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Abstract

A Faber-Krahn type argument gives a sharp lower estimate for the first Dirichlet eigen-
value for subdomains of wedge domains in spheres, generalizing the inequality for the plane,
found by Payne and Weinberger. An application is an alternative proof to the finiteness of
a Brownian motion capture time estimate.

Many lower estimates for the first Dirichlet eigenvalue of a domain stem from an inequality
between a line integral and an area integral [Ch, pp. 85-133|, [LT, pp. 37-40|, [P, pp. 462-
467]. These inequalities are often sharp, in that equality of the eigenvalues implies a geometric
equality. For example, the Faber-Krahn inequality [F], [K], proved by comparing level sets of
the eigenfunction using the classical isoperimetric inequality, reduces to equality for round disks.
Cheeger’s inequality [C] bounds the eigenvalue from below in terms of the minimal ratio of area
to length of subdomains.

Our main result, Theorem 1, is a lower bound for the first Dirichlet eigenvalue for a domain
contained in a wedge in a two sphere, generalizing an eigenvalue estimate of Payne and Wein-
berger [PW], [P, p.462] for planar domains contained in a wedge. As an application, we give an
alternative proof of our Brownian capture time estimate [RT]. Curiously, our proof does not seem
to carry over to domains contained in a wedge in the hyperbolic plane.

If (p, 0) are polar coordinates centered at a pole of S?, recall that the round metric is given by

ds® = dp® + sin®p db?.

Let W= {(p,0) : 0 <0 <m/a, 0 < p <} be the sector in S* of angle 7/« for a > 1, and let G
be a domain such that G C W is compact. Also define the truncated sector S(r) := {(p,0) : 0 <
0 <m/a,0 < p<r} Observe that

w = tana(g) sin af (1)

is a positive harmonic function in W, with zero boundary values.

Theorem 1. For every subdomain G with compact G C W, we have the estimate

M(G) = M(8(r7)), (2)
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where r* is chosen such that

I(G)z/deaz/ w? da.
G S(r*)

Equality holds if and only if G is the sector S(r*).

Our argument is similar to the proof of the planar version in [PW]. Our main tool is an
isoperimetric-type inequality, Lemma 3, which we prove in Section 1. We use this inequality to
estimate the Rayleigh quotient of a test function, proving Theorem 1, in Section 2. Finally, in
Section 3, we apply our eigenvalue estimate to a problem in Brownian pursuit.

1 Isoperimetric Inequality

In this section we prove an isoperimetric inequality for moments of inertia of a domain G C W.
Later we will use this inequality to estimate the Raleigh quotient of admissible functions in G.
We begin by stating a version Szegé’s Lemma [Sz]:

Lemma 2. Let 1, ¢ : [0,w) — [0,00) be locally integrable functions with ¢ nonnegative and ¢
nondecreasing. Let ®(y) = foy o(t)dt and V(z) = foyw(s) ds be their primitives. Let E C [0,w)
be a bounded measurable set. Then

<1>( / wmdx) < [ ow@) i) da. 3)

For ¢ increasing, equality holds if and only if the measure of E N[0, R] is R.

Proof. Let u be Lesbesgue measure with line element dx and define the measure v by dv = v dx.
Then v is absolutely continuous with respect to p and, using the Radon-Nikodym Theorem,
when we change variables y = ¥(x) we have dy = ¢¥(z)dz. Let E’ be the image of E under the
map ¥, with characteristic function x g/, so that ®([,, dy) = ®( [}, ¢ (x)dx). Next, because ¢ is

nondecreasing, for y > 0,
Yy
¢ (/ XE’dy) < o(y).
0

Moreover, for ¢ increasing, equality holds if and only if p(E’ N[0,y]) = y. We multiply this
inequality by xg/ and integrate:

w y w
/0 ¢></O XE'dt) XE’CZ?JS/O ¢>(y)XE/dy=/E/ ¢(y)dy:/E¢(\IJ(g;))¢(x)dx_
On the other hand,

o[ ) war=o(f o) =0 ([ ve).

Putting these two inequalities together yields the inequality (3). O

Lemma 3. Let G C W be a domain with compact closure. Then there is a function Yo = FoZ 1

so that )
/ wzdslea (a/dea). 4)
lel 20[ s G

Here F(p) = tan®¥(p/2) sinp and Z is given by (11). Equality holds if and only if G is a sector
S(r).



Proof. Map the domain G into a domain G in the upper halfplane using the transformation
v = f(p) cosab,  y=f(p) sinab,
where we will choose f to satisfy formula (8). The Euclidean line element is
da® + dy? = f? dp® + o2 f? de?.

We claim that the map satisfies

o? tan® (g) sin® af (dp?® + sin®p db?) > y* (da? + dy?). (5)
For this to be true pointwise, we need the inequalities to hold
. 3 !
) (2)
: 20 (P 3
=) > .
sin p tan (2) >f (7)
Expand sin p = 2sin(p/2) cos(p/2) and use equality in inequality (7) to define f:
f=25 sin” 7 (g) cos 3 (g) . (8)

Differentiating, we see

2 3

which implies that the inequality (6) holds as well.
Equation (1) and inequality (5) imply that

a/ w2ds:a/ w2\/dp2+sin2pd922/~y2\/da:2—|—dy = M(9G).
oG oG oG

The right side is the moment of inertia of a uniform mass distribution of the curve G relative
to the y-axis. Among all domains with given fixed surface moment

/ y2 dx dy,
G

the semicircular arcs centered on the y-axis minimize M(DG) [PW, Section 2]. Compute M (G
and M(G) in the case where 9G is a semicircle of radius R:

A f= tanzo‘(g) [2a+cosp] 5

5 T 3 B T R 4

M(@G):/ Rdsm%dt:@, M(G):/ / P sin 0dr df = “

0 2 o Jo 8

Solving for R in the formula for M(é) above and using the fact that semicircles are minimizers,
we see that for a general domain G in the upper half plane

M(OG) > 20 i {[ yrda dy}4 .

G

Returning to the original variables, dzdy = a.f f dpdf so

o

/ wids > EQ%N% {/ £2 sin®(af) af f dpd0}4 (9)
oG G

%) {/ % {tan%‘ (g) sinp]% [2a + cos p] tan®® (g) sin2a9dpd9}
G

I
e

/N



Choose 3 so that

200+ 2 4
< =,
20+ 1 s8< 3

Regroup the integral inside the braces

4 4-p -1
I= 35 /G {tan%‘ (g) sin p} ’ [2a+ cosp] B [tan% (g) sin p} tan?* (g) dp sin®af df.
Use Lemma 2, with

U = [tanm (g) sinp}ﬁ =y =0 (tanza (g) sinp)ﬁi1 [2a0 + cos p] tan®® (g)

and A
o(z) = — el o D(z) = 235

3p

So that ¢ is increasing, we require 8 < 5. If Hg = {p € [0,7) : (p,0) € G} is the slice of G in the
p-direction then Szegd’s inequality (3) implies

T/ p %
I> / (6/ tanmﬂ(f) sin®~1p [2ar + cos p] dp) sinad db. (10)
0 Ho 2

Equality holds if and only if Hy = [0,7(6)] is an interval a.e. Next we let p = % >1, 9= 1733

and define the measure dv = sin? a6 df. Holder’s inequality implies

/o P p P T/ q
/ (ﬂ/ tan2e? <7> sin®~1(p) [2a + cos p] dp) dv / dv
0 Hy 2 0
T/ p
> / Jé] tan2o? (7) sin®~1(p) [2a + cos p] dp dv.
0 Hyg 2

Raising both sides of this inequality to the power p, rearranging, and using the fact that

T/ T/ T
/ dl/:/ sin?afdfd = —,
0 0 2a

(10) becomes

=1 T/
20\ 7
I> (a> ﬁ/ / tan?"‘ﬁ(g) sin®~1p [2a + cos p] dp sin®af df
m 0 Hp 2

We regroup the inside integral again:

4
38

T/
J :/ / tan2®(8—1) (8) sin”~2p [2a + cos p] tanm(g) sin p dp sin®af db.
0 Hy 2 2

Let us denote .
_ 2a B :
Z(r) —/0 tan (2) sin p dp. (11)
and define 7(r, 0) by

Z(F) :/ tan%‘(g) X, (p) sinpdp
0



where x 7 denotes the characteristic function of H. The integrand tan?®(p/2) sin p is positive and
increasing for the range of p we are considering, and so 7(r,0) < r with equality if and only if
HyN[0,7] = [0,7] a.e. If we require (2 + 1)8 > 2 + 2, then the factor

g3(p) = tan?*#=1) (g) sin~2p [2a + cos p]

is increasing in p. Thus we can define ®g by

65(y) = Bgs 0 2 (4), B(y) = / " bs(s) ds. (12)

Observe that Z and gg are increasing, so ¢g is increasing and ®g is convex. Using gg(7(p,0)) <
g5(p), we have

J 2/ / 93(7(p,0)) tanm(g) sin p dp sin?ab db
0 Hy 2

1 T/ P p/ p
== / / bs / tan®*( =) xu,(p') sinp’ dp’ ) tan>* (7) sin p dp sin®af db.
B Jo Hy 0 2 2

Now, using Lemma 2 with (p) = tan*(p/2) sin(p) xz, we have

1 T/ p
> 2 ( £ & 2
J > 5/0 ) (/He tan (2) blnpdp) sin“of df

with equality if and only if Ho [0,7(F)] is an interval a.e. Next, by Jensen’s inequality (with
the measure given by dv = sin® af df),

i 200 [T/ 20 [P
> == af : 2 :
> 2a6<1>g < - /0 /He tan (2> sin“af s1npdpd9>

with equality if and only if 7#(6) is a.e. constant. Substituting back,

2a 4 0 20 ™ p
> 35> 20 (P o2 :
1 (71- > (BJ)38 > 50 {@ﬁ ( - /0 /He tan (2) sin“af smpdpdé))}

Reinserting this back into (9) yields

1 1 {9 T/
/ wds > (1) fri> =T o - / / tan?® (B) sinad sin pdp df (13)

where equality holds if and only if also p(6) is constant a.e. Notice that the right hand side of
this inequality is always bounded by f G w?ds, and so we can use the Dominated Convergence
Theorem to take a limit as 8 — % from below. In other words, (13) holds for 5 = %

&
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K
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1
Let us compute ®; (Y'). Since it depends only on (12), it would be the same for any function
v* whose level sets Gy = {z : v*(z) > n} give the same ¢ = (* in (16) such as the spherical
rearrangement whose levels are sectors G = S(r(n)). We express things in terms of r(n). Now

—y=—n)=— w® da = Z(r(n)) (14)



so, changing variables s = Z(r)
Y
By (V)= [ osl)ds
0
z7H(Y)
= ﬁ/o gp(r) tan®* (%) sinr dr
Z7HY) -1
= ﬂ/o {tan%‘ (f> sin r] [2ac + cosr] tan?* (g) dr

2
_ [tango‘(z _;(Y)) sin(z—l(Y))r. (15)

1
Observe that we get the same equation (13) for all 3. Thus we set T, = ® in (13) giving (4). O

Tt is precisely at inequality (6) where the analagous proof in the hyperbolic case fails. In the
hyperbolic case, the harmonic weight function is w(p,#) = tanh®*(p/2) sin(a#), and versions of
equations (5), (8) hold with cos replaced by cosh and sin replaced by sinh. This choice of f gives

us
2 2a.( P\ | 2a + coshp
() [522]

much like the formula above, but this does not yield f2 f < a tanh®*(p/2), because cosh p grows
exponentially with p. To rememdy this problem, one can try to vary the power of sinh(p/2) or
cosh(p/2); however this will only yield a worse inequality for f2 f.

2 Estimate of Rayleigh Quotient.

Theorem 1 now follows along the lines in [PW]. Let G C S? be a domain that lies in the wedge
W= {(p,0) : 0<p, 0<60<m/a}. Itsuffices to estimate the Rayleigh quotient for admissible
functions u € C2(G) that are twice continuously differentiable and compactly supported in G.
Any admissible function may be written « = vw using the harmonic function (1) and v € C3(G).

The divergence theorem shows
/ |du|? da = / w? |dv|? da.
G G

Let G} denote the points of G satisfying v > ¢. Putting
C(t) = / w? da, (16)
Gy

we see that ¢(0) = ¢ > ¢(t) > 0 = ¢(), where o = maxq v,

oC / w?
e Y .
3t len |dU|

/Gw2v2da:/OﬁZtC(t)dt:/OéthC.

and



Then, using the coarea formula, Schwarz’s inequality, Lemma 3, and changing variables to
y = ((t), the inequality (4) implies

/w2|dv|2da > / {/ w? |dvds} dt (17)
G 0 9G
v {fac w? d5}2
> / - ot
0 —_—
Joc, o ds
200
2 (==
e SHED) )
- 4@2 0 _% '
ot

Changing variables to y = ((t) we have

/06 T (?y) (22)2 dy > ,u/oét(y)zdy (18)

where p is the least eigenvalue of the boundary value problem

0 2a0 1\ Oq
—(r2 =y ) 22 = 1
8y(a<ﬂy)ay)+uq 0, (19)
M _ : 2 (20 \ Oq _
q(¢) =0, Jim, T ( V), 0. (20)

Now perform the change variables in (19) and (20) given by (14), so that the domain is now
[0,r*], Z(r*) = 270‘(, and p is now the least eigenvalue of

%) 20 (TN . dq T2 0n (T . B
. (tan (2) sin(r) 87") + 1oz tan (2) sin(r)g = 0, (21)
q(r*) =0, Tlir&r tan2® (g) sin(r) % =0. (22)

Note that (21) is the eigenequation for the spherical sector S(r*). Hence I%‘ =M (S(r")).
Reassembling using equations (17) and (18), we get the inequality

/|du|2da2)\1(8(r*))/u2da,
G G

which implies the inequality (2).

3 Computation of the lower bound and applications.

The eigenvalue A* = A1 (S(r*)) occurs as the eigenvalue of the problem (21), (22) on [0, 7*], which
may be rewritten

sin(r) ¢" + [2a + cos(r)] ¢ + A\* sin(r) ¢ = 0;

. 20 (T . @ _ *\
Tlil%li tan (2) sin(r) o (r) =0, q(r*) = 0.



G 7(G) r M (G) A(S(r))

w 00 T (a+1)a (a+ 1
S(%) =7 (%) z (a+D(a+2) (a+1)(a+2)
S(r) 5= 2(r) r A A*

W, a= % 00 3.14159265  3.75 3.75
S(9), a= % 2.07876577 2.18627604 5.00463538 5.00463538
Se), a= % 0.90871989 1.91063324 6.19561775 6.19561775
S(%), a= % 0.30118555 1.57079633 8.75 8.75
T 1.88896324 2.15399460 5.1590. .. 5.11641465
T 1.90831355 2.15742981 7 5.10421518

Table 1: Domains and eigenvalues. In this table § = cos™'(—1/v/3) and € = cos™'(—1/3). Values
not described are taken from [RT].

Making the change of variable x = %(1 —cosr) transforms the ODE to the hypergeometric
equation on [0, 1]

x(l—z)j+[c—(a+b+1)z]y—aby =0,

dy
: a+1 2J — *)
wl_l)r(r)l_x I (x) =0, q(z*) = 0.
with
1E£ V1440
a,b= ——— c=a+1.

2

The solution to the hypergeometric equation is Gauf}’s ordinary hypergeometric function, given
by

o abz ala+1)bb+1)z? ala+1)(a+2)bb+1)(b+2) 23
2F1(a7b,c7x)_1—|—?ﬁ+ clc+1) 21 c(e+1)(c+2) 30

We find the eigenvalue by a shooting method. Given r*, \* is the first positive root of the function

1—+/144)\ 1+\/1+4)\.a+1_1—cosr*)
2 ’ '

(23)

)\’_}QF1< ) ) 9 92

Consider the example of the geodesic triangle 7 C S? which is a face of the regular tetra-

hedral tessellation, whose vertices in the unit sphere could be taken as (%,:t %,0) and

(—%, 0, :l:\/g) The distance between vertices is ¢ = cos™! (—%) The diameter, which equals
the distance from vertex to center of the opposite edge, is § = cos™! (—%) T fits inside a



. 2 "
wedge sharing a vertex of angle <. Writing

we find

At the vertex we have a = % so that

Z(r) = / tanS(g> sinpdp = 4tan(g> +sinr — 3r.
0

A1(7) was found numerically in [RT]. Using the computer algebra system MAPLE(C), we numer-
ically integrate

T/
Z(7T) = /0 Z(r(9)) sin*(ad) d

and solve == Z(r*) = Z(7) for r* and (23) for A\* to get the other values in the 7 line in Table 1.

2c
To avoid the quadrature, we observe the estimate

Z(r(0)) <T(0):= A1 + A cos(@ - g) + As (1 - cos(69)),

where A; and Aj are chosen so that the functions agree at § = 0 and § = § and the Aj is chosen
to make the second derivatives agree at 5. The inequality follows since the second derivative
of the difference goes from negative to positive in 0 < 6 < 7/3. This corresponds to the larger

domain 7 whose radius function is #(#) = Z~1(T(#)). Then

6= [ wrda [ 7o) sin?(30) o= Ta+ 234, 4 T
2aZ(r)—/Tw da—/0 T(0) sin (20> d0—3A1+ 16 A2+3A3. (24)

Using these values we obtain the last row of Table 1. By eigenvalue monotonicity, if T O T then

AM(T) > M (7).
This eigenvalue estimate provides an alternative to our argument [RT] in a Brownian pursuit

problem. We finished the missing (n = 4) case in a proof by Li and Shao [LS] of the conjecture
of Bramson and Griffeath [BG].

Corollary 4. Suppose the prey Xo(t) is chased by n pursuers X1(t), ..., Xn(t), all doing inde-
pendent standard Brownian motions on the line. Suppose that the pursuers start to the left of the
prey X;(0) < Xo(0) for all j = 1,...,n. Then the expected capture time is finite if and only if
n > 4.

In fact, for the capture time for n pursuers
T, = inf{t > 0: X,;(t) > Xo(t) for some j > 1}

there are finite constants a(n), and C' depending on the initial position and the eigenvalue of the
link of the pursuit cone[DB] so that the probability

P(r, >t)~Ct™ as t — oo.

The proof shows a(n) > 1 and thus E7,, < co if and only if n > 4. Our eigenvalue estimates give
the following corresponding bounds on the decay rates since they are related by a formula to the
eigenvalue estimates [RT]. From the estimate on 7, a(3) > 90695886 and so a(4) > 1.00029446;
from the estimate of 7 involving quadrature, a(3) > .90827616 and a(4) > 1.00151234.



Proof. Details are provided in [RT]. Finiteness of the expectation of 74 follows if it can be shown
that A\ (7) > 5.101267527. The lower eigenvalue bound is given by Theorem 1 applied to 7
depends on either the numerical integration of Z(7") or its upper bound by the quadrature free
estimate of (24). O
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