Thinking Dynamically

A (discrete-time) dynamical system is a function from a set X to itself.

$$f : X \rightarrow X$$

Same Space

(Things that get plugged in)

(Things that come out)

Example: $X = \text{all real numbers}$ aka the number line aka \mathbb{R}

$$f : \mathbb{R} \rightarrow \mathbb{R} \text{ is } f(x) = \frac{1}{2}x$$

Orbits: The evolution of the system, for the point $x_0 = 6$ is

$$x_0 = 6 \Rightarrow x_1 = f(x_0) = \frac{1}{2}(6) = 3 \Rightarrow x_2 = f(x_1) = \frac{1}{2}(3) = \frac{3}{2} \Rightarrow x_3 = f(x_2) = \frac{1}{2}(\frac{3}{2}) = \frac{3}{4}$$

These orbits are related to the geometric sequence

Notation: $f^K(x) = \text{ } K^{\text{th}} \text{-step in the orbit of } x$.

Warning: $f^K(x) \neq (f(x))^K$

- The (forward) orbit of a point x is the set $\Theta(x) = \{x, f(x), f^2(x), ...\}$
Example: \(X = \) a finite set \(\{a, b, c\} \)

\(f: X \to X \) is defined by the arrows in the following graph:

- \(f(a) = b \)
- \(f(b) = c \)
- \(f(c) = a \)

Orbits:
- \(a, f(a) = b, f^2(a) = f(f(a)) = f(b) = c, f^3(a) = a \)
- \(b, f(b) = c, f^2(c) = a, f^3(b) = b \)
- \(c, f(c) = a, f^2(c) = b, f^3(c) = c \)
in this case \(f^3 = \text{id} \) — identity transformation

Definition: A point \(p \) is called periodic if \(f^n(p) = p \) for some positive integer \(n \). The smallest such integer is called the period.

Example: For \(f(x) = \frac{1}{2}x \) has only one periodic point, \(x = 0 \).

Example: \(x = 3a, b, c \)

\[g : x \rightarrow x \]

\(a \) and \(b \) and \(c \) are periodic with period 2.

\(a \) is preperiodic:

\[f^2(a) = f^4(a) \]

Definition: A point \(x \) is pre-periodic if there are two integers \(m \neq n \) with

\[f^m(x) = f^n(x) \]

Example: \(x = \text{unit circle} = \{(x,y) \in \mathbb{R}^2; x^2 + y^2 = 1\} \)

pick an angle \(\theta \) measured in radians.
$f : X \rightarrow X$ is the counter-clockwise rotation of x at angle θ.

Also called circle rotation with angle θ.

If $\theta = \pi$, then

Example: The space of finite subsets of rational numbers

$p \in X$ can be $p = \{ \frac{1}{3}, \frac{2}{5}, \frac{4}{7} \}$

f is defined by (for example):

$f \left(\frac{1}{3}, \frac{2}{5}, \frac{4}{7} \right) = \left\{ \frac{1}{3}, \frac{1+2}{3+5}, \frac{2}{5}, \frac{2+4}{5+7}, \frac{4}{7} \right\}$

\uparrow

Input: is a finite set in increasing order

Output: the initial set and the medians of two consecutive initial elements.
Some interesting thoughts:

- Start with any pair \(\{a, b\}\). Do you eventually see all rational numbers between \(a\) and \(b\)?
- What happens to the gaps between successive elements?
- What is the denominator size? How quickly do they grow?