Recall: A subset \(A \subset \mathbb{R} \) is dense if for every interval \((a, b)\), then \((a, b) \cap A \neq \emptyset\).

Back to circle rotations...

What does it mean for an orbit (see) to be dense on the circle?

Still want no gaps...

Define \(p: \mathbb{R} \to \mathbb{R}/\mathbb{Z} \), \(p(x) = [x]_\mathbb{Z} \)

Exercise: Show that "function" \(f([x]_\mathbb{Z}) = x \)

is not well defined (not possible)
P is called the projection from \mathbb{R} to \mathbb{R}/\mathbb{Z}.

If $A \subseteq \mathbb{R}/\mathbb{Z}$, let

\[p^{-1}(A) := \{ x \in \mathbb{R} : p(x) \in A \} \]

The gaps in A are the same as the gaps in $p^{-1}(A)$.

But not vice versa.

Exercise Show that \mathbb{Q}/\mathbb{Z} is dense in \mathbb{R}/\mathbb{Z} where $\mathbb{Q}/\mathbb{Z} = \{ [\frac{q}{n}]_{\mathbb{Z}} : \frac{q}{n} \in \mathbb{Q} \}$

Exercise Show that any finite subset of \mathbb{R}/\mathbb{Z} is not dense in \mathbb{R}/\mathbb{Z}.
Recall of definition of group

A group is a set G with an operation \ast such that $\forall g, h \in G$ then $g \ast h \in G$ and:

1) $\exists e \in G$ s.t. $\forall g \in G$, $e \ast g = g = g \ast e$ (identity)
2) $\forall g, h, k \in G$ s.t. $(g \ast h) \ast k = g \ast (h \ast k)$ (associativity)
3) $\forall g \in G$, $g^{-1} \in G$ s.t. $g \ast g^{-1} = g^{-1} \ast g = e$ (inverse)

Example: Odd integers are not a subgroup, of odds

Example: $\mathbb{Q} \subseteq \mathbb{R}$ is a subgroup

Example: $\mathbb{Z}/2 \mathbb{Z}$ is not a subgroup, since there are no inverses

Theorem: Let $\theta : \mathbb{R} \to \mathbb{R}/\mathbb{Z}$ be the dynamics of rotation by α. Then $\rho'(\Theta_{\pm}(\mathbb{Z}/2))$ is a subgroup of \mathbb{R}, where $\Theta_{\pm}(\mathbb{Z}/2) = \{ n\alpha(\mathbb{Z}/2) : n \in \mathbb{Z} \}$.

Proof: Denote $H = \rho'(\Theta_{\pm}(\mathbb{Z}/2))$

Step 1: We claim that $H = \{ k + l\alpha : k, l \in \mathbb{Z} \}$.

proof of claim: Suppose \(x \in H \) i.e. \(x = p'(\theta_2[0]_2) \)

by definition of set pre-image

since \(x \in p^{-1}(\theta_2[0]_2) \)

\[p(x) = [x]_2 \in \theta_2[0]_2 \]

then there exists \(l \in \mathbb{Z} \) s.t.
\[[x]_2 = R^l_\alpha ([0]_2) \]

Now
\[R^l_\alpha ([0]_2) = [0 + lx]_2 = [lx]_2 \]

so
\[[x]_2 = [lx]_2 \]

This means that there exists \(k \in \mathbb{Z} \) s.t.
\[x = k + lx. \]

This proves \(x = k + lx \in H = \{ k + lx : k, l \in \mathbb{Z} \} \)

i.e. \(p'(\theta_2[0]_2) = H \subset \{ k + lx : k, l \in \mathbb{Z} \} \)

Exercise prove that \(\{ k + lx : k, l \in \mathbb{Z} \} \subset p'(\theta_2[0]_2) \)

Step 2 Now we prove that \(H \) is a subgroup.

check: \((k + l \alpha) + (m + n \alpha) = (m + k) + (l + n) \alpha \in H \)
check: \(0 \in H ? \) yes \(0 = 0 + 0 \cdot \alpha \in H \)
check: let \(x \in H \), is \(-x\) in \(H \)?

yes, if \(x = k + l \alpha \) for \(k, l \in \mathbb{Z} \)
\[-x = -(k + l \alpha) = -k + (-l) \alpha \in H \]