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Abstract. We consider Zhu’s model for combustion in a Hele-Shaw cell which re-
duces to a nonlocal curvature evolution problem for a curve in the plane. The normal
velocity is the sum of the curvature dependent burning rate and the fluid effects from
the potential flow and gravity. We give the physical and geometric motivations and

relate our study to various similar problems that have been considered. Due to the
assumption of equal viscosities and zero surface tension, our model admits a rela-
tively simple treatment. We give fingering criteria, geometric properties and stability
results for the flow and its linearization about the rising circle solution.

In this section, we describe certain nonlocal geometric evolution problems cur-
rently of great interest in applied mathematics. The equations reduce to a curvature
evolution problem for curves in the plane with nonlocal term. We shall describe two
types of nonlocal problems that occur in potential flows and mention a few results
in order to give context to our recent work about the stability of a combustion
problem. Then we shall describe our model and some results. Details will appear
elsewhere[Tr].

We formulate an evolution problem for closed curves in the plane. Let X ∈
C∞(S1×[0, T ),R2) be the position vectors of a one parameter family of embeddings
of the circle. For given t, let Γt = X(S1 ×{t}) ∈ R2 be a smooth closed embedded
curve and let Ω1 and Ω2 be the unbounded and bounded components of R2 − Γt.
Let n denote the outward normal vector to Ω2. We assume that the family of curves
evolves according to

V = n ·
dX

dt
= α(κ) + N (Γt),

X(θ, 0) = X(θ),

where V denotes the normal velocity and X(θ) a parameterization of the initial
curve Γ0, κ is curvature of Γt, κ > 0 for the circle, and α is a sufficiently smooth
function. N is a nonlocal operator depending on the curve. We will discuss N of
a particular type which occurs in potential flows. It is a geometric integral over
the curve of powers of chords. More general N occur sometimes, for example to
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represent the effect of more complicated fluid behavior, e.g. Stokes flow, away from
the interface [Pz].

With N ≡ 0, such flows have been suggested as models for physical phenomina.
N takes into account nonlocal effects e.g. fluid motion away from Γ, pressure
influenced by surface tension and body forces such as gravity or suction. Examples
are the motion of a phase boundary for perfect conductors α = aκ + b, [AG] or
crystal growth[S] or combustion α = ae−bκ [M] . However, a more complete job
modelling physical phenomena is done when N included. In flame propogation
[JS], [PT], the nonlocal term reflects flow around the flame. Such nonlocal terms
model of oil recovery - flow through porous medium[BK], [H2], injection molding
into a Riemannian surface[VE], tumor growth[BC], Ostwald ripening[MV], vortex
patch motion for inviscid fluids[CT]. There are extensive bibliographies [V], [Hw],
[G].

There is a fairly complete theory for purely curvature driven flows (N ≡ 0). For
inward flow, α = −κ,

Theorem. [HG], [Gr] Let Γ0 be a smooth embedded curve. There is a time T so
that Γt evolves through embedded curves for 0 ≤ t < T . It becomes convex and
collapses to a round point as t → T−. i.e., there is a function f(t) → ∞ as t → T
so that f(t)Γt tends to the unit circle in C2+δ at t → T .

For outward flow and general α the flow may not preserve embeddedness. How-
ever, there is good theory if the curvature of the initial curve is not too negatively
curved.

Theorem. [CL] Suppose α is a smooth function such that

α(κ) > 0, α′(κ) < 0 for all κ and α(κ) → ∞ as κ → −∞.

Let Γ0 be a smooth embedded curve such that
∫

I
κ ds > −π for all intervals I ⊂ Γ0.

Then there exists a solution X ∈ C∞(S1 × [0,∞)) to V = α(κ), with initial curve
Γ0 such that all the curves Γt remain embedded, for every point p ∈ R2 there is a
critical time T1 so Γt is star shaped with respect to p if t ≥ T1 and a second time
T2 ≥ T1 so that Γt is convex if t ≥ T2. Moreover, there is a function f(t) → 0 as
t → ∞ so that f(t)Γt tends to the unit circle in C2+δ as t → ∞.

We mention only a few higher dimensional generalizations. The first geometer to
consider curvature flows seems to be Firey[F] who studied hypersurfaces evolving by
Gauss-Kronecker curvature. He imagined the process describes a stone wearing by
random angle collisions with a riverbed. Mean curvature flow has been extensively
studied [B], [Hu], [ES1], [CG], [I]. Gauss-Kronecker and more general flows have
also been studied [To], [Cw], [CN], [A].

Nonlinear term: flows in a Hele-Shaw cell. Two immiscible fluids occupy
the narrow gap between two parallel glass plates. The interface isidealized as a
curve Γt ⊂ R2. The drag along the plates is felt by the entire fluid. Averaging
the Navier Stokes flow over the gap gives Darcy’s law. pi(x, y) is the pressure in



3

Ωi, ci = −`2/12µi, ` is the gap width and µi is the viscosity. In R2 − Γt, the fluid
satisfies

wi = ci∇pi Darcy’s Law

p1 → F (z) as z → ∞. (far field condition)

div wi = 0 Incompressibility.

where F is driving pressure or sources and sinks. The constant T determines the
surface tension. On Γt,

[p] =Tκ Surface tension.

[n · w] =0 Kinematic condition.

N (Γt) =n · w Interface carried by flow.

For z ∈ Γt the jump along the interface

[f ](z) = lim
w∈Ω1, w→z

f(w) − lim
w∈Ω2, w→z

f(w).

We indicate why the problem is more difficult if T > 0. Along the interface the
kinematic normal velocities condition says that Γt is a material curve which follows
the fluid motion. We can represent n · w1 = Kγ as an operator of the vortex sheet
strength γ = [t·w] and t = in = zs/|zs|. In fact, wi is analytic in z = x+iy ∈ C−Γt,
and is given by the Cauchy formula

w̄(z) =
1

2πi
PV

∫

Γ

γ(z′)t̄(z′).dz′

z′ − z
.

On Γt, by the Plemelj formula, [w̄] = γ t̄ and (w̄1 + w̄2) = 2Kγ. Also [t · ∇p] =
[ps] = Tκs, yielding a singular integral equation for γ

γ =
4c1c2

c1 + c2
Kγ +

c1 + c2

c1 − c2
Tκs

thus, N (Γt) = c3T n̄ · K(I − c4K)−1κs which is a third order pseudo-differential op-
erator. Procedures to handle such problems well numerically have been developerd
only recently[HL]. The computational results compare well to experiments (e.g. [P]
where an air bubble blown into a horizontal Hele-Shaw cell filled with glycerine
which develops unstable fingers).

In case there is a large viscosity contrast, as with oil and water, or water and
air, where viscosities differ by a factor of ten, the model is usually simplified to
constant pressure in the less viscous fluid, the so-called one phase model.
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Mullins-Sekerka problem. The fluids problem is closely related to the problem
for evolving phase boundaries which was proposed by Mullins-Sekerka[MS]. The one
phase versions reduce to the same problem. The boundary condition at the interface
becomes a Dirichlet condition and the velocity is now given by a jump, therefore
this problem may also have geometric interest[VE]. Suppose Ω2 ⊂⊂ Ω0 ⊂⊂ R2.
Ω2 represent the solid and Ω1 = Ω0 − Ω1 the liquid phases of a substance in a
smooth tank; ui their temperature and a, b, T constants. The liquid temperature
is brought below the freezing temperature. Starting from a frozen seed, the solid
phase Ω2(t) grows, being driven by the undercooled liquid.

∆u =0 in Ω0 − Γ. (or the heat equation in the Stefan problem)

∂nu =0 on ∂Ω0

u = − Tκ on Γt. (Gibbs-Thomson law)

V =

[

∂u

∂n

]

on Γt

This model is sometimes also called the two phase Stefan problem with Gibbs-
Thomson Law for melting.

We state some existence and stability results for the Mullins-Sekerka problem.

Theorem. [C], [CH], [ES] Let Γ0 ∈ C2+α. There exists a t1 > 0 so that the
Mullins Sekerka problem has a unique solution in C2+α,1+α/2 which is smooth for
t > 0. For k ∈ N, if Γ0 is close enough to the round sphere in C2+α then the
solution approaches the round sphere exponentially fast in the Ck. (The theorem
holds for Rn where κ is the mean curvature of Γt)

Higher dimensional existence of global weak solutions[AW], [Lu] and short time
existence[R] are known for the Stefan problem with Gibbs-Thomson law. In two
dimensions for the one phase problem, short time existence and long time existence
and asymptotic circularity is known small perturbations of the circular bubble[CP].
Existence and stability for unbounded geometry is known[DR]. The T = 0 case has
also been studied, e.g. for oil recovery [VE], [T], [NT].

Chemical reaction problem. We restate the particular problem under consid-
eration. We seek a family of closed curves {Γt}t≥0 ⊂ R2 satisfying a curvature
evolution with nonlocal term.

V = n ·
dX

dt
= α(κ) + N (Γt)

where Γ0 is given embedded closed curve. n is the outer normal and κ > 0 for
circle. We present Zhu’s model for a chemical reaction along a front (which we’ll
call flame propogation) in a vertical Hele-Shaw cell[Z]. The model is designed to
study buoyancy effects on the shapes of flames. Assume Ω1, Ω2 are components
of R2 − Γ, Ω2 is bounded. Assume Ω1 is fuel and Ω2 is the combustion product
which is lighter than the fuel. The densities satisfy ρ1 > ρ2. We assume viscosities
are equal µ1 = µ2 = µ. We assume that the chemicals are miscible, there is no
surface tension along the interface, T = 0. But, the rate of reaction along the
interface is given by α(κ) where α ∈ C1, α > 0, α′ < 0. A typical α = S1e

−bκ.
S1 is the burning rate of a linear flame. The fire burns outward. Experiments
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with an aqueous hydrosulfite-iodate autocatalytic reaction in a vertical Hele-Shaw
cell, in which the density varies about .02% due to temperature differences, show
that the combustion product grows unstable fingers on the upper side, where the
heavier fuel lies above the lighter product[AR]. Numerical experiments[Z] evolve
unstable fingers in agreement with the experiment, whenever the fluid effects are
strong relative to the combustion effects. However, when the combustion effects
dominate, small perturbations of a circular product region die out. Our analysis
confirms these observations.

Let p(x, y) be the pressure and y the vertical coordinate function.

wi =
−`2

12µi
∇ (pi − gρjy) in Ωi

∆pi =0 on Ωi

p1 →− gρ1y as z → ∞

[p] =p2 − p1 = Tκ on Γt,

[n · w] =0

N (Γt) =n · wi

We assume J.Y. Zhu’s simplifying hypothesis: µ1 = µ2 = µ and T = 0. Writing
n2 = n · (0, 1),

0 = [n · w] = −
`2

12µ

([

∂p

∂n

]

− g[ρ]n2

)

thus
[

∂p

∂n

]

= g[ρ]n2.

Thus the pressure is exactly given by the single layer potential.

pi(z) = −gρ1y +
g[ρ]

2π

∫

Γt

log |z − z′|n2(z
′) ds(z′).

Take ∂/∂n and use Plemelj’s formula,

N [Γt](z) = −
g[ρ]`2

24µ
n2(z) −

g[ρ]`2

24πµ
PV

∫

Γt

n(z) ·
z − z′

|z − z′|2
n2(z

′)ds(z′).

For C2 curves, since as z′ → z,

n(z) ·
z − z′

|z − z′|
→ 0, n(z) ·

z − z′

|z − z′|2
→

κ(z)

2

the integral is not singular.

Let z(θ, t) = R(θ, t)eiθ + c1it + z0 where c1 = − g[ρ]`2

24µ . Then the vertical trans-

lations cancel out and the radius function R satisfies

RRt = α

(

−RRθθ + 2R2
θ + R2

(R2 + R2
θ)

3/2

)

(R2 + R2
θ)

1/2+

+
c1

π

∫ π

−π

(

R(θ, t)2 − R(θ, t)R(η, t) cos(θ − η)

−Rθ(θ, t)R(η, t) sin(θ − η)

)(

R(η, t) sin η−

Rθ(η, t) cos η

)

dη

R(θ, t)2 − 2R(θ, t)R(η, t) cos(θ − η) + R(η, t)2
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One solution is a growing rising circle R(θ, t) = R(t) where

R′(t) = α

(

1

R

)

=: β(R), R(0) = R0.

β is a convenient version of α satisfying β′ > 0 and S0 ≤ β(R) ≤ S1 for R > 0. Is
it stable? Do small perturbations of R converge to R at least in some parameter
regime? i.e. does R(θ, t)/R(t) → 1 if R(θ, 0) ≈ R0? Is R linearly stable? Which
modes grow at t = 0, i.e. how many fingers form? Does every solution become
convex?

To study these questions, we find that the linearization around R takes the
following form. Substituting R(θ, t) = R(t)+ εu(θ, t) and collecting ε1 terms yields

(L)
∂u

∂t
= β′(R)(uθθ + u) +

c1

R
Mu

where 0 < β ∈ C1 and β′ > 0, and

Mu =
∂

∂θ

(

H[u] sin θ + (u − u0) cos θ
)

where Hu is the Hilbert transform

H[u](θ) =
1

2π
PV

∫ π

−π

u(θ − σ) cot

(

θ

2

)

dσ.

The idea to solve the linearized equation is to regard the nonlocal term as a per-
turbation of the heat equation.

Theorem. Choose k ∈ N and t1 > 0. Let β ∈ Ck+δ [0,∞) and φ ∈ C2+k+δ(S1).
Then there is a unique solution to (L) and u(·, 0) = φ for all t ≥ 0. The solution
satisfies

|u|Ck+δ,(k+δ)/2(S1×[0,t1]) ≤ c(β, δ, |φ|k+δ , t1).

Idea of proof. Energy etimates are used to provide H1 bounds for all t. M is a
first order perturbation. By the theorem of Privalov, |Hu|k+δ ≤ c|u|k+δ . Also,
for functions depending on a parameter, an easy argument for any ε > 0 gives
an estimates of the parabolic Hölder norms, |Hu|k+δ−ε,(k+δ−ε)/2 ≤ c|u|k+δ,(k+δ)/2.
Since the perturbation is first order, there is room to maneuver and this suffices.
The existence on the interval [0, t1] follows from standard estimates for the heat
equation and an application of the Shauder fixed point theorem to the map which
takes w ∈ C+δ,(1+δ)/2 to the solution of

ut − β′(R)(uθθ + u) = c1Mw/R

u(0, θ) = u0(θ).

By Privalov’s estimate and interpolating the right side shows that the c1+δ,(1+δ)/2

norm of any fixed point in [0, t1] is bounded by the H1 norm, which in turn is
bounded by the energy estimate.

However, this argument does not give a good enough explicit time dependence
on the solution to prove stability. The energy inequality only says that the solution
grows lik R(t).



7

Poincaré’s method. Further information, such as the evolution of individual
Fourier modes of the initial data is needed to prove properties of the solution and
substitute for the dispersion analysis. Poincaré studied tides in the ocean by re-
ducing the resulting oblique boundary value problem for harmonic functions in the
disk to a corresponding integral equation for holomorphic function on the bound-
ary[Mu]. In this case the problem reduces to a linear complex differential equation
in the disk, which can be studied by elementary means.

It is convenient to change time to

τ =

∫ t

0

dt

R(t)
.

Let U be a harmonic function on the unit disk so that U(eiθ) = u(eiθ) and V its
harmonic conjugate with V (0) = 0. Let Φ = U + iV . Then Hu = V |S1 . (L)
becomes on S1

0 = <e

(

−
∂Φ

∂τ
−

βτ

β

(

z2Φ′′ + zΦ − Φ
)

+ ic1

(

Φ′ −
Φ − Φ(0)

z

))

where “′” = d/dz. Φ(·, τ) is analytic. Assuming it extends over |z| ≤ 1, then

∂Φ

∂τ
= −

βτ

β

(

z2Φ′′ + zΦ− Φ
)

+ ic1

(

Φ′ −
Φ − Φ(0)

z

)

so the problem becomes complex valued but local on the unit disk. Then coefficients
Φ(z, τ) =

∑∞
0 ak(τ)ikzk satisfy,

(R)
∂

∂τ

(

βk2−1ak

)

= c1kβk2−1ak+1

which can be explicitly integrated and estimated. We state some consequences of
this recursion formula.

(1) Energy cascade is from high modes to lower modes. Since β ′ > 0, this is a
manifestation of the fact that the curvature terms regularize (L).

(2) Polynomial initial data have polynomial solutions. If Φn is the solution of
the initial value problem with Φn(z, 0) = zn then Φn is a polynomial of
degree n whose lowest order z1 coefficient grows at the fastest rate, like
τn−1.

(3) If α ∈ C1[0, T ] then series converges on [0, T ]. In particular, this implies a
second existence proof.

(4) |Φ(τ)|0 = o(eετ ) as τ → ∞ for all ε > 0. This implies that R/R has
linearized stability since R grows linearly in t (hence exponentially in τ .)

(5) If β constant and the combustion rate doesn’t depend on curvature, then
there is still local existence, say for analytic initial data. However, blowup
can happen in an arbitrarily short time for arbitrarily small perturbations of
the initial data. In this case the first order PDE can be integrated to show
that soltuions takes the form Φ(z) = a + zf(z + iτ) where f is an arbitrary
function analytic in a neighborhood of the unit disk. The T = 0 Hele-Shaw
problem can be integrated similarly[HH] and develops singularities[Ta]. The
model vorticity equation behaves similarly[CM].
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(6) Φ(z, 0) polynomial then Φ(S1, τ) is convex for τ sufficiently large. In other
words, fingers coalesce by the flow. The same statement holds for initial
data which is close enough to polynomial. The downward cascade simply
means that the lowest mode eventually swamps all the others.

(7) More fingers grow initially if c1 large. To estimate the number of fingers
that form initially, we compute the relative growth of the sup norm of the
n-th mode at the initial time.

∂ log |Φn|0
∂ logR

∣

∣

∣

∣

τ=0

> 1 if 2 ≤ n ≤ 1 +
c1β(R0)

βτ (R0)

Hence fingers tend to form in more lower modes if the regularizing combus-
tion effects are weak compared to the fluid effects. This agrees with the
dispersion analysis of linear flame fronts[Z].

(8) If α regular at zero, u is analytic in θ for t > 0 and satisfies a Gevrey-like
estimate. Let S0 = β(R0). There are c2, c3 so

∥

∥

∥

∥

∥

(

β(R(t))

S0

)2∆

u

∥

∥

∥

∥

∥

2

= Eu ≤ c2‖φ‖L2(S1)t
c3 if t ≥ 1.

In terms of series, if u =
∑

ak(t)eikθ then Eu =
∑

(β/S0)
2k2

|ak|2. Since
β/S0 > 1, boundedness of Eu implies exponential decay of Fourier coeffi-
cients in k which implies analyticity. Using (R), this is proved by finding
an energy estimate for Eu(τ) where u is any solution. Since the polynomial
solutions form a basis, the energy estimate is established using a Galerkin
procedure.

The presence of the combustion term depending on curvature makes the equation
regular as does the curvature term in case T > 0 withiout combustion. However, as
in that case, β constant case cannot be viewed as being regularized by solutions of
0 < β′ → 0 [Ta]. For example, long time existence holds for β′ > 0 but completely
fails when β is constant.

The rising circle solution of the nonlinear equation is relatively sta-

ble. We show that the solution R of the nonlinear

(N) V = α(κ) + c1N (Γt)

is relatively stable. i.e. if R(θ, 0)/R(0) ≈ 1 then solution exists for all time and
R/R → 1 as τ → ∞. Following [TW] we parameterize

R(θ, τ) = R(τ)eu(θ,τ)

and write κ for the curvature of θ 7→ eu+iθ. The equation becomes

(E) uτ = α

(

−uθθ + u2
θ + 1

Reu(1 + u + θ2)3/2

)

e−u
√

1 + u2
θ − α

(

1

R

)

+ c1N [u]

where the modified N [u] becomes

1

2π

∫ π

−π

K(θ.η, τ)
∂

∂η

[

eu(η,τ)−u(θ,τ) cos(η)
]

dη
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where

K(θ, η, τ) =
sinh

(

u(η, τ) − u(θ, τ)
)

− uθ(θ, τ) sin(η − θ)

cosh
(

u(η, τ) − u(θ, τ)
)

− cos(η − θ)
.

The equation can be solved using a similar procedure to that used in the linear
equation. Let Q := S1 × [0,∞),

X2+δ(S) : = C2+δ,1+δ/2(S)

X2+δ
k2

(Q) : =

{

v ∈ Xδ+2
loc (Q) : sup

τ≥0
ek2τ |v|X2+δ(S1×{τ}) < ∞

}

be time weighted Hölder spaces. The idea is to view the nonlinear term as a
perturbation of curvature flow. One checks that by choosing the initial data and
the fluids constant c1 sufficiently small that one can arrange that solutions of the
nonlinear equation (fixed points of the solution map) remain in a fixed ball of Xk2

independent of the time interval [0, t1] in which solutions are constructed.

Theorem. Suppose β ∈ C5+δ satisfies β′ > 0, s ≤ β/S0 ≤ s + (1 − s)e−k1τ

where s = S0/S1 < 1, | log β|5 ≤ c2e
−k1τ . There are constants ci depending on

c2, k1, S0, S1, R0 so that if δ ≤ c3, |u0|2+δ ≤ c4, c1 ≤ c5 and k2 ≤ c6 then there is a

solution u ∈ X2+δ
k2

of (E) so that u(θ, 0) = u0(θ). Moreover, for all l ∈ N there is

c7 also depending on l ≥ 2 so that the solution u ∈ X l+δ
k2

so that for τ > 1/l,

|u|Xl+δ(S1×{τ}) ≤ c7

(

|u0|2+δe
−S1τ+c1e

−k2τ
)

.

Idea of the proof. View the nonlinear term as a perturbation of the outward mean
curvature flow (N = 0). Set up a fixed point argument in X2+δ

k2
(S1×[0, t1]). Apriori

estimates for solutions to

uτ = α(κ/R) − β(R) + f, and u(0) = u0

where f = c1Nw for w ∈ X2+δ
k2

and estimates of the nonlocal tern show that

u ∈ X2+δ
k2

. A bootstrapping argument gives compactness. Then argue that for

|u0|2+δ and |c1| small enough but independent of t1, any fixed point (solution of

the nonlinear equation) is in a uniform ball in X2+δ
k2

.

The argument depends some lemmata. The first says that the nonlocal term
can be decomposed as a Hilbert transform plus a more regular operator, and thus
satisfies estimates similar to the linear case.

Lemma. For every δ > ε > 0, k, j ∈ Z+ there is a c8 so that if D = ∂j
θ∂

k
τ and

Du ∈ C1+δ,(1+δ)/2 then DNu ∈ Cε,(1+ε)/2 so that

|DNu|ε,(1+ε)/2 ≤ c8|Du|1+δ,(1+δ)/2

c8 depends on ε, k, |uθ|0 and |Du|1+δ,(1+δ)/2.

Idea of the proof. One can decompose the kernel so that and K = f + g cot((θ −
η)/2) where f, g have better regularity. Thus Nu =

∫

fhdx + H(ghu) where h =

(eu(η,τ)−u(θ,τ) cos η)η . For example, one term is

cosh(u(η, τ) − u(θ, τ)) − 1

1 − cos(η − θ)
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which behaves like u2
θ.

The loss of smoothness with respect to the time variable or with respect to any
parameter is as for the Hilbert transform.

The second is to find apriori estimates for the inhomogeneous mean curvature
equation. The essential point is that if the right side comes from an element of Xk2

and decays exponentially, then long time estimates can be found for solutions that
depend only on the initial data and right side but not on the time interval [0, t1].
Estimates for derivatives are very similar. We illustrate by presenting just a one
sided C0 estimate. The equation is

(IMC) uτ = α
( κ

R

)

− β(R) + f(θ, τ)

where we have written κ for the curvature of eu(θ,τ)eiθ for convenience.

Lemma. Suppose β ∈ C1 such that β′ > 0, β(R0) = S0 > 0, s ≤ S0/β ≤
s + (1 − s)e−k1τ , s = S0/S1, |(log β)τ | ≤ c4e

−k1τ . Suppose that f ∈ C satisfies
|f | ≤ c5e

−k2τ where k2, c5 < S1. Then there is a constant c9 so depending on
S0, S1, k1, c4, |f |0, |u0|0 so any C2,1 solution u of (IMC) satisfies

eu − 1 ≤ (e|u0|0 − 1)e−S1τ+(c4+S0)min{τ,1/k1} + c5c9
e−k2τ − e−S1τ

S1 − k2
.

Idea of the proof. First find constant bounds using the maximum principle. The
idea is to construct a supersolution M(τ) as the solution to an ODE which depends
only on τ . Then to use finer inequlities to find sharper upper solutions.

Provided M(0) ≥ |u0|0 we suppose there is a first point (θ0, τ0) where u = M .
There uθ = 0 and uθθ ≤ 0 and κ ≥ e−M > 0. This says that we’re within the range
to substitute to β. Thus at the maximum point,

uτ − e−uβ

(

R

κ

)

= −β(R) + f

uτ = S1e
−M + |f |0 −

S1

1 + (S − 1)e−k1τ
= Mτ .

Thus if |f |0 < S1 then the solution of the last ODE assumed to be satisfied by M
(which is linear in eM ) is bounded by c10.

A more refined estimate follows since β(Re−M ) has a better upper bound. Using
derivative assumptions on β and Taylor’s formula

eMMτ ≤ β(R) − β(R)eM + feM + c4e
−(1+k1/S1)M−k1τ (eM − 1),

(eM − 1)τ ≤ (−β(R) + c4e
−k1τ )(eM − 1) + c5e

−k2τeM ,

≤ (−S1 + (c4 + S0)e
−k1τ )(eM − 1) + c5c10e

−k2τ .

Thus the integral grows until the sign of the leading term becomes negative. Then
the linear term and inhomogeneous term decay. The esimate follows by integrating
the new differential inequality satisfied by the refined M .
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