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Abstract

A Faber-Krahn type argument gives a sharp lower estimate for the first Dirichlet eigen-
value for subdomains of wedge domains in spheres, generalizing the inequality for the plane,
found by Payne and Weinberger. An application is an alternative proof to the finiteness of
a Brownian motion capture time estimate.

Many lower estimates for the first Dirichlet eigenvalue of a domain stem from an inequality
between a line integral and an area integral [Ch, pp. 85–133], [LT, pp. 37–40], [P, pp. 462–
467]. These inequalities are often sharp, in that equality of the eigenvalues implies a geometric
equality. For example, the Faber-Krahn inequality [F], [K], proved by comparing level sets of
the eigenfunction using the classical isoperimetric inequality, reduces to equality for round disks.
Cheeger’s inequality [C] bounds the eigenvalue from below in terms of the minimal ratio of area
to length of subdomains.

Our main result, Theorem 1, is a lower bound for the first Dirichlet eigenvalue for a domain
contained in a wedge in a two sphere, generalizing an eigenvalue estimate of Payne and Wein-
berger [PW], [P, p.462] for planar domains contained in a wedge. As an application, we give an
alternative proof of our Brownian capture time estimate [RT]. Curiously, our proof does not seem
to carry over to domains contained in a wedge in the hyperbolic plane.

If (ρ, θ) are polar coordinates centered at a pole of S2, recall that the round metric is given by

ds2 = dρ2 + sin2ρ dθ2.

Let W = {(ρ, θ) : 0 ≤ θ ≤ π/α, 0 ≤ ρ < π} be the sector in S2 of angle π/α, for α > 1, and let G
be a domain such that G ⊂ W is compact. Also define the truncated sector S(r) := {(ρ, θ) : 0 ≤
θ ≤ π/α, 0 ≤ ρ ≤ r}. Observe that

w = tanα
(ρ

2

)
sinαθ (1)

is a positive harmonic function in W, with zero boundary values.

Theorem 1. For every subdomain G with compact G ⊂ W, we have the estimate

λ1(G) ≥ λ1(S(r∗)), (2)
∗AMS Subject classification. Primary: 35P15.
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where r∗ is chosen such that

I(G) =
∫
G

w2 da =
∫
S(r∗)

w2 da.

Equality holds if and only if G is the sector S(r∗).

Our argument is similar to the proof of the planar version in [PW]. Our main tool is an
isoperimetric-type inequality, Lemma 3, which we prove in Section 1. We use this inequality to
estimate the Rayleigh quotient of a test function, proving Theorem 1, in Section 2. Finally, in
Section 3, we apply our eigenvalue estimate to a problem in Brownian pursuit.

1 Isoperimetric Inequality

In this section we prove an isoperimetric inequality for moments of inertia of a domain G ⊂ W.
Later we will use this inequality to estimate the Raleigh quotient of admissible functions in G.

We begin by stating a version Szegő’s Lemma [Sz]:

Lemma 2. Let ψ, φ : [0, ω) → [0,∞) be locally integrable functions with ψ nonnegative and φ
nondecreasing. Let Φ(y) =

∫ y
0
φ(t) dt and Ψ(x) =

∫ y
0
ψ(s) ds be their primitives. Let E ⊂ [0, ω)

be a bounded measurable set. Then

Φ
(∫

E

ψ(x) dx
)
≤
∫
E

φ(Ψ(x))ψ(x) dx. (3)

For φ increasing, equality holds if and only if the measure of E ∩ [0, R] is R.

Proof. Let µ be Lesbesgue measure with line element dx and define the measure ν by dν = ψ dx.
Then ν is absolutely continuous with respect to µ and, using the Radon–Nikodym Theorem,
when we change variables y = Ψ(x) we have dy = ψ(x)dx. Let E′ be the image of E under the
map Ψ, with characteristic function χE′ , so that Φ(

∫
E′
dy) = Φ(

∫
E
ψ(x)dx). Next, because φ is

nondecreasing, for y ≥ 0,

φ

(∫ y

0

χE′dy

)
≤ φ(y).

Moreover, for φ increasing, equality holds if and only if µ(E′ ∩ [0, y]) = y. We multiply this
inequality by χE′ and integrate:∫ ω

0

φ

(∫ y

0

χE′dt

)
χE′dy ≤

∫ ω

0

φ(y)χE′dy =
∫
E′
φ(y)dy =

∫
E

φ(Ψ(x))ψ(x)dx.

On the other hand,∫ ω

0

φ

(∫ y

0

χE′dt

)
χE′dy = Φ

(∫
E′
dy

)
= Φ

(∫
E

ψ(x)dx
)
.

Putting these two inequalities together yields the inequality (3).

Lemma 3. Let G ⊂ W be a domain with compact closure. Then there is a function Υα = F◦Z−1

so that ∫
∂G

w2 ds ≥ π

2α
Υα

(
2α
π

∫
G

w2 da

)
. (4)

Here F(ρ) = tan2α(ρ/2) sin ρ and Z is given by (11). Equality holds if and only if G is a sector
S(r).
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Proof. Map the domain G into a domain G̃ in the upper halfplane using the transformation

x = f(ρ) cosαθ, y = f(ρ) sinαθ,

where we will choose f to satisfy formula (8). The Euclidean line element is

dx2 + dy2 = ḟ2 dρ2 + α2f2 dθ2.

We claim that the map satisfies

α2 tan4α
(ρ

2

)
sin4 αθ (dρ2 + sin2ρ dθ2) ≥ y4(dx2 + dy2). (5)

For this to be true pointwise, we need the inequalities to hold

α tan2α
(ρ

2

)
≥ f2 ḟ =

(
f3

3

)′
(6)

sin ρ tan2α
(ρ

2

)
≥ f3. (7)

Expand sin ρ = 2 sin(ρ/2) cos(ρ/2) and use equality in inequality (7) to define f :

f = 2
1
3 sin

1+2α
3

(ρ
2

)
cos

1−2α
3

(ρ
2

)
. (8)

Differentiating, we see

f2 ḟ = tan2α
(ρ

2

)[2α+ cos ρ
3

]
,

which implies that the inequality (6) holds as well.
Equation (1) and inequality (5) imply that

α

∫
∂G

w2 ds = α

∫
∂G

w2

√
dρ2 + sin2ρ dθ2 ≥

∫
∂G̃

y2
√
dx2 + dy2 :=M(∂G̃).

The right side is the moment of inertia of a uniform mass distribution of the curve ∂G̃ relative
to the y-axis. Among all domains with given fixed surface moment∫

G̃

y2 dx dy,

the semicircular arcs centered on the y-axis minimizeM(∂G̃) [PW, Section 2]. ComputeM(∂G̃)
and M(G̃) in the case where ∂G̃ is a semicircle of radius R:

M(∂G̃) =
∫ π

0

R3 sin2 tdt =
πR3

2
, M(G̃) =

∫ π

0

∫ R

0

r3 sin2 θdr dθ =
πR4

8
.

Solving for R in the formula for M(G̃) above and using the fact that semicircles are minimizers,
we see that for a general domain G̃ in the upper half plane

M(∂G̃) ≥ 2
5
4π

1
4

{∫
G̃

y2dx dy

} 3
4

.

Returning to the original variables, dx dy = αfḟ dρ dθ so∫
∂G

w2ds ≥ 1
α

2
5
4π

1
4

{∫
G

f2 sin2(αθ)αfḟ dρ dθ
} 3

4

(9)

=
( π

2α

) 1
4
{∫

G

4
3

[
tan2α

(ρ
2

)
sin ρ

] 1
3

[2α+ cos ρ] tan2α
(ρ

2

)
sin2αθ dρ dθ

} 3
4

.
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Choose β so that
2α+ 2
2α+ 1

≤ β < 4
3
.

Regroup the integral inside the braces

I =
4

3β

∫
G

[
tan2α

(ρ
2

)
sin ρ

] 4
3−β

[2α+ cos ρ] β
[
tan2α

(ρ
2

)
sin ρ

]β−1

tan2α
(ρ

2

)
dρ sin2αθ dθ.

Use Lemma 2, with

Ψ =
[
tan2α

(ρ
2

)
sin ρ

]β
⇒ ψ = β

(
tan2α

(ρ
2

)
sin ρ

)β−1

[2α+ cos ρ] tan2α
(ρ

2

)
and

φ(z) =
4

3β
z

4
3β−1 ⇒ Φ(z) = z

4
3β .

So that φ is increasing, we require β < 4
3 . If Hθ = {ρ ∈ [0, π) : (ρ, θ) ∈ G} is the slice of G in the

ρ-direction then Szegő’s inequality (3) implies

I ≥
∫ π/α

0

(
β

∫
Hθ

tan2αβ
(ρ

2

)
sinβ−1ρ [2α+ cos ρ] dρ

) 4
3β

sin2αθ dθ. (10)

Equality holds if and only if Hθ = [0, r(θ)] is an interval a.e. Next we let p = 4
3β > 1, q = 4

4−3β ,
and define the measure dν = sin2 αθ dθ. Hölder’s inequality implies[∫ π/α

0

(
β

∫
Hθ

tan2αβ
(ρ

2

)
sinβ−1(ρ) [2α+ cos ρ] dρ

)p
dν

] 1
p
[∫ π/α

0

dν

] 1
q

≥
∫ π/α

0

β

∫
Hθ

tan2αβ
(ρ

2

)
sinβ−1(ρ) [2α+ cos ρ] dρ dν.

Raising both sides of this inequality to the power p, rearranging, and using the fact that∫ π/α

0

dν =
∫ π/α

0

sin2 αθ dθ =
π

2α
,

(10) becomes

I ≥
(

2α
π

) 4
3β−1

(
β

∫ π/α

0

∫
Hθ

tan2αβ
(ρ

2

)
sinβ−1ρ [2α+ cos ρ] dρ sin2αθ dθ

) 4
3β

.

We regroup the inside integral again:

J =
∫ π/α

0

∫
Hθ

tan2α(β−1)
(ρ

2

)
sinβ−2ρ [2α+ cos ρ] tan2α

(ρ
2

)
sin ρ dρ sin2αθ dθ.

Let us denote
Z(r) =

∫ r

0

tan2α
(ρ

2

)
sin ρ dρ. (11)

and define r̄(r, θ) by

Z(r̄) =
∫ r

0

tan2α
(ρ

2

)
χHθ (ρ) sin ρ dρ
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where χH denotes the characteristic function of H. The integrand tan2α(ρ/2) sin ρ is positive and
increasing for the range of ρ we are considering, and so r̄(r, θ) ≤ r with equality if and only if
Hθ ∩ [0, r] = [0, r] a.e. If we require (2α+ 1)β ≥ 2α+ 2, then the factor

gβ(ρ) = tan2α(β−1)
(ρ

2

)
sinβ−2ρ [2α+ cos ρ]

is increasing in ρ. Thus we can define Φβ by

φβ(y) = βgβ ◦ Z−1(y), Φβ(y) =
∫ y

0

φβ(s) ds. (12)

Observe that Z and gβ are increasing, so φβ is increasing and Φβ is convex. Using gβ(r̄(ρ, θ)) ≤
gβ(ρ), we have

J ≥
∫ π/α

0

∫
Hθ

gβ(r̄(ρ, θ)) tan2α
(ρ

2

)
sin ρ dρ sin2αθ dθ

=
1
β

∫ π/α

0

∫
Hθ

φβ

(∫ ρ

0

tan2α

(
ρ′

2

)
χHθ (ρ

′) sin ρ′ dρ′
)

tan2α
(ρ

2

)
sin ρ dρ sin2αθ dθ.

Now, using Lemma 2 with ψ(ρ) = tan2α(ρ/2) sin(ρ)χHθ we have

J ≥ 1
β

∫ π/α

0

Φβ

(∫
Hθ

tan2α
(ρ

2

)
sin ρ dρ

)
sin2αθ dθ

with equality if and only if Hθ = [0, r(θ)] is an interval a.e. Next, by Jensen’s inequality (with
the measure given by dν = sin2 αθ dθ),

J ≥ π

2αβ
Φβ

(
2α
π

∫ π/α

0

∫
Hθ

tan2α
(ρ

2

)
sin2αθ sin ρ dρ dθ

)

with equality if and only if r̄(θ) is a.e. constant. Substituting back,

I ≥
(

2α
π

) 4
3β−1

(βJ)
4
3β ≥ π

2α

{
Φβ

(
2α
π

∫ π/α

0

∫
Hθ

tan2α
(ρ

2

)
sin2αθ sin ρ dρ dθ

)} 4
3β

.

Reinserting this back into (9) yields∫
∂G

w2 ds ≥
( π

2α

) 1
4
I

3
4 ≥ π

2α
Φ

1
β

β

(
2α
π

∫ π/α

0

∫
Hθ

tan2α
(ρ

2

)
sin2αθ sin ρ dρ dθ

)
(13)

=
π

2α
Φ

1
β

β

(
2α
π

∫
G

w2da

)
where equality holds if and only if also ρ(θ) is constant a.e. Notice that the right hand side of
this inequality is always bounded by

∫
∂G

w2ds, and so we can use the Dominated Convergence
Theorem to take a limit as β → 4

3 from below. In other words, (13) holds for β = 4
3 .

Let us compute Φ
1
β

β (Y ). Since it depends only on (12), it would be the same for any function
v∗ whose level sets G∗η = {x : v∗(x) ≥ η} give the same ζ = ζ∗ in (16) such as the spherical
rearrangement whose levels are sectors G∗η = S(r(η)). We express things in terms of r(η). Now

2α
π
y =

2α
π
ζ(η) =

2α
π

∫
S
(
r(η)
) w2 da = Z

(
r(η)

)
(14)
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so, changing variables s = Z(r)

Φβ (Y ) =
∫ Y

0

φβ(s) ds

= β

∫ Z−1(Y )

0

gβ(r) tan2α
(r

2

)
sin r dr

= β

∫ Z−1(Y )

0

[
tan2α

(r
2

)
sin r

]β−1

[2α+ cos r] tan2α
(r

2

)
dr

=
[
tan2α

(
Z−1(Y )

2

)
sin(Z−1(Y ))

]β
. (15)

Observe that we get the same equation (13) for all β. Thus we set Υα = Φ
1
β

β in (13) giving (4).

It is precisely at inequality (6) where the analagous proof in the hyperbolic case fails. In the
hyperbolic case, the harmonic weight function is w(ρ, θ) = tanh2α(ρ/2) sin(αθ), and versions of
equations (5), (8) hold with cos replaced by cosh and sin replaced by sinh. This choice of f gives
us

f2 ḟ = tanh2α
(ρ

2

)[2α+ cosh ρ
3

]
,

much like the formula above, but this does not yield f2 ḟ ≤ α tanh2α(ρ/2), because cosh ρ grows
exponentially with ρ. To rememdy this problem, one can try to vary the power of sinh(ρ/2) or
cosh(ρ/2); however this will only yield a worse inequality for f2 ḟ .

2 Estimate of Rayleigh Quotient.

Theorem 1 now follows along the lines in [PW]. Let G ⊂ S2 be a domain that lies in the wedge
W = {(ρ, θ) : 0 ≤ ρ, 0 ≤ θ ≤ π/α}. It suffices to estimate the Rayleigh quotient for admissible
functions u ∈ C2

0 (G) that are twice continuously differentiable and compactly supported in G.
Any admissible function may be written u = vw using the harmonic function (1) and v ∈ C2

0 (G).
The divergence theorem shows ∫

G

|du|2 da =
∫
G

w2 |dv|2 da.

Let Gt denote the points of G satisfying v ≥ t. Putting

ζ(t) =
∫
Gt

w2 da, (16)

we see that ζ(0) = ζ̂ ≥ ζ(t) ≥ 0 = ζ(v̂), where v̂ = maxG v,

∂ζ

∂t
= −

∫
∂Gt

w2

|dv|
ds

and ∫
G

w2 v2 da =
∫ v̂

0

2t ζ(t) dt =
∫ ζ̂

0

t2dζ.
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Then, using the coarea formula, Schwarz’s inequality, Lemma 3, and changing variables to
y = ζ(t), the inequality (4) implies∫

G

w2 |dv|2 da ≥
∫ v̂

0

{∫
∂Gt

w2 |dv| ds
}
dt (17)

≥
∫ v̂

0

{∫
∂Gt

w2 ds
}2

∫
∂Gt

w2

|dv|
ds

dt

≥ π2

4α2

∫ v̂

0

Υ2
α

(
2α
π
ζ(t)

)
−∂ζ
∂t

dt.

Changing variables to y = ζ(t) we have∫ ζ̂

0

Υ2
α

(
2α
π
y

)(
∂t

∂y

)2

dy ≥ µ
∫ ζ̂

0

t(y)2 dy (18)

where µ is the least eigenvalue of the boundary value problem

∂

∂y

(
Υ2
α

(
2α
π
y

)
∂q

∂y

)
+ µ q = 0, (19)

q(ζ̂) = 0, lim
y→0+

Υ2
α

(
2α
π
y

)
∂q

∂y
= 0. (20)

Now perform the change variables in (19) and (20) given by (14), so that the domain is now
[0, r∗], Z(r∗) = 2α

π ζ̂, and µ is now the least eigenvalue of

∂

∂r

(
tan2α

(r
2

)
sin(r)

∂q

∂r

)
+
π2µ

4α2
tan2α

(r
2

)
sin(r)q = 0, (21)

q(r∗) = 0, lim
r→0+

tan2α
(r

2

)
sin(r)

∂q

∂r
= 0. (22)

Note that (21) is the eigenequation for the spherical sector S(r∗). Hence π2µ
4α2 = λ1(S(r∗)).

Reassembling using equations (17) and (18), we get the inequality∫
G

|du|2 da ≥ λ1

(
S(r∗)

) ∫
G

u2 da,

which implies the inequality (2).

3 Computation of the lower bound and applications.

The eigenvalue λ∗ = λ1(S(r∗)) occurs as the eigenvalue of the problem (21), (22) on [0, r∗], which
may be rewritten

sin(r) q′′ + [2α+ cos(r)] q′ + λ∗ sin(r) q = 0;

lim
r→0−

tan2α
(r

2

)
sin(r)

dq

dr
(r) = 0, q(r∗) = 0.
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G I(G) r∗ λ1(G) λ1(S(r∗))

W ∞ π (α+ 1)α (α+ 1)α

S(π2 ) π
2αZ

(
π
2

)
π
2 (α+ 1)(α+ 2) (α+ 1)(α+ 2)

S(r) π
2αZ(r) r λ∗ λ∗

W, α = 3
2 ∞ 3.14159265 3.75 3.75

S (δ), α = 3
2 2.07876577 2.18627604 5.00463538 5.00463538

S(ε), α = 3
2 0.90871989 1.91063324 6.19561775 6.19561775

S(π2 ), α = 3
2 0.30118555 1.57079633 8.75 8.75

T 1.88896324 2.15399460 5.1590. . . 5.11641465

T̂ 1.90831355 2.15742981 ? 5.10421518

Table 1: Domains and eigenvalues. In this table δ = cos−1(−1/
√

3) and ε = cos−1(−1/3). Values
not described are taken from [RT].

Making the change of variable x = 1
2 (1− cos r) transforms the ODE to the hypergeometric

equation on [0, 1]

x(1− x) ÿ + [c− (a+ b+ 1)x] ẏ − ab y = 0,

lim
x→0−

xα+1 dy

dr
(x) = 0, q(x∗) = 0.

with

a, b =
1±
√

1 + 4λ∗

2
, c = α+ 1.

The solution to the hypergeometric equation is Gauß’s ordinary hypergeometric function, given
by

2F1(a, b; c;x) = 1 +
ab

c

x

1!
+
a(a+ 1)b(b+ 1)

c(c+ 1)
x2

2!
+
a(a+ 1)(a+ 2)b(b+ 1)(b+ 2)

c(c+ 1)(c+ 2)
x3

3!
+ · · · .

We find the eigenvalue by a shooting method. Given r∗, λ∗ is the first positive root of the function

λ 7→ 2F1

(
1−
√

1 + 4λ
2

,
1 +
√

1 + 4λ
2

;α+ 1;
1− cos r∗

2

)
. (23)

Consider the example of the geodesic triangle T ⊂ S2 which is a face of the regular tetra-

hedral tessellation, whose vertices in the unit sphere could be taken as
(

1√
3
,±
√

2
3 , 0
)

and(
− 1√

3
, 0,±

√
2
3

)
. The distance between vertices is ε = cos−1

(
− 1

3

)
. The diameter, which equals

the distance from vertex to center of the opposite edge, is δ = cos−1
(
− 1√

3

)
. T fits inside a
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wedge sharing a vertex of angle 2π
3 . Writing

T =
{

(ρ, θ) : 0 ≤ θ ≤ 2π
3
, 0 ≤ ρ ≤ r(θ)

}
we find

r(θ) =
π

2
+ Atn

(
cos(θ − π

3 )
√

2

)
.

At the vertex we have α = 3
2 so that

Z(r) =
∫ r

0

tan3
(ρ

2

)
sin ρ dρ = 4 tan

(r
2

)
+ sin r − 3r.

λ1(T ) was found numerically in [RT]. Using the computer algebra system Maple c©, we numer-
ically integrate

I(T ) =
∫ π/α

0

Z(r(θ)) sin2(αθ) dθ

and solve π
2αZ(r∗) = I(T ) for r∗ and (23) for λ∗ to get the other values in the T line in Table 1.

To avoid the quadrature, we observe the estimate

Z(r(θ)) ≤ T (θ) := A1 +A2 cos
(
θ − π

3

)
+A3

(
1− cos(6θ)

)
,

where A1 and A2 are chosen so that the functions agree at θ = 0 and θ = π
3 and the A3 is chosen

to make the second derivatives agree at π
3 . The inequality follows since the second derivative

of the difference goes from negative to positive in 0 < θ < π/3. This corresponds to the larger
domain T̂ whose radius function is r̂(θ) = Z−1(T (θ)). Then

π

2α
Z(r̂∗) =

∫
T̂
w2 da =

∫ 2π
3

0

T (θ) sin2

(
3
2
θ

)
dθ =

π

3
A1 +

9
√

3
16

A2 +
π

3
A3. (24)

Using these values we obtain the last row of Table 1. By eigenvalue monotonicity, if T̂ ⊃ T then
λ1(T ) ≥ λ1(T̂ ).

This eigenvalue estimate provides an alternative to our argument [RT] in a Brownian pursuit
problem. We finished the missing (n = 4) case in a proof by Li and Shao [LS] of the conjecture
of Bramson and Griffeath [BG].

Corollary 4. Suppose the prey X0(t) is chased by n pursuers X1(t), . . . , Xn(t), all doing inde-
pendent standard Brownian motions on the line. Suppose that the pursuers start to the left of the
prey Xj(0) < X0(0) for all j = 1, . . . , n. Then the expected capture time is finite if and only if
n ≥ 4.

In fact, for the capture time for n pursuers

τn = inf{t > 0 : Xj(t) ≥ X0(t) for some j ≥ 1}

there are finite constants a(n), and C depending on the initial position and the eigenvalue of the
link of the pursuit cone[DB] so that the probability

P(τn > t) ∼ C t−a as t→∞.

The proof shows a(n) > 1 and thus Eτn <∞ if and only if n ≥ 4. Our eigenvalue estimates give
the following corresponding bounds on the decay rates since they are related by a formula to the
eigenvalue estimates [RT]. From the estimate on T̂ , a(3) ≥ .90695886 and so a(4) ≥ 1.00029446;
from the estimate of T involving quadrature, a(3) ≥ .90827616 and a(4) ≥ 1.00151234.
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Proof. Details are provided in [RT]. Finiteness of the expectation of τ4 follows if it can be shown
that λ1(T ) > 5.101267527. The lower eigenvalue bound is given by Theorem 1 applied to T
depends on either the numerical integration of I(T ) or its upper bound by the quadrature free
estimate of (24).
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