Z} \)

a group with the operation of set addition

bonus property

\((d) \ [x] + [y] = [y] + [x] \)
Rotation Dynamics

Define \(R_\theta : \mathbb{R}/2\pi\mathbb{Z} \to \mathbb{R}/2\pi\mathbb{Z} \)

\[R_\theta([x]) = [x+\theta] = [x] + [\theta] \]

This is exactly the circle rotation by angle \(\theta \).

Goal: "Theorem"

\[\text{Thm} \] If \(\theta = \frac{p}{q} \cdot 2\pi \), every point on the circle has period \(q \).

\[\text{Thm} \] If there exists a periodic point \(p \in \mathbb{Z} \) of period \(q \) for the circle rotation by \(\theta \), then \(\theta = 2\pi \frac{p}{q} \) for some \(p \in \mathbb{Z} \).
Each orbit has 3 points and are disjoint.

A formula for $R_{\theta}^k([x])$

$R_{\theta}^k([x]) = [x + k\theta]$ for all $k \in \mathbb{Z}$, $k \geq 1$.

Proof (by induction)

1. Write a proof for the base case.
2. Then prove if I know previous one, I can deduce the next one.

Works like dominos.
Proof of base case

Check that \(R_\theta([x]) = [x + 1\theta] \)

true from the definition

Proof of inductive step) Assume that it holds for \(K \) and prove that it holds for \(K+1 \).

Assume it holds for \(R_\theta^K([x]) = [x + K\theta] \)

by def of iterates

Then \(R_\theta^{K+1}([x]) = R_\theta(R_\theta^K([x])) \)

by inductive assump

\[
= R_\theta([x + K\theta])
\]

by def of \(R_\theta \)

\[
= [x + K\theta] + [\theta]
\]

property of set addition

\[
= [x + K\theta + \theta]
\]

factoring

\[
= [x + \theta(K+1)]
\]

\(\square \)