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INSTABILITY FOR RANK ONE FACTORS OF PRODUCT ACTIONS

KURT VINHAGE
(Communicated by Federico Rodriguez Hertz)

ABSTRACT. We provide a counterexample to a standard interpretation of the
Katok-Spatzier conjecture, and pose questions which may serve as reasonable
replacements.

1. INTRODUCTION

The Katok-Spatzier conjecture for higher-rank abelian group actions with-
out rank one factors can be traced back to the work of Burns and Spatzier on
compact higher-rank Riemannian manifolds [4], as well as works of Hurder [8],
which were extended by Katok and Lewis [9, 10] for actions of higher-rank lat-
tices. The key ideas in the proofs of these rigidity results were associated higher-
rank abelian group actions, and their hyperbolicity properties.

These ideas led to a series of papers in the 90’s, where Katok and Spatzier gave
several striking features for irreducible actions on tori and some Weyl chamber
flows without rank one factors, including measure and cocycle rigidity [11, 13].

The third prototypical result in the rigidity program provided the basis for the
Katok-Spatzier conjecture: smooth local rigidity of some natural higher-rank
actions without rank one factors [12], which showed that any C*, sufficiently
C'-close perturbation was C* conjugate to the original action after a linear
change of coordinates. For a more complete history of the rigidity program of
higher rank abelian and semisimple Lie group actions, see [18], which discusses
rigidity phenomena very broadly, [6], which is focused on the context of lattices
in semisimple Lie groups, or the introduction to [20], which focuses on the
history of rigidity program for abelian actions.

Analysis of several of the proofs reveals a similar theme: obtaining isometric
behavior on certain dynamically defined foliations coming from hyperbolic be-
havior allows one to spread invariant structures around. The mixing of these
conventional opposites, uniform hyperbolicity and isometric behavior, leads to
rigidity.
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608 KURT VINHAGE

It is therefore natural to establish two critical assumptions. First, that the
action is Anosov, which provides the hyperbolicity assumptions to obtain dynam-
ically-defined foliations, which in algebraic examples have algebraic structure.

DEFINITION 1.1. Let a : R¥ ~ X be a locally free C" group action on a C*®
manifold X and @ denote its orbit foliation. We say that a € R¥ is an Anosov
element if there is an R*-invariant splitting of the tangent space TX = EX ® ES &
T®O into nontrivial subbundles, some A, C > 0 such that for all £ >0,

||da(m)|E;; || <Ce ™M and ||da(—m)|Eg <Ce ™M,

We say that the action is Anosov if it has at least one Anosov element. We say
that an action is totally Anosov if the set of Anosov elements is dense.

An Anosov action a is transitive if there exists a point with a dense R*-orbit.
We say that an Anosov action is cone transitive if there exists an open cone
C <R and x € X such that a(C)x is dense, and the only non-Anosov element
of C is 0.

Second, we need a way to rule out well-known perturbative families in the
setting of Anosov flows and diffeomorphisms. The following definition does this
by saying that no factor of the action is a flow or diffeomorphism.

DEFINITION 1.2. If r>1and a:Rfkx 7/ ~ X isa locally free action, a C" rank
one factor of a consists of the following data:

e a C* manifold Y with dim(Y) =1,

» a C', fixed-point free flow ¥;: Y — Y or diffeomorphism f: YV — Y,

e a C" submersion 7: X — Y, and

« a surjective homomorphism o : R¥ x Z¢ — R (or o : R* x 2! — Z) such that

w(a(@)x) = Wg(qm(x) or n(a(a)x) = fa(“)n(x).
We allow for passing to a finite index subgroup of RF x Z¢ or a finite cover of X.

When the action is homogeneous, it is more clear what is meant by a rank one
factor. In contrast, the definition of a rank one factor in a more general setting
has been unclear and nebulous throughout the development of the theory. It is
usually used to guarantee some transitivity or ergodicity of actions of subactions
(see [20, Theorem 2.1], Section 4 and Lemma 6.1).

Finally, we need to identify the models for such actions. The following defi-
nition includes the two common “building blocks” for Anosov R* x Z¢ actions:
Weyl chamber flows and actions by toral automorphismes. It is closed under tak-
ing products, suspensions, and skew products, and so it is the natural class to
consider.

DEFINITION 1.3. An algebraic action of R x Z¢ is constructed from the following
data:

¢ aLie group G,

e a compact subgroup M c G,

» a (cocompact) lattice I' ¢ G, and

¢ a homomorphism i Rk x 7¢ — Affy 1 (G).
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Here Affy; r(G) is the group of affine maps g — h(g), where h € Zg(M), the
centralizer of M in G, and ¢ € Aut(G) is such that ¢ preserves M, Zg(M) and T'.
We denote the image of @ under i by i,. The action is defined by a : R¥ x 72/ ~
X = M\G/T, where

a(a)Mgl' = Mi,(g)Tl.

One may sometimes expect a topological orbit equivalence to such models
in rank one (as in the Smale conjecture for Anosov diffeomorphisms and as-
sociated Franks—Manning theorem on tori and nilmanifolds), but usually not a
conjugacy. Such topological rigidity fails in the case of Anosov flows, which have
several constructions which change the topological orbit structure significantly.

With these definitions in hand, and the proof of local rigidity using them as
the “essential” tools to obtain rigidity, the following conjecture was formulated.
This conjecture was well-circulated in the 1990s but not written down precisely
at the time. Formulations can be found, for instance, in [7, Conjecture 16.8],
[19, Section 5], and [2, (2.4)]:

CONJECTURE 1.4 (Katok-Spatzier). IfR* x z¢ ~ X is a transitive, C*, Anosov
action on a compact manifold without C*® rank one factors, then (up to finite
cover) it is C*™ conjugate to an algebraic action.

Progress toward the conjecture in special cases has been made incremen-
tally over the last 20 years. The optimal results for Z*-actions were obtained by
Rodriguez-Hertz and Wang, who showed the conjecture for actions on nilman-
ifolds and tori in [17], and for R¥-actions, the author and Spatzier proved the
conjecture for cone transitive, totally Cartan actions (see Definition 3.1) [20].

REMARK 1.5. The Katok-Spatzier rigidity program is meant to promise rigidity
of smooth structures and parameterizations of orbits. In particular, the cocycle
rigidity results for genuinely higher-rank actions means that one may not take
a nontrivial time change of a homogeneous action without rank one factors, so
an important feature of the rigidity program for higher-rank actions has been
that the actions are considered, and not just their orbit foliations. We expand
on this remark in Section 6.

The main theorem of this paper provides a family of counterexamples to the
conjecture. We will define continuously accessible in Definition 3.4, but note
here that it includes all contact Anosov flows, in particular all geodesic flows for
surfaces of negative curvature.

THEOREM 1.6. Let f;: Y1 — Y, and g;: Yo — Y be continuously accessible C*
Anosov flows on 3-manifolds. Then there exists a C*°, cone transitive action
of R? on X = Y, x Y, which is Anosov, has no C' rank one factors and is not
homogeneous.

In Section 6, we will comment on features of this family of examples and how
a revision to Conjecture 1.4 could be formulated to accommodate these new
examples.
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610 KURT VINHAGE

2. COCYCLES AND TIME CHANGES OF ABELIAN GROUP ACTIONS

The central idea of this paper is to use a reparameterization of the R?-orbits of
a product action to destroy the product structure of the action. This is analogous
to taking a time change of a flow, so we call such perturbations time changes of
an R?-action.

DEFINITION 2.1. If g : R~ X is a locally free action of R* on a space X, a
C’-time change of ay is an action a : R ~ X such that there exists a C" map
@Q: RF x X — Rk satisfying ¢(0,x) =0 for all x€ X and

(2.1) a(a)x =aglp(a,x))x,

and for every x € X, ¢(-,x) is a C" diffeomorphism from R* — R¥. We say that
¢ : R x X — R¥ determines a.

Not every function ¢ will determine a time change, so we must be careful in
constructing it. The main tool for doing so is the following.

DEFINITION 2.2. If a : R¥ ~ X is an action of R* on a space X, an (abelian)
cocyle over a is a map f:R* x X — R’ such that

(2.2) Bla+b,x) = P(a,x)+ b, ala)x).

A cocycle is a coboundary if there exists some H : X — R’ such that f(a, x) =
H(a(a)x)— H(x). We consider cocycles and coboundaries in the C*, C”, C° and
measurable categories when appropriate.

The cocycle property will help us determine which functions ¢ : R x X — R¥
determine an R*-action via the formula (2.1). Indeed, while such a function ¢
always reparameterizes orbits, it must satisfy the cocycle property over the new
candidate action a to determine a time change.

LEMMA 2.3. Ifa is a time change of ay with determining function ¢, then ¢ is a
cocycle over a.

Proof. We verify (2.2) directly from the condition that a is an action of R¥:
aplpla+b,x))x=ala+b)x=abala)x=ayl@b ala)x))ala)x
= ao(@(b, a(a)x))ap(p(a, x))x = ao(@ (b, a(a)x) + ¢(a, x)) x.

Since the action is locally free, ¢(0,x) =0, and ¢ is continuous, we conclude
the cocycle equation for small values of R¥, and hence for large values of R¥
by writing them as integer multiples of small values and applying the cocycle
equation the correct number of times. O

If we wish to construct a time change of an action a( from a cocycle  over
ao, Lemma 2.3 suggests that we interchange the roles of which one is a time
change of the other. In particular, we may think of a as the original action and
ap as the time change, so that the determining function is a cocycle over ay.
The cost is that we must be able to invert the function 8 as a map from R? to
R? with fixed x. This is formalized in the following lemma.
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LEMMA 2.4. There exists £y > 0 with the following property: Let ag : RF ~ X
be a C* action of R* and B : R* x X — R* be a C* cocycle over ay such that
|| d.p(0,x) - Id|| < gg for every x € X, where d, represents the derivative of f is the
R* coordinate. Then there exists a C* function ¢ : RF x X — R¥ such that:

1. ¢(B(a,x),x) = a=P(p(a,x),x) for every ac R, x€ X,

2. ¢(,,x) is a C* diffeomorphism from R* to R* for all x € X, and

3. ¢ determines a C*™ time change of ay.

Proof. We first construct the function ¢ at a fixed x by showing the map g(:, x) :
R* — RF has a global inverse. Indeed, by picking &, sufficiently small, we may
assume that d,f(a,0) is invertible and hence that there is a local inverse to the
function B(:, x) defined on a neighborhood B(0,ny) < R? for some nx >0, and
the inverse function is C*°. To see that it has a global inverse, notice that by the
cocycle equation gives that

(2.3) Bla+b,x)=P(a,apb)x) + B(b,x).

By fixing b and letting a vary, we get that d,B(b,x) = d,p(0,a0(b)x), so
d.B(b,x) is close to the identity for all b € RF as well. In particular, 1, can
be chosen uniformly in x as it can be estimated on the closeness of d;f(:, x)
to the identity. Therefore, function f is surjective since its image can always be
extended by a ball of uniform size using (2.3).

To see that it is globally injective, note that integrating the closeness of the
derivative yields that ||ﬁ(a, Xx) — a|| < golla| for all a € R xe X. If Bla,x) =
B(b, x), then

B(a,x)—B(b,x) = Bla—b,ag(b)x) =0.
But ||,B(a —b, ag(b)x” = (1-€p)lla— bll, so this is not possible unless a = b. There-
fore, for a fixed x, the map S has a global C* inverse in the coordinate a, which
we denote by ¢.

To see that ¢ determines a time change, we check that a(a)x := ap(p(a, x))x
is an abelian action:

a(a)(a(b)x) = ala)(ap(@b, x))x) = ap(@(a, ap(@(b, x))x))aolp(b, x))x
=aplp(a, aplp(b,x))x)+ @b, x))x.

We therefore need to check that ¢(a+b, x) = ¢(a, ap(@(b, x))x) +¢@(b, x). Since
we have shown that § is invertible in the a coordinate, it suffices to check equal-
ity after applying B(:, x) to each side. Then the desired equality follows exactly
from the cocycle equation for  over ag

Blp(b, x) + ¢(a, ao(p(b, x))x), X)
= Ble(b,x),x) + Pp(a, ao(p(b, X)) x), ag(¢(b, x))X)
=b+a=pBpla+b,x),x).
Therefore, ¢ determines an R¥ group action a which is a time change of a.
It is clear from the definition that « is a C* group action, since f is assumed

to be C* in all coordinates, and the derivatives of ¢ can be computed explicitly
from the definition. O
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3. ANOSOV ACTIONS AND COARSE LYAPUNOV FOLIATIONS

We now summarize the theory of coarse Lyapunov foliations, for details see
[20, Section 4.1]. Given an Anosov action, through standard constructions from
the theory of normal hyperbolicity theory, each Anosov element has a pair of
Holder foliations W; and W} with C" leaves. W/ are unique integral foliations
of the distributions E},, * = s, u. By considering the action of other elements on
such foliations, one may refine them to find common stable manifolds W,
for any collection of Anosov elements ay,..., a,, which are characterized as

.....

For a fixed collection ay,..., a,, the common stable manifolds form a Holder
foliation with C" leaves, with corresponding distribution TW; ., =N, E,..
We call the corresponding foliation the common stable foliation determined by
ai,...,ay.

DEFINITION 3.1. A common stable foliation {WA(x)=W; ., (x):xeX}isa
coarse Lyapunov foliation of an action a : R* ~ X if for any Anosov element
aeRF, Whcws or WP c Wk We call Ef = TWP the corresponding coarse
Lyapunov distribution. Let A denote an indexing set for the collection of coarse
Lyapunov foliations.

We say that an Anosov action is Cartan if for every f € A, dim(WF) = 1. We
say that an action is fotally Cartan if it is Cartan and totally Anosov.

.....

Call a point x € X Rk-periodic for an R¥-action « if a(R¥)x is closed. Since
all actions are assumed to be locally free, this implies that the a(R¥)x is diffeo-
morphic to Tk, and that Stab(x) is a lattice in R¥. The following can be found in
[20, Lemma 4.17]. While it is stated there for totally Anosov actions, the totally
modifier is required for the other list of equivalences.

LEMMA 3.2. Let a:R¥ ~ X be a cone transitive, Anosov action. Then the set of
R -periodic points is dense.

LEMMA 3.3. Ifa:R¥ ~ X is a cone transitive Anosov C" group action on a
C* manifold X, then TX = TO & @gen WP. Ifa is Cartan, and V c TX is a
continuous R¥ -invariant distribution, then there exists a subset ® < A and a
subbundle Vo < TO such that V = Ve @peo EP.

Proof. The part of the lemma for Anosov actions follows from [20, Corollary 4.6].

Now assume the Cartan condition, and let V be a continuous R¥ invariant
distribution. Then fix an R¥-periodic point p € X. Such points are dense by
Lemma 3.2.Then choose an Anosov element a € R* such that a(a)p = p. Note
that since the stabilizer of p is a lattice in R¥, such an Anosov element exists
in every open cone. Then since TX = TO @ E; ® E}, and da(a)V(p) = V(p),
V(p) has a common refinement with the stable and unstable splitting at p
since they are sums of the generalized eigenspaces for da(a). So there exists
corresponding subspaces of V(p) such that V(p) = V2(p) & V(p) ® V¥(p), and
Vi (p)=E;(p)nV(p).
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Now, since all distributions are continuously varying and this splitting holds
at periodic orbits, since the periodic orbits are dense, V splits everywhere as
V%@ Vi@ VX This procedure can be repeated for another Anosov element b
to refine each new invariant distribution into the stable and unstable distribu-
tions for b. In particular, since each common stable manifold is either a coarse
Lyapunov distribution or can be refined, the final refinement gives a subspace
of each coarse Lyapunov distribution. In particular, since the dimensions of the
coarse Lyapunov distributions are assumed to be 1 for Cartan actions, either the
distribution appears fully as part of the final splitting of V, or does not appear
at all. O

DEFINITION 3.4. Let a : R* ~ X be a Cartan action. A coarse Lyapunov path
based at x € X is a finite sequence p = (x = xg, X1,..., X,) such that x;,; € whi (x;)
for some coarse Lyapunov foliation WAi. ¢(p) = n is called the combinatorial
length of the path p, and L(p) = Z?;OI dys; (xi, xi+1) is called the geometric length
of p. e(p) = x, is called the endpoint of p. Let

P¢,(x) = {p based at x: L(p) < L,c(p) = c},

and note the 9’& carries a canonical topology making it homeomorphic to the

L'-ball of radius L in R”.

«a is said to be accessible if U, 10 QWC"fL(x) = X for some (equivalently, every)
xeX.

«a is said to be continuously accessible if for every x € X, there is some ¢, ¢, L >
0 and a continuous map 7 : B(x,¢) — (@C"fL(x) such that e(r(y)) = y for all y €
B(x,¢).

In the case of flows (R-actions), contact flows are the clearest examples of
continuously accessible flows, since one may parameterize the flow direction
by moving along su-quadrilaterals (via the temporal distance function; see, e.g.,
[14, Appendices A & B]). Then one can leverage the local product structure to
build a continuous parameterization via paths. Baire arguments suggest that
continuous accessibility is not too far from accessibility; see [1, Proposition 7.2].
Following [3, Section 3.4] and [16, Theorem 3.4], we will use the continuous
accessibility property to get robustness of accessibility:

LEMMA 3.5. If ag:RF ~ X is a continuously accessible Cartan action, then there
exists a C'-neighborhood % of a in the space of C' R*-actions such that every
a €% is an accessible Anosov action.

Proof. Notice that if a is sufficiently close to a, then the corresponding coarse
Lyapunov foliations are also close. In particular, given a coarse Lyapunov path
p for ap, one may find a corresponding coarse Lyapunov path for a with the
same combinatorial pattern, and same lengths of legs. That is, we associate a
map 7 : @g%(x) — QgL(x). Therefore, we may consider the following map from
B(x,€) to X: g:y— e(m(t(y))). Then q is C°-close to Id.

Let S denote the sphere of radius €/2 in B(x, ). Then by choosing the pertur-
bation small enough, we may assume that 0 ¢ g(S), so q: S — B(x,&) ~{x} is a
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CP-perturbation of the identity and hence has the same degree after projecting
back to S along rays in some fixed coordinate chart. It follows that q(B(x,e/2))
contains a neighborhood of x, and hence the accessibility class of x. Since this
is true for every x, it follows that the action « is accessible. O

COROLLARY 3.6. If a : R¥ ~ X is a Cartan action defined as a k-fold prod-
uct of continuously accessible Anosov flows on 3-manifolds, there exists a C'-
neighborhood U of ay in the space of C* R¥-actions such that every a € U is an
accessible Anosov action.

4. RANK ONE FACTORS AND HYPERPLANES

In this section, we wish to establish a way of detecting factors by considering
the derivative cocycles along coarse Lyapunov distributions. To that end, we
first establish the way in which coarse distributions interact with factors.

LEMMA 4.1. Let a : R¥ ~ X be a cone transitive, C' Cartan action, and (/e
R~ Y be a rank one factor action. Then vy, is an Anosov flow on a 3-manifold
or a transitive circle flow. Furthermore, if v, is Anosov, there exists a unique
pair of coarse Lyapunov distributions EX+ and EX- such that dn(E*+) = ES and
drn(EX-) = EY.

To prove Lemma 4.1, we use the following criterion established by Mafié.
Recall that a flow ¥, : R~ Y is quasi-Anosov if for any vector v € TY, the set
{||d1//[(v) || : t € R} is unbounded. Note that this implies every periodic orbit is
hyperbolic, and hence each periodic point has well-defined stable and unstable
manifolds.

THEOREM 4.2 (Corollary 1, [15]). If w; is quasi-Anosov and for every pair of
periodic points p, q of w;, dim(W*(p)) = dim(W*(q)), then v, is Anosov.

Proof of Lemma 4.1. We first show that v, is quasi-Anosov. Note that the distri-
bution E(x) := kerdn(x) is a-invariant, so by Lemma 3.3, E is a sum of coarse
Lyapunov subbundles and a subbundle of the a-orbit distribution. By the inter-
twining property moa(a) = Y4 (q © 7, it follows that the subbundle of the a-orbit
distribution is exactly the ker o-orbit distribution.

Indeed, fix some y€ Y, ve T,Y, and pick some (arbitrary) x € 77! (y). Then
if v is not tangent to the v ;-orbit of y, any lift of v will not be tangent to the
a-orbit of x (a lift must exist by the submersion property). In particular, there
exists an Anosov element a for which da(ka)v grows exponentially in k, and
v has a nontrivial coarse Lyapunov distribution which is not in kerdn at any
point. Therefore, dy .y (4) (v) grows exponentially in k. It follows that v is quasi-
Anosov.

We now check that the stable and unstable manifolds at each periodic or-
bit are of the same dimension. Indeed, fix an Anosov element a such that
o(a) = 1. Such a choice is possible by first choosing an Anosov element g, such
that o (ag) # 0. Since the set of Anosov elements is open and kero is codimen-

1
sion 1, such a choice is possible. Then simply let a = ( )ao. We claim that
o\adyp
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dim(E,j,(p)) is always #{)( eEAN:EXc Wé(a) and EX ¢ kerdn}. Indeed, fix x € X
such that 7(x) is a ¥ ;-periodic orbit. Each distribution E* is 1-dimensional by
the Cartan condition, and dn will push the sum of the distributions to an in-
variant contracting distribution. Since at a periodic orbit, the decomposition
into a contracting distribution, orbit distribution and expanding distribution is
unique, the dimension is as described.

Finally, we show that either 0 or exactly two coarse Lyapunov distributions de-
scend. Since we have shown that the flow is Anosov, we know that each coarse
distribution E* of & which is not in ker dw must descend to a subspace of either
the stable or unstable distribution of a distinguished Anosov element a. By the
intertwining property mo a(a) = W4 (g © 7, if EX is contracted under g, it is also
uniformly contracted under a+ b for any b € kero. Hence the set of contracting
elements for EX is exactly a half space determined by kero. If EX and EX are dis-
tinct coarse Lyapunov distributions, there must exist an Anosov element which
expands one and contracts the other. Thus, since we have determined that the
set of contracting elements must be exactly one of two half spaces, there can
only be at most two coarse Lyapunov distributions which descend to the fac-
tor. It cannot be exactly one since every periodic orbit would be attracting, a
contradiction on a compact space. The result follows. O

LEMMA 4.3. LetRK ~ X be a cone transitive, C* Cartan action and Yi:RAY
be a C' rank one factor, with corresponding homomorphism o : R¥ — R and
projection map n : X — Y. Assume that EX is a coarse Lyapunov distribution.
Then if EX nkerdn = {0} at some x € X, there exists a continuous metric on EX
such that for every a € kero, dalgx is an isometry.

Proof. By Lemma 4.1, EX must descend to either the stable or unstable distribu-
tion of ;. Choose any metric |||y on Y and if v € EX, let | vl gr := ldn(v)lly. By
construction, ||-||gx is continuous, and if a € kero, the action of a on Y is trivial,
SO

lda(@)(W)llgx = ldrda)ly = lldrn(W)lly = vllg. O

COROLLARY 4.4. Let k =2 and a : R¥ ~ X be a cone transitive, accessible, C"
Cartan action with such that for every € A and a € R¥ ~ {0}, there exists x € X

1
such that nlim —log||d(na)|E,s (x) || # 0. Then a has no nontrivial C" rank one

factors.

Proof. Our assumption implies that there is no subgroup of R* which acts iso-
metrically on EF for any continuous metric. Therefore, if 7: X — Y determines
a rank one factor, then EP c kerdn for every coarse Lyapunov distribution by
Lemma 4.3. Therefore, 7! (x) contains all coarse Lyapunov foliations, and since
the action is accessible, 771(x) = X. That is, 7 is a projection onto a point and
there are no nontrivial rank one factors. O

COROLLARY 4.5. Under the same assumptions as Corollary 4.4, the action « is
not homogeneous.
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Proof. This follows almost immediately. Notice that the derivative of a homo-
geneous action is always determined by the adjoint representation. Since the
coarse Lyapunov distribution is 1-dimensional, it must be spanned by a joint
eigenvector of the R¥-action. Since every functional from R¥ to R has a nontriv-
ial kernel, there must exists some a such that ||dalgx|| = 1 with respect to any
right-invariant metric. This is incompatible with the assumptions. O

5. CONSTRUCTION OF THE EXAMPLE

Let fs: Y1 — Y; and g;: Yo — Y, be continuously accessible Anosov flows
with dim(Y;) =3, i = 1,2. Let M = Y] x Y, and consider the product action
@y :R? ~ M x M defined by

ao(s, ) (x1, x2) = (fs(x1), 8¢ (x2)).

Then ay is (totally) Cartan with four coarse Lyapunov distributions, wxn
W=*22 corresponding to the stable and unstable bundles in each factor of the
action. That is, EX' = E} x {0}, ETN = E? x {0}, EX2 = {0} x E; and E~*2 = {0} x Eé,‘.
Furthermore, the elements (+1, +1) € R? are Anosov elements of the action. Let
€1 be such that if F: M — M is such that dq1(F a) < €1 for a = (+1,+1), then
F acts normally hyperbolically with respect to a nearby foliation, and nearby
distributions (such a & exists by Hirsch—-Pugh-Shub normal hyperbolicity the-
ory). Let gy be as in Lemma 2.4 and choose 6 < min{ey/4,€,/100} and points
p1, P2 € Y1, 41, g2 € Y which lie on distinct periodic orbits of f; and g;, respec-
tively. We may assume that a continuous Riemannian metric on Y; and Y> has
been chosen so that there exist coefficients A; . and y;«, i=1,2and * =sor u
such that

|
Finally, pick functions u; : Y; = R, i = 1,2 such that
1. u;isC*®,i=1,2
2. mi(fr(p1)) =ua(gs(qr)) =6 forall s, teR
3. w1(fi(p2)) = ux(gs(g2)) =06 forall s, eR
4. \uql,lusl <26
Such functions u; generate cocycles 0; over the flows f; and g, via the for-
mula 0; (¢, %) = [ w1 (f: (x)) dt and 02(s, x) = fy u2(gz () dr.
Then define a cocycle g over ag by:

B(s, t;x) = (s—02(¢8,x2), £ —01(s, x1)).

(pi) = e™ix, |dgsle: || (q:) = et fori=1,2, * =sor u.

One easily verifies that f satisfies property (2.2) for the action ay. Further-
more, by the smallness assumption on u;, i = 1,2, the cocycle § also satisfies
the assumptions of Lemma 2.4. Let a be the corresponding time change of «y.
We may further assume that 6 is chosen small enough so that a € %, where %
is the neighborhood in Corollary 3.6.

THEOREM 5.1. «a is a C* Cartan action without rank one factors, and which is
not homogeneous.
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Proof. First, notice that (+1,+1) are still Anosov elements since our cocycle 8
was sufficiently close to Id. Therefore, we have the same indexing set for the
coarse Lyapunov foliations {1, +2}, even though their distributions and foli-
ations may be perturbed.

By Corollary 3.6, a is accessible, so by Corollaries 4.4 and 4.5, it suffices to
show that given any y € A, every a € R? ~ {0} has some point x € X such that
nll_r’go n_llog Hda(na)lgx(p) || # 1. We work with E¥!, since all other coarse Lya-

punov distributions will have a symmetric argument. Consider the derivatives
of a at the points x = (p1,g2) € M x M and y = (p2, q1) € M x M. By assumption,
for fixed (s, ¥) we may explicitly compute  near near x, 8(s, t;x) = (s+6¢,t—05).
Therefore, with (s, t) fixed and x’ near x,
1
+62

Fix a = (s, 1), so that the function ¢ is constant in a neighborhood of the
p1-orbit. Therefore, since the time change is constant in a neighborhood, E*!
is exactly a coarse Lyapunov distribution for a along the orbit x, as it is an
invariant distribution transverse to @ at x. Denote (s, ') = @(s, t;x). Now, we
get that if v € E*' (x),

qo(s,t;x’)=1 (s=08t,t+0s).

2
da(s, v =day(s, ) v = eMus700/1+67)

By a symmetric computation, for fixed a = (s, 1), (s, ;') = 1+1§2 (s+0t,t=055)
with y’ near y. Therefore, if v € EX (y)

da(a)v = eﬂz,u(s+6z)/(1+62)'

It is not possible that s— 6t = s+ 3¢ =0 unless s = t = 0. Therefore, no non-
identity element has zero exponents for y; at every x € X. We may repeat this
process for —y; and +y». Then by Corollary 4.4, the action @ has no rank one
factors, and Corollary 4.5, the action is not homogeneous. O

6. REMARKS ON THE EXAMPLE AND CONJECTURE

We begin by briefly noting that this example was discovered in the context
of several other unexpected examples, and is indirectly related to them. In [20],
such examples are discussed at length. Another important example of a Z? ac-
tion with nontrivial coexistence of rigidity and flexibility properties was recently
constructed by Damjanovic, Wilkinson and Xu [5].

The Katok-Spatzier conjecture can be reformulated in a variety of settings.
One way to adjust the conjecture is to strengthen the assumptions. In the for-
mulation of Conjecture 1.4, one assumes that the R¥-action has no C* rank one
factors. Notice every C* rank one factor is a continuous rank one factor, and
in the measure-preserving setting, every continuous rank one factor is a mea-
surable rank one factor. Therefore, one may consider asking the action to have
no continuous, or no measurable rank one factors (with respect to an invariant
volume) in order to guarantee rigidity.
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One should expect that these examples remain counterexamples to such re-
visions of Conjecture 1.4. Indeed, one may see the destruction of a measurable
rank one factor when one only destroys one smooth factor. When one uses the
cocycle B(s, t;x) = (s, t — 61(s, x1)), we may explicitly compute the correspond-
ing function ¢(s, ;x) = (s, t + 01(s, x1)). Then the time change a induced by ¢
contains a skew product action: the horizontal direction (s, 0) is exactly a skew
product. Skew products determined by cocycles not cohomologous to a con-
stant are ergodic. Combined with the following, this shows that the projection
onto the second factor of M = Y} x > is no longer a rank one factor.

LEMMA 6.1. A measure-preserving action a :R?> ~ (X, u) has a nontrivial mea-
surable rank one factor if and only if there exists a line L ¢ R?> such that the
restriction of the action to L is not ergodic.

Proof. First, assume that there exists a rank one factor v, : (Y,v) — (Y,v) deter-
mined by a measurable map 7 : X — Y such that 7,y =v and homomorphism
0 :R? — R. Then if L = kero, L acts trivially on Y. Since Y is nontrivial, any func-
tion on X defined by v o 71, for some measurable function ¢ : Y — R is invariant
under L. Since Y is not trivial, there exist nontrivial L-invariant functions, and
the L-action is not ergodic.

Now, assume that the restriction of the action to L is not ergodic. By the
ergodic decomposition theorem, there exists a u-almost-everywhere defined
map to the space of L-invariant measures .4 (L), ¢ : (X, u) — (4 (L), v) such that
for any f e L'(X, ),

T—o0

1 T
lim —f f(wtg(x))dtzf fdo(x).
T Jo X

By construction, the action of RF descends to (.#(L),v) via a(@)m = a.m,
and the L-action is trivial. That is, ¢ determines a measurable rank one factor
of the R action. O

Investigation of these examples as measure preserving transformations, in
particular their ergodic and statistical properties, is ongoing.

Another way to account for these new examples would be to ask for no rank
one factors, even after the modifications used to produce these new examples.

QUESTION 1. If no C* time change of a cone transitive, C*° Anosov action
a :RF ~ X has a C* rank one factor, is @ C* conjugate to an algebraic system?

Another interpretation would be to ignore the parameterization of orbits in-
duced by the action altogether, and consider only the orbit foliations.

QUESTION 2. Assume that a : R¥ ~ X is a cone transitive, C*°, Anosov action,
and that there does not exist a nontrivial C* flow y;: Y — Y and submersion r :
X — Y such that 7(a(®R*)x) = {w(m(x)): t€R} for all x € X. Is a C* conjugate
to an algebraic system?

In view of Remark 1.5, allowing for time changes is a more accurate reflection
of the spirit of the rigidity program. A time change is determined by a cocycle
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over the new action. If an action a is cocycle-rigid, as are the homogeneous
actions without rank one factors, any C” time change should be smoothly con-
jugate to a linear time change of a. Therefore, even if one allows for a time
change, if rigidity holds, that time change would be trivial. Thus, one still ob-
tains a smooth conjugacy with the original action.

Finally, when the action is cone transitive and totally Cartan (see Definitions
1.1 and 3.1), the main theorem of [20] implies that if the action has no rank one
factor, it is C*° conjugate to an algebraic system. This immediately implies that
the examples here are not totally Cartan (which is also observable directly from
computations), and motivates the following

QUESTION 3. Let R ~ X be a cone transitive, Cartan action. Is there a C* time
change of the action which is totally Cartan?
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