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Abstract. We consider an isometric embedding problem that arises from general
relativity. Physicists have sought to find embedding diagrams, isometric embed-
dings into Euclidean three space, of slices of initial data for Einstein’s equations.
One example is Misner’s wormhole universe. It is a complete and negatively curved

but doesn’t satisfy either Efimov’s nonexistence nor Hong’s existence conditions for
isometric immersibility. We describe some results for nonpositively curved surfaces
under additional extrinsic hypotheses. In joint work with H.G. Chan we show that
a complete, one ended, nonflat, nonpositively curved surface embedded in Euclidean
three space with square integrable second funamental form must lie a fixed distance
from a plane and have continua of parabolic points heading to infinity. This implies
Chan’s result that the Misner surface doesn’t admit such an embedding diagram.

We describe some results about complete nonpositively curved surfaces embed-
ded in Euclidean three space. The motivation comes from an isometric embed-
ding quesion posed by general relativists, who are interested in finding embedding
diagrams of interesting initial manifolds for the evolution problem for Einstein’s
equations. We describe embedding diagrams and illustrate in the case of Schwarz-
schild space. We describe Misner’s wormhole manifold which is compatible with
the Einstein equations. Existing isometric embedding theorems don’t apply to it.
Under additional extrinsic hypotheses we are able show geometric properties of
complete nonpositively curved surfaces. We prove that a complete, one ended,
nonflat, nonpositively curved surface embedded in R3 with square integrable sec-
ond fundamental form lies a finite distance from a plane. From this we recover
Chan’s theorem that no embedding diagram exists for the Misner surface under
reasonable extrinsic hypotheses. A detailed account of these results will appear
elsewhere[CTr].

The initial value problem for general relativity is to specify a complete Riemann-
ian three manifold x ∈ (M3, g)

g =
3
∑

i,j=1

gij(x)dx
i dxj
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and its second fundamental form hij and to evolve them into a 4-dimensional space-
time (t, x) ∈ (N4, g4) using Einstein’s source free equations (no matter). The initial
manifolds are assumed to be symmetric about t = 0,

g4 = −dt2 + g at t = 0,

and momentarily stationary
dg

dt

∣

∣

∣

∣

t=0

= 0.

The initial surface has to satisfy Einstein’s equations. The equations of Einstein’s
system not involving second time derivatives of the metric say that in this case
(M, g) has to be scalar flat. [Mi] The rest of the equations specify second time
derivatives of the metric,and thus the evolution.

Misner’s surface. Of particular interest is the collision of black holes which has
been extensively studied numerically[AP]. Misner’s data and Brill & Lindquist[BL]
data are examples of three manifolds with wormholes. We describe Misner’s con-
struction[Mi]. To start, assume topologically M = Σ × S2 3 (µ, θ, φ) and look for
metrics conformal to the canonical one

g = ψ4(dµ2 + dθ2 + sin2 θ dφ2).

Scalar curvature is given by

Lψ = ∆Σψ − 1
4RΣψ = cRgψ
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with RΣ = 1. One solution with Rg = 0 is (gotten by pulling back the flat plane
metric to R2 via elliptical coordinates)

ψ =
1√

coshµ− cos θ
,

so Lψ = 0. The conformal metric blows up at µ = 0, θ = 2πk. Also near (0,0),

ψ4 ∼ 1

(µ2 + θ2)2

so the metric is asymptotic to a flat end. It is made periodic in µ using superposition

ψ =

∞
∑

−∞

1
√

cosh(µ+ 2na) − cos θ
.

Take quotient by translation (µ, θ) 7→ (µ+2ka, θ)). The result is a scalar flat metric
on S1 × S2 − k pts.. The Misner surface is the slice

(MSk)
(

S1 × S1 − {(4ak, 0)}, ψ4(dµ2 + dθ2)
)

.

The usual picture of a wormhole slice (MS1) is the surface given by a handle con-
nected to an asymptotically flat plane.
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Embedding Diagrams. Consider the surface corresponding to the φ = const.
slice. An embedding diagram is an isometric embedding of this surface into R3.
An embedding diagram for the Schwarzschild spacetime (one stationary black hole)
is easily found. It is what’s usually pictured as two asymptotically flat planes
connected by a tube. The Schwarzschild metric is independent of t. In the usual
coordinates it is

ds2 = −
(

1 − 2m

r

)

dt2 +
dr2

1 − 2m

r

+ r2(dθ2 + sin2 θ dφ2).

r = 2m is a coordinate singularity. Take the slice corresponding to t = const. and
φ = const. To find an isometric embedding, make the Ansatz that the position
vector takes the form

X(r, θ) = (a(r), b(r) cos θ, b(r) sin θ).

Equating the pullback of the Euclidean metric by X to the Schwarzschild metric
gives ODE’s for the isometric embedding. Integrating yields

X(r, θ) =
(√

8m
√
r − 2m, r cos θ, r sin θ

)

.

This is the usual parabola of revolution picture of the Schwarzschild universe. One
checks that the embedding continues beyond the coordinate singularity at r = 2m.
The second fundamental form hij ∈ L2 and the curvature satisfies

K=
−m

r2(2 − 2m)
, hij =

(

−
√

2m
2r3/2

0

0
√

2m√
r(r−2m)

)

The question that motivates our study is: can one find an embedding diagram
for the Misner surface (MS1)? This surface has[RP]

K ∼ 1

dist(x, x0)3
, K < 0.

An interesting numerical effort was made to consturct an embedding diagram for
(MS1). Physicists assumed that if an embedding existed, it would concievably
behave at infinity like the embedding of the Schwarzschild space. By choosing con-
stants to make the masses of (MS1) and Schwarzschild equal so that they appear
similar from a distance, Romano and Price[RP] attempted to propogate from the
flat end into the torus starting from Schwarzshild data. They numerically solve the
hyperbolic Darboux equation for the second fundamental form and integrate the
Gauss and Codazzi equations to get the surface. It turns out that the numerical
procedure develops a shock (the asymptotic directions coincide) before too much
of the surface is reconstructed. This is inevitable and is reminiscent of Amsler’s
proof[Am] (that shocks must develop in any immersion) of Hilbert’s theorem about
the nonexistence of C2 isometric immersions of the hyperbolic plane into R3. Ro-
mano and Price did observe an index argument which rules out the success of a
nice solution.
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Historical remarks. Poznyak-Shikin[PS] and Rozendorn[Rz] survey embedding
problems for nonpositively curved sufaces. We mention some of the noexistence
results for embedding surfaces with K < 0. The first is Hilbert’s theorem[Hi] that
there are no C2 isometric immersions of the hyperbolic plane H2 ⊂ R3 . Efi-
mov[Ef1], [KM] showed that there are no C2 isometric immersions of any complete
(R2, g) ⊂ R3 s.t. K ≤ −b2 < 0. Later he published the theorem[Ef2] that there
are no C2 isometric immersions of complete (R2, g) ⊂ R3 s.t. K < 0 and for all x,
y,

∣

∣

∣

∣

∣

1
√

−K(x)
− 1
√

−K(y)

∣

∣

∣

∣

∣

≤ c1dist(x, y)) + c2.

The argument is extremely topological. Efimov partially succeeded to give a com-
pletely analytic argument[Ef3]: that there are no C3 isometric immersions of com-
plete (R2, g) ⊂ R3 s.t. K < 0 and for all x,

∣

∣

∣

∣

∣

∇ 1
√

−K(x)

∣

∣

∣

∣

∣

<

√
2

3
.

Perelman has nonexistence results for general halfspaces[Pe].
If the curvature decays faster, then there are positive results. By integrating the

hyperbolic Codazzi system, J.X. Hong[Ho] showed that (R2, g) with g sufficiently
smooth such that the curvature K < 0 decays like

∂

∂ρ
(log(|K|ρ2+δ) ≤ 0

as ρ� 1, where ρ is distance from a point, then M admits an isometric immersion
into R3. Previously, the method was used to immerse pieces of negatively curved
manifolds[Ka], [Po], [Rh], [Sh], [Tn].

Several results apply to surfaces satisfying also extrinsic conditions. We mention
a result of Schoen & Simon[SS]: if (R2, g) is complete with quadratic area growth,
then |∑h2

ij | ≤ −cK implies M is a plane. That the Misner’s surface doesn’t admit
isometric embeddings can be seen by

Theorem. [Ch2] Let M2 be complete, oriented, one-ended K ≤ 0, K 6≡ 0 such
that parabolic points {x : K(x) = 0} are isolated in M . Then M admits no C2

isometric embedding with hij ∈ L2. (Embeddedness near the end suffices.)

The theorem is sharp in the sense there exist surfaces which son’t satisfy one of
the hypotheses. Examples are the flat surface (plane curve ×R), Enneper’s surface
which is not embedded near the end and the catenoid which has two ends. Another
example is thee solution of

(1 + z)x2 − (1 − z)y2 = 2z(1− z2)

in R3 which is topologically a handle attached to the plane. It satisfies all hy-
potheses except that the lines at z = ±1 have zero curvature so it has nonisolated
parabolic points. For this surface

K ∼
∑

h2
ij ∼ dist(p, p0)

−4 as p→ ∞.

Our main result shows that this situation is typical in this class of surfaces.
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Slab theorem. The idea is that the two major hypotheses clash. The square
integrability of the second fundamental form says that the ends of complete non-
positively curved surface embedded in three space have to be very tame. However,
the oscillation of the surface due to the presence of any negative curvature magnifies
as it propogates to the end. An example of this is a theorem of Bernstein(1915)
which was first completely proved by E. Hopf[Hp2].

Theorem. Let u ∈ C2(R2) satisfy uxxuyy − u2
xy ≤ 0 and for some point “< 0”.

Then u has linear growth: there are constants c, R0 > 0 so that for all r > R0

sup
|(x,y)|=r

u(x, y) − inf
|(x,y)|=r

u(x, y) ≥ cr.

Idea of the proof. By the maximum principle, nodal domains {(x, y) : u(x, y) > 0}
are noncompact and if there is a nodal domain which lies in a sector of opening angle
less than π, then u has linear growth in that sector. Then a topological argument is
given to show that there must be such a nodal domain. Assume that u doesn’t have
linear growth. The local argument says that if at some point K < 0 then nearby
is a point where ∇u 6= 0 and K < 0. By rotation and translation arrange that the
point is (0, 0) and ∇u(0, 0) = (0, ξ) with ξ > 0. Let η(x, y) = u(x, u) − ξy. η is
also negatively curved and has four nodal domains touching zero. The global part
says that by the growth hypothesis, η is negative not too far above and positive not
too far below the x-axis. Viewing R2 as a disk and adding two points at infinity
corresponding to ±∞ of the x-axis, then both ±∞ are accessible by Jordan curves
in the positive and negative regions away from the axes. Finally, Hopf proves
an accessibility statement[Hp1], that if the nodal domains touching zero aren’t
contained in a sector, then both ±∞ can be connected by Jordan arcs to any point
in the nodal domain. This is a contradiction.

Away from a compact set our surfaces look like graphs. Our argument generalizes
Hopf’s to these surfaces.

Theorem. [CTr] Let M be a smooth, complete, oriented, K ≤ 0, K 6≡ 0, one ended
surface which is C2 immersed in R3 such that it is embedded near its end. Then
M lies between two parallel planes. Moreover, choosing the planes as close together
as possible, then there is a set of contact with both planes which is parabolic, and
consists of continua heading to infinity. (e.g. lines, stars, strips, halfspaces.)

Idea of the proof. (1.) By a theorem of B. White[Wh], complete, K ≤ 0 and hij ∈
L2 implies that the Gauss map extends continuously across the end. Since we have
assumed embeddedness near the end, the manifold must be a graph near its end.
Near the end, for |(x, y)| ≥ R the surface can be parameterized X = (x, y, u(x, y))
so that ∇u→ 0 as (z, y) → ∞.
(2.) Generalize the local part of the argument of Hopf. Suppose that the narrowest
nonvertical parallel planes which contain the |(x, y)| ≤ R part of the surface don’t
already straddle the whole surface. Then after rotation, for some c1, c2, ξ > 0, there
are at least two “nodal” domains {u(x, y) > c1 + ξy} and at least two domains
{(x, y) : u(x, y) < −c2 + ξy} in the graph part of the surface near the end. The
global part of the argument is the same as Hopf’s. Hence u has linear growth. In
particular there is a sequence (xi, yi) → ∞ so that ∇u(xi, yi) 6→ 0 which contradicts
the first part.
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(3.) By the second step, the narrowest parallel planes straddling the |(x, y)| ≤ R

part of the surface must touch it at interior points. By the maximum principle,
touch points have K = 0 and the components of the complemenatry set in the
planes are convex and non noncompact. The structure of the contact set follows.
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