From now on, with $[x]$ we mean $[x]_2$. i.e. $[x] \in \mathbb{R}/\mathbb{Z}$.

we proved that $p^{-1}(\Theta_\pm([0]))$ is a subgroup of \mathbb{R}.

Goal: Theorem Every subgroup of \mathbb{R} is either

1) $c\mathbb{Z}$ for some $c \geq 0$
2) dense.

More Properties of Subgroups of \mathbb{IR}

Lemma: If $G \subset \mathbb{R}$ is a subgroup, and $c \in G$ then $c\mathbb{Z} \subset G$

Proof: Step 1: We will show that for all $n \geq 1$, $cn \in G$.

Proof of Step 1: By induction...

Base: Since $c \in G$, $1 \in G$, and $C = C \cdot 1 \in G$

Inductive: Assume that $cn \in G$

Then $c(n+1) = cn + c \cdot 1 = cn + c$

Since $cn \in G$ & $c \in G$ by closure property of G (it is a group) we have $c(n+1) = cn + c \in G$
Step 2: For all \(n \leq \), \(c_n \in G \)
Since 6 is a group if \(c_n \in G \) for \(n \leq 1 \)
So it inverse. Therefore \(-c_n \in G\) and \(-c_n = c(-n) \in G\).

Step 3: when \(n = 0 \), \(c_n = c_0 = 0 \). So
\(0 = c_0 \in G \), since the identity
is an element of every subgroup.

Exercise If \(c \in \mathbb{R} \), \(c \mathbb{Z} = (-c) \mathbb{Z} \)

Lemma: If \(c > 0 \) and \(n \in \mathbb{Z} \), there exists
some \(y \in \mathbb{Z} \) such that \(|x - y| < c \)

Proof of lemma: Let \(n \) be the largest integer
such that \(nc \leq x \). Let \(y = nc \).
Since \(n \) was the largest integer such that
\(nc \leq x \), it follows that
\(x \leq (n+1)c \).
Therefore,

\[|x - y| = |x - nc| = x - nc \leq (n+1)c - nc = c \]

Exercise Show that if \(n \in \mathbb{Z} \) is the smallest integer such that \(cn > x \), then \(|x - cn| < c \)

Theorem If \(C \) is not dense, then there exists \(c > 0 \), such that \((0, c) \cap C = \emptyset \).

Proof We will prove this by contrapositive! i.e., we will assume that if for every interval \((0, c) \), \(C \cap (0, c) \neq \emptyset \), then conclude that \(C \) is dense.

Let \((a, b) \subset \mathbb{R} \) an arbitrary interval.

We will show \((a, b) \cap C \neq \emptyset \).

Let \(x = \frac{a+b}{2} \) the midpoint of \((a, b) \)

\[\varepsilon = \frac{b-a}{2} \] the distance of the midpoint \(x \) to \(a \) and \(b \).

Show \((a, b) \cap C \neq \emptyset \) is equivalent to show \((x - \varepsilon, x + \varepsilon) \cap C \neq \emptyset \)

By assumption, there exists \(\varepsilon \in C \cap (0, \varepsilon) \neq \emptyset \)
By the first lemma, \(S \cap \mathbb{R} < \varepsilon \).
By today's second lemma, there exists \(y \in S \cap \mathbb{R} \) s.t. \(|x - y| < \varepsilon\)

Finally, \(y \in \mathbb{G} \) (because \(S \cap \mathbb{R} < \varepsilon \)) because \(\mathbb{G} \subseteq \mathbb{G} \cap (0, \varepsilon) \) then \(\varepsilon < \varepsilon \).
we have that

\[|x - y| < \varepsilon < \varepsilon. \]

That is \(y \in (x - \varepsilon, x + \varepsilon) \)

but \(y \in \mathbb{G} \) as well, so:

\[y \in \mathbb{G} \cap (x - \varepsilon, x + \varepsilon) \neq \emptyset. \]

Exercise 60: Over the proof of the theorem again.